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Abstract

The aim of this master’s thesis is to develop a two-dimensional drift-diffusion model,
which describes charge transport in organic solar cells. The main benefit of a
two-dimensional model compared to a one-dimensional one is the inclusion of the
nanoscale morphology of the active layer of a bulk heterojunction solar cell. The
developed model was used to study recombination dynamics at the donor-acceptor
interface. In some cases, it was possible to determine effective parameters, which
reproduce the results of the two-dimensional model in the one-dimensional case.

A summary of the theory of charge transport in semiconductors was presented
and discussed in the context of organic materials. Additionally, the normalization
and discretization procedures required to find a numerical solution to the charge
transport problem were outlined. The charge transport problem was solved by
implementing an iterative scheme called successive over-relaxation. The obtained
solution is given as position-dependent electric potential, free charge carrier concen-
trations and current densities in the active layer.

An interfacial layer, separating the pure phases, was introduced in order to de-
scribe charge dynamics occurring at the interface between the donor and acceptor.
For simplicity, an effective generation of free charge carriers in the interfacial layer
was implemented. The pure phases simply act as transport layers for the photogen-
erated charges.

Langevin recombination was assumed in the two-dimensional model and an anal-
ysis of the apparent recombination rate in the one-dimensional case is presented. The
recombination rate in a two-dimensional model is seen to effectively look like reduced
Langevin recombination at open circuit. Replicating the J-U curves obtained in the
two-dimensional model is, however, not possible by introducing a constant reduction
factor in the Langevin recombination rate.

The impact of an acceptor domain in the pure donor phase was investigated.
Two cases were considered, one where the acceptor domain is isolated and another
where it is connected to the bulk of the acceptor. A comparison to the case where no
isolated domains exist was done in order to quantify the observed reduction in the
photocurrent. The results show that all charges generated at the isolated domain
are lost to recombination, but the domain does not have a major impact on charge
transport.

Trap-assisted recombination at interfacial trap states was investigated, as well as
the surface dipole caused by the trapped charges. A theoretical expression for the
ideality factor n;q as a function of generation was derived and shown to agree with
simulation data. When the theoretical expression was fitted to simulation data, no
interface dipole was observed.



Abstrakt

Malet med denna pro gradu-avhandling var att utveckla en tvadimensionell drift—
diffusion-simulering som lampar sig for att beskriva laddningstransport i organiska
solceller. Fordelen med en tvadimensionell modell jimfort med de endimensionella
modellerna som normalt anvinds dr att morfologin i det aktiva lagret for en bulk-
gransytesolcell kan tas i beaktande. Modellen som utvecklades anvindes féljaktligen
for att studera rekombination som intréiffar vid gransytor mellan det elektrondone-
rande och elektronaccepterande materialet.

Teorin bakom laddningstransport i halvledare presenterades och diskuterades
med organiska material som utgangspunkt. En 6versikt av den normalisering och
diskretisering av ekvationer som &r nodviandig for att numeriskt kunna losa ekva-
tionerna som beskriver laddningstransporten introducerades. Numeriska 16sningar
erholls med hjélp av en iterativ 6verrelaxationsmetod. Losningen ges i form av po-
sitionsberoende elektrisk potential, laddningskoncentrationer och stromtathet.

Ett gransskikt som skiljer de tva materialen at implementerades fér att beskriva
gransytan och de former av vixelverkan som sker dir. For enkelhetens skull imple-
menterades fotogenerationen sa att fria laddningar genereras vid gransytan. De rena
faserna av de tva materialen fungerar endast som transportskikt fér de fotogenere-
rade laddningarna.

Den bimolekyldra rekombinationshastigheten i den tvadimensionella modellen
antogs ges av Langevin-rekombinationshastigheten och jimfordes med en endimen-
sionell modell. Rekombinationshastigheten i den endimensionella modellen anpas-
sades sa att samma varde for V,. erholls som det i den tvadimensionella modellen.
Rekombinationen i den tvadimensionella modellen visades da se ut som reducerad
Langevin-rekombination och ett uttryck for reduktionsfaktorn v foreslogs.

Forlusten av fotogenererade laddningar férorsakad av isolerade doméner studera-
des genom att placera en acceptordomén i den rena donorfasen. Dérefter studerades
de tva fall dir doménen varit i kontakt med resten av acceptorfasen och det da
doménen var helt isolerad. En stor minskning i fotostrommen observerades och for
att kvantifiera minskningen jamfordes de tva fallen med det dédr doménen avldgsna-
des helt. Resultaten visar att alla laddningsbérare som genereras vid isolerade faser
forloras genom rekombination.

Dartill undersoktes rekombination via fillor beldgna vid grinsytan mellan do-
norn och acceptorn, samt den dipol som férorsakas av de fangade laddningarna. Ett
teoretiskt uttryck for idealitetsfaktorn n;y hérleddes och visades stimma val Gver-
ens med de simulerade vardena for V,.. Da en kurvanpassning av uttrycket till de
simulerade virdena gjordes kunde ingen inverkan av dipolen observeras.
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Forord

Efter att ha bekantat mig med organiska halvledare i laboratoriet sag jag fram emot
att fa gora mer teoretiskt arbete inom det intressanta filtet. Da professor Ronald
Osterbacka foreslog att jag kunde skriva min pro gradu-avhandling om simulering av
organiska solceller tog jag glatt emot utmaningen. Under arbetets gang har jag lart
mig mycket och upplevt otaliga insikter inom det komplicerade omradet. Dartill fick
jag en orsak att sdtta mig in i grundlaggande programmering som sannolikt kommer
att vara en viktig kunskap i framtiden.

Jag vill tacka mina handledare Ronald Osterbacka och Oskar Sandberg fér manga
givande och larorika diskussioner. Dartill har ocksa Markus Lindberg bidragit med
manga insiktsfulla kommentarer. Aven debatterna med studiekamrater under de
gangna aren har lett till en djupare forstaelse av manga viktiga fenomen.

Christian Ahling
Abo, februari 2016
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Chapter 1

Introduction

Organic solar cells, usually classified as a group of emerging photovoltaic devices,
have shown a tremendous increase in efficiency during the last decade. Organic
photovoltaics are, however, still far from the efficiencies reached by their inorganic
counterparts. The lower efficiency is a result of large energy barrier for dissociation
of generated charges and lower mobilities, causing increased recombination [1]. A
better understanding of the recombination processes that occur in the materials
and tuning of properties such as the band gap are essential to further improve the
efficiency of organic photovoltaic devices.

The aim of this work is to develop a two-dimensional drift-diffusion model for
organic solar cells. In order to create an accurate model a good understanding of
charge transport dynamics is required. The underlying theory utilized in developing
the model is outlined in chapters 2 and 3. To ensure the viability of the model some
basic theoretical predictions have been replicated. The main goal of the simulations
that have been carried out is to determine the impact of recombination in an organic
solar cell.

Models like the one developed in this work are useful tools for replicating and
describing observed behaviors of a system. Simulations can also be utilized when
trying to optimize a set of parameters for a system. This way time-consuming trial
and error in a laboratory can be avoided.






Chapter 2

Organic Semiconductors

In this chapter, a general description of organic semiconductors will be presented,
as well as an introduction to organic photovoltaics. The aim of this chapter is
to give the reader the necessary background information on the sometimes vastly
different properties of organic materials compared to the more common, inorganic
semiconductors.

2.1 Electronic Properties

Organic materials exhibit quite different properties compared to inorganic crystals.
The inherent disorder and weak binding forces encountered in organic materials
lead to completely different charge transport properties. A basic understanding of
the energy structure found in organic materials can be obtained by considering the
transition from a single molecule to a molecular solid.

2.1.1 Molecular Properties

Rings or chains of carbon atoms bound together by alternating single and double
bonds are called conjugated segments. Conjugated hydrocarbon molecules, which
are some of the simplest organic molecules, are made up of one or more of these

@ m* LUMO
& m —Hf HOMO —H—
m —H—

Figure 2.1: Schematic picture of the delocalized m-orbitals of a benzene molecule.
The m-bonds can be seen as three energy levels that extend over the whole ring
structure. The energy levels are also presented on an energy scale showing the ground
state where the m-bonds are fully occupied. The 7*-binding energies correspond to
excited states of the molecule.



conjugated segments. The electrons that participate in the double bonds are called
m-electrons and are delocalized over the conjugated segment. In benzene, a simple
aromatic hydrocarbon molecule, the six m-electrons are delocalized over the whole
molecule and occupy three molecular orbitals. The highest occupied molecular or-
bital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are of special
importance, as electronic transitions mainly take place between these levels. In
Figure 2.1, the delocalized m-orbitals and molecular orbitals of benzene are shown.

2.1.2 Molecular Solids

The materials used in bulk heterojunction solar cells are generally amorphous, mean-
ing that no long range order exists in the solid. The inherent disorder is a result
of the weak van der Waals forces that bind neighboring molecules together, thus
forming a solid. The disorder is seen as variation in intermolecular distances and
relative orientation of the molecules among other things. The energy levels of the
molecular orbitals are shifted from the single-molecule value when a solid is formed.
The shift of the energy levels depends on intermolecular distance and orientation of
neighboring molecules and, therefore, a broad density of states is observed in the
materials. The HOMO and LUMO levels in the solid commonly exhibit a Gaus-
sian density of states [2]. Electrons and holes are transported at these broad levels,
made up of isolated states. For simplicity, the terms conduction band F¢ and va-
lence band Ey will be used to describe the energy levels at which electrons and
holes are transported, even though no continuous bands exist in disordered organic
semiconductors.

Upon photoexcitation, an electron is excited to a higher lying state and a hole
is left behind at the state previously occupied by the electron. The electron and
hole remain coulombically bound and can be described as an exciton, having no net
charge. The binding energy of the exciton is on the order of 300 meV, meaning that
spontaneous dissociation is very unlikely. A schematic picture of the energy levels of
the bound electron and holes is shown in Figure 2.2. Excitons are short-lived with a
lifetime of about 1 ns after which the bound electron and hole recombine. Excitons
are able to hop between molecules and typically diffuse 10 nm during their lifetime.

