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Abstract  

Carl Lange 

Hybridisation of pulp fibres with LDH for applications in composites and lightweight fibrous foam 

 

Thesis for Doctor of Philosophy in Chemical Engineering 

Åbo Akademi University, Faculty of Science and Engineering, Turku, Finland, 2017: 82 pages, 46 

figures and 16 tables. 

 

The work was carried out under supervision of Professor Pedro Fardim at the Laboratory of Fibre 

and Cellulose Technology, Åbo Akademi University, Porthansgatan 3-5, 20500, Turku, Finland 

 

Keywords: adsorption, bleached pulp, chemical pulp, combustion, composite, fibre foam, flame 

retardant, hydrotalcite, layered double hydroxide, mineralisation, nanoparticle, polypropylene, 

surface engineering, thermogravimetry, thermomechanical pulp. 

 

 
The research around the pulp and paper (P&P) sector has changed dramatically during the past 

15 years. P&P industry is particularly keen to find new solutions for the raw-materials they provide 

as well as explore novel process technologies. This thesis is a step towards engineering of hybrid 

materials from pulp fibres and synthetic hydrotalcite (LDH). The purpose was to gain knowledge 

from the different in situ synthesis techniques of LDH with pulp fibres, properties of the prepared 

hybrid materials and how the hybridised fibres behave in different applications, specifically in a 

composite and a lightweight fibrous foam. 

The hybrid material prepared in this work consisted of either a sulphate pulp (Kraft) or a 

thermomechanical pulp (TMP), and synthetic LDH particles from hydrated magnesium and 

aluminium salts. Hybridisation was conducted by three different in situ synthesis routes that 

followed either the preparation of a high super saturated (hss) or low super saturated (lss) aqueous 

pulp suspension, or, by the aid of urea hydrolysis (Uhyd). It was noted that the hybridisation of 

hydrogen peroxide bleached TMP pulp of spruce (Picea abies) was successful and that the 

functionalisation of the hybridised fibres with sodium dodecyl sulphate (SDS) was possible if 

Mg(NO3)2 and Al(NO3)3 were applied as LDH precursors. The apparent contact angle (θ) of a sessile 

water droplet reached 135° upon functionalisation. It is noteworthy that the LDH particle size on 

fibre surface varied from 70 nm up to 5 µm depending on the synthesis route. Hybridisation of Kraft 

fibres by urea hydrolysis produced mineralised fibres that expressed lower compliance than the other 

two synthesis routes. Absorption studies with methylene blue and metanil yellow probe molecules 

showed that the lss route retained most of the fibres’ original cationic capacity, but also provided 

the highest capacity for anions suggesting an ampholytic character of the hybrid fibres. The 

relatively short aliphatic hydrocarbon chain of SDS on LDH surface was not able to improve the 

coupling of fibres and polymer matrix in a polypropylene composite. The bottleneck was in particle 

cohesion. In the lightweight fibrous foam, the in situ synthesis of LDH was engineered to include 

both micron and nano-sized particles by applying lss and Uhyd synthesis routes. The pulp contained 

approximately 34% w/w of LDH. Under combustion the amount of CO2 and soot and the peak heat 

release rate (PHRR) were reduced significantly. The in situ synthesised LDH particles shielded the 

fibres from external heat by reducing liberation of volatile gases. Effective charring was observed 

on the surface of LDH nanoparticles. 

Synthetic LDH appears as a promising platform to functionalise fibre surfaces. It equips pulp 

fibres giving them an ampholytic character and reduces liberated heat under forced burning. LDH 

is also able to mineralise Kraft fibres if the synthesis route is correctly chosen. These characteristics 

can be further exploited in diverse applications where fibres require ability to absorb both cationic 

and anionic substances. On the other hand, flammability issues are important whenever the fibres 

are used in-house applications. Pulp fibre industry can readily apply LDH synthesis into the existing 

processes and take advantage of the proposed hybridisation. LDH may also be useful in more general 

terms in fibre technology. The key issue is that LDH formation does not require complex chemistry. 
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Sammanfattning 

Carl Lange  

Hybridisering av fibermassa med LDH och dess användning i kompositer och lättviktsfiberskum 

 

Avhandling för doktorsexamen i kemiteknik 

Åbo Akademi Universitet, Fakulteten för Naturvetenskap och Teknik, Åbo, Finland, 2017: 82 sidor, 

46 figurer and 16 tabeller. 

 

Arbetet utfördes under handledning av Professor Pedro Fardim vid Laboratoriet för Fiber- och 

Cellulosateknologi, Åbo Akademi Universitet, Porthansgatan 3-5, 20500, Åbo, Finland 

 

Nyckelord: adsorption, blekt massa, fiberskum, flamskydd, hydrotalcit, komposit, sulfatmassa, 

mineralisering, polypropen, skiktad dubbelhydroxid, termomekanisk massa. 

 

 
Forskning kring massa- och pappersteknologi (P&P) har ändrat sig betydligt under de senaste 

15 åren. Massa- och pappersindustrin har varit särskilt intresserad av att hitta nya lösningar till sitt 

råmaterial och utveckla nya processteknologier. Detta arbete ger ett tillägg i kunskap till forskningen 

om hybrid-material innehållande skiktad dubbelhydroxid (LDH) och massafibrer. Avsikten har varit 

att samla ihop kunskap från olika LDH syntesstrategier med massafibrer, förstå de preparerade 

hybridmaterialens egenskaper och hur de fungerar i olika användningsändamål, speciellt i 

kompositer och lättviktsfiberskum.  

Hybrid-materialen preparerade i detta arbete innehöll blekt kemisk (sulfat) massa eller 

termomekanisk (TMP) barrvedsmassa och LDH-partiklar syntetiserade av magnesium och 

aluminium-hydratsalter, d.v.s. syntetisk hydrotalcit. Experimenten genomfördes med tre olika in situ 

syntesmetoder, d.v.s. låg övermättning (lss), hög övermättning (hss) och hydrolys med urea  
(Uhyd). Mätningarna visade att hybridisering av väteperoxidblekt TMP-massa av gran (Picea 
abies) lyckades med den låga övermättningsmetoden (lss) och att funktionalisering av hybrida 
fibrer med surfaktanten natriumdodecylsulfat (SDS) var möjligt om Mg(NO3)2 och Al(NO3)3 

användes i syntetiseringen. LDH-partiklarnas storlek på fiberytan varierade mellan 70 nm och 5 µm 

och den största uppmätta kontaktvinkeln för en orörlig vattendroppe uppnådde θ = 135°. 

Hybridisering av sulfatmassa med Uhyd-metoden förorsakade mineralisering så att fibrerns 

böjstyvhet ökade.  Fibrernas karboxylgrupper och aktivt alkali på LDH-ytan kvantifierades med 
adsorptionsanalyser med metylenblå (MB) och metanilgul (MY) som probmolekyler. 
Syntetisering av LDH partiklar med lss-metoden behöll det flesta av fibrernas karboxylgrupper 

som fria men men möjliggjorde också den högsta MY adsorptionskapaciteten vilket påvisade 
att hybridfibrerna hade en amfolytiska karaktärer. En relativ kort alifatisk ytaktiv kolvätekedja 

var inte förmögen att stärka bindningen n mellan kompositmaterialets polypropylen och de 

hybridiserade fibrerna. Flaskhalsen var i partiklarnas låga kohesion. Lättviktsfiberskumet var 

planerat att innehålla LDH partiklar i både mikroskala och nanoskala. Det var möjligt att inkludera 

nästan 34 % (vikt/vikt) av LDH till materialet. Mängden av CO2, den termisk energins 

frigörningstakt och mängden rök under förbränning minskade betydligt. De in-situ syntetiserade 
LDH-partiklarna skyddade fibrerna från extern värme genom att minska frigörningen av 
brännbara gaser. En effektiv förkolning notiserades också vid gränsytan mellan LDH-nanopartiklar 

och fibrer. Syntetisk LDH framstår som lovande plattform för att funktionalisera fiberytor. Den 

förser fibermassan med en amfolytisk karaktär och minskar den termiska energin vid förbränning. 

LDH kan också mineralisera sulfatmassafibrer om syntesmetoden är korrekt vald. Dessa egenskaper 

kan användas i olika applikationer där fibrer är modifierade för att absorbera katjoner och anjoner. 

Förbränningsegenskaper är också viktigt att ta i beaktandet när fibrer ska användas inomhus. Det 

bör poängteras att det är möjligt att implementera LDH-syntesen till redan existerande 

massateknologi och utnyttja hybridisering.  En av LDH-syntesens fördelar är å ena sidan att den inte 

kräver komplicerad organisk kemi för att implementeras till produktion och å andra sidan fibertyans 

växelverkan med anjoniska och katjoniska komponenter, med vilka man kan modifiera fiberns 

ytenergi för att skapa önskade egenskaper. 
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Tiivistelmä 

Carl Lange 

Kuitumassan hybridisointi LDH:lla ja sen käyttö komposiitissa ja kevytrakenteisessa 

vaahtomateriaalissa. 

 

Väitöskirja luonnontieteen filosofiasta kemiatekniikassa 

Åbo Akademi, Luonnontieteiden ja tekniikan tiedekunta, Turku, Suomi, 2017: 82 sivua, 46 kuvaa 

ja 16 taulukkoa 

 

Väitöstyö on laadittu professori Pedro Fardimin alaisuudessa Åbo Akademissa, Kuitu- ja 

Selluloosateknologian laboratoriossa, Porthaninkatu 3-5, 20500 Turku, Finland 

 

Avainsanat: adsorptio, hydrotalsiitti, kalorimetri, komposiitti, kuituvaahto, mineralisaatio, 

palaminen, palonesto, polypropeeni, sellu, taivutuslujuus, termogravimetria, termomekaaninen 

massa 

 

 
Massa ja paperi teknologia (P&P) on satsannut tutkimukseen merkittäviä resursseja viimeisten 

15 vuoden aikana. Teollisuus on ollut erityisen kiinnostunut löytämään uusia mahdollisuuksia 

tuottamalleen raaka-aineelle ja etsimään uusia prosessiteknisiä ratkaisuja. Tämä väitös on askel 

kuitumassan ja synteettisen hydrotalsiitin (LDH) muodostaman hybridimateriaalin tutkimukselle. 

Tietoa on luotu erilaisten LDH:n synteesireittien mahdollisuuksista kuitumassan kanssa ja samalla 

tutkittu miten hybridimateriaali käyttäytyy eri sovellutuksissa, erityisesti komposiitissa ja 

kuituvaahdossa. 

Tutkimuksessa käytettiin sekä kemiallista massaa (Kraft) että termomekaanista massaa (TMP) 

ja LDH synteesi toteutettiin pääasiassa käyttäen alhaisen ylikylläisen liuoksen tekniikkaa (lss), 

korkean ylikylläisen liuoksen tekniikkaa (hss) ja urea hydrolyysia (Uhyd). Hybridisaation havaittiin 

onnistuvan kuusipuusta (Picea abies) valmistetulla TMP kuiduilla lss tekniikan avulla käyttäen 

Mg(NO3)2 ja Al(NO3)3 lähtöaineita, mikä mahdollisti massan jatkofunktionalisoinnin pinta-

aktiivisella natriumdodekyylisulfaatilla (SDS). Funktionaalisoidusta kuitumassasta valmistetun 

paperiarkin vesikontaktikulma saavutti parhaimmillaan 135°:en suuruuden. On huomionarvoista, 

että partikkelikokojakauma kuitumassan pinnalla vaihteli 70 nm:n ja 5 µm:n välillä synteesireitistä 

riippuen. Urea hydrolyysin avulla kemiallisen massan kuidut olivat mineralisoituneet. Kuitujen 

taivutusjäykkyys kasvoi hybridisaation seurauksena. Absorptio metyleenin sinisellä (MB) ja 

metaniilin keltaisella (MY) osoitti kuitujen olleen amfolyyttisiä. Anionisten ja kationisten 

molekyylien absorptiokapasiteetti oli korkein lss synteesireittiä hyväksi käyttäen. Suhteellisen 

lyhyen alifaattisen surfaktantin käyttö hybridisoitujen kuitujen pinnalla ei merkittävästi parantanut 

kuitujen ja komposiittimatriisin välistä voimansiirtoa vetorasituksessa. Pullonkaulaksi osoittautui 

partikkelien alhainen koheesio. Kuituvaahto valmistettiin kuitumassasta, johon oli pyritty 

syntetisoimaan sekä mikro että nanokokoluokan LDH partikkeleita. Kahdessa vaiheessa suoritetun 

synteesin tuloksena kuitumassan painosta noin 34% oli mineraalia. Palotesteissä kuituvaahdon 

vapauttama CO2 määrä, nokipartikkelit sekä savun määrä alenivat merkittävästi. Myös vapautuvan 

lämpöenergian maksimi oli vertailunäytettä selvästi alhaisempi. LDH partikkelien pinnalla 

havaittiin hiiltymistä. 

Synteettinen LDH on lupaava mineraali kuitumassan ominaisuuksien muokkaamiseksi. Kuidut 

saavat mm. amfolyyttisen karaktäärin ja tulevat vaikeammin palaviksi. Toisaalta kuitujen 

jäykkyyteen voidaan vaikuttaa LDH synteesireitistä riippuen. Sovellutuskohteet joissa tarvitaan 

sekä anionien että kationien absorboitumista materiaaliin voivat käyttää esitettyä menetelmää 

hyödyksi. Palamisominaisuudet on otettava huomioon, mikäli materiaalia käytetään sisätiloissa. On 

merkillepantavaa, että esitetty LDH synteesi ja kuitujen hybridisaatio on mahdollista liittää jo 

olemassa olevaan massatuotantoon sellaisenaan. Avainasemassa ovat LDH synteesin soveltuminen 

tuotantoon ilman monimutkaista orgaanista kemiaa ja kuidun pinnan aktiivisuus anionisille ja 

kationisille yhdisteille joilla voidaan muokata mm. kuitujen pinta-energiaa. 
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We live in a pragmatic world. The first time I came across that fact was in France 

in 2005. I had been granted a short-term position in a small cosmetics company 

C.C.W. Sarl in picturesque Dreux that produced and distributed raw materials to 

bigger companies such as L'Oréal, Lancôme and others. In one occasion when I was 

asked to interpret the data from their product my boss came to me with an annoyed 

expression on his face and said, ‘would your wife understand the things that you have 

written here?’ I had mistakenly used in-depth scientific language to explain the 

rheological properties of their new lipstick base material. So, my boss demanded me 

to write a cooking recipe for the customers and continued, ‘people are pragmatic, 

Carl!’ Thus, I turned my attention to ketchup and honey, yet another embarrassing 

mistake I am sure. However, that statement remained in the back of my head as a 

paradigm of our society. 

Science is in the core of the researcher’s life, but equal significance should be put 

on one’s capability to convey the knowledge to fellow students, professors, 

colleagues and experts, just as it is important to explain the intricacies of a product to 

customers in business. Understanding the practicalities of teamwork and 

collaboration in a multicultural environment will impact to the outcome of the 

research. The same can be said from time and project management skills and the 

discussions with industrial representatives and partners.  

The scientific work itself is one piece in a big puzzle and a challenge that often 
emanates from the current economic status and foreshadows the imaginary 
production trends. There is something the researchers are hoping for the 
industry to produce and apply in their process or finance in the foreseeable 
future – this is the imaginary aspect. And the selling pitch is expected to be 
ambitious. Regardless what the projects proposal says, it ultimately reflects on 
the one hand the responsibility of a researcher to the partners and the 
consortium's responsibility towards the society on the other. In such an 
interphase, it becomes extremely important for the scientist to be able to 
communicate the results in a meaningful way to everyone. The milestone 
meetings may be loaded with expectations and, to aggravate, there are two 
parallel standpoints to conduct the discussions. Either one answers to the 
questions ‘when can we have it?’ and ‘how much does it cost?’ or to the questions 
‘how does it work?’ and ‘why does it work?’ The former takes the industrial point 
of view while the latter is of course for academics. 

It might well be that the industry nowadays begins to move towards a 
sturdier attitude and exercise their power through finance as new proposals are 
being created to obtain answers they like to have. Competition is fierce and the 

money hunt through grants plays a crucial role in academic life. I thankfully 

acknowledge that due to our professor I skipped most part of the money hunt, so I 

never really needed to trouble my head with that issue. However, even if the industrial 

involvement in academic research is expected and a necessity de facto, capital acts 

like a two-edged sword. I am fully aware of the implications of the power relations 

involving economics and what they might do for the academic education and to the 
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freedom of research, but I am also deeply grateful for the industrial partners that 
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seeks for innovative approaches and there is no one else to turn to besides oneself. 

The current situation in academic world would, in my opinion, benefit from 

rationalisation of the mega trends and from lateral co-operation with the existing 

resources and infrastructure, but also from implementing synectics into research. In 

that sense, a fresh breath of air is still needed. Thus, my message to early stage 

researchers is to build up a good, open and trustworthy communication line with all 

the partners at the initial stage before going any further with the research. Be fluent 

with the framework that has been bestowed for you and trust your own instincts and 

follow the guidelines given by the professor. Be bold, not ignorant. 
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products, energy applications and process management. My subject was included in 
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partially funded by the project PowerBonds, in co-ordination with the WoodWisdom-

Net 2 research program, in which I was appointed as a deputy leader for work package 

one. 

The gratitude for my thesis goes to Prof. Dr. Pedro Edson Fardim who was bold 

enough to take me into his team after my graduation from the University of Turku in 
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1. Introduction 

The introduction, or the map if you will, that is provided for the reader expands 

the items that are presented during the lectio praecursoriae and aims to serve as a 

guide to get acquainted with the big picture behind this scientific work. This thesis is 

a step towards engineering hybrid materials from pulp fibres and synthetic 

hydrotalcite. Its background is in P&P technology. While the engineering aspects of 

chemistry are at the heart of the work, there is also the pragmatic socio-economic 

context surrounding it. That context is the framework against which the purpose and 

the reason of the research will become appreciated. Therefore, attention in the 

following chapters will be first directed to the challenges that were always present 

and paramount in importance in the life of a chemical engineer, but appear often in 

the distance for the reader – the big picture. 

1.1. Research landscape – the big picture 

1.1.1. Academic framework 

Åbo Akademi University (ÅAU) has a relatively long history in providing higher 

education in wood chemistry. The university itself was founded in 1918 and soon 

after, in 1921, Professor Erik Hägglund established The Forest Products Chemistry. 

Thirty years later in 1951, Waldemar Jensen was appointed professor in Wood 

Chemistry at ÅAU and the institute tied up its research to P&P industry through close 

collaboration with Ralph Erik Serlachius (1901–1980). Serlachius' family were 

pioneers in paper manufacturing in 19th century Finland and we all remember them 

by the Serla tissue paper that can still be found on the shelves in supermarkets.  

The institute began to grow in a large scale in the early 1970’s and by the mid 

1980’s it had professors in three laboratories. Paper Chemistry was led by Dan 

Eklund, Forest Products Chemistry by Bjarne Holmbom and the Chemical Pulping 

Technology by Bruno Lönnberg. All three professors became internationally well-

known forest industry researchers, especially Professor Holmbom who received the 

Wallenberg Prise that was handed over to him and at the same time to Christer 

Eckerman by King Carl XVI Gustav in 2008. 

During the 1980’s and 1990’s the pulping sector focused mainly on mechanical 

process and sulphate cooking. These two well-established industrial processes 

received little attention in the early 2000 that ultimately led to the renewal of the 

laboratory of Chemical Pulping Technology that changed its name to Laboratory of 

Fibre and Cellulose Technology (FCT) in 2006. Pedro E. Fardim took over the 

research with more contemporary focus to match the industrial trends and became the 

appointed professor after the retirement of Prof. Lönnberg. 