E

Figure 2.2: Schematic picture showing the energy levels of the bound electron-hole
pair. The binding energy is the energy difference between the electron and E¢ plus
the energy difference between the hole and Ey, shown by the black arrows. To
the right the HOMO and LUMO levels in the solid are shown as a reference to the
simplified single-level model.
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Figure 2.3: Schematic pictures of hopping transport in organic semiconductors with
and without an electric field. Jumps to higher energies and over large distances are
unlikely and limit the transport. An electric field increases the likelihood of finding
nearby states with lower energy, thus increasing the mobility at low temperatures.

2.1.3 Hopping Transport

Free charge carriers in disordered organic materials are delocalized along conjugated
segments but remain localized on these segments. Hopping transport is the term
used to describe transport between the localized states, consisting of a series of
tunneling events between the states. An expression for the hopping rate v has been
derived by R. Marcus [3], but in practice it is very difficult to calculate the hopping
rate. Instead, the simpler Miller-Abrahams hopping rate is generally used [4]. The
expression for the Miller-Abrahams hopping rate defines a maximum hopping rate
vy and then considers how it is reduced by spatial and energetic differences between
states. The hopping rate from a state with energy E; to another with energy Fj;,
separated by a distance It;; is given by v;;,

V__:{l/oexp(—%)e}(p<_ﬁkb;ij) ifEi<Ej

I/Oexp(—%) if Ez >E]

(2.1)

Here AL;; = E; — E; is the difference in energy between the states, a hop to a
state with lower energy is only affected by the distance between the states R;;.
The parameter v is the localization radius, which is a measure of the wavefunction
overlap between two states.

The transport in organic semiconductors is thermally activated as described by
the Miller-Abrahams expression. An electric field F' may also contribute to the mo-
bility by ensuring that lower lying states are found nearby. An empirical expression
for the field and temperature dependent mobility has been obtained from Monte
Carlo simulations and shown to agree well with experiments [2]:

W(F,T) = o exp {— (g%)] exp {CFW ((%)2 - 22)}. (2.2)

Here o is the width of the Gaussian density of states, pg is a material-dependent
parameter and both C' and ¥ are empirical parameters fitted to experiments. The
hopping transport of an electron at the LUMO level in the presence of an electric
field is illustrated in Figure 2.3. In Figure 2.4, the mobility given in equation 2.2 is
shown as a function F'/? for a number of temperatures. At room temperature the
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Figure 2.4: Mobility of P3HT as a function of F'/? for a number of temperatures.
The mobility at room temperature is seen to be only weakly dependent on the
electric field. The values for C' and ¥ are taken from |5].

mobility is only weakly dependent on the electric field, as seen in the figure and can
therefore be assumed to be constant.

2.2 Organic Solar Cells

2.2.1 Working Principles of a Solar Cell

A solar cell produces energy by converting absorbed photons into free charge carriers,
which can subsequently be extracted as electric current. The charges are extracted
at electrodes, between which the active layer is sandwiched. The built-in potential
Vbi 1s equal to the difference in work functions of the electrodes and the built-in field
Fi; = —V V4, acts as a driving force in the solar cell by extracting photogenerated
charges.

In this thesis, the difference in electrochemical potential between the electrodes
is denoted U, while specific values of the potential difference are denoted by V.
Similarly, currents will be denoted with a capital letter, J, while current densities
are given a lower case letter, j. Power can be extracted from the solar cell when
a potential difference U exists between the electrodes and the power output of the
solar cell is given by P = J - U. At dark conditions the solar cell behaves like a
diode and a current Jg, flows through the device when a potential is applied.

Under illumination the total current Jy, is given by the sum of the dark cur-
rent and the photocurrent Jynete, which is the current produced by photogenerated
charges. The photocurrent can be approximated by assuming that the maximum
drift-distance a charge travels is given by [ = puF'7 where 7 is the lifetime of a free
charge carrier. The photocurrent can then be calculated from the amount of charge
which reaches the electrodes and can be extracted [6]. The following expressions are
then obtained with the maximum value for the photocurrent density jpnoto When [
is larger than the thickness d of the active layer:

(2.3)

o] = eGur|Vii = Ul|/d ifl1<d
Jrhotel =9 itl>d
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Figure 2.5: J-U curve showing the diode current J4,,x and the current that arises
from photogenerated charges Jphoto- The total current under illumination is given
by the sum of these, Jiju = Jaark + Jphoto-

where G is the generation rate of free charges. The separate currents that make up
the J-U curve of a solar cell under illumination are shown in Figure 2.5.

Two defining values for solar cells are the short circuit current .J,. and the open
circuit voltage V.. At short circuit under illumination J,. is obtained, this is the cur-
rent of photogenerated charge extracted by the built-in potential. At open circuit,
when the potential difference between the electrodes is equal to V., no net cur-
rent flows through the device and instead all photogenerated charges decay through
recombination. The maximum power output P,,., of a solar cell is given by the
maximum value of the product J-U, given by JmaxVinax.- Pmae can also be expressed
in terms of J,. and V., as well as the fill factor FIF. The fill factor is defined as the
ratio between the maximum power output P,.x and the product J,.V,., illustrated
in Figure 2.6. Rearranging the terms the following expression is obtained for P, ,;:

Pmax = Jmaxvmax = FFJSC‘/OC‘ (24)

This way material dependent loss mechanisms, such as recombination, can be at-
tributed mainly to FF, while V,. and J,. depend more strongly on device properties,
such as the band gap. To obtain the efficiency n of the solar cell the maximum power
output is simply divided by that of the incident photon flux Pp:

Prax — FFJsVoc

= 2.5
7 Pﬂux Pﬂux ( )

A better understanding of the impact of individual loss mechanisms would make
it possible to design efficient solar cells without time-consuming trial and error.
In practice, it is very difficult to change a single parameter without affecting the
rest. Computer simulations come in handy as the individual properties can be
changed and the performance tuned. However, constructing the model requires a
good understanding of the phenomena occurring in the device.

7
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Figure 2.6: J-U curve showing the maximum power output P, and its components.
The fill factor is given by the area marked with black lines divided by the red
rectangle, as shown in the figure.

2.2.2 Organic Materials as Photovoltaics

Organic materials have a very high absorption coefficient allowing for active layer
thicknesses on the order of 100 nm [7]. Organic materials also generally have a wide
absorption spectrum, thus making it possible to absorb a relatively large part of the
incoming photon flux. The first organic photovoltaic devices, using tetracene among
others as semiconducting layer, showed poor efficiencies of below 0.05% [8]. A major
breakthrough was achieved when an efficiency of 1% was demonstrated by utilizing
an active layer consisting of a donor and acceptor in a bi-layer structure [9].

In a bulk heterojunction solar cell the donor and acceptor materials are blended,
thus increasing the probability that photogenerated excitons reach an interface be-
fore decaying. The finger structure shown in Figure 2.7 has been proposed as the
ideal morphology for the active layer of a bulk heterojunction solar cell [10]. In
this structure, charges can be transported to the desired electrodes without obstruc-
tions. As the pure phases are exclusively in contact with the appropriate electrode,
no charges diffuse to the wrong electrode. Additionally, the spacing between the
phases is small enough that most charges are dissociated while minimizing recom-
bination. In reality, the active layer takes on a structure of randomly intertwining
phases with isolated lumps that will not contribute to charge transport at all. The
morphology of real devices can be studied with an atomic force microscope and one
such image is shown in Figure 2.8 [11].
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Figure 2.7: Morphology of a bulk heterojunction solar cell under optimal conditions,
calculated by G. Buxton and N. Clarke [10]. The donor is given by the lighter color,
¢ = 1 and the acceptor by the darker regions, ¢ = 0.

Y. E‘%L

100 nm

Figure 2.8: Modified cross-section image of rrP3HT:PCBM (white:black) obtained
with AFM by J Moon et al [11]. The bulk heterojunction structure show columnlike
phases with mean pathway width of 12 nm.
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Chapter 3

Theory on Charge Transport in
Semiconductors

A more detailed description of charge transport in a semiconductor will now be
presented. The reader is encouraged to consider how the various assumptions and
simplifications relate to the theory of organic semiconductors presented in the pre-
vious chapter.

3.1 Enmergy Levels

3.1.1 Electrochemical Potential

The electrochemical potential 7 is the sum of electric and chemical potential, ) and
¢ respectively.

M = &n — €. (3.1)
At thermodynamic equilibrium the electrochemical potential is also called the Fermi
level Fr. The vacuum level E,,. is defined as the energy of an electron at rest in
vacuum. This energy is not a constant and may have local variations due to charge
imbalances. The zero energy level (E = 0) in this work will be defined as the vacuum
level at a large distance from the material to avoid surface effects. The zero energy
level is then independent of material properties and local potential shifts.

The work done when moving an electron from the conduction band to the (local)
vacuum level is known as the electron affinity (FA). Similarly, the energy required to
move an electron from the valence band to the vacuum level is called the ionization
energy (/E). The chemical potential for electrons &, and holes &, is the sum of
the material-dependent part FA, IE and a part dependent on carrier concentrations

Gu(n), Go(p).-
&, = EA+ (Gi(n)
& =1E — Cp(p)-

At thermodynamic equilibrium the chemical potentials for electrons and holes are
equal and given by

(3.2)

fn = gp = EF - Evac~ (33)

The components of the electrochemical potential at thermodynamic equilibrium are
illustrated in Figure 3.1.

11
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Figure 3.1: Energy diagram showing the components of the electrochemical po-
tential for electrons and holes 7, ,. The chemical potential ¢, , is divided into a
constant, material dependent component KA, [E and a component determined by
the concentration of free charges (,,(n), (,(p). The sum of electric ¢ and chemical £
potential determines the electrochemical potential.

3.1.2 Fermi Statistics

The energetic distribution of charge carriers in a material in thermodynamic equi-
librium is described by the Fermi-Dirac distribution function. If the temperature
T and Fermi level Er are known, the probability of finding one electron at a state
with energy FE is given by:

1

f(E) = (3.4)

For metals the Fermi level is located in the conduction band, giving rise to the high
concentration of conduction electrons. In semiconductors the Fermi level is found
in the middle of the band gap £, = Ey — Ec where no states are available. Since
E, >> kT in a semiconductor, almost no electrons are found in the conduction
band at thermodynamic equilibrium.

In a single level model the conduction band is assumed to have an energy F¢ and
an effective density of states Ng, which is the concentration of available states in
the band. Similarly, holes are transported in the valence band with energy Ey and
effective density of states Ny,. This way the electron concentration in the conduction
band n is simply given by

1

n:NC
exp(%)—i—l

(3.5)

at thermodynamic equilibrium. For energy differences Ec — Er that are large com-
pared to k7" the Boltzmann approximation can be used:
Ep — EC)

(3.6)

n:NCexp( T

12



The concentration of holes p in the valence band can be found in a similar manner,

Ey — Ep
kT '

For small electron concentrations in the conduction band, this model describes the

bottom of the band well but otherwise the width of the DOS should be considered.

In a similar manner, the model also describes small concentrations of holes at the

top of the valence band well. At thermodynamic equilibrium, an intrinsic semicon-

ductor will have an equal amount of thermally excited electrons and holes. The

concentration depends only on the band gap Eg and is called the intrinsic density
2

n;

p = Ny exp ( (3.7)

E
np = n; = NoNy exp (—k—;) (3.8)

The thermally generated charges still need to be separated into free charge carriers
and, therefore, intrinsic carriers are generated at acceptor-donor interfaces.

A common Fermi level for electrons and holes is observed in pristine semiconduc-
tors at thermodynamic equilibrium, but is no longer true if free carriers are added
to the system. If the relaxation within the bands happens on a short time scale
compared to that between bands, an internal thermal quasi-equilibrium is reached
separately for both types of charge carriers. Separate quasi-Fermi levels E." then
describe the concentration of electrons in the conduction band and holes in the va-
lence band. The quasi-Fermi levels are equal to the electrochemical potentials of the
respective carrier type:

n
EEpF — (3.9)
r = Tlp-
When free electrons are added to the semiconductor, the quasi-Fermi level for elec-
trons is displaced towards the conduction band and now properly describes the
electron concentration in the band. The quasi-Fermi level for electrons E7 is shown
in Figure 3.2, similarly a separate quasi-Fermi level for holes is formed closer to the
valence band if free holes are added.

Fermi-statistics can still be used in order to describe the concentrations of free
charge carriers. The distribution then describes the electron concentration in the
conduction band and hole concentration in the valence band separately. Using the
separate quasi-Fermi levels, the charge carrier concentrations are given by

EL —F,
n = Ngexp (Fk—TC>
Ey — EY.
kT '

Since additional charge carriers have been added to the system, the product np is no
longer equal to the intrinsic carrier density and an additional factor now appears:

E E% — EY
np = NoNy exp <——G> exp <u) (3.11)

(3.10)
p = Ny exp (

kT kT

In a solar cell free charge carriers are mainly added by photogeneration. Photo-
generated charges typically relax within their respective band on a much shorter time
scale than that on which inter-band relaxation (recombination) occurs. Determining
the quasi-Fermi levels, however, is generally not straightforward.

13
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Figure 3.2: Energy diagram showing the components of the quasi-Fermi level for
electrons. The change in the chemical potential determines the shift of the new
quasi-Fermi level from the equilibrium position.

3.2 Charge Transport

In a solar cell the chemical energy of electron-hole pairs is converted into an electrical
current. The driving forces giving rise to the current in a solar cell are the electric
field F' and the concentration gradients Vn and Vp. It is generally assumed that
temperature gradients, gravitation and magnetism do not affect the current in any
significant way.

3.2.1 Drift

The drift current describes movement of charged particles, in this case electrons and
holes, in the presence of an electric field. The drift velocity vq.r; of an electron is
given by

Vdrift = —/LF (312)

where g is the mobility. The mobility describes how well an electron or hole can
move through the material. The temperature and field dependence of the mobility
was discussed briefly in Chapter 2.1.3. Differences between the mobility of electrons
and holes in a single material are also often observed. The mechanisms causing the
asymmetry are material-dependent and will not be discussed in detail. Now the
total drift current can be calculated by considering the number of charged particles
moving with drift velocity

Jdiife = —enbe + epty, = eF(np, + pi,). (3.13)

The electric field can be expressed in terms of electric potential, as Vi) = F, relating
back to the previously discussed energy diagram. The drift current is then given by

jdrift = —GV?/J (HM7L +p,up)7 (314)
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in this form the relation between the electric potential and the current is seen more
clearly.

3.2.2 Diffusion

A diffusion current arises when a gradient in the charge carrier concentration is
found in a system. Fick’s law gives a relation between the electron diffusion current
I and Vn:

Jhg =eD,Vn (3.15)

where D,, is the diffusion coefficient for electrons. A relation between the diffusion
coefficient and the mobility is given by the Einstein relation,

kT
Dmp = [me?. (316)

The total diffusion current is obtained when including diffusion of holes. Note the
opposite sign as the chemical potential is balanced by moving carriers away from
positions where the concentration is larger than that of the surrounding, independent
of charge

Jaig = e(D,Vn — D,Vp) = KT (11, Vn — 1, Vp). (3.17)

The concentration gradients can also be expressed in terms of chemical potential by

using Equation 3.6 and 3.2:
n
Vn = —V§&,. 3.18
"=V (31)

Similarly to the drift current, the diffusion current can be described by the chemical
potential

jdiff = nﬂnv£n - p,upvép' (319)

3.2.3 Total Current

The total current for electrons and holes is given by the sum of the drift and diffusion
currents. By writing the drift and diffusion current as functions of the electric and
chemical potential, the net current can be described by the quasi-Fermi levels

Jn = eFnp, +eD,Vn = —enp, Vi + nu,VE, = ni,VER

- - , (3.20)
Jp = eF'ppp — eDpNp = —epppVy — pppVép = ppipV Ep.

Note that the drift and diffusion current may be of either equal or opposite sign.
This confusion is avoided by considering the gradient of the quasi-Fermi levels as
the driving force.

3.3 Recombination Processes
Recombination is one of the main loss mechanisms in solar cells, describing the

annihilation of electrons and holes. Recombination may occur when two charge
carriers of opposite charge meet in space. The recombination rate R gives the rate
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at which free charge carriers are lost to recombination. It is included in the continuity
equation when written separately for electrons and holes,

1 _
g—;‘——v-Jn:—R
o f’ i (3.21)
—+-V-J,=-R.
8t+ev P

In addition to recombination of free charge carriers, excitons and trapped charges
may be involved in recombination processes. The most important recombination
processes in organic solar cells are the bimolecular and the trap-assisted recombina-
tion. The rate of recombination via other mechanisms such as Auger recombination,
describing recombination of three charges that meet in space, are small in compari-
son.

3.3.1 Bimolecular Recombination

Bimolecular recombination describes the rate of recombination of two free charges.
The bimolecular recombination rate is proportional to the product of the carrier
concentrations,

R = pBnp (3.22)

where [ is called the bimolecular recombination coefficient. There are several pro-
posed expressions for 3, considering how quickly charge carriers can find each other
and the probability of re-dissociation. One commonly used expression for g is given
by the Langevin theory, which simply considers the probability that carriers will
meet in space |12|. The Langevin recombination constant 3, is given by:

(&
Br = %wn + Hp)- (3.23)

The Langevin theory was developed for pristine materials and it has been shown to
give inaccurate recombination rates in organic solar cells [13, 14]. Tt is still often used
as a baseline, since it is the expected recombination rate in low-mobility materials.

3.3.2 Trap-Assisted Recombination

Trap-assisted recombination describes how one trapped and one free charge carrier
recombine. Deep trap states will capture charge carriers, which will remain trapped
for a significant amount of time before they are released or recombine with free charge
carriers. An expression for the recombination rate can be derived by considering the
Coulomb attraction between trapped charges and free charges of opposite sign. This
was done by W. Shockley and W. Read [15] and the following expression was found,

np
Cn(n + nthermal) + Cp (p + pthermal) ‘
Here N is the trap density and Nihermal, Pihermal are the concentrations of electrons

and holes, which have been thermally excited from the conduction and valence band.
These can be calculated according to:

RSRH — NtCnOp (324)

E, - E.
ET
E, — Et)

Nthermal = Nc exXp (
(3.25)

rmal — Nv
Pthermal exp( LT
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Figure 3.3: Energy diagram showing the electrode work functions, Fermi levels and
transport level for electrons and holes E- and Ey. The left diagram shows the
energy levels of the individual materials before contact. The right diagram shows
the energy levels of the system after contact at thermodynamic equilibrium.

where E, is the energy level of the trap state. The capture coefficients C),, are
usually assumed to be given by expressions similar to those found in the Langevin

theo
ry, e
Chp = ,un,pe—eo. (3.26)

3.4 Solar Cell Operation

To be able to extract photogenerated charge carriers, an anode and a cathode must
be connected to the semiconducting active layer. In the ideal case, ohmic contacts
are formed between the electrodes and the active layer. An ohmic contact is able
to extract and inject charge at a near infinite rate, meaning that the electrode is
always in thermodynamic equilibrium with the semiconductor. When two electrodes
with a difference in work functions Ay = Ycathode — Panode are connected to the
active layer an electric potential difference is formed over the layer. The difference
in electric potential is called the built-in potential V;;. When the system reaches
thermodynamic equilibrium the Fermi level is constant throughout the device. The
energy levels before and after connecting the electrodes are illustrated in Figure 3.3.