FCT has changed markedly since then. Conventional technology with facilities to 

grind the wood and use chemical cooking to produce paper has transformed by taking 

bold steps towards more challenging areas. With the aid of state of the art 

spectroscopic, chromatographic and nanoparticle synthesis instrumentations the 

current research penetrates fields such as composites, nanoparticles, drug delivery 
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systems, biomass fractionation and stimuli responsive surfaces still keeping the wood 

derived fibres in its focus. 

The consensus at EU level research and development in 2009 was that bio-based 

materials should replace, at least in part, the crude oil derived counterparts. 

Motivation was drawn from the climate change and waste management and, to some 

degree, from the assumptions of global oil reserves. Studies were concentrating on 

polysaccharides and particularly on cellulose either in nano-, micro-fibrillated or 

some derivative form. Therefore, all natural based materials were about to receive 

unprecedented attention from funding agencies and companies in the EU. Everything 

was pointing towards long-term sustainability, valorisation of biomass and 

circulatory economy, and they still are.  

In the closer regime, a five-year plan for the Biomass Refinery concept was about 

to be launched under the ERA-NET collaboration, as a part of a Forest Cluster 

framework. In one project initiative that was partially funded by the Finnish Funding 

Agency for Innovation (Tekes), the forest industries were introduced with a 

SmartFibre concept that aimed to search high-value added products for the P&P 

sector. The question was whether modern pulping would be able to find novel 

systems to functionalise fibre surfaces on site without tedious chemistry that requires 

additional installations and investments. The project was carried out in collaboration 

with FCT and a group from Tampere University of Technology led by Prof. Pasi 

Kallio who developed a micro robotic instrument to manipulate single wood fibres. 

The Smart Fibre concept was aiming to find innovative ways to provide the pulp 

fibres with stimuli responsive properties and new characteristics. Initial questions 

were dealing functionalisation in a typical pulp and paper (P&P) production line. For 

example, which synthesis process steps could be used? How refining and bleaching 

stages would be affected and which properties could be envisaged for pulp fibres with 

the given system?  

The boundary conditions in paper manufacturing process require low toxicity, 

aqueous environment and, preferably, FDA approved chemicals. Synthesis kinetics 

should also match with the station in the production line. Initially the idea was to 

apply the chemicals at the so-called wet end station. In practice, for example, the 

additives in paper manufacturing are applied to the pulp sludge during the mixing 

before the machine screen that precedes the headbox spraying the diluted pulp sludge 

onto the wire where fibre web forms. Another possibility was to functionalise the 

pulp fibres at the end of a pulp production line. The system would allow some 

flexibility in kinetics since a batch process could be envisaged. Also, the 

functionalised pulp would not need to be used for paper or board alone but in other 

applications with greater value. Limitations with toxicity would not be as strict as 

they would be in paper production. Organic solvents and complex chemistry, 

however, were out of the scope due to large production volumes. 

Keeping the manufacturing process preferences in mind, the engineering 

challenges culminated to hybrid structures that comprise of organic and inorganic 

phases. The organic moiety carries the function to the system while the inorganic 

counterpart provides structural features gluing the organic function to fibre surface. 

Inorganic particles are typically applied with retention aid polymers, but we began to 

look for a system that could be applied without them. Thus, the main problem 
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translated into a process that involved in situ synthesis of inorganic particles on fibre 

surface in a batch process. 

1.1.2. Economic framework 

The operation costs of Åbo Akademi University just as in all the Finnish 

universities were funded from the governmental budget until 2010. Allocated 

statutory funds were withdrawn by the government and since then the university 

administration has been subject to public law. To make the situation easier for the 

universities they were given a matching fund option for the transition period 2009–

2011. For each euro, the universities could collect the government guaranteed 2.5 

euros in return. ÅAU was able to gather approximately 5% from the total returns, 

matching some 34 million euros. The state has announced a considerably smaller total 

share of 150 million euros for the next funding round that will last until 2017. The 

change in legislation has pressed universities to actively seek new funding options 

especially from the EU. It is not a surprise that the research, which eventually receives 

a “green light” from a funding agency, mirrors the prevailing economic settings.  

Companies are affected as well. One of the greatest challenges that the modern 

paper industry has faced so far, irrespective of the abrupt liquidity in the capital 

market, is inscribed in digitalisation and information technology (IT). Although the 

production efficiency owes much to the IT in computerised machinery and robotic 

technology, modern millennials apply internet, the archetype of collaborative 

multiverse, so extremely effectively that printed media cannot possibly match with 

the speed, space or price that is required to move any piece of information from place 

to place. The bigger the amount of transferred information the greater is the advantage 

of IT over the printed media. It is difficult to imagine our digital age without the fast 

news feeds and headlines, written or recorded ones – and completely impossible to 

write a thesis without digital content. There is no need to call for editors and printing 

houses anymore to get something published. Wherever people are, the news and 

information will follow. Anyone can post a blog, letter, message or a tweet and 

everyone is capable of being a freelancer of the passing moment in decentralised byte 

space. All that is need is a smartphone and connection to the grid to receive up-to-

date news, videos, books, magazines, dictionaries, maps, scientific articles, music and 

games also. Whether it is for fun or educational purposes does not matter, since 

everything is delivered with a fraction of price and time of what it used to take. And 

the real boom, the internet of things, is yet to emerge. 

Not that everything related to IT should bring a rainy forecast with it, there are 

societal factors affecting positively the forest industry’s downbeat pulp and board 

economy. While more and more people rise from poverty for a better life, the 

advancing technology necessitates the delivery of goods for customers around the 

world in a process that calls for better, more ecological and economical solutions as 

well as recyclable, lightweight and eco-friendly ways to replace the non-renewable 

counterparts. Forest industry and particularly the packaging sector is able to answer 

this demand. Tissue paper has a bright future as well, since the sanitary products 

become necessary due to urbanisation in developing countries that used to dwell in 

poverty. Diapers fall into that category too. Also, still in many cases the readers prefer 

printed books over the “kindle” versions, something that did not pull through in 



Introduction 

4 
 

masses, albeit newspapers and magazines have become gradually less lucrative. The 

external pressure from the society, but also from the competitors, serves as a motive 

power for the research. The search for cost effective, nontoxic and environmentally 

benign solutions without compromising the quality of the product is, however, a 

challenge. 

The Finnish forest sector's business cycle review provided by the Forest Research 

Institute (METLA) – nowadays a part of The Natural Resources Institute of Finland 

(LUKE) – forecasted taunting 25% cutbacks in timber, plywood, and paper and board 

demand on average in 2009 [1]. That was just after the global downturn that took 

place in September 2008. The greatest losses were predicted for P&P sector. The 

production of bleached sulphate pulp was estimated to be reduced by 25% and export 

to be cut by 30%. The average selling price was assumed to receive similar trends 

(Figure 1.1). Paper and board prices were expected to rise by some 8% due to 

necessary drop in capacity. The outcome of the downturn that had actually started 

already in 2007, and in the pulp sector even earlier than that, was quite clear for 

everyone. The depth and the length of the distress were not. 

 

 

Figure 1.1 The gross export (bars) of bleached sulphate pulp in thousands of tons (left axis) 

and average price (right axis, red line) in yearly quadrants from 2007 to 2008 and its 

estimation (e) for 2009 in Euro per ton. Adopted from the Finnish forest sector business cycle 

review 2009 [1]. 

The LUKE report was hitting quite close with its predictions for 2009. Paper 

production has been forced to reduce its capacity in order to match the production 

costs with the demand (Figure 1.2). However, there has been an improvement in 

economic situation in the board manufacturing and pulping sector throughout the 

forest industry (Figure 1.3). For example, from the total sales in 2006 Stora Enso 

received 2/3 from the paper grades and 1/4 from packaging while in 2014 the same 

figures were approximately 1/3 and 1/3 respectively [2]. 
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Figure 1.2 The gross export (green bars) of paper (bleached sulphate pulp) in millions of tons 

(left axis) and average price (right axis, blue line) between 2004 and 2014 and its estimation 

(e) for 2015 and 2016 in Euros per ton in Finland. Adopted from The Natural Resources 

Institute of Finland business cycle review [3]. 

 

 
 

Figure 1.3 The gross export (green bars) of sulphate pulp in millions of tons (left axis) and 

average price (right axis, blue line) between 2004 and 2014 and its estimation (e) for 2015 

and 2016 in Euros per ton in Finland. Adopted from The Natural Resources Institute of 

Finland business cycle review 2015-2016 [3]. 

1.1.3. Recent situation 

Considering the main wood producers there are the Nordic countries, Russia and 

Canada, which hold the greatest resources for the softwood species (pine and spruce) 

and the tropical and subtropical areas in Latin America that produce large quantities 

of eucalyptus hardwood. The three most common wood species in Finland are spruce 

(Picea abies), pine (Pinus sylvestris) and two types of birch (Betula pendula and B. 

pubescens). Pine and spruce are softwoods, so-called cone bearing evergreens, while 

birch that flowers belongs to deciduous hardwood species. In the latest inventory that 
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was made in 2013, the amount of wood ripe for felling according to The Natural 

Resources Institute Finland was approx. 1200 million m3 of pine, 650 million m3 of 

spruce and 350 million m3 of all deciduous trees [4]. The area covered by the forests 

in Finland is about 73%, while from the annual growth about 70% is used. 

Undoubtedly the widely-recognised knowledge in wood science and Finnish P&P 

manufacturing along with the sustainable forestry and good infrastructure are the 

keys for utilisation of the green gold.  

New ventures in biomass fractionation will bring new chemical feedstocks to 

replace some of the global fuel capacity and fine chemicals demand. Although the 

news about large shale gas deposits, e.g. under the UK and the US seem to benefit 

fracking process – although regulations are yet to emerge. Besides, the low crude oil 

prices, currently slightly lifting its head, impart pressure on prices of renewables. A 

profitable future is, however, seen in disposables, tissue, hygiene, packaging and 

textile manufacturing, as already mentioned [2]. As a ripple effect, the packaging 

market affects the self-adhesive label production that went up as expected during 

2015 [5].  

The green gold gained considerable attention within EU politics that, as it were, 

forced forest industries to aggressively seek new revenues from their side streams 

and megatrends [2,6]. The focus in general has been on bio-based polymers, bio-

composites, packaging materials and biofuels, which cover nicely the important 

societal sectors, namely the feedstock for fine chemicals, construction and 

transportation. The situation in the forest sector does not look all that bad, especially, 

since we now know that during 2015 the forest sectors invested over 650 million 

euros in Finland alone [7]. Also, the Chinese-owned Kaidi announced a billion-euro 

bio-refinery investment in a small northern town, Kemi. Other areas in which 

business is developing include carbon fibres and nano-crystalline cellulose 

production [8,9]. 

The bio-based polymers production is not meeting the global demand, but for the 

current situation, from 5.2 million tonnes we are, according to the Nova institute 

survey, in a good path to triple the production by 2020 [10]. The share for bio-plastics 

in 2012 was about 15% of the global market [11]. The so-called wood plastic 

composites (WPC) have caught consumers' attention as well. Typical WPC 

applications include decking, technical parts, automobiles, siding and fencing and 

furniture. For example, UPM's ProFi deck board takes advantage of label production 

waste and has been in consumer markets already for a decade. The plastic 

components in the mentioned products are often poly vinyl chloride (PVC), 

polyethylene (PE) or polypropylene (PP). These three matrix polymers take the 

greatest share by volume in global plastic manufacturing.  

In the fuel sector Inventia in Sweden is actively involved in research and 

developments of jet fuels from wood-based materials, particularly from lignin, and 

UPM has invested into bio-diesel production with some 120 million litre annual 

capacity – a small drop in a big bucket. Currently at EU level within the horizon 2020 

framework, there are approximately 2800 projects dealing at least with some parts of 

bio-economy. In this regard, the life of a Northern chemical engineer in the biomass 

sector is looking reasonably bright. 
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1.2. Wood and pulp 

The focus in this chapter is on physical and chemical characteristics of pulp fibres. 

Functionalisation methods are discussed briefly. 

1.2.1. The physical and chemical characteristics of wood pulp 

fibres 

There are two different industrially important pulps in focus. The properties of the 

fibres and tracheids of those pulps are governed ultimately by the separation process 

and subsequent chemical treatments. Therefore, the wood microstructure and the 

common disintegration processes are explained as the discussion is funnelled towards 

the fibre’s composition and properties. 

The word fibre is often used to indicate the wood fibres as well as tracheids. 

Tracheids, as the name implies, conduct water and nutrients in wood, but at the same 

time they serve the purpose of supporting the structure of softwood just as fibres do 

in hardwood. It is also important to understand that wood pulp is composed out of 

different types of fibre-like structures. There are ray cells, parenchyma cells, early 

wood and late wood fibres as well as vessel elements that can only be found in hard 

wood (Figure 1.4). The pulping process also creates flakes, ribbons, threads and 

particle-like fine structures especially in mechanical pulping.  

Wood is a natural composite. The main characteristics common to all fibres in sap 

wood are the intercellular middle lamella (I) that glue all the fibres together, the mesh 

or cage-like primary layer (P), two or three structurally important secondary layers 

(S1-S3) and the possible gelatinous layer (G) that is different in hardwoods and 

softwoods and occurs in fibres that are subjected to tension during the growth season 

(Figure 1.5). A thin wart layer (w) on the lumen side is also depicted in the schematic 

illustrations, but it cannot be found in spruce wood [12,13,14,15]. Ray cells, vessels 

and parenchyma cells are structurally different from the fibres. 

The dimensions of fibres and the thickness and structure of cell walls and their 

chemical composition differ from species to species and vary within the wood 

according to the location in the stem, growth seasons, environment, geographical 

location and the possible interruptions in normal growth [16,17]. Greater differences 

are observed in the two broad categories, i.e. whether hardwoods or softwoods are 

being studied, than within the genetic order. Averaged dimensions and fractional 

compositions within the cell wall are presented in table I.1. 

The two disintegration processes that produce pulp from wood are broadly 

categorised into mechanical and chemical pulping. Mechanical pulping is used for 

cheap products such as newspapers and card board. Chemically separated fibres are 

applied in magazines, labels and products that benefit from high base paper 

brightness. 
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Figure 1.4 SEM micrograph from a pine wood sap showing some of the cell types and their 

distribution within a wood. Adopted from [18]. The SEM image on the right shows an example 

of sugar maple (a hardwood) and the size of the vessels. Adopted from 

http://theses.ulaval.ca/archimede/fichiers/23336/ch03.html. 

 

Figure 1.5 Schematic illustrations of normal hardwood (a), tension hardwood (b), normal 

softwood (c) and tension softwood (d) fibres. The lines indicate cellulose microfibrillar angles 

in each layer. Adopted from [19]. A TEM image of ultrathin transverse section from a 

hardwood fibre (Fagus crenata) is shown on the right. Intercellular layer, i.e. middle lamella 

(I), primary layer (P), secondary layers (S1-S3) and wart layer (w) are marked. Adopted from 

[20].  

Table I.1 Selected physical dimensions and characteristics of mature wood fibres. Layer 

thickness and fibre width range (d), fractional composition (ϕ), fibrillary angle relative to the 

fibre axis (α), fibre length range (l) and the aspect ratio (r) calculated from the average length 

and width (r = l/d). Values adopted from [15,21]. 

Source d (µm) ϕ (%) α (°) l (mm) r 

P 0.23 - 0.34 7.0 - 14.2 - - - 

S1 0.12 - 0.35 5.2 - 10.8 50 – 90 - - 

S2 1.77 - 3.68 73 – 84 10 – 30 - - 

S3 0.10 - 0.15 2.7 - 4.2 50 – 90 - - 

Picea abies 21-40 - - 1.1-6.0 ~135 

Pinus sylvestris 14-46 - - 1.8-4.5 ~105 

Betula pendula 18-36 - - 0.8-1.8 ~50 

 



Introduction 

9 
 

Fibres that are mechanically separated contain most of the constituting polymers, 

especially lignin, and heteropolysaccharides, but also pectin as well as some 

extractives and inorganic material [12,22] (c.f. table I.1). The two most common 

mechanical defibration processes are the grinding of logs against a ceramic stone and 

the disc refining of prefabricated chips in between the metallic discs of a defibrator. 

A process in which water steam is applied to plasticise the wood under pressurised 

conditions during the defibration is called a thermomechanical pulping process 

(TMP) [23]. The fibre damage is deliberate (Figure 1.6). For example, fibrillation is 

beneficial for the fibre to fibre interactions that lead to stronger paper due to increased 

surface area that will be available for mechanical interlocking and hydrogen bonding. 

Fibres become more flexible as well. In comparison to chemical pulping, the 

mechanical process is generally characterised by higher yield (approx. 98%), lower 

fibre web strength and higher consumption of electrical energy running the large 

stones and refining discs [24,25]. The benefit of mechanical pulp is the high volume 

to mass ratio that is advantageous for board and packaging manufacturing especially 

in the case of chemi-thermomechanical pulp (CTMP) production. High opacity that 

allows for production of cheaper and thinner paper is also beneficial. Fines that are 

generated in high numbers and typically defined as small fragments below 20 microns 

in all dimensions, provide scattering of light that makes the paper look brighter. Fines 

also densify the fibre web [26].  

 

 
 

Figure 1.6 Different exposed layers in thermomechanical pulp fibre from spruce wood. 

Adopted from [27]. 

Kraft cooking is by far the most common chemical separation process in pulp 

production. It is characterised by a loss of the intercellular layer and primary layer. 

The process will also affect partially the S1 and S2 layers that reserve most the fibre 

cell wall volume. 

The raw material in Kraft cooking is loaded into a digester that contains the 

reactive chemicals of NaOH and Na2S. Fibres become impregnated by the chemicals 

with the help of steam. The cooking process is carried out at a relatively high 

temperature, around 140–170 °C for 2 hours [28]. Chemical pulping aims to remove 

the lignin from the pulp without damaging the cell wall structure physically. 

Although majority of the lignin is removed in the Kraft cooking, some 2–5% will 
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remain as quinone structures that have conjugated double bonds and very high 

absorption coefficients. Quinones are responsible for the reddish-brown colour of 

pulp fibres prior to bleaching [29,30]. During the subsequent bleaching reactions, the 

unwanted double bonds will be oxidised. The Kraft process in general produces pulp 

that has low yield (approx. 50%), low opacity (i.e. it allows light to pass through) and 

low volume to mass ratio (i.e. it has rather high density) [31,32]. However, the fibres 

have a strong inter-fibre hydrogen bonding ability. 

The three major components in wood fibres, namely, lignin, cellulose and 

hemicelluloses are distributed throughout the cell wall structure in different 

proportions (Table I.2). Middle lamella (i.e. intercellular layer) is composed of lignin, 

pectin and hemicelluloses giving elasticity to the wood structure. The primary layer 

is also made from lignin and pectin, but some hemicelluloses and small amounts of 

cellulose (~ 5% w/w) that are distributed in a mesh-like fashion within it can be found 

as well (c.f. Figure 1.5). Going towards the lumen side the hemicelluloses and 

cellulose content increase in relation to the lignin (Figure 1.7). 

Table I.2 Average compositional fractions of the five major constituting compound classes in 

wood are listed. Cellulose (C), hemicelluloses (HC), lignin (L), extractives (E) and inorganic 

residue (R) [21]. 