Under illumination free charge carriers are generated in the active layer and the
system is no longer in thermodynamic equilibrium. The charge carriers can instead
be described by separate quasi-Fermi levels. The Fermi level of the ohmic electrodes
remains unchanged as long as no external bias is applied. The electrodes remain in
thermodynamic equilibrium with the active layer at the interface, meaning that the
quasi-Fermi levels are equal right next to the electrodes. At short circuit a current
will flow through the device, described by the gradient of the quasi-Fermi levels. The
potential difference between the electrodes is directly related to their Fermi levels,
as well as that of the semiconductor at the electrode interface in the case of ohmic
contacts,

Vanode — Veathode = U = _(E%node - E%athode)/e' (327)

At open circuit no driving force excists, seen as constant quasi-Fermi levels through-
out the active layer. As a result of this, no current flows through the device and all
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Figure 3.4: Schematic energy diagram at sort circuit Ji. (left) and open circuit V.
(right). The potential difference between the electrodes U can be determined from
the difference of the quasi-Fermi levels at the electrodes, as shown in the diagrams.
At open circuit it can be seen that U = V..

—elU =0

photogenerated charge carriers recombine. Fermi statistics (Equation 3.11) can be
used to find an expression for V,;

1 np
Vee=—-| E, +kT1 . 3.28
(i) (3.29
The energy diagrams for both J,. and V. are shown in Figure 3.4.

In the absence of photogeneration and at low values for the potential U the
current Jga is simply that of a diode. The ideal diode current, often used for the
dark current of solar cells, is given by [16]

U
Jdiode == JO (eXp <2_T> - 1) (329)

where Jy is a constant, material dependent parameter. When the applied voltage
is increased further, the space-charge limited regime is reached, meaning that the
Coulomb potential of injected charges prevent additional injection. If both carrier
types are injected and Langevin recombination is assumed, the space-charge limited
current is given by

9 U?
Jscre = gEEO'Eﬁ’ (330)

where L is the thickness of the active layer and i ~ p, + p, |17].
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Chapter 4

Numerical Model

In order to solve a set of coupled equations that describe the transport of electrons
and holes, a numerical model has been created. The assumptions and approxima-
tions required in order to obtain a numerical solution are described in this chapter.
The specific model of the interface used to obtain the simulation results discussed
in Chapter 5 is also presented.

4.1 The Charge Transport Problem

The movement of charges is described by drift and diffusion currents, but these
equations do not contain information about the electric potential or the positions
of the charges. The relation between charge carrier concentrations and electric
potential is given by the Poisson equation

n—p+@Q
€

V2 = (4.1)

The concentration of stationary charges such as dopants or trapped charges are
described by ). The concentration of charges occupying a trap state, n; and p,
when the system is in a steady state is given by [15]:

Cn n+ Cp Pthermal
Cn(n + nthermal) + Cp (p + pthermal)

Cp b + Cn Nthermal
Pt = Npt
Cn (n + nthermal) + Cp(p + pthermal)

ny = Ny
(4.2)

where N, ,: are the concentrations of electron and hole traps. The expressions for
N, Pthermal @nd C, , are given in equations 3.25 and 3.26.

The continuity equations describe the rate of change of free electrons and holes,
thus relating the generation and recombination to the transport of charges. The
continuity equations are given by the following expressions:

AL VS SOy
ot e
x e (4.3)

The recombination rate used for R is the sum of the Langevin and SRH recombina-
tion rates given in equation 3.22 and 3.24. A constant generation rate GG has been
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assumed for the parts of the active layer where generation occurs. In reality the light
intensity and consequently the generation decreases as the light travels through the
active layer of the solar cell. The hole and electron currents describe the transport
of the charge carriers and are given by equation 3.20. Note the time derivatives are
equal to zero at steady state.

The system of equations consisting of Poissons equation and the continuity equa-
tions can be solved in order to obtain the free charge carrier concentrations, the
potential and the current density as a function of position. In the transient case,
a time and position dependent solution is found. The quasi-Fermi levels can be
calculated when the electric potential and charge carrier concentrations are known,
thus relating back to the electrochemical potential.

4.2 Numerical Methods

4.2.1 Normalization

The values of quantities involved in the calculations vary over different magnitudes
and the equations contain a number of physical constants. The computation time
of any calculation increases with the number of mathematical operations and is
significantly more time-consuming when working with numbers that are not of the
order of unity. It is therefore very important to properly normalize all quantities
from a programming perspective. The normalization parameters used are presented
in Table 4.1 and can be obtained by matching units of the physical constants with
those of the quantities. A detailed analysis on optimal normalization is found in
Analysis and Simulation of Semiconductor Devices [18].

Physical Quantity Normalization Factor
" i kT
° T q
X,y L =100nm
_ m?
Hnp Ho =107" ﬁ
Voeg,
np ng, = TR
. qVongut
j jo = OLO 0
Jo
R,G R, =—
0 qL

Table 4.1: Normalization parameters. The normalized quantity is obtained when di-
viding the original quantity with the normalization factor. The normalized potential

Y’ is given by ¢ = ¢/ Vj.
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Figure 4.1: The active layer is divided into a lattice consisting of a number of
points. Properties such as charge carrier concentrations are calculated for each point.
Properties that depend on two adjacent points, such as the current or electric field,
are calculated halfway between the points. All properties can be interpolated to any
position in the active layer if necessary.

4.2.2 Discretization

To be able to solve the system of differential equations numerically, they need to be
converted into difference equations. The difference equations can then be solved for
each of a discrete set of positions and times. The first step is to divide the lattice
into a number of discrete points N. For simplicity, the distances between points in
x- and y-direction are assumed to be constant. The distance between two adjacent
points in x-direction x;_; ; and x;; is given by h and in the y-direction for z; ;4
and z;; by k. In the case of a transient measurement, the time derivatives in the
continuity equations need to be evaluated. The time coordinate is then discretized
and the time difference between two points ¢,,, and ¢,,,.1 is given by At. The notation
used will be defined in the following way, for a function f:

figm = f(@6,95,tm) (4.4)

h T; + x;
fiv1/25m = @i + §aijtm) = f(TH,yj,tm). (4.5)

A schematic picture of the discretization of the lattice is seen in Figure 4.1.
Derivatives of first and second order of the potential can be approximated in the
following way:

oY Yiv1/25 — Vic1/2,5
o) _ Vi ’ 4.
ox ’W h (4.6)
9% Yig1; — 205 + iy
ol = LR o, (17

The same approximations can also be utilized when evaluating derivatives of the cur-
rent densities, found in the continuity equations (Equation 4.3). The charge carrier
concentrations n, p will generally have an exponential dependence on distance and
special care has to be taken. The following discrete expressions for the derivatives
of charge carrier concentrations were proposed by Scharfetter and Gummel [19]:

on B

Slena = o oM (g
s ’

exp(%ﬂé—%,j) _ exp(%,j—;/)i+1,j) h
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Now the discrete versions of the continuity and Poisson equations can be obtained
for the steady state. The electric field and the time derivatives can be approximated
in the following way, provided that h, k and At are sufficiently small

Fiyip25 = —w (4.9)
on N gm+1 — T jm
E‘z‘,j,mﬂ - At : (4.10)

The charge carrier concentrations and potential at a point x;, y; can be calculated
by solving the discrete continuity equation for holes and electrons and the Poisson
equation at that point. When a solution is to be obtained for each of the N points
of the active layer, a system of 3N equations needs to be solved. The expressions
for the discrete equations are found in Appendix A.

4.2.3 Iterative Scheme

The successive over-relaxation (SOR) method is the iterative method that has been
used to solve the system of 3V equations. The method is an extension of the Gauss-
Seidel method with improved rate of convergence [20]. The system of equations can
be written as a matrix equation of the form

Az =1, (4.11)

where T contains the unknown variables. The matrix A can then be decomposed
into a diagonal matrix D as well as a lower and upper triangular matrix L and U.
The equation system can then be rewritten in the following way:

(D +wL)z = wb — (wU + (w—1)D)z (4.12)

where the constant w is called the relaxation factor. The iteration scheme can now
be obtained, -

" = (D + wL) Nwb — (wU + (w — 1)D)z"). (4.13)

k+1
U

k+1 k W k+1 k
—(1— 2y =Y @t =3 gt u= 1,2, N (414
o (1 —w)xl + - ( Ay Ty ATy ), U ( )

uu

The value for z"7" can be expressed in terms of matrix elements a,, of A:

v<u v>u

It is not straightforward to find the optimal value for w, but under certain conditions
it can be shown that the method always converges when 0 < w < 2 |21]. In the
simulations run in this work the value of w has generally been in the range 1.6 —1.95.

4.3 Solution

The potential of the electrodes acts as boundary conditions for the system of equa-
tions in this model. An initial guess is required in order to initiate the iterative
process. The potential generally has an approximately linear y-dependence, while
the charge carrier concentrations decrease exponentially as a function of distance
from the electrodes. These are examples of good initial guesses in a general case,
but can be improved if the exact solution is familiar.
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Figure 4.2: Schematic picture showing a surface S, surrounding the line of lat-
tice points x12, . n,,y;. The periodic boundary conditions ensure that the integral
in Equation 4.16 is zero for the vertical sides of S. This can be pictured as an
electron moving to the right at xy,,y; and appearing, still moving in positive x-
direction, to the left of x1,y;. As the surface integral is equal to zero, the current
at T12,. N, Yj—1/2 must equal to that at x12 . n,,Yjt1/2-
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The approximate solution to the system of equations is reached when certain
convergence criteria are satisfied. The criteria should be defined in such a way that
a good solution is reached independently of what the solution is. A good example
of this is to check if the change in a parameter is less than a certain fraction of the
parameter value, in the case of the potential:

okt =kl < 3 (4.19
where 6 << 1 determines how accurate the solution is.