Source C (%) HC (%) L (%) E (%) R (%) 

Picea abies 41.7 28.3 27.4 1.7 0.9 

Pinus sylvestris 40.0 28.5 27.7 3.5 0.3 

Betula pendula 41.0 32.4 22.0 3.2 1.4 

 

 

Figure 1.7 The approximate fractional composition of three main components in wood fibres 

according to [33]. 
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Cellulose serves the wood by being responsible for the microstructural features of 

different cell wall layers and it is the major contributor to the overall physical 

characteristics as well. For example, the cellulose microfibrils govern the fibre's 

elastic modulus that increase as the microfibrillar angle tends towards fibre axis (i.e. 

gets smaller), although the relationship is not linear [34,35,36]. The upper boundary 

for elastic modulus in softwood holocellulose and bleached Kraft pulp has been found 

to lie between 20 and 80 GPa, while the lower boundary is approximately 20–35 GPa 

[35,37]. Holocellulose contains all the constituting hemicelluloses and cellulose, but 

lignin and extractives have been removed, whereas Kraft fibres still contain small 

amounts of lignin, but are missing some of the hemicelluloses. The two samples, 

according to the authors, were not markedly different from each other in a statistical 

sense, which suggests that the small amount of residual lignin or changes in 

hemicellulose content in the fibres do not significantly affect the elastic modulus. 

Furthermore, the microfibrillar angle of cellulose in laboratory prepared hand sheets 

is found to govern the tensile strength, stretch and stiffness [38]. The cellulose 

microfibrillar rotating orientations around the fibre axis are known to alter in the 

different cell wall layers. Some 2 - 6 fibrillary lamellae of the S1 layer, for example, 

are alternating between left and right-handed directions. The angle changes inward 

towards the fibre axis in transition from the primary layer to S2. In the S2 layer, the 

fibrils are right-handed and directionally the same throughout the layer thickness 

[15]. In the S3 layer the fibrils are again rotating in alternating fashion while the angle 

is directed more towards the fibre radius (c.f. Figures 1.5 and 1.6) The degree of 

polymerisation (DP) of cellulose polymer in a fibre is within 10 000 glucose units, 

which converts to approximately 5 µm in length [39]. The DP will drop during 

cooking and may be as low as 500. 

Hemicelluloses are often grouped to include all heteropolysaccharides, but the 

main constituting ones in softwood Kraft pulps are arabinoxylan and 

galactoglucomannan, while in the case of hardwoods the reference is made to 

glucomannan and glucuronoxylan (Table I.3) [22]. Xylan is known to redeposit on 

Kraft pulp fibre surface during the cooking process and requires concentrated alkali 

in order to be removed afterwards [22]. Along with the cellulose microfibrillar angle, 

the Xylan has been found to influence the fibre's hygroexpansion, a property that 

dictates the fibre swelling at different humidity conditions [38,40]. The DP values for 

hemicelluloses are generally lower than for cellulose and may reach a length of 300 

units [39]. Structurally, the hemicelluloses have been noted to increase tensile 

stiffness [41]. 

  



Introduction 

12 
 

 

Table I.3 Average fractional compositions of the main polysaccharides and lignin in selected 

wood species, in hardwood and softwood in general, and, in the Kraft pulps. L = lignin, C = 

cellulose, M = mannans, X = xylans. Fully bleached, calculated as % from the initial weight 

prior to cooking. Values adopted from [22,32,42,43] 

Source Yield (%) L (%) C (%) M (%) X (%) 

Picea abies - 27.4 41.7 16.3 8.6 

Pinus sylvestris - 27.7 40.0 16.0 8.9 

Betula pendula - 22.0 41.0 2.3 27.5 

Softwoods - 21-31 32-49 11-26 6-8 

Hardwoods - 14-33 33-51 1-4 15-30 

Kraft (softwood) 46-50 < 1 40-43 2-4 3-4 

Kraft (hardwood) 46-50 < 1 36-42 < 1 7-12 

 

The influence of lignin is accounted to its inherent properties but also to its 

distribution within the fibre walls. Since lignin is known to reside in between the 

cellulose microfibrils in the secondary cell wall, the removal of it will necessarily 

increase the flexibility of fibres as the stress transfer in transverse direction will 

subside. That will directly affect the fibre's compressing behaviour and to the 

response under micro level deformations during pulping [44,45]. Lignin is also 

known for its plasticising effect in wood matrix especially at higher temperatures and 

it is highly viscoelastic compared to cellulose and heteropolysaccharides [46,47,48]. 

For example, higher amount of lignin accounts for the higher amount of energy that 

is needed in refining to achieve optimum fibre web density [49]. Proofs exist that 

lignin is covalently bound to heteropolysaccharides at least to some degree via uronic 

acid esters in spruce wood fibre cell wall [50,51]. The higher the number of methoxy 

side groups in phenyl rings, the more the crosslinking ability of lignin will be 

hindered [52]. Regardless of the possible cross links, the glass transition temperature 

appears to be independent from other components in the fibre cell wall, wherefore 

the wood fibre can be modelled as a composite in which the lignin seems to act, at 

least in major part, as an individual component [53]. It is noteworthy that the glass 

transition temperature of lignin as well as hemicelluloses depends on the relative 

humidity, as depicted in figure 1.8. 

Increased lignin content is found to reduce the tensile stiffness of anisotropic Kraft 

pulp fibre webs [40]. It should be noted, however, that the high stiffness of cellulose 

in direction of fibre axis – especially upon possible hornification – influences 

elasticity, and the level of refining leads to changes in paper density through the 

number of inter-fibre hydrogen bonds that also contribute significantly to elasticity 

[54]. It is also meaningful to consider the fibre’s orientation with respect to the 

direction of applied stress. In an anisotropic web, however, that is not a concern. 
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Figure 1.8 Simplified glass transition diagram of lignin and hemicelluloses. Adopted from 

[48]. 

Pulp fibres also contain non-diffusing charges that in the case of Kraft fibres 

originate from carboxylic functional groups present in heteropolysaccharides, lignin 

and in cellulosic back bone. In heteropolysaccharides the charged groups are 4-O-

methylglucuronic acid (MeGluA) and hexenuronic acids (HexA) [55,56]. The HexA 

components are created from MeGluA during the several bleaching stages and 

contribute to the charge in final Kraft pulp to a greater degree because of prolonged 

Kraft cooking [57,58]. The residual guaiacyl and syringyl type lignin fragments 

contain carboxylic acids due to ring opening reactions that take place in the 

electrophilic bleaching process [59]. These acids, although low in quantity, may 

contribute significantly to Kraft fibres’ overall charge [57]. Also, the reducing ends 

of polysaccharides may be oxidised to aldonic acids that induce surface charge on 

pulp fibres [56].  

Non-diffusive ionic groups in untreated mechanical pulp fibres are mainly 

MeGluA and galacturonic acids (GalA) from hemicelluloses and pectin structures 

respectively. To a lesser degree e.g. in spruce wood, there are arabinogalactan linked 

glucuronic acids [58,60,61,62]. The theoretical ratio for glucuronic acids vs. 

galacturonic acids in untreated spruce TMP fibres is close to 3:1 [61]. The fines in 

mechanical pulp contribute to the overall charge significantly through their large 

surface area. For example, the effect of hemicelluloses on pulp fibres’ surface charge 

is considerably smaller than the effect of fines when studied by polyelectrolyte 

adsorption [63].  

Several methods have been devised to estimate the fibres’ bulk charge but the 

most reliable ones appear to be the conductometric titration and methylene blue 

adsorption [64] (Table I.4). Other methods have been noted to either underestimate 

the content of anionic functional groups in fibres (e.g potentiometric titration) or 

overestimate them (e.g. polybrene adsorption) [65]. The anionic groups on the fibre 

surface have been investigated by labelling them with methylene blue and measuring 

the quantitative signal of nitrogen by means of x-ray photoelectron spectroscopy 

(XPS) [58]. Since the electrons originate only from the imminent surface (d ≤ 10 nm), 
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it is possible to distinguish the surface-bound label molecules and, thus, quantify the 

charge from the bulk (Table I.4). Bulk charge in TMP and CTMP may vary between 

150 and 200 µmol/g [66]. Surface charge at 10 nm depth remains below 3% from the 

total and over 60% of the charge resides within 1.0 µm depth. 

 

Table I.4 Number of anionic groups by methylene blue adsorption expressed in concentration 

(CMB) and by conductometric titration (CCond) from unbleached and total chlorine free 

bleached Kraft pulps and the specific amount of non-diffusive anionic groups at fibre surface 

(nS) and in bulk (nB). Values adopted from [58,64]. 

Source CMB (µmol/g) CCond (µmol/g) nB (µmol/g) nS (µmol/g) 

Pine Kraft 81 ± 3 79 ± 2 - - 

Pine Kraft, bleached 43 ± 6 45 ± 1 - - 

Birch Kraft 130 ± 6 124 ± 2 - - 

Birch Kraft, bleached 64 ± 5 66 ± 3 - - 

Spruce TMP - - 96 ± 5 1.0 

Spruce TMP, bleached - - 183 ± 7 1.5 

 

The carboxylic functional groups influence many important parameters in pulp 

and paper manufacturing such as ionic interactions, cell wall swelling, refining 

response, sheet and floc formation, water uptake of paper and its tensile strength 

[56,64,67,68,69,70]. 

It is well known that the refining and chemical treatments affect the fibres' 

porosity. The cell wall becomes semi-permeable, allowing diffusion of ions and small 

polymers into the cell wall due to removal of lignin and heteropolysaccharides and 

inclusion of physical defects [71,72,73,74,75]. There is some controversy in literature 

on how large the pores on the fibre's surface and in the cell wall exactly are, but the 

maximum seems to be within 80–100 nm (Figure 1.9) [76,77,78]. The variance in 

results may be attributed to different measurement techniques and the mechano-

chemical history of the fibre material [79]. Generalisations can be made in that 

earlywood fibres appear to be more porous than latewood fibres and refining seems 

to open up the fibre structure through cell wall delamination even after possible 

hornification [80,73]. Swelling characteristics have a profound effect on pore volume 

and chemical reactivity [81,82]. Spruce wood fibres do not contain macro-pores, 

wherefore the formation of those is attributed to delignification [79]. In addition, 

within reasonable ionic concentration (µ) the cell wall structure remains relatively 

constant but the swelling begins to decrease, if µ > 100 mM [83].  
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Figure 1.9 SEM micrographs from pores on unbeaten softwood Kraft pulp fibres after freeze 

drying (upper images). Scale bar equals to 100 nm. Adopted from [78]. The pore volume to 

pore width relationship in dissolving (diss) dried and non-dried (ND) hardwood pulp fibres 

and the corresponding SEM micrograph (scale bar = 200 nm) of ND is unpublished data 

provided by courtesy of Professor Thaddeus Maloney, Department of Forest Products 

Technology, Aalto University School of Chemical Technology, Espoo, Finland. 

1.2.2. Functionalisation of pulp fibres 

Functionalisation in chemistry may equally refer to a molecular level synthesis, 

specific material characteristics and to the usefulness and practicality of the material 

that is designed for a certain application. In the case of pulp fibres, the reference is 

often made to a molecular level surface modification. Common examples include 

grafting of co-polymers [84,85,86], polyelectrolyte adsorption [87,88], plasma gas 

treatment [89,90] and enzymatic treatments [71,91,92]. Apart from molecular level 

functionalisation, inorganic particles in different size range can be used for surface 

modification as well [93,94,95,96,97]. 

Inorganic particles in traditional P&P production are used as pigments.  Minerals 

such as Kaolin (Al4Si4O10(OH)8), Talc (Mg3(Si4O10)(OH)8), CaCO3, CaSO4 and TiO2 

are frequently used in coated papers. The rationale for using these inorganic materials 

stems from gained improvements in paper quality in terms of gloss, brightness, 

opacity, porosity, bulk, ink absorption and printability [98]. The shape and size 
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distribution of the particles are different from mineral to mineral as are their physical 

characteristics such as hardness, refractive index and density.  

Because wood fibres are naturally acidic and the pigment particles either neutral 

(e.g. CaSO4, TiO2) or cation exchangers (silicates), there is a requirement to use 

binders to fix the inorganic minerals onto the fibre surface. In P&P the binders are 

usually starch or latex, especially styrene-butadiene based polymers [99]. It is 

noteworthy that the pigments and retention aids or binders are applied in a form of 

paste onto the ready-made fibre web and, thus, changes (e.g. stiffness, porosity, 

hydrophobicity) are anticipated on the fibre web level instead of individual fibre level 

[100]. In a way, the final product comprising the fibre network (i.e. the base paper) 

and surface coating resembles a laminated composite.  

There have been attempts to fill the pulp fibres with minerals already in 1950’s 

and some patents have appeared describing different methods of achieving high 

mineral loading [101,102,103,104,105]. The patents are all related to precipitation of 

CaCO3 while the strategies vary. Pulp fibres have been loaded e.g. by transferring 

gaseous CO2 into an alkaline Ca2+ ions containing solution and by allowing the fibres 

to swell in CaCl2 solution that is followed by dissolution of Na2CO3. Patented 

methods also included utilisation of reactive CaO in alkaline CO3
2-

 solution and 

dissolution of different Ca2+ salts in a pulp suspension that was made alkaline with 

ammonium carbonate. The method that involved in situ impregnation of fibres with 

a soluble CaCl2 following precipitation with Na2CO3 gained some acceptance [106] 

and a similar strategy was recently applied in mineralisation of wood blocks to 

improve their flame-retardant ability [107]. Flame retardant wood was treated for 24 

hours in a vacuum impregnation system in order to fill the lumens and cell wall pores 

with CaCl2 and dimethyl carbonate (DMC). Subsequently, an excess of 1M NaOH 

was added to demethylate DMC leading to precipitation of CaCO3 and generation of 

methanol and sodium chloride. The method seems to offer an alternative to 

mineralisation of entire wood structures as long as the size allows vacuum 

impregnation. 

There have been discussions about nanoparticles (NPs) and their applications 

already for a few decades, but harnessing them for research and development 

involving wood-derived fibres is still in its early phase, although many interesting 

applications are emerging rapidly. Research is, however, concentrating more heavily 

on textile fibres and reeds. Patents that describe applications for nanoparticle 

containing wood fibres take advantage of materials such as ZnO for coatings [108], 

silica for laminates and boards [109,110] and various oil repellent clays [111]. 

Academic research covers catalytic TiO2 and noble metals [95,112,113], 

antimicrobial copper [96] and magnetic Fe3O4 [114]. Nanoparticle suspensions are 

often stabilised by anionic ligands, wherefore the substrate must be converted to 

cationic prior to NP synthesis or the loading is achieved by the aid of cationic polymer 

such as polyethyleneimine [95,112,113,115,116]. In some cases, the substrate 

porosity is exploited as well [114]. 
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1.3. Layered Double Hydroxides 

This section covers the historical background of layered double hydroxides 

(LDHs) and reviews the mineral more closely, presenting the principles for the 

stacking sequence, thermodynamics and decomposition phenomena. Some 

applications are also given that exploit LDH in industrial scale. 

1.3.1. Historical background 

Several authors agree on the first encounter with the mineral that became known 

as hydrotalcite as described by German scientist Carl Hochstetter in the Journal of 

Practical Chemistry in 1842 [117,118,119,120]. It appears that Hochstetter received 

the mineral from a mineralogist, and it was said to accompany the steatite from 

Snarum, Norway [117]. The name steatite (στέαρ, fat) arose from the palpable feeling 

as if the mineral had a greasy surface. While C. Hochstetter was undoubtedly first in 

reporting about the new mineral, the exact origin has different accounts in literature. 

Whether the mineral originated from Zlatoust in the Urals or from Snarum in Norway, 

we can assume that there were two separate minerals traveling under the names 

völknerite and steatite. Albeit they shared identical chemical composition, one of 

them was named hydrotalkite (i.e. hydrotalcite) because it physically resembled talc 

and contained considerable amounts of water. Talc is a typical silicate (SiO4), 

comprising significant amounts of magnesium oxide (MgO) in its structure. 

1.3.2. Structural features of LDH 

At the beginning, particular interest in the research was placed on the quantitative 

composition, which was true to all new minerals found at the time. Hochstetter 

apparently thought that the mineral under study was an aluminate, but Frondel laid 

out several examples for the dispute that prevailed during the first few decades after 

the discovery [120]. Some researchers, however, held the view that the steatite of 

Snarum as well as the völknerite and hydrotalcite were all identical minerals as first 

claimed by R. Hermann in 1849 [118,121]. Analogous minerals were found 

elsewhere. For example, the houghite, so named in honour of F.B Hough, an 

American scientist and pioneer in forestry, was found from Sommerville, New York 

shortly after Hochstetter’s report and identified to belong to the hydrotalcite group 

[120,122]. Others insisted that the hydrotalcite is a hydrated oxide, just as Hochstetter 

suspected, arguing that the original mineral was a mixture of gibbsite, magnesite and 

brucite [120]. Gibbsite is an aluminium hydroxide (Al(OH)3) that contains water of 

crystallisation, magnesite is magnesium carbonate (MgCO3). Brucite is pure 

magnesium hydroxide (Mg(OH)2) that also contains water of crystallisation. Yet 

others, such as J. D. Dana and R. Hermann maintained that the mineral is an alteration 

of brucite structure. They assumed that some of the mineral's magnesium atoms had 

been replaced by aluminium. It is worthwhile to note that the CO2 that was constantly 

found to be present in the samples was overlooked for a long time as a constitutive 

part of the mineral. 

It was allegedly the work of an Italian professor Ernesto Manasse that clarified 

the composition of hydrotalcite in 1915 [120,123]. He was also correct in assuming 

that the hydrotalcite was comparable to pyroaurite, a ferric (Fe3+) analogue of the 



Introduction 

18 
 

hydrotalcite. Foshag concurred that the described hydrotalcite was a basic, viz. metal 

hydroxide containing carbonate [119,124]. Although the analysis unequivocally 

established that the original mineral was not talc-like metal oxide, the name 

hydrotalcite persisted and has been preserved for a particular type of LDH due to 

historical reasons. The chemical formula for any LDH can be written as shown below, 

in the chemical formula 1 (f1). In that formula, the M represents the metal atom and 

A is the counter ion. The hydrotalcite, the one that E. Manasse reported in 1915, is 

represented with the same notation in chemical formula 2 (f2).  

 

[M1−x
II Mx

III(OH)2]
𝑥+

(A𝑥
𝑧⁄

𝑧− ) ∙ 𝑦H2O     (f1) 

 
[Mg0.75Al0.25(OH)2]0.25+(CO3

2−)0.125 ∙ 0.5H2O     (f2) 
 
A great deal of structural analysis has been put together from 1920 onwards, 

thanks to the development of X-ray crystallography. It took some time, however, 

before the intricacies of hydrotalcite and some of its analogues were fully elucidated 

[120,125,126,127]. Nowadays there are over 40 naturally occurring minerals 

identified under the hydrotalcite super group and many more, even ternary and 

quaternary LDH structures have been synthesised [128,129,130,131]. Moreover, 

there are the so-called non-charged hydroxy double salts that are structurally 

analogous with LDHs [132]. 

X-ray analysis has revealed that the hydrotalcite-like minerals' solid layers diffract 

the incoming radiation by appearing similar to the brucite that is solely built from 

hexagonally arranged hydroxides around a magnesium cation (Figure 1.10).  While 

the hydroxide ligands define the shape of the complex, the unit cell of the brucite 

crystal is framed by the metal atoms that occupy the octahedral holes in the complex. 

The two white arrows in Figure 1.10 denote the two different edges of a unit cell 

parallelogram observed by looking directly along the c-axis that is orthogonal to 111 

(hkl) surface of a face centred cube. The triangle that is drawn on top of each hexagon 

marks the vertices of those hydroxyls that are on the same plane with each other. 

Because all of the hydroxyls are hexagonally close packed around the cationic 

centres, each one of them shares its molecular orbitals with three metal ions, so that 

the net chemical formula becomes Mg(OH)2.  
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Figure 1.10 Octahedral brucite layer presented in z direction a) and the Al3+ doped layer b). 

Adopted from [133]. 

Some of the Mg2+ cations in LDH crystal layer are substituted with trivalent 

cations that grant extra positive charge for the two-dimensional (2D) sheet (Figure 

1.10). Thus, the LDH incorporates anionic molecules that are said to intercalate into 

the crystalline structure and fix them in place to balance the charge. With the anions, 

water is often included. Substituting the Mg2+ with other divalent metals creates a 

lattice that is called a hydroxy double salt. These comprise a group of non-charged 

LDH that are outside the scope of this thesis. The LDH abbreviation is preserved for 

charged layered structure alone. 

Structural anions in LDH are electrostatically bound as outer sphere complexes 

that are exchangeable. Another brucite type layer is therefore able to form next to the 

first 2D sheet and share its molecular orbitals with the intercalated anions creating a 

three-dimensional (3D) structure for LDH. The anionic species and water molecules 

are sandwiched almost as if a confined film between the doped brucite layers. 

Theoretically calculated diffraction pattern for the rhombohedral (R-3m) and the 

synthesised Mg-Al LDH (Mg4Al2(OH)12NO3(H2O)3)0.5 are shown as an example in 

figure 1.11. The magnesium to aluminium ratio (RMgAl) is 2.0. 
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Figure 1.11 (A) Theoretical and experimental XRD patterns of NO3-LDHs, RMgAl = 2. (B) Top 

views of a simulated hydroxide layers with Mg/Al repartition and (C) Computational model 

of layered double hydroxides (LDHs) formulated as (Mg4Al2(OH)12NO3(H2O)3)0.5. Adopted 

from [134]. 

The work of Bookin, Drits and Cherkshin established the notation for the 

polytypes observed in LDH structure [135,136]. They concluded that the X-ray 

diffraction intensity was highly dependent on stacking sequence and arrangement of 

cations, while the interlayer anions dictated over the unit cell parameters. Different 

layer stacking sequences were divided into 2 and 3-layered hexagonal (H) as well as 

to 3 and 6-layered rhombohedral (R) polytypes in 111 direction, i.e. in the c-axis 

(Figure 1.12) [135]. It is interesting that the two chemically identical naturally 

occurring manasseite and hydrotalcite minerals have adopted the two layers 

hexagonal (2H) stacking sequence and the three-layer rhombohedral (3R) sequence 

respectively [127].  
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Figure 1.12. Representation of MII/III(OH)6 crystals, the site labels and examples of 2H and 

3R stacking sequences. (A) Two orientations for the same crystal are illustrated, showing the 

oxygen atoms in red and the metal cation in grey. The site labels A and C correspond to the 

locations of the oxygen atoms while b is for the metal centre. (B) Stacking sequence is 

illustrated with semi-transparent discs. The lighter shade appears further from the viewer 

(site A) while the darker shade is closer (site C). Metal cation occupies the octahedral hole 

(site b). Overlaid brucite layers are shown with additive colours. 

Some controversy appears in literature as to whether the inorganic cations are 

homogeneously distributed within the layers or not. Chemically the cation avoidance 

rule, i.e. the repulsion of similar charges dictates that the MIII ions cannot occupy the 

neighbouring octahedral holes. By doing so, sever lattice strain is introduced to the 

mineral [137,138,139]. To satisfy the cationic repulsion rule the minimum value for 

MII/MIII ratio in the chemical formula is 2 and the maximum is 4. Therefore, the x in 

the same formula (f1) is between 0.20 ≤ x ≤ 0.33. However, both high (0.50) and low 

(0.07) ratios have been reported in the literature [140,141]. It is noteworthy that there 

are several difficulties in determining the exact value for x since the crystalline phase 

may easily become contaminated with ternary components during the synthesis 

[138,139]. In the case of the two most common and well known LDH cations, Mg2+ 

and Al3+, the proportional factor x tends to 0.25 (RMgAl = 3) at least in hydrothermal 

synthesis [139]. If the proportional factor differs strongly from the optimal 0.25, the 

mineral phase includes Mg(OH)2 (x = 0.18) or Al(OH)3 (x = 0.4) [142]. 

The brucite layers may adopt different stacking sequences based on the 

intercalated anion. For example, carbonate containing synthetic LDH structures are 

often reported to stack according to the 3R sequence with prismatic orientation of 

hydroxyls, allowing efficient hydrogen bonding with the oxygen atoms in CO3
2- 

[127,139,143]. If the interlayer anion is hydroxyl, the stacking may adopt octahedral 

symmetry of the same sequence [144]. In that case, both the cations as well as the 

hydroxyls are placed in staggered position in each successive layer. Newman et al. 

showed that the solvothermal synthesis route at relatively high temperatures favoured 
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the staggered positions, but noted also that the mineral contained CO3
2- and OH- 

anions. In addition, the proportionality constant x is assumed to have an effect in 

stacking sequence [139]. For example, if the cations are far from each other as in the 

prismatic 3R structure, the crystal is expected to have lower energy according to the 

cation exclusion rule. Therefore, it has less strain in the layers. In comparison, the 

prismatic 2H has all the cations on the same axis. 

The stacking order may become inhomogeneous for many reasons. Quite often 

the contribution for the shift in 00l diffraction pattern is associated with the 

interstratification, in which several different layers and stacking orders may be 

intergrown to form a single crystal. The turbostraticity that refers to extent of 

randomness in oriented layers is yet another type of structural anomaly 

[145,146,147,148,149,150]. Co-precipitation synthesis of metal hydroxides may lead 

to tailing of 01l and 10l peaks that are identified as intergrown rhombohedral and 

hexagonal polytypes [137] (Figure 1.13). The reason for the tailing peak shape is 

apparently in interactions between the intercalated anions and the adjacent brucite-

type layers [139].  

 

 

Figure 1.13 XRD peak broadening by disorder in stacking arrangement. Adopted from [137]. 

1.3.3. Chemistry of LDH 

To understand how the LDH behaves, it is also important to understand the 

fundamental thermodynamics of them. The solubility of the LDH in aqueous 

solutions in different pH is reviewed. The effect of the interlayer anions and cations 

on the calculated enthalpy and Gibbs free energy is discussed also. Thermal 

decomposition phenomenon is briefly explained. 

It had been proven already in the 1930’s and again later in the 1960’s by titration 

of an aqueous solution containing Al3+ or Fe3+ nitrates and Mg2+ in a form of alkaline 

MgO that the buffering effect of Mg(OH)2 formation appears at lower pH than expect, 

i.e. below pH = 9.7 [151,152]. In the case of Al3+, the buffering plateau appeared at 

pH 8.8, while with Fe3+ the precipitate pH was 9.2. The X-ray diffraction analysis 
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revealed that the precipitate at the titration plateau was LDH. Buffered solution 

contained amorphous particles indicating that the LDH structuring had taken place. 

The formation of LDH was thermodynamically favoured over the brucite crystal. 

Solubility products obtained at different µ also concurred that stability of the LDH 

was higher than the corresponding divalent hydroxide, i.e. MII(OH)2. The solution pH 

for stable LDH containing Ni2+, Co2+, Zn2+ or Mg2+ were 8, 9, 10 and 12 respectively 

[153]. The trivalent cation in the study was Al3+. Also, in pH titration with NaOH, 

the thermodynamic stability of LDH with MIIAl and MIIFe cation pairs with Cl- as a 

compensating ion, has been found to increase in the order: Mg < Mn < Co ~ Ni < Zn 

[154]. The order follows the solubility equilibrium (pKsp) values for hydroxo- ligand 

formation [155,156]. It was noted, however, that in alkaline titration the trivalent 

hydroxide formation appears before the LDH. The formation of LDH is not a single 

step process. 

The stability of different mono- and divalent anions was first established by 

Miyata [157]. He studied the monovalent series of nitrate intercalated LDH and found 

the stability to degrease in the order: OH- > F- > Cl- > Br- > NO3
- > I-. Two divalent 

anions were tested and the carbonate was found to be more stable than the sulphate. 

Adsorption capacity experiments on calcified Mg/Al-CO3
2- LDH proposed a 

sequence for anion stability to decrease in order: SO4
2- > F- > HPO4

2- > Cl- > B(OH)4
- 

> NO3
- (Figure 1.14) [158]. Experiments were performed in 50 mmol concentrations. 

In aqueous SO4
2- containing solution the adsorption of chloride ions has been found 

to be inhibited, and the affinity of CrO4
2- over the sulphate is attributed to its lower 

solubility [159]. In the case of uncalcified Mg/Al- CO3
2- LDH, the anion exchange 

has been proven to be impractical [158,159,160]. 

 

 

Figure 1.14. Adsorption of ions on calcified Mg/Al-CO3
2-. Adopted from [158]. 

In a recent experiment with the Mg/Al-NO3
- LDH, Prasad et al. demonstrated 

through a fairly simple electrochemical system that singly charged anions are 
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thermodynamically favoured over divalent ones [161]. The anion exchange was 

examined with respect to the intercalated NO3
- on Pt electrode between 1 mM and 

100 mM range. Anions were exchanged in the order: F- > Cl- > Br- > NO2
- > SO4

2- > 

NO3
- > CO3

2-. The incorporation of carbonate ions that appeared thermodynamically 

unfavourable with respect to nitrate and sulphate was explained by lability of other 

ions in terms of hydration enthalpies associated with the outgoing ion. Proof exists 

that the greater the hydration energy is for the outgoing ion the more labile it is 

[162,163]. 

The LDH exhibits variable swelling properties that can be divided roughly into 

three types [164]. Type 1 is expandable, type 2 is slightly expandable and type 3 is 

practically non-expandable with little or no water within the interlayer structure. 

Examples for each of these are Mg3Al – SO4, Mg3Al – ClO4 and Mg3Al – Cl 

respectively. Some anions allow considerable swelling. For example, the citrate in 

the LDH gallery is expandable causing the basal spacing to change from 8.9 Å up to 

18.9 Å with relative humidity [165]. In practice, contraction of the basal spacing is 

observed if the anion exchange involves carbonate, while nitrate brings about 

swelling of basal spacing due to incorporation of water and the change in molecular 

orientation [166]. Some studies claim that the Cl- induce basal expansion as well 

[150]. Affecting factors are related to the shape and size of the anion, and the 

probability for sharing its HOMO electrons.  

Computational molecular dynamic studies of the LDH structures verified the 

experimentally observed results that the lowest energy level is achieved when Mg/Al 

molar ratio is 3 (i.e. x = 0.25) [167]. The simulation also proved that the band gap 

energy was at the lowest with intercalated hydroxyl anions. The unit cell volume was 

found to be largest at the same ratio in the studied 1H and 2H stacking sequences. 

These calculations were performed assuming non-hydrated layers. Cautli and Ireta 

concurred recently with the findings, showing that the number of hydrogen bonds 

between the brucite type layers and the intercalated anions dictated over the energy 

barrier needed for anion exchange [168]. The lowest energy barrier was found for 

intercalated hydroxyl with RMgAl = 3. Their study included the 3R stacking sequence. 

There are few attempts to calculate the standard heats of formation (ΔmHf
°) and 

Gibbs energies of formation (ΔfGm
°) for different LDH structures. This is probably 

due to laborious experimentation, variety of the LDH in terms of chemical and 

structural composition, number of available methodologies and the extensive amount 

of predetermined thermodynamic data required for calculating those values from the 

chosen starting materials.  

The current view is that the thermodynamic trends can be evaluated reasonably 

well by using simple constituting hydroxides, also referred to as single cation 

components (SCC) approach. These starting materials include the M2+(OH)2, 

M3+(OH)3 and M2+(An-)2/n. The related enthalpy is referred to as ΔmHf
SCC. The enthalpy 

is interpreted as a change in internal energy of the LDH mineral with respect to the 

single cation components. Usually, for the Mg(OH)2, the tabulated values are chosen 

from brucite structure, while in the case of Al the reference is made to gibbsite and 

α-Al2O3. For metal carbonates (MCO3), the enthalpy of calcite mineral is used.  

An extensive work by Bravo-Suárez et al. indicated that the best thermodynamic 

approximations are achieved via the SCC [169,170]. The results from different 
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models that were proposed did not differ markedly from each other. Nevertheless, the 

SCC method was chosen for the ΔmGf
°. The equation is shown here. 

 
∆𝑓,𝑀1𝐺𝑚

𝑆𝐶𝐶{T, 𝐿𝐷𝐻} 

= (1 −
3𝑥

2
) ∆𝑓𝐺𝑚

𝑜 {T, M2+(OH)2} + (𝑥)∆𝑓𝐺𝑚
𝑜 {T, M3+(OH)3} + (

𝑥

2
) ∆𝑓𝐺𝑚

𝑜 {T, M2+(An−)2/𝑛} 

 
In the equation, the standard molar Gibbs formation enthalpy (ΔfGm

0) values in 

predetermined temperature T requires, as shown, the stoichiometric constants to 

adjust the salt composition of divalent cation M2+ with the intercalated anion An-. 

Proportionality factor x has its usual meaning (cf. p. 22). Enthalpies are calculated 

similarly. 

Mazeina et al. studied ΔmHf
°, ΔmHf

SCC and ΔmGf
SCC of green rust, an important 

mineral in soil and corrosion chemistry with four different Fe2+/Fe3+ compositions, 

each containing sulphate as counter ion and variable stoichiometric amounts of water 

[171]. The ΔmHf
° values were found to be -1040 and -1080 kJ/mol regardless of the 

stoichiometric composition. Entropy related term was under -7 kJ/mol. Since there 

are two different ferrosulphates, the calculations were based on FeSO4 and its 

hydrated form, the FeSO4 · 7H2O that is commonly found in soils. Although the 

absolute values differed, the trend remained similar. 

Using a drop solution experiment, in which the LDH is dissolved into the molten 

salt of lead borate, leading eventually to the oxides of the constituting LDH cations, 

Allada et al. established that in the case of Co/Al-CO3
2- LDH the ΔmHf

° could be 

estimated from the SCC approach [172]. The ΔmHf
SCC was found to lie between -970 

and -1040 kJ/mol depending on the mineral composition (Table I.5). Later they used 

a similar approach to calculate the thermodynamic values for Mg/Al LDH with CO3
2-

, NO3
-, Cl- and I- counter ions [173]. According to the authors, the experimented and 

modelled thermodynamic parameters were close enough to validate the SCC 

approach. Importantly, intercalated anions apparently have a remarkable effect on the 

solubility and, therefore, on the thermodynamic stability. Cation disorder in the 

brucite type layers did not contribute markedly to solubility. The nature of the cations 

seemed to be more important than their molar ratio [172,173,174]. Entropy was 

expected to remain within -3 kJ/mol. However, in the SCC approach the halides 

appeared more stable than carbonate, which the authors assumed to be related to the 

hydration enthalpies of the halide series and sulphates. For Mg/Al-CO3
2- crystal the 

ΔmHf
° were in the range of -1200 kJ/mol (Table I.5). 

It is well established that the decomposition process of the hydrotalcite begins 

with dehydrations and possibly, depending on the LDH synthesis route, with a partial 

loss of interlayer water that occurs at 250 °C [175,176] (Figure 1.15). The 

accompanying loss of chemically bound water from the LDH galleries takes place 

between 275 and 350 °C. Subsequently, the crystalline phase transformation with loss 

of carbonate and hydroxyls begins to take place. The final endotherm starts at 

approximately 377 °C. It is characterised by significant loss of CO2 and OH and the 

formation of a rocksalt-type structure as the layered structure collapses creating 

strongly basic O2- sites [177,178]. Further oxidation above 600 °C will form a spinel-

type oxide that precludes recovery of the LDH structure. 
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Figure 1.15 Simplified representation of an LDH crystal transformation under different 

calcination temperatures (°C). Adapted from [178]. 

1.3.4. Synthesis and preparation 

The process that involves stabilisation of crystal formation by a metal cation is 

known as co-precipitation. It is a broadly exploited method in the LDH preparation. 

During the co-precipitation sequence, not only inorganic anions but also pre-

polymers [179], graphene [180] and biologically active molecules [181] may be 

incorporated in LDH gallery.  

Precipitation strategy depends on the preferred hybrid structure. The precursors 

should be chosen in order to promote affinity towards the intercalated anion. Usually 

nitrates are applied in this respect as noted earlier. Also, the intercalated anion is often 

dissolved in excess from the calculated fraction of trivalent cations in the crystalline 

lattice.  

The co-precipitation is achieved either at high super saturated (hss) or at low super 

saturated (lss) conditions [182]. The lss system is preferred if charge density ratio 

needs careful control. The hss synthesis route may be chosen if the material is allowed 

to age hydrothermally. The problem in the hss method is the continuous pH change 

during the particle nucleation. Buffers, however, can be applied. Neither one of these 

synthesis routes are able to produce particles with narrow size range distribution, 

wherefore, a rapid nucleation procedure was developed [183,184]. 

Subsequent treatment after the LDH formation involves a calcification process. 

This is especially so, if the material is to be used as a catalyst or the intercalated anion 

exchange is required. Catalysts may be produced in any temperatures above approx. 

350 °C, while in the case of ion exchange the temperature should be kept below 525 

°C. The limit is set in the latter case by the LDH's rehydration ability. The so-called 

memory effect was first explained by Miyata [175]. The crystallographic data 

revealed that, once calcified, the mineral acquired its original structure upon 

hydration in an aqueous environment. Applying the memory effect procedure allows 

the LDH to incorporate many different anions without using high ionic 

concentrations or elevated pH. 
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1.3.5. Applications for LDH 

The launch of the utilisation of LDH on an industrial scale was probably due to 

the work of Miyata and co-workers in the mid-1970’s and early 1980’s. Miyata found 

that HT and its calcified form was a useful halogen scavenger for the polyolefin 

produced by Ziegler-Natta catalyst or Fridel-Craft reaction, and a good heat stabiliser 

in PVC plastics [157].  

The LDH is built from hydroxides, so it can act as an alkaline catalyst by sharing 

the electrons from the first brucite type layer. Intercalated ions may also undergo 

alkaline catalysed reactions when LDH is functioning as a host structure. Since the 

organic anions are usually oriented within the galleries, the LDH can direct the 

reaction pathways and protect intercalated molecules. For example, LDH has been 

proven to improve heat and photo stability of pigments [185]. We have already seen 

that the band gap energy in RMgAl = 3 in the LDH crystal with intercalated OH- is at 

the minimum. It is also highly basic in character, being able to catalyse alkaline 

reactions, especially those with anionic intermediates [167]. 

Since its early discoveries, the science around HT has boomed and numerous 

applications ranging from drug development to automobile industry, composites, 

semiconductors, water purifications and so on, have been addressed. According to 

SciFinder© the LDH has appeared in some 5500 scientific papers since 1985. 

Other than the minerals that are listed in section 1.2.2 are rarely explored in 

context of pulp fibres. However, LDH seems to appear as a recently discovered 

mineral in this regard. For example, paper making drainage is used for producing 

colloidal LDH and the resulting cationic particles are exploited in stickies' control 

and capturing the anionic trash [186,187]. The thermal properties of LDH in flame 

retardant paper have been studied as well [188] and incorporation of LDH into 

polylactic acid and cellulose acetate films have received some attention [189,190]. 

The function that was carried with the LDH into the films was related to oxygen 

diffusion and thermal stability that are important in food package applications. 