By numerically solving the coupled differential equations, values for the potential
and charge carrier concentrations are obtained for each lattice point. The current
and electric field between each pair of adjacent points can then be calculated. The
measured current density in an outer circuit is not directly obtained and therefore
an analysis of the current density in the active layer has been done. The integral
form of the continuity equation in steady state

#}dszo (4.16)

S

is valid for any surface S, as long as no net charge is generated in the system. If the
surface S is chosen to be a rectangular surface containing the points (212, n,,Y;),
where NN, is the total number of points in x-direction, the integral can be converted
into a sum of the current at surrounding points. By choosing S so that it is lo-
cated half-way between the chosen line of points and those next to it, as shown in
Figure 4.2, the integral can be approximated by the sum

N
Y =Y
Zji,jJr% Jig-p (4.17)
j=1

where Ly ; 18 the current in the y-direction. The periodic boundary conditions result
in an equal current at (r1/2,y;) and (¥nx41/2,9;) and thus the value of the integral
at those sides is equal but of opposite sign. Remembering that the sum is equal to
zero, it can be seen that the sum of the current for each row (x5 n,y;) must be
equal. The current density measured in an outer circuit j is given by the average
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current density for a row,

N,

- 1 -
] — Nm + 1 ;Ji—i—l/%j-&-l/?' (418)

In a one-dimensional model the same result is obtained directly from the differential
form of the continuity equation,

V-j=0. (4.19)

In that case the current is constant throughout the active layer and equal to that
measured in the outer circuit. In the transient case, a more in-depth analysis is
required.

4.4 Description of the Physical Properties of the
Model

To reduce computation load and the complexity of the analysis of the data obtained
from the simulation some approximations have been made. The main features of the
model are presented below. The energy levels in this work have been chosen to those
of P3BHT:PCBM, which is one of the most studied bulk heterojunction systems.

4.4.1 The Interfacial Layer

To describe the interface between the acceptor and donor without looking at in-
dividual sites is difficult and some simplifications are needed. In this model an
interfacial layer has been utilized in a similar manner as done by F. Stelz and U.
Wiirfel [22]. The interfacial layer acts as an effective semiconductor with HOMO
and LUMO levels equal to that of the donor HOMO level and acceptor LUMO level
respectively. The energy levels used in the model are depicted in Figure 4.3. This
layer can be seen as the region where the phases mix and excitons can be separated
into free charge carriers. If the entire active layer is set to be interfacial layer the
commonly used one-dimensional effective semiconductor model is obtained.

The energy barriers found at the contacts and interface are included as proba-
bilities of thermal excitations over the barriers. According to Boltzmann statistics,
the probability of thermal excitation Piyema Over an energy barrier FEj is given by

E
Pthermal = exp (_k_jl:) (420)

The transport levels Fy and E¢ will be assumed to be approximately equal to the
relevant HOMO and LUMO levels in the model.

In this work we will mainly focus on the finger structure shown in Figure 4.4, but
slight modifications will be done when necessary. The comparison with theoretical
predictions will be done for a similar structure, where the pure phases and interfacial
layer extend all the way from the anode to the cathode. This structure is also better
when comparisons to the one-dimensional model are done, as no charge selectivity
for the electrodes is included in that case.
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Figure 4.3: The energy levels of the electrodes, donor, acceptor and the interfacial
layer. The interfacial layer acts as an effective semiconductor with the hole (electron)
transport properties of the donor (acceptor).

Acceptor

e

Interfacial layer

Figure 4.4: The finger structure of the morphology of the active layer mainly used in
this work. The periodic boundary conditions create an infinite number of identical
repeat-units. Under laboratory conditions the width of the solar cell is on the order
of 1 mm, corresponding to 50 000 repeat units.
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4.4.2 Generation and Recombination

Excitons in P3HT have a diffusion length of about 10 nm [23, 24|, meaning that an
exciton will diffusing 10 nm on average during its lifetime. As long as the distance
to the nearest interface is smaller than the diffusion length most excitons should
reach it and be separated before decaying. Assuming that the number of exciton-
charge interaction events is small, the exciton problem is decoupled from that of the
free charges and can be treated as a separate problem. In this model excitons are
neglected and an effective generation of free charges at the interface is used instead.

Free charge carriers are generated at the interfacial layer, after which holes diffuse
into the donor and electrons into the acceptor. The majority of recombination events
between free charge carriers take place at the interface. Therefore, only trap states
located in this region have a major impact on the total recombination. In this
model the Langevin capture coefficients will be assumed for both bimolecular and
trap-assisted recombination. The discretization of the recombination rates has been
done by replacing n and p with n, ; and p; ; in Equation 3.22 and 3.24.
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Chapter 5

Results

In this chapter, the viability of the model is discussed and the results are compared
to theoretical predictions. A comparison to results obtained from a one-dimensional
model is presented and an attempt to find effective parameters that replicate the
results of the two-dimensional model is made when possible. The simulation param-
eters used are those presented in Table 5.1, unless specified otherwise.

Constant Value
T 300K
£ 3.4
L 100 nm
dinterface 1.5 nm
dphase 8.5 nm
He,h 1:-1077m?sv—1
NCJ Ni) 10—26m—3

Table 5.1: The value of parameters used in the simulation unless otherwise specified.

A number of different variations of the same basic finger structure for the active
layer have been studied. The one-dimensional model does not prevent holes from
reaching the cathode or holes from reaching the anode. For a better comparison
the structure of the two-dimensional active layer can be modified, so that the pure
phases reach both electrodes but are still separated by the interfacial layer, as seen
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Figure 5.1: Modified active layer structure with non-selective contacts. Both charge
carrier types can reach either electrode, thus making for a better comparison to the
one-dimensional model. The values of the thicknesses are given in Table 5.1.

in Figure 5.1. In the case of interfacial trap states, a thicker interfacial layer is
desirable in order to obtain the reported value of the dipole shift caused by trapped
charges.

5.1 Basic Properties

An introduction to the charge transport properties will be given for the morphology
shown in Figure 5.1, as the charge transport is fairly straightforward for this struc-
ture. The phases are separated by an interfacial layer and extend to both electrodes
individually. At dark conditions all free charges in the active layer are either ther-
mally generated at the interfacial layer or injected at the electrodes. The carrier
concentrations at zero applied voltage are shown in Figure 5.2. When a potential
is applied, the IV-curve is expected to follow the diode current expression given in
Equation 3.29 and 3.30. A small current at negative bias arises from extraction of
thermally generated charges. The dark current and theoretical expressions given in
the aforementioned equations are illustrated in Figure 5.3.

Under illumination, a large amount of free charges are generated at the inter-
facial layer and the Fermi-level is split into quasi-Fermi levels. In addition to the
diode current, the photocurrent is now also observable. Photogenerated electrons
are transported to the cathode in the acceptor phase, as well as the interfacial layer.
Correspondingly, photogenerated holes are transported to the anode in the donor
phase and the interfacial layer. The separate components of the current at short
circuit are shown in Figure 5.4. At open circuit conditions no current runs through
the device, indicating that the quasi-Fermi levels or carrier concentrations are con-
stant throughout the active layer. The charge carrier concentrations are seen to be
equal and constant in the active layer excluding the regions close to the electrodes.
The quasi-Fermi levels and carrier concentrations are shown in Figure 5.5 and 5.6.
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Figure 5.2: 3D plot of the hole- (red) and electron concentrations (blue) in the active
layer at zero applied voltage and dark conditions. The donor, interface and acceptor
are marked with ”D”, ”I” and ”A” for clarity. At thermodynamic equilibrium carriers
diffuse far into the active layer.
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Figure 5.3: J-U curve showing the absolute value of the current at dark conditions.
The dashed curve shows the ideal diode current given by equation 3.29. The dotted
line represents the saturated space-charge limited current as per equation 3.30.
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Figure 5.4: 3D plot of the y-component of the electron (blue) and hole current (red)
at short circuit. The electron and hole currents are seen to occur in their respective
phase, as well as at the interface. The measured current density in the outer circuit
is the average of the y-component of the current densities.
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Figure 5.5: 3D plot of the hole (red) and electron concentrations (blue) in the active
layer at open circuit. The hole (electron) concentration is high in the interfacial
layer and the pure donor (acceptor) phase. The charge carrier concentrations are
seen to be fairly constant and equal for both types in the center of the active layer.
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Figure 5.6: 3D plot of the quasi-Fermi levels for holes (red) and electrons (blue),
as well as Ey (transparent red) and E¢ (transparent blue) for each layer. The
quasi-Fermi level for holes is close to Ey in the donor phase, describing the high
concentration of holes seen in Figure 5.5, similarly for electrons. The quasi-Fermi
levels are almost constant in the whole active layer, deviating slightly at the elec-
trodes and the interface.
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Figure 5.7: IV curves for different values of the interfacial layer thickness dinterface
with constant effective generation Geg. When digtertace = 10 nm the interfacial
layer covers the whole active layer, meaning that this is exactly equal to the one-
dimensional case. A reduction in V. and Jg is observed with increasing diierface-
Saturation to Jyneto 1s almost reached at -0.3 V.

5.1.1 The Interfacial Layer

In a one-dimensional model, the effective semiconductor model used for the interface
makes up the entire active layer. The differences between IV curves for a one-
and two-dimensional model have been illustrated by increasing the width of the
interfacial layer until the one-dimensional case is reached. For the results to be
comparable, an equal amount of charge carriers have been generated in each case.
This is done by keeping the effective generation rate G.g constant for each case. The
effective generation is a measure of the average free charge carrier generation in the
active layer. If an equal amount of free charges are generated at each point of the
active layer, G = G.s. When generation of free charges only occurs at the interfacial
layer the relation between GG and G is given by

Geff _ Qinterface G (5 1)
QAT

where Gipterface @and apg, are the areas of the interfacial layer and the active layer,
respectively. Geg can also be determined from the photocurrent Jpneto, at large
negative values for U it is given by Equation 2.3,

Jphoto == eGeﬂ‘d. (52)

The current under illumination Jy, saturates at high negative applied voltage and
is then equal to Jyneto, since all photogenerated charge carriers are extracted. IV
curves for varying interfacial layer thickness are shown in Figure 5.7.
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Figure 5.8: Modified active layer structure with an isolated domain of acceptor,
inserted into the pure donor phase. The black arrow marks the distance between
the isolated domain and the interfacial layer separating the pure phases. When this
distance is larger than zero, the acceptor phase splits into the two domains seen in
the figure.