Several patents have been filed in the past 10 years or so that are related to LDH 

mineral and P&P and board manufacturing. For example, LDH appears as a 

component in filler and fluorescent whitening agent formulations [191,192,193,194], 

in the filter paper for biological samples [195,196], in pitch control additive [197] 

and fluoride scavenging agent in aqueous media [198]. An interesting function was 

achieved with fluorescence whitening agent (FWA) filled LDH that expressed 

pressure sensitive properties [199]. The emission wave length maximum was 

observed to change as the orientation of the FWA and therefore the chemical 

environment of exited functional group within the LDH crystal altered under applied 

pressure. LDH have been utilised also as a flame retardant in paper [200] and as a 

catalyst in lignin depolymerisation [201]. 

Considering the possibilities to apply LDH synthesis in pulp and paper 

production, the locations were envisaged as in figure 1.16. Based on the existing 

knowledge, the LDH synthesis could be exploited already at the refining stage or in 

the mixing chest.  
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Figure 1.16 Example for LDH precursor application positions in a paper machine 
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2. Positioning of the scientific work 

In this thesis, the in situ synthesis of LDH by using three different applicable 

approaches is being considered for large scale pulp production. The fundamental 

properties of hybridised pulp fibres are being studied in the context of a fibre filled 

polymer composite and lightweight pulp fibre foam. 

To test the hypothesis for in situ synthesis and ability to apply LDH as a 

functionalisation platform for pulp fibres, co-precipitation of LDH onto BTMP fibre 

surface was used as a proof of concept. The experimental set-up is laid out in chapter 

3.1 and the results presented in chapter 4.1.  

The scientific experiments to clarify the physical and chemical properties of LDH 

modified fibres in terms of fibre compliance, the amount of non-diffusive charge, 

combustion behaviour and polymer degradation are presented in chapters 3.2 and 4.2. 

The hypothesis arising from the lower surface energy to enhance the coupling of 

fibres is discussed in experimental chapter 3.3 and results in chapter 4.3.  

Finally, to combine the combustion behaviour and in situ synthesis procedure the 

hypothesis was made to take advantage of the platform in a pilot to produce light 

weight fibrous foam out of the modified BTMP fibres. The experiments and results 

are presented in chapters 3.4 and 4.4 respectively. 
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3. Experimental 

Thermomechanical (TMP) spruce (picea abies) and sulphate cooked (Kraft) pine 

(pinus sylvestris) pulps were used throughout the experimental work. Hydrogen 

peroxide bleached TMP (BTMP) pulp was provided by UPM (Rauma mill, Finland) 

in 2009, while the Kraft pulp with unknown bleaching sequence (BKraft) was 

provided by Metsä Fiber in 2011 (Rauma mill, Finland). The collection site in the 

mill was located after the bleaching tower at the dryer section. 

The pulp, once collected, was transported to ÅAU in a polypropylene container 

and subsequently sampled into 1000 g aliquots within 48 hours and stored in 2000 

ml polyethylene bags at a freezing temperature of -20 ± 2 °C. Each time a new sample 

was needed for experimentation, the pulp aliquot was thawed overnight at 10 °C 

before use. After thawing the samples, the pulp fibres were separated avoiding 

excessive damage by applying standard disintegration procedure according to ISO 

5263:1995(E). Prior to disintegration, approximately 30 g of BKraft pulp or 40 g of 

BTMP was soaked for 30 min in a beaker that was filled with 2000 ml of distilled 

water. The pulp fibres were characterised with Kajaani FiberLab instrument. The 

arithmetic average length of BKraft fibres was 2.09 ± 0.1 mm with 2 ± 1% of fines 

determined as a number average of smaller than 0.20 mm fragments. For the BTMP 

fibres the values were 1.50 ± 0.1 mm and 22 ± 1% respectively. 

From here onwards, whenever the weight of pulp is being mentioned in this thesis, 

we refer to the so-called oven dry (o.d.) weight unless otherwise stated. The oven dry 

content of pulp was determined by weighing approx. 2 g of sample onto an aluminium 

tray and placing it into an oven at 105 ± 5 °C for approx. one hour. Three replicate 

samples were prepared and the arithmetic average was used in subsequent 

calculations. The modification and functionalisation concepts appear frequently in 

the articles. Whenever modification (or hybridisation) is used we refer to pulp fibres 

that contain LDH particles. Functionalisation refers to the modified (or hybridised) 

fibres that are further treated with a sodium dodecyl sulphate surfactant. 

3.1. In situ synthesis and functionalisation of BTMP fibres 

The fibre functionalisation concept was explored by applying urea hydrolysis and 

in situ co-precipitation via the lss synthesis route of Mg-Al LDH particles. The pulp 

that was used for this work was spruce BTMP. Chlorides and nitrates were used as 

counter balancing ions in LDH synthesis. The stress was put on achieving high 

hydrophobicity with a common surfactant in a process that would be readily 

applicable for large scales. Pulp fibres were not pre-treated in any other way than 

already explained at the beginning of the Experimental section. 
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3.1.1. Fibre modification with Mg-Al LDH 

Fibres were modified in a 500 ml three-neck round-bottom flask that was equipped 

with a reflux, mixing and urea dispensing system, and, via the lss titration method in 

a 1500 ml reaction vessel as described in article #1 (Figure 3.1). The concentrations 

and synthesis parameter are listed in table III.1. 

 

 
 

Figure 3.1 The system set-up for in situ particle synthesis on pulp fibres via urea hydrolysis 

and the lss titration method. 

Table III.1 Parameters used in the modification of BTMP via urea hydrolysis and lss synthesis 

routes. The total metal ion concentration of LDH (c(𝑀𝑡𝑜𝑡
𝑧+)) was calculated from the final 

reaction volume. Parameters: Mg to Al cation ratio (RMgAl), possible counter ion(s) (An-) with 

the most probable one in bold, synthesis and ageing temperature (Ts, Ta), and, synthesis and 

ageing time (ts, ta) 

Synthesis RMgAl 
c(𝐌𝒕𝒐𝒕

𝒛+ ) 

(mmol/dm3) 
An- Ts (°C) ts (h) Ta (°C) ta (h) 

Uhyd 3:1 5 Cl-, CO3
2- 90 24 - - 

lss 3:1 10 / 100 
NO3

-, OH-, 

CO3
2- 

60 0.5 / 6 135 24 

 

Synthesised particles were analysed with XRD (Bruker D8 Discovery) that was 

equipped with a HI-STAR 2D detector and running with the GADDS software suite. 

Powder samples were gently pressed onto amorphous silica substrate with the aid of 

ethanol. A diffractogram was collected with 2θ range of 2.1–95.5° with CuKα (λ = 

1.54184 Å) radiation. Instrument resolution was 0.02° and the scanning speed was 

set to 0.1 °·s-1. Operation voltage in X-ray tube was 40 kV and the current 40 mA. 
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Calibration was performed with a Bruker AXS certified corund (Al2O3) standard. 

Phase identification was carried out with a PDF-2 database (2010) supplied by the 

International Centre for Diffraction Data (ICDD). 

The modification of pulp fibres via lss synthesis route was followed by a post-

synthetic ageing in order to facilitate LDH crystallisation [182,202]. Modified fibres 

were transferred into a 1000 ml Teflon® linen autoclave and treated hydrothermally 

for 24 h at 135 °C (Table III.1). After the hydrothermal ageing the pulp fibres were 

thoroughly washed repetitiously at 1-2% consistency for 10 times. 

Particle shape was examined with a Leo Gemini 1530 field emission scanning 

electron microscope (SEM) that was equipped with in-lens detector (LEO-Electron 

Microscopy Ltd., Oberkochen, Germany). Optimum working distance was 13 mm 

with 2.70 kV accelerating voltage. Samples were coated with carbon using Temcarb 

TB500 sputter coater (Emscope Laboratories, Ashford, UK) 

Fibre morphology was examined with an analytical field emission SEM, (JEOL 

JSM 6335-F NT, Japan) coupled with an energy dispersive x-ray analyser (EDS). The 

optimum working distance varied with the chosen magnification. Accelerating 

voltages were 15 kV for SEM and EDS and 10 kV for SEM images containing large 

amounts of LDH particles. 

The content of Mg2+ and Al3+ on pulp fibres after modification was examined with 

EDS and an inductively coupled plasma mass spectrometer (ICP-MS) (Perkin Elmer 

Sciex, Elan 6100 DRC Plus, Framingham, MA, USA). The energy spectrum was 

calibrated with cobalt. The EDS signal generated from a soft material such as fibres 

with a density around 1.5 g·cm-3 develops at depths of approximately 5 microns 

whereas the ICP-MS is a bulk analysis technique in which the sample is dissolved in 

a hot (200 °C) nitric acid and a small amount of hydrogen peroxide.  

Laboratory hand sheets (Figure 3.2) were prepared from the modified fibres 

according to ISO 5269/1. Hand sheets were mechanically tested according to the ISO 

5270, 1998 standard procedure. 

Contact angle measurements were performed on functionalised fibres with CAM 

200 (KSV Instruments Ltd, Finland). The applied sessile water droplet size on a 1 x 

5 cm paper strip surface was 1.6 ± 0.2 µl. A total of five spots were analysed for each 

contact angle data point. The droplet was dispensed by slowly lowering the needle in 

order to allow the water droplet to gain contact with the paper surface. If the sample 

surface was hydrophilic, the needle was drawn back as fast as possible, and the 

measurement commenced immediately after the droplet had detached from the 

needle. From hydrophobic surfaces the needle was drawn back slowly in order to 

avoid the detachment of the droplet from the paper surface. 

Images were collected in the beginning by 200 ms intervals and after a couple of 

seconds the frequency was reduced to 1/s until static conditions. Results were 

analysed on iterative bases with Young-Laplace function provided by Theta software 

(Biolin Scientific, Sweden). Standard deviations were approx. 10% on hydrophilic 

surfaces and 7% on hydrophobic surfaces. All experiments were performed on 

ambient conditions. 
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Figure 3.2 Examples of functionalised, i.e. hydrophobic, laboratory hand sheets. 

Contact angles were corrected by applying a Wenzel model that considers the true 

contact area of a sessile drop on a solid surface. Solving the equation dictates that the 

surface roughness is estimated. A confocal microscope was applied to evaluate 

surface roughness. The microscopes lateral resolution was 1.56 µm.  

3.2. Hybridisation and the properties of fibres 

Physical and chemical changes that take place on BKraft fibres after treatment by 

lss, hss, or urea hydrolysis synthesis routes were explored in more detail. Mg-Al LDH 

particles with hydroxide, carbonate or nitrate counter ions were precipitated on pulp 

fibres surface. The fibre stiffness, thermal degradation and the capacity of non-

diffusing charges are being addressed. BKraft fibres were not fractionated or refined. 

3.2.1. Hybridisation and mineralisation of BKraft fibres 

The fibre hybridisation was carried out in two stages. For the lss synthesis route, 

two automatic titrators were applied for dispensing the reagents into fibre sludge (5.0 

g in 500 ml). The pH was kept close to 9.5 by dispensing 1.0 M NaOH from one of 

the titrators, while the acidic (pH = 3.7) aqueous solution of Al(NO3)3 and Mg(NO3)2 

with c(M𝑡𝑜𝑡
𝑧+ ) equal to 0.50 M at molar ratio 1 : 2 was dispensed from the other. 

Dispensing rate was set to 0.33 mL·min-1 for both reagents. The fibre sludge was 

stirred vigorously during the synthesis.  

In the case of the hss synthesis and urea hydrolysis, the fibres were soaked in the 

metal nitrate salt solution for 90 min before LDH nucleation was commenced. The 

c(M𝑡𝑜𝑡
𝑧+ ) in the final reaction volume (500 mL) in all experiments was 25 mM. The 

amount of carbonate in a form of Na2CO3 in hss and as urea in urea hydrolysis 

synthesis routes was set to 3.3·c(M𝑡𝑜𝑡
𝑧+ ).  

To advance the crystallisation processes in the second stage, the precipitates were 

transferred into 1000 mL reaction vessels and treated under hydrothermal conditions 

with autogenous pressure built up at 120 ± 10 °C for 48 h. Urea was assumed to 

hydrolyse completely in the given conditions.  

Hybridised fibres were washed repetitiously at a maximum of 2% consistency and 

filtered through a filter paper (pore size 7–12 microns) until the filtrate showed less 

than 0.01 units change in absorbance at the dispersion edge of a non-sediment aliquot 

(240–250 nm) (Figure 3.3). The final pH of all filtrates was between 7.0 and 7.5. 

Finally, the pulp fibres were dried in an oven at 60 °C until constant weight. The 

synthesis of the neat LDH particles in absence of BKraft fibres was identical. 
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. 

Figure 3.3 The washing efficiency on anionic LDH and colloidal non-charged aluminium 

hydroxide. 

3.2.2. Setting up thermogravimetric analysis 

Thermogravimetric analysis from an organic material that has a low density is 

challenging from the instrumental point of view. Several factors that are rarely 

discussed in scientific articles must be considered, including density, applicable 

sample weight, temperature ramping rate and the gas flow rate in the furnace. The 

effects of sample density and weight on thermogravimetric signal are presented in 

Figure 3.4. For example, the density causes problems if it is too low. On the other 

hand, if the weight is too high the thermal pressure exerted on the arm that holds the 

reference cup grows too high and appears as if the sample would be cooling off. This 

cooling effect appears as a delta signal or as a loop in T/dT plot making the energy 

calculations difficult. Higher density enables slower burning but also takes off some 

of the thermal pressure at pseudo equilibrium and causes the first depolymerisation 

to advance less, thus with the deeper curvature at around 340–425 °C. The effect of 

density and weight appears to be insignificant to onset temperature (Tonset) and 

residual weight.  

Thermogravimetric analysis (TG) (TA Instruments SDT Q600, New Castle, DE. 

USA) of the LDH particles and hybridised fibres was carried out with a TA 

Instruments (SDT 2960, New Castle, DE, USA) apparatus. Thermographs were 

recorded by applying a linear 3 °C·min-1 sweep rate up to 600 °C under a constant air 

flow (100 ml·min-1). The amount of LDH in each experiment was close to 20 mg in 

a 60 µL alumina cup. Hybridised fibres (w = 10 mg) were pelletised to a cylindrical 

shape of 5.0 ± 0.1 mm in diameter and 0.85 ± 0.05 mm in thickness. Sample density 

was optimised, as previously discussed, prior to analysis and set to 600 ± 50 kg·m-3. 

The thermal history of the hybridised samples, was controlled with 10 min isothermal 

conditioning at 200 °C. Baselines were recorded with empty alumina cups. Since the 

results may differ based on the thermal history of the sample the baseline was 

recorded twice in a row using the same cup to affirm any changes imposed by the 

instrumentation itself. For energy calculations, the calibration was carried out with 

Pb and Zn standards. Calibration results are presented in table III.2. 
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Figure 3.4 The effects of sample density (A) and weight (B) to thermogravimetric analysis. 

The sample weight in A was approx. 20 mg and the density in B was around 600 mg/ml.  
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Table III.2 Experimental and literature values for the calibration standards are presented. 

The fusion enthalpies (ΔfusHm) and melting points (mp) were acquired from literature 

[203,204,205]. 

Standard M 

g·mol-1 

ΔfusHm 

mmol·dm-3 

mp (lit.) 

K 

n 

µmol 

Etot 

J 
ΔfusHm 

mmol·dm-3 

Pb 207.20 4765 ± 11 
600.13 

(600.61) 
243 1.158 0.2699 

Zn 65.39 7103 ± 31 
692.25 

(692.25) 
275 1.951 0.3054 

 

3.2.3. Setting up structural analysis for single fibres 

A micro-robotic platform was used in evaluating the fibre compliance after and 

before hybridisation. The platform and its application in pulp fibre research are 

explained elsewhere [206]. The platform is presented in figures 3.5 and 3.6. The 

equations required for compliance analysis are shown in equations 3.1 and 3.2. 

 

 
 

Figure 3.5 A digital photograph of the microrobotic test bench. 
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Figure 3.6 The microrobotic force sensor and gripper system setup. 

𝑌𝑚𝑎𝑥 =
𝐹∙𝑙3

192∙𝐸∙𝐼
                             (Eq 3.1.) 

 
1

𝑘
=

1

𝐸∙𝐼
                       (Eq 3.2.) 

 

In the equations, the deflection limit (Ymax) is related to the applied force (F) and 

to the length (l) of the fibre that has a Young's modulus of E. Fibre is assumed to be 

a rectangular beam that is fixed from both ends and having a moment of inertia of I. 

To verify the results significance between the samples, a t-test analysis was applied. 

The effect of alkaline in situ LDH synthesis was studied by dissolving the fibres 

into a 0.5 M cupriethylene diamine (CED) solution. The apparatus and the method 

followed the ISO/FDIS 5351:2009(E) standard. In short: the dissolved fibre solution 

is allowed to pass through a 0.8 ± 0.05 mm capillary tube at 25 °C. Calibration of the 

tube and calculating the capillary constant was done with the aid of 65% glycerol 

solution that has known viscosity values (10 mPa·s at 25 °C). The capillary constant 

was calculated from equation 3.3. The diluted 0.5 M CED solution was tested against 

water to assure its freshness. The correlation value was found to be 1.284, tolerance 

being between 1.27 and 1.29. Limiting viscosity numbers (ηs) for the samples were 

calculated from the equation 3.4 by using the empirically tabulated viscosity ratios 

(ηR) [207]. All measurements were repeated as many times as needed to achieve 2% 

relative standard deviation. 

 

ℎ =
𝑡𝑐

𝑡𝑣𝑡𝑠
                     (Eq. 3.3.) 

 

𝜂𝑠 =
𝜂𝑅

𝜚
                    (Eq. 3.4.) 

 

In the equations, the viscometer constant (h) is directly proportional to the efflux 

time of 65% glycerol passing through the tube used for calibration (tc) (d = 0.58 ± 
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0.02 mm), and inversely proportional to the efflux times of 65% glycerol (tv) and 0.5 

M CED (tS) in the tube to be calibrated (tv) (d = 0.8 ± 0.05 mm). 

Non-diffusive charge was evaluated by using methylene blue (MB) and metanil 

yellow (MY) adsorption isotherms at 25 °C. The procedure for methylene blue 

adsorption on pulp fibres is explained elsewhere [64]. A short description is given 

here. A small amount of fibres (102 ± 2 mg) is disintegrated in 3 mL of deionised 

water for 30 min. Different amounts of buffered (pH = 8.2) MB solution (c = 400 

µM) are then allowed to absorb on fibres for 15 min under gentle shaking. The 

suspensions are filtered through glass fibre filters and the filtrate is diluted to 20-fold 

in a volumetric flask prior to the UV-Vis analysis that is recorded at 664 nm 

wavelength. For MY adsorption 30 ± 2 mg of pulp was weighed while the initial 

concentration of MY was 49 ± 1 µM and the analysis wavelength 436 nm. 

Adsorption isotherms were fitted with the Langmuir model defined in equation 

3.5. The surface coverage of adsorbate (θ) on adsorbent at equilibrium (ieq) has 

equilibrium constant (K). The fraction of adsorbed substances at equilibrium (aeq) is 

proportional to the surface coverage and maximum adsorption (n) wherefore the 

Langmuir model may be rewritten according to equation 3.6. 

 

𝜃 =
𝐾∙[𝑖]𝑒𝑞

1+𝐾∙[𝑖]𝑒𝑞
                      (Eq. 3.5.) 

 

𝜃 =
𝑎𝑒𝑞

𝑛
⇔

[𝑖]𝑒𝑞

𝑎𝑒𝑞
=

1

𝑛∙𝐾
+

[𝑖]𝑒𝑞

𝑛
                    (Eq. 3.6.) 