5.1.2 Isolated Phase Lumps

In bulk heterojunction solar cells, isolated domains of either the donor or acceptor
phase commonly occur, leading to an increased recombination rate. To study the
effect of such domains the morphology seen in Figure 5.1 has been modified, as
shown in Figure 5.8. For comparison with the case where the domain is completely
isolated, it was moved so that it barely touches the interfacial layer to the right,
connecting it to the rest of the acceptor. Holes are still free to move on both sides
of the domain, as the pure acceptor phases are connected by the interfacial layer.
In this way, the difference in transport properties for the two cases are minimized.
In the case of the isolated domain, the amount of charge builds up in the domain
until a steady state is reached, after which all electrons generated at the isolated
domain recombine. Since all electrons generated at the isolated domain are lost to
recombination, as well as an equal amount of holes, Geg will remain the same even
if no generation occurs at the lump.

If the transport efficiency is not significantly altered by the isolated domain,
the IV curve should not change even if the isolated domain is removed completely,
returning to the original structure shown in Figure 5.1. The two cases with an
acceptor domain either connected to or isolated from the bulk of the acceptor are
presented in Figure 5.9. A comparison to the original structure with the same value
for G is also shown, representing a case where the excitons separated at the isolated
domain are lost completely. As predicted, no significant change is seen when the
isolated domain is removed completely.
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Figure 5.9: J-U curve for the structure shown in Figure 5.8. The blue curve shows
the case where the domain is connected to the bulk of the acceptor. When the
domain is isolated all charges generated there are lost and the red curve is obtained.
The dashed black curve is obtained when the domain is removed completely but the
amount of charges generated at the other interfaces is kept constant.

5.2 The Influence of Recombination

5.2.1 Langevin Recombination

To compensate for the lower recombination rate observed in experiments, a reduction
factor 7 is often included in the Langevin expression, given in Equation 3.22. Several
explanations for the reduction factor have been presented. Among others, models
taking into account the different time required for the two charges to reach the same
interface [25] and the spatial variation [26] in the charge concentrations have been
proposed. In the simulation, equal charge carrier mobilities have been used and the
position dependence of the charge concentrations are taken into account.

In the two-dimensional model, charges are allowed to recombine anywhere but
hole and electron concentrations are very small in the acceptor and donor, respec-
tively, and in practice almost all recombination events take place at the interface. In
contrast, in the one dimensional effective semiconductor model there are no areas of
the active layer were only one charge carrier is present and as a result recombination
occurs everywhere. In both cases, the recombination rate has been discretized so
that only carrier concentrations at the specific point where the recombination event
occurs are used,

R ; = Bijnipi;- (5.3)

In Figure 5.10, the two dimensional case is compared to the one-dimensional
effective semiconductor model with different values for the reduction factor v. At
open circuit conditions, the charge carrier concentrations of both carriers are mostly
constant and equal throughout the interfacial layer as seen in Figure 5.5. The one
dimensional solution is similar to that for the interfacial layer of the two dimensional
case at open circuit, but the charge carrier concentrations are lower, n, p ~ 10! m=3.
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Figure 5.10: J-U curve showing the one-dimensional effective semiconductor model
with various values for the recombination reduction factor v (dashed curves), as
well as the two-dimensional model (black curve). The Langevin expression has been
used to describe recombination in both models, R = vS;np. In the two-dimensional
model, v = 1. The magnified part shows open circuit conditions for the curves.
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Since no net current is allowed at open circuit, all charge carriers will effectively
recombine at the exact position they are generated and the recombination rate is
simply given by the rate of generation, R = G.

In Figure 5.10, the curves are seen to almost saturate to the same value at —0.2 V
as a result of equal Geg for the different cases. Since charges do not move at V.,
the relevant generation rate in the two dimensional case is not Geg but simply G.
In the two-dimensional case, the area of the interfacial layer was 15% of the total
active layer area, therefore G2§ = 0.15 - G as given by Equation 5.1. Writing the
equations for the two cases,

G il
R2D GQD €

RlD — GID — Geff

where the subscripts 1D and 2D represent the one and two dimensional case, respec-
tively. By solving for R'P, a relation between the recombination rates is obtained

R =0.15- R?P. (5.5)

Thus, the recombination rate of the two-dimensional case effectively looks like re-
duced Langevin recombination with v = 0.15 when compared to a one-dimensional
model. This result should hold as long as the recombination is limited to a specific
part of the active layer and generated charges remain mostly stationary after gen-
eration. These conditions will, however, most likely not be satisfied in real devices.

5.2.2 Interfacial Trap States

Integer charge transfer (ICT) states are described by the ICT-model [27] in systems
where it is energetically favorable to transfer an electron from the donor to the ac-
ceptor. The model predicts that in some systems, electrons will spontaneously be
transferred from the donor to the acceptor, leaving behind a hole. The two charges
remain immobile after the transfer has occurred and the Coulomb interactions be-
tween the charges give rise to a dipole shift A. The dipole shift in the energy levels
at the interface are predicted to be on the order of 0.3 eV for P3BHT:PCBM |28].

= =
+

Figure 5.11: Schematic picture of the model for interfacial trap states. The interfa-
cial layer has been cut in half and hole and electron trap states placed in the parts,
hole traps are depicted with "+7and electron traps with ”—". The trapped charges
cause a dipole shift in the vacuum level in the absence of free charges. To the right
the energy diagram of the interface is shown.
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It has been proposed that the ICT states may act as trap states and cause
trap-assisted recombination [28]. In this section, the possibility of trap-assisted
recombination via trap states at the interface and the dipole shift cause by the
trapped charges will be examined. In the model, the interfacial layer has been
divided into two parts, the half closer to the donor phase and that closer to the
acceptor. Hole trap states have been placed in the half closer to the donor and
electron trap states in that closer to the acceptor. Trapped charges occupying these
states cause a dipole shift A in the potential in the absence of free charges, the trap
states and dipole shift are shown in Figure 5.11. The trap concentration N; has
been assumed equal for hole and electron traps.

Finding a way to study bimolecular and trap-assisted recombination separately
is not straightforward, especially when the traps are only located in parts of the
active layer. The light ideality factor n;; gives a measure of which recombination
mechanism dominates at open circuit. The light ideality factor can be calculated
from the following expression, assuming that n ~ p and nrapped = Prrapped:

eVoe = E;+ A — nigkT In (%) (5.6)

where C' only depends on the dipole shift A. If n,; = 2 the recombination is
purely trap-assisted and if n;; = 1 only bimolecular recombination occurs. By
measuring V,. as a function of GG it is then possible to determine which recombination
mechanism dominates in a given system. When the number of free charge carriers
in the active layer is small, thermal excitations to the trap states will dominate over
trapping of free charges. The number of trapped charges at a given time will then
be proportional to the density of free charges and the recombination rate will be
proportional to np, effectively behaving like bimolecular recombination.

At higher concentrations of free charge carriers, an approximate expression for
V.. can be derived when the recombination rates are given by the Langevin and SRH
expressions. At open circuit, all generated charges recombine

G = Ry + Rsgryu. (57)

Neglecting all thermal excitations, the recombination rates can be approximated in
the following way:

G = (C’n +Cp, + Ny np. (5.8)

Con + Cpp)

By noting that the product np is given by Equation 3.28 at V. and rearranging an
expression for V. is obtained,

(5.9)

C =+ C + NiCnCyp
eVoe =E;+ A —kT <1n(Nch) +1n ( CnntCpp '

G

In the case of equal mobilities for electrons and holes C), = €, and futher assuming
that n ~ p the expression can be simplified:

2+
Vo % By + A = KT | In(NeN,C) +1n | =22 ] | (5.10)
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An approximate expression for the electron concentration can be found from Equa-
tion 5.8 under the same assumptions

N,C,
G~ (20, =) n?. 5.11
(20 + 2 ) (.11
The solution is given by:

Ny N? G
= —— — ) 5.12
"TTR e T, (5.12)
This expression can be simplified assuming that Cg’fﬁf << 1. This assumption is

true at up to fairly high generation rates, at which point bimolecular recombination
is dominating and the term containing n is negligible. The electron concentration
is then approximately given by:

2G
C.N;

n~<

(5.13)

This way n can be expressed in terms of G and an expression for V,. which is only
dependent on GG, T" and N, is obtained

N2
eVoe = Ey+ A — kT (m(Nchcn) +1In (2G—1 - tTC”G—QD : (5.14)
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Figure 5.12: V,. as a function of G for the basic finger structure with diytertace =
3nm and 6nm. The ideality factor is given by the slope of the curve obtained when
plotting V,. as a function of In(G). The theoretical value is given by equation 5.14
with A =0 eV.
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At high generations the first term, proportional to G~ will dominate and the
value of the ideality factor,

e dV,, | 2G+ N
KT dA(n(G)) oG 4 NG

(5.15)

Niq

will be close to 1. At lower concentration, the ideality factor will take on a value
closer to 2 if the trap concentration is sufficiently high. At even low values for G
the assumption that thermal excitations are negligible no longer holds and Equation
5.14 is no longer valid. In Figure 5.12, simulated values for two different widths of
the interfacial layer are compared to V,. obtained from Equation 5.14 and are seen
to be in good agreement for sufficiently high values of GG. In the simulations, a
constant density of trap states with a depth of 0.3 eV has been assumed.

The theoretical expression is strongly dependent on A, but is seen to overlap
well with simulation data when A = 0 eV. The dipole shift in the case where
intertace = 6 nm and N, = 5 - 10%®> m™3 can be approximated to A ~ 0.2 eV and
should cause a significant shift in V. if present. The absence of a dipole shift may be
due to the large density of free charges screening the field produced by the trapped
charges.

5.3 Doping

Organic materials used in solar cells are typically intrinsically undoped. To alter
transport properties of the active layer dopants can be added, thus introducing
equilibrium carriers to the system. Organic materials are known to degrade as the
active layer is easily oxidized, or in other words unintentionally doped.

The charge extraction by linearly increasing voltage (CELIV) method is a mea-
surement technique used to study transport properties of thin film devices [29, 30].
In the measurement, a linearly increasing voltage pulse is applied to the sample and
the transient response is observed. The voltage pulse is applied in the reverse direc-
tion and extracts equilibrium carriers while avoiding injection of additional charges.
The current transient j(¢) can be divided into two parts, a constant geometric ca-
pacitive current j, and a time-dependent extraction current Aj(¢),

J(t) = jo + Aj(2). (5.16)
The geometrical capacitive response is simply given by
, eepA
jo=— (5.17)

where A = Uppaa/tpuse 15 the voltage rise speed. The length of the pulse can be
tuned to obtain various transport properties in different regimes.

If the sample contains a large concentrations of dopants Ngopant, a region depleted
of free charges exists at one of the electrodes. The width of the depletion region
w(t) is given by the following expression for long pulses, when the maximum value
of j(t) is reached in at beginning of the pulse [31]:

wit) \/2660(At + Upi — %) (5.18)

e, dopant
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Figure 5.13: Simulated CELIV transient for the morphology shown in Figure 4.4
with a doping concentration of N, = 2-107"®cm™2 in the donor and interfacial
layer and A = 1V/100us. The linear relation between j—2 and At can be used to
calculate the doping concentrations. The built-in potential Uy; is obtained from the
extrapolated dotted line. The inset shows j as a function of At.

In this case the current transient becomes purely capacitive as long as w(t) < d and

is given by:
A Nyopan A
) = o | Je > 1€0 . (5.19)
wit) AL+ Uy —

By plotting j(¢)~2 as a function of At, both Naopant and Uy; can be determined from
the same measurement. The derivation above is done for the one dimensional case
with a uniformly distributed concentration of dopants.

By considering a case where dopants are only found in one of the phases, we can
ensure that the doping CELIV approach is viable even though the dopants are not
uniformly distributed on a nanoscale. The basic finger structure for the active layer
with a doping concentration of N, = 2-10'® ¢m™ for the donor and interfacial layer
has been considered. The current transient for A = 1V/100us is shown in Figure
5.13. The linear relation between j2 and At can be seen, as well as U,; = 0.9 V
from extrapolation. A doping concentration of N, = 1.15-10'® cm ™2 was calculated
from slope.

If the non-uniform distribution on a nanometer scale is not important an, effective
doping concentration can be calculated. The effective concentration is simply the
concentration obtained if the dopants were uniformly spread over the whole active
layer. The effective doping concentration N;ﬂ is then given by

Neff = —ad;ims N, (5.20)
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Gdopants

where is the ratio between the area where dopants are found and the total

active layer area. If N¢Tis calculated for the simulated case a value of 1.15-10'® cm ™2

is obtained, exactly equal to that calculated from the CELIV transient.
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Chapter 6

Conclusions and Future Work

A flexible two-dimensional drift-diffusion model has been developed for organic bulk
heterojunction solar cells. The two-dimensional model makes it possible to consider
the effects of the morphology of the active layer, in contrast to a one-dimensional
model. A one-dimensional model can also be readily obtained by increasing the inter-
facial layer thickness until it makes up the entire active layer. Unfortunately, the two-
dimensional model is significantly more time consuming than the one-dimensional
model.

The focus of the presented simulation data was on clarifying the role of recom-
bination dynamics occuring at the interface between the donor and acceptor. A
comparison to the commonly used one-dimensional effective semiconductor model
has been presented. In some cases it is possible to reproduce the results of the
two-dimensional model in one-dimensional one by using effective parameters. When
possible, such effective parameters have been derived and shown to reproduce the
results of the two-dimensional model.

Recombination mechanisms in organic materials are still not well understood
and the model suffers from this fact. However, simulations like the one developed in
this work may be of great importance when it comes to resolving these issues. For
example, it is unclear whether the Langevin and SRH expressions are well suited
for describing recombination when the separate phases are considered. An in-depth
study of the probability of charge carriers meeting at the interface of the materials
would be beneficial.

Minor errors in the recombination rate in the model may arise due to the use of
charge carrier concentrations instead of discrete charges. As a result of this, fractions
of charges are allowed to recombine and the strenght of coulomb interactions may
be underestimated. Another, in some cases larger, error in the recombination rate is
also present in the model. The intermediate recombination step of a bound electron-
hole pair that may dissociate again [25] is not included. If the probability of re-
dissociation is large, the recombination rate will be severely overestimated.

The simple model of interfacial trap states presented in this work gives a rough
estimate of the magnitude of recombination occurring at these. An exponential or
Gaussian trap distribution should replace the single trap level considered in this
model in order to make it more realistic. The transient behavior of trapped charges
may also prove to be of great interest when simulating transient experiments.
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Chapter 7

Swedish Summary

Svensk sammanfattning:
Tvadimensionell
drift—diffusion-simulering av
organiska solceller

Introduktion

Organiska solceller uppnar dnnu en relativt lag verkningsgrad jamfort med oorganis-
ka sadanna. Organiska material uppvisar en stor grad av oordning férorsakad av de
svaga van der Waal-krafter som binder samman molekylerna. Denna underliggande
oordning leder till ineffektiv laddningstransport och svarigheter att erhalla 6nskad
morfologi for det aktiva lagret. En annan orsak till den laga verkningsgraden &r
starkt bundna excitoner som maste separeras, till exempel vid gransytan mellan tva
material. Bulkgrinsytesolceller dr en typ av solceller dér ett elektronaccepterande
och elektrondonerande material, forkortade acceptor och donor har blandats for att
uppna effektiv laddningsseparation.

I det har arbetet har en tvadimensionell drift—diffusion-modell utvecklats. De tva
rymddimensionerna ar speciellt viktiga i solceller av bulkgriansytetyp, da processer
som sker vid gransytan dr avgorande. Malet med modellen dr att fa en ndrmare in-
blick i hur olika forlustmekanismer paverkar verkningsgraden hos organiska solceller.

Teori

Den oordning som férekommer bland organiska halvledare kan beskrivas som en
distribution av lokaliserade energitillstand. Tillstandstatheten, som vanligtvis antas
vara gaussisk [2], bestar av energitillstand som &r lokaliserade pa de enskilda mo-
lekylerna i den organiska halvledaren. Transport i organiska material kan beskrivas
som en serie av termiskt aktiverade hopp mellan lokaliserade tillstand [3]. Med hjalp
av Monte Carlo-simuleringar har ett uttryck for mobiliteten p erhallits [2],

W(F,T) = pgexp {— (%%H exp {CFW ((%)2 - 22)} (7.1)
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dar pp ar en materialberoende parameter och o ar bredden pa den Gaussiska till-
standstédtheten. De tva empiriska parametrarna, 3 och C, i uttrycket kan bestdmmas
genom anpasshing till experimentella data. Vid rumstemperatur dr faltberoendet
svagt och sa lange temperaturskillnader inte férekommer kan mobiliteten antas vara
konstant.

I en enkel modell antas fria elektroner befinna sig vid en energiniva F¢ och fria
hal vid Ey . De effektiva tillstandstatheter givna av Ng och Ny beskriver koncent-
rationen av tillstand for nivaerna . Denna forenkling av energistrukturen leder till
att termiskt exciterade laddningskoncentrationer enkelt kan berdknas med hjilp av
Fermi-statistik. Koncentrationerna av fria elektroner n och hal p ges da av

Er — Ec

)
Evk_T £ (7.2)
)

n:Ncexp(

p = Nyexp (

vid termodynamisk jamvikt. Ferminivan Er for en halvledare vid termodynamisk
jamvikt ligger i mitten av energigapet £, = Ec — Fy. Vid rumstemperatur ar 7'
mycket mindre &n £, och dérfor forekommer endast valdigt fa termiskt exciterade
laddningsbérare i en halvledare. Om halvledaren forses med fria laddningsbarare
genom fotogeneration beskriver ekvation 7.2 inte langre laddningskoncentrationerna
eftersom termodynamisk jamvikt inte langre rader.

Laddningsbarare uppnar snabbt separata jaimvikter och skilda kvasi-Ferminivaer
for fria elektroner E}. och hal E%. kan anvindas for att beskriva dessa. Da EF ersitts
med kvasi-Ferminivaer géller ekvation 7.2 dven i detta fall. Produkten av laddnings-
koncentrationer np kan da ocksa berdknas,

E% — EY E
np = NcNy exp (%) exp (—k—;). (7.3)

Kvasi-Ferminivaerna kan dven delas in i kemisk och elektrisk potential, £ och :

Engn_ew

EY. =¢&,+ e (7.4)

Laddningstransporten i en halvledare sker genom en kombination av drift och
diffusion. En driftstrom jaur uppstar da laddningar ror sig under inverkan av ett
elektriskt falt F'. Driftstrommen ges av

Jarite = —€F (njin + ppuyp) (7.5)

dar p,, ar mobiliteten for elektroner och hal. Diffusion uppstar da gradienter av
laddningskoncentrationer forekommer. Genom att tillimpa Einsteinrelationen er-
halls foljande uttryck for diffusionsstrommen jgg:

Jair = KT (11 V' — 11, Vp). (7.6)

Den totala strommen kan &ven skrivas som funktioner av kvasi-Ferminivaerna, den
separata elektron- och halstrémmen ges da av

Jp = ity V Ep. '
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Ekvationerna illustrerar energinivaernas samband med strommen och visar den cent-
rala roll dessa spelar. Poissons ekvation

n—p
€€

Vi =

(7.8)

och kontinuitetsekvationen 9
V-J=—(n-— 7.9

kan utnyttjas for att 16sa transportproblemet da strémmen ges av J = 7, + Jp-

Rekombinationshastigheten R beskriver hur ofta rekombination av ett par av
laddningsbérare intraffar. Olika typer av rekombination existerar men endast de tva
vanligaste formerna har beaktats i det hir arbetet. Langevins rekombinationsteori
beskriver sannolikheten att tva fria laddningsbidrare mots och ger foljande uttryck
for rekombinationshastigheten |12]:

e
Ry, = np%(,un + 1) (7.10)

Forutom fria laddningar kan dven laddningar i fallor bidra till rekombinationen. Ett
motsvarande uttryck fér rekombination av en fri laddning och en laddning i en filla
ges av Shockley-Read-Hall-rekombinationshastigheten Rsgry [15]. Rekombinations-
hastigheten beror av koncentrationen av fallor N; och koncentrationen av termiska
excitationer till fallorna nerm, Prerm- Rekombinationshastigheten ges av

np

R = N,C,.C, 7.11
sttt = N G 0+ ) + Gl ) 1y
dar C,, ar faktorer motsvarande de i Langevin-uttrycket,
Crop = linp— (7.12)
np — Mnp 660. .