 

3.3. Functionalisation and its effect on a thermoplastic 

composite 

Taking advantage of the LDH functionalisation concept with a common surfactant 

to lower the fibres’ surface energy, the BTMP and BKraft fibres' compatibility in 

injection moulded atactic polypropylene (aPP) matrix was explored. Shear 

dissipation in the composite and water absorption was studied to determine the 

compatibility and industrial applicability. In this work, both pulps were fractionated 

and the BKraft fibres were also refined prior to composite moulding. 

3.3.1. Composite preparation 

Prior to functionalisation, the fibres were fractioned with the Bauer-McNett 

fractionator (Lorentzen & Wettres, Kista, Sweden). Fibres that were retained by a 

wire with a nominal rectangular mesh opening of 1.19 mm were used in further 

process steps. BKraft fibres were also refined to Schoppler-Riegler (SR) value of 30. 

The fibre functionalisation process followed the one described as lss synthesis 

route in article #1 (Figure 3.7). The c(M𝑡𝑜𝑡
𝑧+ ) was set to 100 mM. The surfactant was 

applied in 6% (w/w) on BKraft and BTMP fibres. In the washing sequence, the fibres 

were repetitiously dispersed into distilled water at 1% consistency and filtrated in a 

Büchner funnel under reduced pressure. Functionalised and modified fibres were 

dried in an oven at 60 °C for 24 hours and dry disintegrated.  
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Figure 3.7 Schematic illustration for the modification and functionalisation sequence. 

Composites were prepared with a DSM Xplore (DSM Xplore, Netherlands) micro 

injection moulding machine (5.5 ml sample chamber). The speed of conical twin 

screws was set to 200 rpm and the mixing chamber temperature was set to 190 °C. 

Matrix polymer was fed into the machine prior to the fibres that were conditioned on 

site in an oven at 60 °C for one hour. Injection moulded samples matched the ISO 

527-2 1BA standard with intended 20% (w/w) fibre content (Figure 3.8). Mould 

temperature was kept at 40 °C, while the injection and holding pressures were 4 bars. 

Processing time was set to 1.0 seconds. Prior to any analysis, the samples were 

conditioned in 52 ± 2% relative humidity at 23 ± 1 °C for 60 days.  

 

 
 

Figure 3.8 The injection moulded ISO 527-2 1BA samples from BKraft and BTMP pulp fibres. 

Atactic PP (F), aPP + 20% fibres (E), aPP + 20% modified (10 mM) fibres (D), aPP + 20% 

modified (100 mM) fibres (C), aPP + 20% functionalised (100 mM + 3% SDS) fibres (B), 

aPP + 20% functionalised (100 mM + 6% SDS) fibres (A). 
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3.3.2. The concept for fibre-matrix interactions  

Uniaxial tensile stress behaviour was studied with Instron 8872 machine (Instron, 

England) in an ambient environment. Viscoelastic behaviour depends on the strain 

rate, wherefore two was applied (5.0 and 50 mm·min-1). Young's and resilience 

moduli, ultimate strength and yield and elongation at break were recorded (Figure 

3.9) 

 

 

Figure 3.9 Extracting the parameters from the stress (σ) as a function of strain (ε). 

 

Water adsorption was followed up to a reasonable level of quasi static kinetics 

(1600 h) and evaluated with generalised Langmuir's adsorption isotherm (Eq 3.7.) 

 

𝑆 =  𝑆𝑚𝑎𝑥 [
(𝑏𝑥)𝑛

1+(𝑏𝑥)𝑛]
𝑚/𝑛

                        (Eq. 3.7.) 

 

In the equation, S is the adsorbed amount, Smax is the maximum adsorption, b is 

the binding energy term and x is the function against which the adsorption is 

measured. In this work the change in weight was recorded with respect to time. 

Equation reduces to Langmuir's adsorption isotherm when m = n = 1. The immersion 

depth maximum was set to 10 cm. The hydrostatic pressure and solvent temperature 

were kept constant throughout the experimentation. Samples were conditioned in an 

oven at 105 °C for 12 ± 1 s prior to weighing. Water desorption kinetics were studied 

under dynamic air flow at 60 °C. 

  



Experimental 

42 
 

3.4. The effect of hybridisation on the combustion of 

foamed light weight structures  

The inherent property of LDH being flame retardant was exploited in the 

investigation of their applicability in foam formed panels. The foamed fibrous 

structures were produced from BTMP fibres that were modified with carbonate 

counter ion intercalated Mg-Al LDH particles. At the same time a semi-pilot scale 

particle synthesis route via urea hydrolysis was studied. The pulp fibres were used 

without additional pre-treatments beside freezing and thawing, as already mentioned. 

3.4.1. Fibre hybridisation 

A batch of 150 g of BTMP was soaked for 60 min in a 2000 ml solution of distilled 

water, urea (1.249 M) and metal nitrate salt with c(M𝑡𝑜𝑡
𝑧+ ) = 0.375 M and the Mg2+ to 

Al3+ ratio 2:1. The sludge was transferred into a pre-heated (93 °C) 3000 ml Teflon 

linen reactor that was equipped with a wing rotor sufficient to mix 7.5% fibre sludge. 

LDH synthesis was carried out at 90 °C. A mixing sequence of 20 rpm for 10 seconds 

in every 10 min was applied until the end of reaction (180 min). Sludge was then 

divided into two equal batches and treated hydrothermally in 1000 ml reaction vessels 

at 130 ± 10 °C for 12 hours. Pulp washing was carried out repetitiously in 1.5% 

consistency. A second step for in situ synthesis of nano-range LDH particles via the 

lss route was applied as before.  

3.4.2. Foam formation 

An in-house built sheet former was used in preparation of foamed structures with 

average grammage of 100 g·m-2. Sodium dodecyl sulphate (SDS) was used as a 

foaming agent. The aqueous fibre sludge was vigorously mixed with prefabricated 

foam. The amount of SDS was optimised to 0.15-0.2 g·L-1 leading to 60–70% air 

content in the foam. Stabilised foam was decanted into the sheet mould. The system 

is designed to allow fibres to be oriented with the suspension flow. The settling of 

foam is followed by vacuum suction. The detached sheet is dried on a separate suction 

table that is equipped with a 5 mm wide slit enabling for air to pass through the foam-

laid sheet.  

3.4.3. Flammability test bench 

Thermal properties were evaluated with a TG by applying a linear heating rate of 

5 °C·min-1 between 25–525 °C. X-ray photoelectron spectroscopy (XPS) (Physical 

Electronics, PHI 5400 and Quantum 2000 ESCA, Eden Prairie, MN, USA) analysis 

was carried out for the hybridised fibres before and after a controlled oxidative 

combustion process at 350 °C (Phi 5400) and for the pristine samples including cone 

calorimeter combusted modified fibres (Quantum 2000). The samples were cut to 

approx. 0.8 x 0.5 mm pieces in such a way that a clean surface was revealed from the 

middle of the pellet. The clean surface was subjected to ambient air for no more than 

5 min before they were loaded into the ultra-high vacuum (UHV) chamber (operated 

at 5·10-9 Torr). Analysis was performed with monochromatic Al Kα X-ray source 

(Ephoton = 1486.6 eV) together with an electron flood gun for photoelectric effect 

neutralisation. The anode was operated at 14.5 kV with 300 W power (PHI 5400) and 
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49.0 W (Quantum 2000). The take of angle for both instruments was 45°. The image 

area was set to 1.5 mm2 (PHI 5400) and 0.2 mm2 (Quantum 2000). The survey-mode 

photoelectron spectra were acquired with 89.54 eV (PHI 5400) and 117.40 eV 

(Quantum 2000) pass energy. Applied energy steps were 0.5 eV. Reference 

photoelectron was taken from a 100% cellulose filter paper before and after the 

sample measurements in order to control the UHV environment and sample 

contamination.  

Visual inspection for the flame spread in the foamed structure was carried out with 

the aid of a high-speed video recorder (HsVid) (Citius C 100 centurio, Citius Imaging 

Ltd, Finland). Small samples (approx. 8 mm in size) were detached from the foamed 

sample and burned on the top of a resistive wire (Alucrom I, Cr 20%, Al 5%, R = 

42.200 Ω·m-1). A power supply of 30 W was used for heating the wire that ultimately 

burned the fibres. Aluminium mesh was put on top of the sample to maintain the 

focus for the HsVid.  

The sample flammability tests according to ISO 5660 and ASTEM E 1354 

standards were carried out with a cone calorimeter (CC) (Fire Testing Technology, 

West Sussex, UK). The installation included a 3-term (PID) temperature controller 

and three K-type thermocouples. Instrument accuracy was 0.01 g. A 10 kV spark 

ignition system was applied in all experiments. Heat flux was set to 25 kW·m-2. 

Nominal duct flow rate was set to 24 L·min-1. The foamed panels were cut to 94 ± 2 

mm squares. Sample thickness was 7.5 ± 0.5 mm. The calculated flat surface area of 

all samples was 89 ± 3 cm2 and the density 35 ± 3 kg·m-3. An aluminium tray was 

used as a sample support and the sample was placed horizontally 60 mm below the 

heating element. The heater element and the sample were separated by a split shutter 

mechanism. Ambient conditions during all of the experiments were: T = 25 °C, RH 

= 55% and p = 102.6 kPa. Five replicate tests were carried out. 
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4. Results 

4.1. In situ synthesis and functionalisation of BTMP fibres 

In section 4.1, the in situ synthesis of LDH particles in the presence of pulp fibres 

and the functionalisation of the LDH containing fibres with sodium dodecyl sulphate 

are explained.  

4.1.1. Composition of the LDH particles and fibres morphology 

According to the energy dispersive spectrum (EDS), the relative molar 

composition of Mg2+ to Al3+ (RMg-Al) was 1.6 after the Uhyd synthesis route (Table 

IV.1). Titration of NaOH gave 2.8-3.0 instead. The composition of LDH after the lss 

synthesis route as indicated by EDS matched relatively well with the ICP-MS only if 

LDH precursors were used in large excess (100 mM). Since the sample weight used 

in ICP-MS instrumentation is extremely low, the statistical reasons are expected to 

explain the observed differences in between hybridised and functionalised pulp 

fibres. Also, EDS gives only semi-quantitative results especially at low 

concentrations. 

 

Table IV.1 The atomic composition of Mg2+ and Al3+ in the modified BTMP pulp fibres by 

EDS and the weight composition according to ICP-MS instrumentation are presented. The 

calculated molar fraction of aluminium ϕ(Al3+) and the relative molar composition of Mg2+ 

and Al3+ (RMg-Al) are also listed taking into account the amount of the metals in reference pulp. 

Sample Mg2+ % Al3+ % ϕ(Al3+) % RMg-Al 

EDS (atomic %)     

Uhyd 5.7 ± 0.1 3.7 ± 0.1 39 ± 1 1.6 

lss   10 mM 0.9 ± 0.1 0.3 ± 0.1 25 ± 1 3.0 

lss 100 mM 3.2 ± 0.1 1.1 ± 0.1 26 ± 1 2.8 

ICP-MS (weight %)     

Reference pulp  0.05 ± 0.01  0.01 ± 0.01   

lss   10 mM 0.96 ± 0.03 0.26 ± 0.01 19.8 ± 0.1 4.1 

lss 100 mM 3.28 ± 0.06 1.18 ± 0.02 24.6 ± 0.1 3.1 

lss 100 mM + 3% SDS 2.79 ± 0.06 1.07 ± 0.02 25.8 ± 0.1 2.9 

 

The nano-sized LDH particles were densely packed on the fibres' surface and the 

topology of the functionalised fibres differed greatly from the reference (Figure 4.1). 

A clear distinction between individual LDH particles was difficult to make. In the 

freeze-dried pulp fibres, the particles appear to be coarse, growing as if facing the 

brucite layers in right angles with respect to the fibre's surface. It has been proposed 

that the orientation of LDH particles may be influenced by the substrate and 

especially by the hydroxyl groups that it contains [208]. The surfactant itself did not 

induce any additional topological changes in the applied range (6% w/w).  
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Figure 4.1 BTMP fibre’s morphology upon modification via the lss route using chloride salts. 

The reference fibre (A) show a clearly visible S2 layer. The spruce fibre's surface topology 

changes greatly at submicron level after modification with high number of LDH (100 mM) 

(B). Arrows are pointing towards the fibre axis. 

To confirm the presence of Mg and Al elements on the fibre's waxy surface, an 

energy dispersive analysis was carried out and an example of the results is shown in 

figure 4.2. As an example, three separate analytic areas from a functionalised fibre 

surface studied at magnification of 5000 are shown with the corresponding SEM 

image. Visually the bleached TMP fibre surface resembled one that had not been 

extracted [209]. A small amount of sulphur that belonged to SDS was also found. 

4.1.2. Formation of fibre web and the inter-fibre bond strength 

It is well known that fibres fibrillate externally and internally upon mechanical 

agitation that carries sufficient shear forces. External fibrillation provides greater 

number for inter-fibre bonds while the internal fibrillation provides fibres with 

greater flexibility. Both of these will affect positively the fibre web tensile strength.  

Samples subjected to the tensile strength tests were the bleached reference TMP, 

modified TMP fibres from the lss and Uhyd synthesis routes and the fibres that were 

treated as if in reaction solution but without reactive agents, i.e. the metal precursors 

(Table IV.2). These are found in the table under Ref. 
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Figure 4.2 The EDS analysis from a functionalised fibre surface and the corresponding SEM 

image. SDS was applied in 6% w/w load. Previously unpublished. 

Table IV.2 The tensile strength (σ), stretch (ε), stiffness (E) and the fibre fraction contents of 

a laboratory hand sheet. 

Sample 
σ 

Nm·g-1 

ε 

% 

E 

kNm·g-1 

fraction (mm) and content % 

≤0.2 0.2-0.6 0.6-3.0 >3.0 

Ref. 35±1 2.5±0.2 3.4±0.1 2.3 17.3 68.8 12.3 

H2O 46±2 2.0±0.2 4.8±0.2 - - - - 

urea 45±3 2.1±0.1 4.8±0.2 - - - - 

NaOH 50±1 2.5±0.1 5.1±0.1 3.7 20.2 62.6 13.5 

Uhyd 5 mM 32±2 1.8±0.2 3.9±0.2 - - - - 

lss   10 mM 42±3 1.8±0.3 5.6±0.2 4.8 27.2 62.6 6.5 

lss 100 mM 8±1 0.7±0.1 1.7±0.2 3.6 21.7 66.5 8.1 

 



Results 

47 
 

Fibres' dimensions were not expected to significantly change during any of the 

treatments. However, where particle formation was present the increase of shorter 

fibres’ fraction was clear. The particles themselves did not show up in Kajaani 

Fiberlab analyses, wherefore the fines and short fibres appeared to be generated from 

the longer fibre fraction. Increasing the particle concentration appears to diminish 

this effect, but we believe that LDH was accumulating on fine structures that carry 

higher surface area and greater non-diffusive charge to weight ratio. Thus, the number 

of longer fibres probably remained the same. It is known that the number of fibrillary 

and flake-like fines in a paper sheet affects beneficially in providing filling material 

into the voids that are created during a fibre web formation [210]. Extensive amounts, 

however, counter this phenomenon.  

The results unequivocally suggest a lower hydrogen bonding ability for fibres with 

LDH particles on the surface. Although the relative content of shorter fibres and fines 

increased with the expense of the longer fibre fraction, these changes cannot alone 

explain the drastic changes in fibre web stiffness and tensile strength especially as 

the physical dimensions are not that much different between the two lss samples. 

It is also important to note that urea did not change the fibre web characteristics 

in comparison to treatment in water. Therefore, contribution of urea was ruled out 

and the isocyanate intermediate in urea hydrolysis was proved not to influence fibre 

surface in the given experimental conditions, as the kinetics of ammonia and 

carbonate formation was clearly not the rate determining step (reactions 4.1 and 4.2).   

 

CO(NH2)2  → NH4CNO                         (R. 4.1) 

NH4CNO +  2H2O → (NH4)2CO3                        (R. 4.2) 

4.1.3. Functionalisation of the hybrid fibres 

Applying sodium dodecyl sulphate on modified fibres altered the surface energy, 

as observed by a contact angle of a sessile water droplet on the surface of a laboratory 

prepared hand sheet. The BTMP fibres were not refined prior to hand sheet formation. 

In order to evaluate true contact angles, and therefore the hydrophobic character, the 

sample surface roughness was studied with a confocal microscope that is able to 

measure sample height variations in micron scale. Contact angle measurement is 

extremely surface sensitive and a paper represents one of the most difficult substrates 

to be studied due to the natural tendency of a fibre to absorb water that results in 

substrate swelling, and, due to the difficulty in addressing the chemical components 

on the fibres' surface precisely under the sessile droplet. In addition, micro roughness, 

grooves, asperities and geometry all influence the result outcome and are subject to 

sample preparation techniques and experimentation environment.  

Reference fibres absorbed the water always in less than 5 s (figure 4.3). The hand 

sheets showed sidedness regardless of the used LDH amount. Contact angle (θ) at 

higher LDH content improved as SDS content increased. SDS had, therefore, adopted 

the inverted micelle configuration on LDH surface, aliphatic tail pointing out of the 

solid interphase. The hydrophobic character (θ > 90°) was achieved already at 2% 

loading level, while the maximum attainable θ ~ 135° stabilised with 6–9% of SDS. 

Reorientation of the surfactant molecule on the LDH particle surface would influence 

the water penetration that was not observed in the given timeframe. Therefore, the 
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electrostatic forces governed the particle-surfactant interactions and ultimately the 

fibre's hydrophobic character. The effects of surface roughness as estimated with 

Wenzel's equation (equations 4.1 and 4.2) are presented in figure 4.4. 

 

 

 Figure 4.3 The apparent and roughness corrected contact angle of a sessile water droplet on 

a reference BTMP paper surface (A). The wire side (⧮) and the upper side (⧯) with 

corresponding Young's contact angles (○ and ●). An example for apparent contact angles of 

laboratory handsheet prepared form functionalised BTMP fibres. LDH were synthesised from 

a 10 mM solution and the hybrid fibres were functionalised with 6% of SDS. Previously 

unpublished. 

 

Figure 4.4. The relationship of the apparent and calculated Young's contact angle (A) and 

the kinetics (B) plotted against the extent of functionalisation. Legend: () upper side, () 

wire side and the calculated Young’s contact angles (■ and ) respectively. 

 

𝑐𝑜𝑠𝜃𝑎𝑝𝑝 = 𝑟𝑐𝑜𝑠𝜃𝑌                      (Eq. 4.1) 

𝑟 = 1 +
𝑆𝑑𝑟

100
                        (Eq. 4.2) 

 

The Wenzel's model considers the fraction of the true contact area to the projected 

area (r). This relationship can be estimated from the surface roughness value (Sdr) 
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determined by a confocal microscope. The greater the Sdr the more apparent contact 

angle (θapp) deviates from the calculated Young's contact angle defined by the 

substrate surface energy. 

4.2. Hybridisation and the properties of fibres 

The chemical and physical changes that occur upon modification were examined. 

The BKraft pulp fibres were modified by in situ LDH synthesis either via urea 

hydrolysis, low super saturation or high super saturation route.  

4.2.1. Crystalline structure of the neat LDH particles 

The in situ synthesised LDH particles on fibres' surface were assumed to resemble 

those that were synthesised in the absence of pulp fibres. The diffractograms of neat 

particles are presented in figure 4.5. 

 

 

Figure 4.5 The XRD diffractograms for neat LDH particles from lss (A), hss (B), Uhyd (C) 

synthesis routes and commercial hydrotalcite (D). Asymmetric peak broadening suggesting 

octahedral 3R2 arrangement are indicated with arrows.  