De tva uttrycken for rekombinationshastigheten, speciellt Langevinrekombinationen,
har visats ge felaktiga resultat i en del organiska system [13, 14].

Modell

Modellen som har utvecklats tillimpar den teori som har presenterats ovan for att
beridkna koncentrationer av fria laddningsbérare och den elektriska potentialen i det
aktiva lagret. Ett grinsskikt har implementerats for att beskriva grinsytan mellan
donorn och acceptorn. Gréansskiktet har acceptorns elektrontransportegenskaper och
donorns haltransportegenskaper, savil som deras respektive energinivaer. Excitoner
har utelamnats fran modellen och istéllet sker en effektiv generation av fria ladd-
ningsbérare i gransskiktet. Elektroner i gransskiktet diffunderar endast in i den rena
acceptorfasen, eftersom en stor energibarriir maste overvinnas for att komma in i
donorn. Pa motsvarande séitt diffunderar hal in i den rena donorfasen.

Morfologin f6r det aktiva lagret har antagits ha en fingerstruktur som &ar opt-
imerad for laddningstransport och separation av excitoner. En schematisk bild av
strukturen visas i figur 7.1. Energinivaerna i modellen har tagits som de fér P3HT:
PCBM, som uppvisar en struktur lika den ovan ndmnda [11].
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( Gransskikt \

Donator Acceptor

Figur 7.1: Schematisk bild av den morfologi som har anvints i modellen. De tva
rena faserna dr separerade av ett griansskikt dar generation och rekombination sker.
Strukturen upprepas i sidled, implementerat med hjélp av periodiska randvillkor.

Ekvationssystemet som utgors av Poissons ekvation och kontinuitetsekvationer-
na for elektroner och hal 16ses numeriskt i simuleringen. For att finna en numerisk
16sning delas det aktiva lagret in i ett antal diskreta punkter, vartefter transport-
problemet kan 16sas for dessa. I x-led delas lagret in i N, punkter, separerade av
avstandet h. Pa motsvarande sétt delas y-ledet in i N, punkter och avstandet mellan
tva brevid varandra liggande punkter x;; och z; ;.1 ges av k. Derivator av forsta
och andra ordning fér potentialen kan approximeras pa foljande séitt:

oY - Yiy1/25 — Vie1/2,)

— . = 7.13
Ox '%J h ( )
9% Yiy1; — 255 + i1y
@ i,j = J h2] J . (714)

Stromtithetens derivator kan uppskattas pa motsvarande sitt. Laddningskoncent-
rationer har ofta exponentiella avstandsberoenden; dérfér har en uppskattning fore-
slagen av Scharfetter och Gummel [19] utnyttjats

@‘ o Vitij — Vi Mit1y — ni,j. (7.15)
O l1+1/2, e$p<wi+1,gé*1/)i,j) o exp(d’i,j*;/)i#—l,j) h
Dértill maste tidsderivator diskretiseras. Detta har gjorts pa foljande sétt
on Nijm41 — N jm
E‘i,j,mﬂ - At (7.16)

dar At ar tidsskillnaden mellan tva pa varandra féljande tidpunkter. Dessa approx-
imationer dr endast godtagbara da h,k och At dr sma. Fullstindiga uttryck for
de diskreta versionerna av Poissons ekvation och kontinuitetsekvationerna hittas i
appendix A, men notera att en normalisering som eliminerar konstanter har gjorts.

For att 1osa de erhallna diskreta ekvationerna har en iterativ metod kallad SOR,
(engelska: Successive Over-Relazation) tillimpats. Metoden erhalls genom matris-
faktorisering men kan uttryckas for enskilda termer i ekvationssystemet. Ekvations-
systemen kan skrivas i matrisform,

Az =1, (7.17)
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Figur 7.2: J-U-kurva for fallet med en acceptordomén i den rena donorfasen. Domé-
nen ar till en borjan helt isolerad, givet av den réda linjen. Déarefter flyttas doménen
sa att den dr i kontakt med gransskiktet mellan faserna och den blaa linjen er-
halls. Den streckade svarta linjen visar strommen for den ursprungliga strukturen
da antalet laddningar som genereras vid griansskiktet d&r detsamma som i de tidigare
fallen.

dér 7 innehaller de okéinda variablerna. Da ges 16sningen for iterationssteg k+ 1 och
element v enligt

B (1 )b+ 2, — Bl _ B ou=12 .. N. (718
Z, ( w)xu + auu( u Zawxv ZCLUUIU),U 7y ( )

v<u v>u

dér w &r en relaxationsparameter och a,, ar matriselement i A. Parametern bestim-
mer konvergenshastigheten, men att bestdmma det optimala virdet for w &ar inte
elementért.

Resultat

Modellen visas reproducera kinda teoretiska virden for laddningskoncentrationer,
kvasi-Ferminivaer och diodstrémmen, se kapitel 5.1. Darmed kan mer vikt fistas vid
ovriga simuleringsdata.

Isolerade doméner av en fas, helt omgiven av den andra fasen férekommer ofta
i bulkgrinsytematerial. For att simulera dessa placerades en acceptordoméin mitt i
den rena donorfasen. Ett andra fall dir doménen flyttades sa att den var i kontakt
med gransskiktet simulerades for att de tva skulle kunna jamforas. J-U-kurvor for
de tva fallen visas i figur 7.2. En stor minskning i fotostrémmen observeras for fallet
med den isolerade domaéanen, trots att antalet genererade laddningar var lika i bada
fallen. Da samma antal laddningar genereras vid griansskiktet i den ursprungliga
strukturen erhalls ndstan samma resultat som i fallet med en isolerad domén. De
slutsatser som kan dras ar att alla laddningsbarare som genererades vid den isole-
rade dom#nen rekombinerar, vilket ses som Overlappande J-U-kurvor for fallen med
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Figur 7.3: V,. ritat som funktion av G. De heldragna linjerna visar det teoretiska
virdet for V. givet i ekvation 7.21. Idealitetsfaktorn fas fran lutningen pa kurvan
da V,. ritas som en funktion av In(G).

och utan isolerad domén. Dértill verkar doménen inte ha en mérkbar inverkan pa
laddningstransporten vid laga virden for den applicerade spénningen.

ICT-teorin (fran engelska: Integer charge transfer) har forutspatt att elektroner
spontant Gverfors fran donatorn till acceptorn och fangas av fillor vid grénsytan,
kallade ICT-tillstand [27]. De fangade laddningarna fororsakar en dipol 6ver grénsy-
tan och leder till en 6kad rekombination [28]. Dipolen ses som en potentialskillnad
A i energinivaerna. Storleksordningen pa rekombinationen via fallorna kan underso-
kas med hjalp av idealitetsfaktorn n;;. Idealitetsfaktorn kan bestdmmas ur féljande

uttryck
eVoe = By + A —n;gkT In (%A)) , (7.19)

dar V,. ar spanningsskillnaden mellan elektroderna da ingen strom flyter genom
solcellen och C'(A) endast beror av ytskiktsdipolen. Da n;4 dr lika med ett dr den
rekombination som sker effektivt bimolekylar, men om vérdet for n;, istéllet ar nér-
mare tva dominerar rekombination via féllor. Tva fall med olika tjocklekar for grians-
skiktet undersoktes genom att berikna V,. for flera storleksordningars variationer
av G.

En mer noggrann hirledning for idealitetsfaktorn gjordes for analysen av result-
aten, se kapitel 5.2.2. Ett approximativt uttryck for n,y ges av

e AV, 26+ M
KT d(In(G)) 9@ 4 NG

Niq

(7.20)
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dir N, ar koncentrationen av fillor. Ett uttryck for V,. erholls
o, NG
eVoe = Eg+ A — kT | In(N.N,C,,) +In | 2G™ + TG : (7.21)

som Overrensstimmer vil med resultaten fran simuleringen. Resultaten presenteras i
figur 7.3. I bada fallen erhdlls A = 0 eV, dven om storleksordningen for denna borde
vara ungefir 0.2 eV.

Diskussion

En flexibel tvadimensionell drift—diffusion-simulering har utvecklats och visats repro-
ducera kiinda transportegenskaper. Modellen har anvints for att studera processer
som intraffar vid grinsytan mellan de tva material som utgor det aktiva lagret i
en organisk solcell av bulkgriansytetyp. Effektiva parametrar som kan anvindas i en
endimensionell modell har d&ven presenterats da detta har varit mojligt.
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Appendix A

Appendix I

In this appendix, the full expressions for the discretized two-dimensional Poisson and
continuity equations are given, the expression are also found in [18]. The normal-
ization given in Table 4.1 has been used to eliminate constants from the equations.
Note that the distance between points in a given direction have been taken to be
constant. The discrete Poisson equation is given by

>

h
(¢£,j—1,m+1 + w;,j—l—l,m—i—l) T + (wg—l,j,m-i-l + ¢§+1,j,m+1) :

h k
- ng,j,mﬂ ’ (E + E) = (n;,j,m-i-l - p;7j,m+1 + Q;,j7m+1) - hk (A-l)

where @} ; ., describes stationary charges such as dopants and trapped charges.
The continuity equations are given below. The solution to the continuity equa-

tion contains Bernoulli function B(A) which is given by:

B(Ay) = exp(ﬁ%' (A.2)

For small potential differences Ay << 1 the Bernoulli function can be approximated
as B(AvY) ~ 1.
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