The FWHM values of all peaks increased in order Uhyd < hss < HT < lss. 

Therefore, the size of the LDH particles on fibres' surface was expected to follow the 

reverse order. The observed asymmetry in lss and hss samples may arise from 

interstratification, inclusion of hydroxyls and possibly nitrate due to statistical 

reasons but also if the crystal adopts octahedral arrangement in the brucite layers 

[139].  
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4.2.2. Coating and mineralisation of pulp fibres 

SEM analysis confirmed the XRD results in that the hydrolytically synthesised 

LDH's size followed the FWHM values (Figure 4.6). Most of the particles appeared 

to reside in flat orientation on fibre surface and the hexagonal shape was especially 

clear from the clay sized LDH. The concentration of metal nitrate solution measured 

from the final suspension volume was 25 mM. The amount corresponds to 

approximately 2.0 g of ideally formed LDH crystals with nitrate anion excluding any 

crystalline water. The amount of pulp fibres in the suspension was 5.0 g. 

TEM survey revealed mineralisation of Kraft pulp fibres after LDH synthesis via 

Uhyd route (Figure 4.7). Threshold analysis with ImageJ 1.48C program revealed that 

approx. 3% from the visible fibre wall area contained mineral species. The possibility 

for particles to be spread over the epoxy moulded specimen during the ultra-thin (200 

nm) sectioning with a diamond blade was ruled out as there were no particles to be 

seen on the epoxy matrix. However, a small number of particles had been spread over 

the matrix in hss and lss samples. 

The thickness of the particle layer on the fibre surface in the hss sample varied in 

between 200 and 500 nm while in the lss sample it was close to 100–200 nm. Particle 

size according to TEM was considerably smaller in the lss sample than in the hss and 

clearly in the nano range. 

The reason for mineralisation in the case of Uhyd synthesis route is attributed to 

the presence of hexenuronic and 4-O-glucuronic acids in the fibre wall, fibres 

porosity and swelling characteristics in alkaline media. It is known that the fibre 

swelling occurs at pH 8–9 [211] while LDH particles' two-stage nucleation with Al3+ 

begins at pH 8.8. The slow pH change in Uhyd route allows the fibres to swell with 

the aid of increased temperature prior to particle nucleation. The non-diffusive 

charges that are fully deprotonated at the precipitation pH facilitates the ion exchange 

through the semipermeable fibre wall. In addition, urea that is used in excess may 

exchange some of the water molecules in the fibre wall, and, as hydrolysis increases, 

the pH internally in the fibre wall promotes hydroxyl formation of Al3+ and Mg2+ ions 

and presumably LDH. At this point, however, it is impossible to rule out that the 

particles inside the fibre wall are other than LDH, for example, metal hydroxyls. 

4.2.3. Thermal behaviour of modified fibres 

The onset temperature (Tonset) for the oxidative combustion was defined according 

to the level of noise and set to -0.025 K-1. At that point approx. 0.3–0.5% of the 

sample had been degraded. The qualitative margin of error was accepted to stay 

within 3 K. the density of a sample pellet in the given range (250–700 mg·cm-3) did 

not affect the onset temperature. Thermal conditioning at 200 °C provided a standard 

point that excluded, in major parts, the water of crystallisation from LDH (approx. 

14–15%) and hydration from the pulp fibres. The crystalline transformation processes 

of LDH at that temperature are subtle, while the water of crystallisation is effectively 

removed. Cellulosic material is expected to remain intact, provided that the isotherm 

is carried out in a relatively short amount of time. 
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Figure 4.6 Modified BKraft pulp fibres (A1, B1, C1) and combusted ones respectively (A2, 

B2, C2). The lss (A) and hss (B) routes produced irregularly shaped nanoparticles while the 

Uhyd (C) synthesis route resulted in clay sized hexagonal particles on fibre surface. 

Magnifications: 1000x in A1, A2, B2, C1, C2 and 5000x in B1. Scale bars in the insets: 200 

nm in A1 and B1, and, 2.0 µm in A2, B2, C1 and C2. 
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Figure 4.7 TEM images of BKraft fibres after Uhyd (A), hss (B) and lss (C) synthesis route. 

The lumen (L) and particles (arrows) are marked.  

The reference fibres began to depolymerise at 224 ± 3 °C, while Tonset for the 

modified ones was between 234 and 239 °C. The first depolymerisation reactions 
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peaked at around 320 °C in all samples including reference fibres. The LDH particles 

appeared to increase the rate of depolymerisation at first. However, after treating the 

fibres with alkaline aqueous solution with pH corresponding to the LDH synthesis, 

the effect was similar with the exception that the second exothermic heat evolved 

around 460 °C that was 20 °C higher than the reference and 10 °C higher than the 

fibres modified by the Uhyd process. It is known that CO2 from combustion of 

cellulose evolves in two phases at approx. 320 °C and 475 °C [212]. The literature 

values fit well within the experimental results (figure 4.8). Therefore, it is probable 

that during the LDH synthesis the alkaline conditions helped to remove residual 

hemicelluloses, mainly xylan, from the fibres, thus, pushing the initial 

depolymerisation to higher temperatures.  

The alkali extracted sample appeared to degrade more (82%) than the rest of the 

samples (78–80%) during the first exothermic reaction. However, it is difficult to 

address the significance of the apparent difference in oxidation due to small density 

variations between the sample batches. For example, the pellet density of the hss 

samples gave an error of 2% in relative weight at the pseudo-equilibrium conditions 

and after complete combustion.  

 

 

Fig. 4.8 The thermogram (A) and energy release profile (B) for modified BKraft fibres. The 

effect of density variation in the hss sample (C) and the organic material content corrected 

specific energy (D) are shown as well. Previously unpublished. 

In order to evaluate the effect of LDH in the samples TG response, the initial LDH 

content as well as the relative amounts after both exothermic reactions must be 

established. Knowing the relative amount lost in the crystalline transformation and 

dehydration processes (41–44%) during the thermogravimetric analysis of the neat 
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LDH particles in the given temperature range, and, the amount of ash from pulp (0.8% 

± 0.2%), the initial weight of LDH in each sample can be calculated. The same applies 

to the pseudo-equilibrium conditions at approx. 370 °C. Results are shown in table 

IV.3. In the calculations, we are assuming that the energy and weight are linearly 

related within the given temperature range and system configuration. Furthermore, 

care should be taken in the interpretation of the results due to factors explained in the 

experimental chapter. 

It appears that the small amount of LDH in comparison to the organic substance 

cannot contribute to damping of the first or the second exothermic transformations of 

cellulosic fibres. Thus, the LDH is not capable to induce or limit the cellulose 

oxidation within the given test environment.  

Table IV.3 The calculated weight fractions (ψ) of organic material (org) and LDH particles 

in modified BKraft fibres at 25 °C, 200 °C and 370 °C. Residual weight (w) and the total 

weight change in combustion of LDH (ΔwLDH) are also presented. In addition, material 

specific unit energies (Ep) for both exothermic signals, the LDH corrected exothermic energy 

(E0
p1) and limiting viscosity numbers (η) are listed as well. 

Sample 𝜳𝒐𝒓𝒈
𝟐𝟓

 𝜳𝑳𝑫𝑯
𝟐𝟓  𝜳𝑳𝑫𝑯

𝟐𝟎𝟎  𝜳𝑳𝑫𝑯
𝟑𝟕𝟎  w 𝜟𝒘𝑳𝑫𝑯 𝑬𝒑𝟏 𝑬𝒑𝟏

𝟎  𝑬𝒑𝟐 𝑬𝒑𝟐
𝟎  η 

 % kJ·g-1 mL·g-1 

Ref. 100 0 0 0 ~0 - 3.9 3.9 11.7 11.7 923 

lss 95.0 5.0 4.2 15.5 3.6 43.8 2.6 3.1 7.3 8.6 813 

hss 94.2 5.8 5.0 18.2 4.1 43.4 3.0 3.7 7.6 9.3 868 

Uhyd 90.3 9.7 8.3 33.0 6.5 40.8 1.7 2.5 4.3 6.4 754 

 

It is evident from the results that the limiting viscosity number (η) correlates 

linearly, within the experimental error, with the first and the second specific unit 

energies (Ep1
0 and Ep2

0).  

Combustion kinetics was evaluated by treating the samples at 340 °C for pre-set 

time intervals. The results are presented in Figure 4.9. Signal evolution proceeded 

gradually in all LDH containing samples, while reference pulp fibres charred 

relatively slowly. However, after 240 s the combustion kinetics increased markedly. 

All LDH modified samples contained organic material even after 420 s of 

combustion, while reference pulp was practically incinerated. Deconvoluted spectra 

revealed the differences in combustion kinetics in each LDH containing samples. The 

signal at around 1585–1620 cm-1 arises from diones, presumably from 1,3-diketones, 

while the absorption at around 1775–1720 cm-1 is assigned as carboxylic acids, 

aldehydes, and 1,2-diketones [213,214]. In all LDH containing samples combustion 

produced partially oxidised cellulose in relatively high amounts. Pulp fibres without 

LDH were readily oxidised to carboxylic acids. We assume that the lower energy 

needed for aldehyde and dione formation drives the combustion in LDH containing 

samples due to loss of water and hydroxyls from LDH crystals. The carbonate in 

LDH particles contributed to the deconvoluted spectra of the lss and Uhyd samples 

(peak numbered as 4 and 5 respectively). Similar effect with the hss sample was 

observed after 300 s. Small contribution from water was also needed for the fitted 

curve in Uhyd to match the recorded absorption signals. The interference curve in lss 

and Uhyd deviates from the original below 1525 cm-1 due to additional signals 
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originating from complex absorption of cellulose and carbonate in LDH gallery. In 

lss the contribution from nitrates should, however, be born in mind. We cannot 

distinguish the fractional basis of CO3
2- and NO3

- . 

 

 

Figure 4.9 ATR-FTIR spectra from the thermal decomposition kinetics of lss (A), hss (B), 

Uhyd (C) and fully bleached Kraft pulp (D) at 340 °C. Deconvoluted FTIR spectra after 240 

s in range of 1500–1850 cm-1 are presented in figures (A1–D1) and signal evolution within 

420 s in figures (A2–D2). 
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4.3. Functionalisation and its effect on a thermoplastic 

composite 

In our third article, we present the experiments related to composite preparation. 

The atactic polypropylene was chosen to serve as a matrix polymer and the 

functionalised BKraft and BTMP fibres were used to fill the matrix. Prepared 

composites were tested after conditioning at 52 ± 2% relative humidity at 23 ± 1 °C. 

The composites were subjected to uniaxial tension and immersed into water to 

evaluate the stress transfer behaviour and water absorption properties. 

4.3.1. The effects of compounding on fibres' dimensions 

The fibre length distribution was evaluated on a rough scale distinguishing the 

fibres' average length and the length averaged content of fines. Fines were assigned, 

in this case, to be smaller than 100 µm particulates (Table IV.4). One important 

characteristics of a filler element in a composite material is its aspect ratio (L) that 

determines the shear distribution within the material under stress. Reinforcing 

polymer matrix with fibres requires the L to be large enough so that the interfacial 

coupling constant remains in accessible levels. Typically, the average L in coniferous 

pine and spruce is less than 100 due to statistical reasons. Fractionation that separates 

fibres based on their dimensions is often time, energy and water intensive process, 

consuming unnecessary resources and, therefore, not preferred in industrial 

manufacturing. If fractionation is used, however, it is applied only to exclude the 

smallest particulates and fibrils from the intact fibres. In our case, we were looking 

for the changes in fibres' dimensions during the processing wherefore fractionation 

provided the frames for the interpretation of the results. 

It appears that the fines content in BTMP is reduced in hybridisation, but increases 

again after functionalisation (column B in Table IV.4). The statistical increase in the 

fibre length is understandable in that the fines content is small. In the case of BKraft 

fibres the fines content increases in each step. Average fibre thickness (dav) is reduced 

significantly in the BTMP sample but the BKraft fibres do not change markedly in 

this respect. Thus, the average L of BTMP increased but for BKraft it decreased.  

Fibres suffered significant reduction in average length during the composite 

moulding (column C in Table IV.4). Shear dissipation from matrix to fibres was 

expected due to harsh conditions in micro injection moulding machine, but the 

surfactant was also expected to reduce this phenomenon. Functionalisation appeared 

to be able to protect the BKraft fibres to some extent while the BTMP fibres did not 

benefit in that regard. Since the lss synthesis route was chosen to precipitate LDH on 

fibre surface we must assume the fibre stiffness was not affected. However, small 

particles may have nucleated into BKraft fibres' cell wall.  

The dav was expected to reduce in all cases due to lumen collapse that is known to 

occur under an extensive load across the fibre axis. The functionalised BTMP 

deviated from anticipated results possibly due to the presence of matrix polymers that 

remained on the fibre surface after extraction. Therefore, dav are to be considered 

indicative affecting also to values in L. The fibre loading levels did not reach the 

aimed 20% w/w, but 12–17% instead.  
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The weight fraction of fibres found through extraction was evaluated by 

immersion technique after equilibrating the injection moulded specimen at 40 °C for 

10 days. The average sample volume was calculated from 10 to 12 samples that were 

immersed in water at 23 ± 1 °C. The density of injection moulded matrix polymer 

was found to be 0.91 ± 0.01 g·cm-3, while for fibre containing samples it was 1.01 ± 

0.01 g·cm-3 irrespective of the applied modification. The density of cellulose and 

lignin are close to 1.5 and 1.4 g·cm-3 respectively [215].  Sometimes the carbohydrate 

density used in calculations is 1.58 g·cm-3 [32]. Bleached Kraft fibres contain only 

residual lignin fragments. After the lumen collapses, the density should equal the 

fibre's cell wall structure. Therefore, the density of the injection moulded specimen 

that contain BKraft fibres should be between 1.50 and 1.58 g·cm-3. Bleached 

thermomechanical pulp from spruce contain 28% of lignin on average that brings the 

density close to 1.47–1.53 g·cm-3. By using the volume of a standard tensile test 

specimen (1.0 g·cm-3 for ISO 527-2 1BA) the w/w fibre loading in the BKraft samples 

was calculated to be 0.15–0.17. For the BTMP samples it was 0.16–0.18. Calculations 

fits relatively well to the experimental results. 

 

Table IV.4 The length weighted averages of fibre length (lav), width (dav), fines content (fines) 

and aspect ratio (L) after fractionation (A), functionalisation (B) and compounding (C).  

Sample Parameter A 
B C 

0% 6% Ref. 0% 6% 

        

BKraft lav (mm) 
2.28 ± 
0.03 

2.06 ± 
0.06 

1.95 ± 
0.04 

0.37 ± 
0.01 

0.19 ± 
0.01 

0.43 ± 
0.02 

 dav (µm) 30.8 ± 0.2 30.9 ± 0.6 31.0 ± 0.4 22.6 ± 0.3 23.0 ± 0.5 22.9 ± 0.3 

 fines (%) 0.4 1.0 1.1 76.3 93.8 69.6 
 L 74 67 63 16 8 19 

 Ψ (%)    15 12 14 

BTMP lav (mm) 
1.74 ± 
0.03 

2.06 ± 
0.01 

1.69 ± 
0.02 

0.25 ± 
0.01 

0.22 ± 
0.01 

0.27 ± 
0.01 

 dav (µm) 36.8 ± 0.3 32.9 ± 0.2 29.4 ± 0.3 27.7 ± 0.4 24.8 ± 0.3 32.5 ± 0.2 
 fines (%) 4.0 0.3 1.9 91.0 93.1 87.6 

 L 47 63 57 9 9 8 

 Ψ (%)    17 17 12 

4.3.2. Tensile properties of fibre filled PP composites 

The tensile test is typically the first step to evaluate elastic properties of the 

prepared composites. Specimens are subjected to uniform stress with predetermined 

strain rate. Viscoelastic properties of the matrix component are known to influence 

on the stress-strain curve derived values as strain rate changes [216]. Typically, 

strength (σ) and elastic modulus (Y) will increase, while elongation (ε) decreases. 

These changes were observed in our work as well (Table IV.5). Resilience (R) either 

increases or decreases depending on the σ/ε relationship. 

The reference fibres improved the load bearing capacity (higher σ and Y) of PP as 

expected, while the modified and the functionalised fibres increased plasticity (lower 

Y and higher ε). The ductility of the BTMP fibre filled PP composites increased upon 

functionalisation indicated by ε in two different strain rates. Elasticity was lost as R 

became smaller upon modification and functionalisation. For the BKraft fibres the 

functional particles on the fibre surface affected only slightly to stiffness (Y) (<5%). 
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Material toughness in both fibre types at the level of yield became lower upon 

modification and functionalisation. The BKraft fibres were less affected in this 

regard. However, correcting the strength values with the material content found after 

extraction, and assuming other parameters to remain constant, the results show a 

change in σ in the elastic region due to functionalisation only. Toughness followed 

the same trend. The torque needed to knead the composite material in the conical 

chamber followed the fibre content reasonably well. 

The deformation study with a SEM and optical microscope revealed the micro-

crack formation, agglomeration and fibre pull-out effect upon modification and 

functionalisation (figures 4.10 and 4.11). 

 

 

 

Fig. 4.10 SEM images of the BTMP fibre-matrix interphase. The reference fibres (A,D), the 

hybrid fibres (B,E) and the functionalised fibres (C,F). Images D-F are taken from the back 

scattered electrons for contrast enhancement. The length of the scale bars in figures A-C are 

1 µm while in D-G they are 100 µm. 
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The BTMP fibres were slipping out of the matrix under uniaxial tensile stress as 

can be seen from figure 4.10. Studying the fibre-composite interphase, it seems that 

particles that contained SDS surfactant were adhering with the polymer while the 

cohesion of particles on fibre surface was failing under strain. 

The optical examination shows the material to produce micro cracks throughout 

the sample under stress (figure 4.11). Necking, however, is barely noticeable. 

Functionalisation appears to aid in fibre dispersion within the melt as well as the 

stress dissipation. 

Comparing the results from the tensile tests together with the SEM and optical 

images, it appears that the LDH particles are acting like the ball bearings on fibre 

surface. The SDS surfactant, although increasing the coupling with PP matrix, also 

enhances ductility, i.e. the flow properties of the material. Functionalised fibres will 

therefore resist agglomeration during the moulding process. Stiffness is barely 

affected but the resilience in the linear region degreases, mainly due to lower strength 

values. 

 

 
 

Figure 4.11 The optical micrographs from the composite skin layers and the fractured areas 

after tensile tests. the BKraft fibres are presented in figures A-C and the BTMP in figures D-

F. The reference fibres (A and D), the hybridised fibres (B and E) and the functionalised fibres 

(C and F). 

4.3.3. Water absorption of fibre filled PP composites 

The Fick’s diffusion predicts that an average mass flux of molecules (nspec) at time 

t is linearly correlated with respect to t1/2 according to equation 4.4. This is the case 

if the initial diffusion (D) occurs in a plane with thickness L [217,218]. In our 

experiment, the diffusion of water occurred from both sides of the composite sample 

L being half the sample thickness (L = 1 mm). The effects of sample edges were 

neglected thus D approximates to upper boundary value.  

 

[
𝑛𝑠𝑝𝑒𝑐

𝑛𝑠𝑝𝑒𝑐,∞
]

2

=
16

𝐿2 [
𝐷

𝜋
]

𝑎
𝑡𝑎                        (Eq. 4.4.) 
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The equation reduces to Fick’s diffusion when the exponent a is unity. As can be 

seen from figure 4.12, the curves begin to deviate from linearity at t1/2 = 15. However, 

the timespan up to 200 h gives possibility to evaluate initial diffusion coefficients 

using the maximum adsorption derived by Langmuir isotherm (Figure 4.13). Results 

are listed in table IV.6. 

 

 

Figure 4.12 The adsorption and desorption kinetics of the BKraft (right curve) and BTMP 

(left curve) are plotted against the t1/2. Reference pulp (■), hybridised pulp 10-0% (), 

hybridised pulp 100-0% (○) and functionalised pulp 100-3% (▽) and 100-6% (+). 

 

 

Figure 4.13 The relative mass increase (Ψweight) of the composites in different filler 

compositions at equilibrium in water as predicted by Langmuir's model. The lighter shade 

represents the BTMP fibres and the darker shade the BKraft fibres. Previously unpublished. 

The Langmuir adsorption most likely overestimates the maximum weight increase 

in the composites. Surprisingly, the composites filled with functional fibres adsorbed 

almost as much water as reference fibres did, while particles without surfactant 

seemed to inhibit absorption.  

Desorption of water did not change markedly upon modification and hybridisation 

of the pulp fibres. Some differences were observed in the beginning of the experiment 
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(inset in figure 4.14), as the BKraft fibre filled composites kept water more tightly 

within the material than the BTMP fibres did. At the end of the test, the trend was the 

opposite. 

 

 

Figure 4.14 Desorption kinetics. The solid symbols represent the BKraft fibres and the open 

symbols represent the BTMP fibres. The reference (■), hybridised pulp: 10-0% ( ) and 100-

0% (●). The functionalised pulp: 100-3% (▼) and 100-6% (). The inset magnifies the 

beginning of the desorption process. Unpublished data. 

Table IV.6 The maximum absorption (Smax) and the calculated initial diffusion co-efficient (D) 

are tabulated. 

Parameter 
BKraft BTMP 

Ref. 10 100 100-3 100-6 Ref. 10 100 100-3 100-6 
Smax (%) 12 ± 2 8 ± 1 8 ± 1 12 ± 3 12 ± 2 9 ± 1 7 ± 1 7 ± 1 8 ± 2 8 ± 1 

D (m2/s·10-15) 1.28 2.02 1.62 2.04 2.46 0.92 1.97 1.71 0.93 0.92 

 

4.4. The effect of hybridisation on the combustion of 

foamed light weight structures 

The purpose of chapter 4.4 is to address the flammability of the foam formed light 

weight material. The elemental composition, combustion kinetics and particle size 

was studied to link the information from the cone calorimeter to the LDH particle 

properties.  

4.4.1. Topology and particle content on hybridised fibres 

The fibres that were used in light-weight fibrous foam (lwFF) were characterised 

by TEM instrumentation. The LDH particles were found mainly on the fibres surface 

and lumen as well as on the fine structures (Figure 4.15). Interestingly, the fibre cell 

wall was void of particles. FTIR showed a strong carbonate peak at 1358 cm-1 (Figure 

4.16). 
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It appeared that the sequential synthesis of LDH particles on BTMP fibres 

effectively fibrillated the fibres by forming thread-like structures (Figure 4.17). 

Energy dispersive spectra showed a small amount of sulphur on the surface of the 

foamed reference panel. The foaming agent must have been adsorbed onto the fibres 

during the dewatering of foam-laid fibre web. These webs, when prepared from the 

hybridised fibres, contained sulphur throughout the cross-section. Estimation for the 

effective absorption of SDS surfactant on LDH containing fibres can be made via 

aluminium to sulphur ratio. It was noted that the Mg2+ to Al3+ ratio (RMg-Al) in panel 

prepared from hybridised fibres did not change markedly while Al3+ to S6+ (RAl-S) was 

slightly higher in the middle layer (Table IV.7). The surfactant was prone to adsorb 

onto the panel surface. The listed values are the average of five analyses. 

 

 
 

Figure 4.15 TEM images of the reference BTMP fibres (A) and the hybridised fibres (B, C). 

LDH particles appear to have nucleated mainly on fibre surface and lumen as well as to fine 

structures.  
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Table IV.7 The element ratio in the foamed panel according to EDS. 

Ratio Surface Middle layer 

RMg-Al 1.5 1.4 

RAl-S 7.9 9.0 

 

 

 

Figure 4.16 The SEM images from a single fibre of foamed reference panel (A,B) and the 

panel prepared from the hybridised fibres (C,D). Corresponding FTIR spectra are shown next 

to the images. 

 
 

Figure 4.17 The SEI images from the surface of reference (A) and hybridised (C) lwFF with 

the corresponding BSE images (B,D) and ED spectra are shown next to them. 
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4.4.2. Combustion behaviour of foamed materials 

The outcome of the combustion experiment in a CC is influenced by the vertical 

distance of the sample from the external heat source, applied heat flux, the sample 

holder system and the physical dimensions of the specimen. Applicability of CC in 

prediction of hazardous fires has been discussed by others [219,220]. In our 

experiment, the distance of the sample surface from the external heat source was 60 

mm. This distance is relatively long and may cause the centre of the sample to absorb 

higher relative irradiance per unit time than the sample edges [219]. However, the 

tested lwFF were dimensionally unstable under forced burning. The relatively low 

irradiance (25 kW∙m-2) was targeted to address the ignition phenomenon. Sample 

thickness is also a key factor in CC experiments. Foam-laid fibre panels are meant to 

be applied as a bulk material, wherefore the 7.5 mm sample thickness is within a 

practical limit. Typically, several such layers are combined to a lamellar structure that 

is eventually compressed to appropriate density in a suitable mould. Thin samples 

tend to show higher peak heat release rate (PHRR) values, while thick samples burn 

longer allowing better estimation of flame propagation within the structure. 

Furthermore, the cut samples were placed on a 20 µm thick aluminium tray. 

Aluminium transports irradiated heat away from the sample. The effect of thermal 

transport is assumed to be small, however, because the wood fibres are heat insulators 

and the contact interface area between the sample and aluminium tray was 

considerably smaller than the geometrically measured flat surface area of the 

specimen.  

Although CC cannot mimic real fire due to measurement restrictions, its 

importance is in data related to the material behaviour after heat radiation impinges 

the sample surface. In cone calorimeter, the HRR is the crucial factor and it is 

calculated from the flue gas oxygen consumption. Anything that limits oxygen usage 

upon flaming, such as generation of soot, decarbonation, temperature drop within the 

material, water evaporation, etc., will affect the observed HRR [221]. The in situ 

synthesised LDH particles on the fibres’ surface provided reduction in PHRR, CO2 

production rate and smoke yield (Figure 4.18 and Table IV.8). Tailing in HRR signal 

predicts that both systems are charring to some extent. The mass loss rate is reduced 

in the LDH-lwFF sample indicating slower material volatilisation. Narrow HRR 

profile – rapid combustion – was expected due to the sample thickness. The carbon 

monoxide yield and production rate increased relative to the lwFF reference. Partial 

oxidation that appeared before the advancing heat release in both samples, also 

related to CO production and material pyrolysis at the reaction zone front, appeared 

similar in rate and yield. The production rate of the CO in material glowing phase, 

i.e. after the combustible volatiles have been released to allow the temperature to 

remain sufficiently high for material pyrolysis, however, was three times faster in the 

case of the LDH-lwFF. The combustion efficiency is defined as the ratio of the total 

heat evolved (THE) to the mass loss change until flame out. This parameter was 

reduced by LDH. 
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Figure 4.18 The mass release rate of CO2 (A,B) and CO (C,D) (black lines) during the 

oxidative pyrolysis is compared against HRR (blue line) in the lwFF reference (A,C) and the 

LDH-lwFF (B,D). Data from the mass fraction extent (E) and combustion efficiency (F) are 

presented as well. The time to ignition (tIG) and the time to flame out (tFO) are marked with 

red vertical lines. 

 Some researchers have suggested that materials safety, in case of fire, can be 

evaluated and characterised indicatively from CC results by simple calculations based 

on PHRR, tig, and from the total energy release [222]. For example, in our case, the 

so-called flash over propensity that is defined as the ratio of the PHRR to tig, reduces 

from the initial 22 (high risk) to 6 (moderate risk). Total energy release fell to low 

risk assessment in both samples. In addition, the smoke production of the LDH-lwFF 

sample subsided within 15 s after ignition, while for the reference foam, it took nearly 

22 s. Also, the amount of soot was about four times greater in reference lwFF sample 

(Table IV.9). The mineral containing foam will therefore produce less fine 

particulates upon fire. In comparison, the ammonium polyphosphate treated plywood 

releases significantly higher amounts of smoke, while the PHRR values and the 
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relative amounts of CO formation were similar to our experiments [223]. It was 

interesting to note that the flame subsided slowly in the LDH-lwFF sample, albeit it 

did not develop as it did in the reference lwFF. The LDH particles seem to act as a 

heat barrier and reduce the liberation of burning volatiles. An example of material 

morphology after combustion is given in Figure 4.19. Carbonised organic substances 

are seen in the lwFF while particles that resemble features of fibres are seen in the 

LDH-lwFF sample.  

 

 

 Figure 4.19 SEM close up images from the large residues of reference lwFF (A) and LDH-

lwFF (B) after oxidative pyrolysis in cone calorimeter. 

The combustion of the volatiles in CC was rapid and the glowing stage was also 

subsiding within 90 s after material ignition. It is known that heat transfer from the 

external heat flux and from the flame in CC is in the same order of magnitude. It is 

therefore assumed that the dehydroxylation and loss of carbonate in a form of water 

and CO2, and volatisation of the free and crystalline water, comprising 15% from 

total weight of the LDH, occur during the combustion phase.  

To find out how the ratio of C to O changed during the pyrolytic phase in CC, i.e. 

in the beginning of the combustion process, X-ray photoelectron spectroscopy was 

utilised before and after the process (Figure 4.20). Photoelectron spectroscopy is a 

highly surface sensitive analysis technique penetrating some tens of nanometres into 

the material, and it is widely used in investigation of elementary composition and 

chemical structure of material surfaces. In our study, the carbon content on material 

surface was found to be relatively high after the combustion (Table IV.9). The LDH 

contain carbon only in a form of inorganic carbonate. Considering the chemical 

formula for the LDH we can conclude that the relative amount of carbon from organic 

material has obscured the detection of photoelectrons originated from Mg2+ and Al3+. 

This organic material includes possibly xylan and other hemicelluloses that are 

typically redeposited on pulp fibres during the alkaline processes at elevated 

temperatures, such as those in the LDH synthesis. Even though sample transferring 

via air has also caused some additional C and O concentration on the surface, the 

effect is assumed to be small and systematic for all samples. After oxidative 

pyrolysis, the precursor metals were detected in similar proportions by XPS 

compared to the EDS and ICP-MS results from the bulk material. The relative amount 

of carbon still remained high, which can be explained only by charred organic 

material on the surface of LDH. 
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Table IV.9 The elemental surface composition of C, O, Mg and Al from the pelletised lwFF 

and LDH-lwFF that was also oxidatively pyrolyzed in the cone calorimeter (LDH-lwFFCC). 

The values are given in atomic weight per centile. The relative rate of change in % for C1s 

and O1s signals and C/O ratio after 2 min of controlled burning sequence is also given. 

Sample C1s O1s Mg2s Al2p C/O 
ν(C1s) 

min-1 

ν(O1s) 

min-1 

ν(C/O) 

min-1 
wMg mg/g wAl mg/g RMgAl 

lwFF 66±1 35±1 - - 1.9±0.2 3 3 0.9 0.07 0.1 - 

LDH-lwFF 33±1 51±1 10±2 5±2 0.65±0.07 7 -4.5 0.6 54±1 37.5±0.7 1.60±0.05 

LDH-lwFFCC 16±2 58±2 15±1 9±1 0.31±0.05       

 

In the case of the lwFF, an abrupt change in carbon and oxygen contents were 

detected depending on the duration of the controlled burning at 350 °C (Figure 4.20). 

The LDH-lwFF sample provided more gradual change for both elements. The rate of 

change of C to O ratio after initiation at 2 min was 0.9 min-1 for the lwFF and 0.6 

min-1 for the LDH-lwFF sample (Table IV.9). However, comparing the C1s and O1s 

values detected in both samples, the relative amount of carbon is seen to increase 

faster on the particle surface. Mineral content alone cannot explain these changes. It 

appears therefore that the heat transfer is restricted in the presence of LDH due to the 

known transformation processes taking place in the mineral. Temperature drop is 

expected across the mineral layer on the fibre surface that leads to inefficient 

oxidation of organic material. However, the pyrolysis on particle surface appears 

relatively rapid. The effects of controlled burning at 280 °C and 340 °C in a confined 

space in a muffle oven that allow only convection of gaseous products are shown in 

figure 4.21. The unconjugated stretch vibration of carboxylic acids at 1715 cm-1 

increases significantly in the lwFF sample at 340 °C. In the LDH-lwFF, however, the 

oxidation to acids is almost non-existent. It is worth noting that the skeletal vibration 

from phenolic units of lignin at 1510 cm-1 does not show major changes in relative 

strength at these temperatures in the given time frame. Changes in the regions that 

arise primarily from vibrations of carbohydrates, viz. 950 - 1150 cm-1 and 1300 - 1425 

cm-1 are, due to thermodynamic considerations, relatively intense in comparison to 

those that arise from the aromatic units. Furthermore, the lwFF reference does not 

have absorption band at 1540 cm-1. This band arises from the splitting of carbonate 

vibration during the pyrolysis [224]. Partial oxidation contributes to the formation of 

the diones and ketones that are observed in 1592 - 1597 cm-1 in both samples. It was 

interesting to note that the absorption bands arising from the ring vibration of 

guaiacyl lignin at 1268 cm-1 had relatively low absorption intensity in LDH-lwFF 

sample. Similar reduction in absorption has been observed e.g. during the Kraft 

cooking of the softwood pulp fibres [225]. The in situ synthesis of LDH with 

thermomechanical softwood pulp fibres must therefore affect similarly the lignin 

structure as does the conventional Kraft cooking process. The common nominator 

here is the alkalinity of the medium. 
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Figure 4.20 XPS results for C1s and O1s contents in % from pelletised lwFF reference () 

and LDH-lwFF () after oxidative pyrolysis at 350 °C. 

 

 

Figure 4.21 FTIR spectra from LDH-lwFF (A) and lwFF (B). The spectra were acquired from 

the pristine sample (black) after 120 s pyrolysis at 280 °C (red) and after 120 s pyrolysis at 

340 °C (green). The spectra from the Kraft pulp (black line) and BTMP (red line) are shown 

for comparison (C). 
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Examples from the ignition, flame spread and incineration of foam-laid samples 

by HsVid observations are shown in figure 4.22. The advancing flame front is 

preceded by materials dimensional changes that were attributed to loss of easily 

volatised compounds, such as water, and the fibre collapse. Dimensional changes in 

the lwFF seemed to occur everywhere in the area of imaging approximately at the 

same time. In the LDH-lwFF sample the dimensional changes were subtle. The flame 

spread and incineration, however, were conducted from fibre to fibre. 

Once the flame was initiated by the heated resistive wire, the material incinerated 

from that point onward. It was noted above that majority of CO2 is released after 

ignition. During the oxidative pyrolysis of the LDH-lwFF the flame spread was 

observed as an advancing glow, yet the incineration was practically completely 

dampened by the particles on the fibre surface. Since the exothermic reactions 

observed in TG suggest that both samples carry similar energies, provided the 

temperature ramp is reasonably slow, the rapid pyrolytic temperature change due to 

material volatilisation in the flaming zone front must be used up by the LDH. 

 

 

Figure 4.22 HsVid images from the combustion of reference fibres (a1-a8) and hybridised 

fibres (b1-b8). Each image was acquired in 50 ms intervals. The resistive wire is 250 µm in 

diameter and the exposure settings were ISO 400 with 1.4 ms exposure time. 
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5. Conclusions 

The surface modification of the BTMP fibres with the in situ synthesised layered 

double hydroxides via the low super saturation route in the system that applies Mg2+ 

and Al3+ nitrates and slow titration of NaOH, changes the fibre's surface morphology 

in sub-micron scale. The generated LDH particles are intergrown and active to adsorb 

sulphate containing aliphatic surfactant, thus, dramatically increasing the pulp fibres 

hydrophobic character. The pulp fibres can be functionalised with small organic 

molecules in an aqueous solvent, providing an alternative method to bind anionic 

substances on the fibres’ surface. 

The LDH particle nucleation on the fibres’ surface was successfully conducted in 

aqueous medium by the low super saturated (lss), high super saturated (hss) and the 

slow urea hydrolysis (Uhyd) synthesis methods. In these synthesis procedures, the 

applied pulp fibres were acting as templates for nano- (70 nm), sub-micron (200 nm) 

and micron (>2 µm) size LDH particles, respectively. The in situ nucleation of the 

LDH from the hss system with fully bleached Kraft pulp fibres in an autoclave, does 

not induce particle synthesis or migration into the fibre wall, even if the fibres are 

fully saturated and swollen in alkaline medium (pH = 10) at elevated temperature T 

= 120 °C. The synthesis via the lss route results in some particle migration into the 

fibre wall. Considerable particle nucleation inside the fibre wall was discovered with 

TEM after hydrothermally induced urea hydrolysis (Uhyd) that results in 50% 

reduction in bending compliance. The LDH that was bound to the fibres’ external 

surface had a marginal effect on the fibres’ flexibility. 

Synthesis conditions were found to induce cellulose depolymerisation reactions. 

The LDH acts as a catalyst. The cellulose polymerisation degree followed each 

synthesis in the order: hss > lss > Uhyd. Utilizing a sequenced in situ particle 

synthesis via the urea hydrolysis and homogeneous co-precipitation, resulted in high 

mineral content (34 ± 2)% on the fibres’ surface. The fines are prone to act as a 

substrate for the LDH nucleation and are favoured over fibres. The LDH provides a 

relatively dense structure that envelopes the fibres’s outer cell wall. Synthesis of LDH 

at alkaline conditions liberates organic substances from the TMP fibres. Some of the 

compounds are re-deposited on the LDH surface. 

Significant reduction in specific exothermic heat was observed after each 

synthesis route. The reduction in the cellulose polymer length influenced to the 

measured heat of combustion during the first exothermic reaction at around 320 °C. 

Influence of the LDH in enthalpy reduction was weight related. Carboxylic acids are 

created in higher relative amounts during the slow combustion in comparison to rapid 

temperature increase that produces diones, most likely, due to simultaneous removal 

of water and hydroxyls from the LDH. The effect is amplified by the particles in the 

fibre wall. 

The LDH particles that were synthesised via the lss method had the highest 

capacity for sulphate containing probe molecules, while the better crystallised 

particles from the hss and the Uhyd had the highest affinity. Most of the acidic groups 

in the cellulose pulp fibres were free after LDH synthesis. The fibres had, therefore, 

become ampholytic after the modification.  
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Functionalisation of the hybrid fibres with SDS surfactant enhanced material 

plasticity in polypropylene composite and allowed homogeneous dispersion of pulp 

fibres in the polymer matrix. Functional BKraft fibres endured the applied shear 

forces better during compounding than the BTMP fibres. The particle cohesion forces 

were identified as the bottleneck in the process, while addition of the SDS surfactant 

seemed to promote particle matrix adhesion to a limited extent.  

The flammability, production of soot and CO2 production rates during the 

oxidative pyrolysis were significantly reduced by carbonate containing nano- and 

micron sized LDH particles. The in situ synthesised LDH particles slowed down the 

fibres’ pyrolysis rate. The LDH appears to restrict the liberation of volatiles after the 

ignition slowing down the flame propagation as well. Charring was initiated at the 

interphase of nano-sized LDH and organic material that, in turn, amplifies the flame 

retardant effect. However, partial oxidation of fibres appears relatively rapid. 
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