
Turku Centre for Computer Science

TUCS Dissertations
No 223, May 2017

Kashif Javed

Model-Driven Development
and Verification of
Fault Tolerant Systems

Model-Driven Development and
Verification of Fault-Tolerant

Systems

Kashif Javed

To be presented, with the permission of the Faculty of Science and
Engineering of the Åbo Akademi University, for public criticism in

Auditorium XX on May 24th, 2017, at 12 noon.

Turku Centre for Computer Science
Åbo Akademi University

 Faculty of Science and Engineering
Agora, Universitetsbacken, 20520 Åbo

Finland

2017

Supervised by

Docent Elena Troubitsyna
Faculty of Science and Engineering
Åbo Akademi University
Vattenborgsvägen 5, 20500 Turku
Finland

Reviewed by

Professor Anatoliy Gorbenko
Department of Computer Systems and Networks
National Aerospace University (KhAI)
Kharkov, Ukraine

Professor Amund Skavhaug
Faculty of Engineering Science and Technology
Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

Opponent

Professor Anatoliy Gorbenko
Department of Computer Systems and Networks
National Aerospace University (KhAI)
Kharkov, Ukraine

ISBN 978-952-12-3553-5
ISSN 1239-1883

i

Dedicated to my dearest parents who have supported me throughout my

education

ii

“Seek knowledge from the cradle to the grave."

Prophet Muhammad (Peace be upon him)

iii

Abstract

Dependability is an ability of a computer-based system to deliver services that
can be justifiably trusted. There is a wide range of computer-based systems that
provide services that are critical for our society, e.g., nuclear power plants,
transportation, healthcare, etc. Ensuring dependability of such systems
constitutes an important engineering goal.

Dependability is an integrated notion that encompasses various system
characteristics including reliability, safety, availability, etc. For a wide class of
systems, the main engineering goal is to ensure a high degree of reliability – a
probability of a system functioning correctly over a given period under a given
set of operating conditions. Since the occurrence of faults can disrupt correct
system behavior, to achieve the required reliability, we need to employ fault
tolerance techniques.

The main goal of fault tolerance is to ensure that the system can deliver
its services despite the occurrence of faults. Fault tolerance typically introduces
some form of architectural or computational redundancy and hence, increases the
complexity of the system design. Therefore, to ensure a correct implementation
of fault tolerance mechanisms, we should develop the techniques that facilitate a
structured analysis of system failure modes, systematic design of error recovery
and reconfiguration procedures, as well as bolster system verification and
validation.

Model-driven engineering allows the designers to cope with system
complexity and analyze system behavior at different levels of abstraction. In our
thesis, we aim at studying how to represent various static and dynamic aspects of
fault tolerance in the model-driven development.

Often behavior of complex fault-tolerant systems is structured using the
notion of operational modes – mutually exclusive sets of the system behavior. As
a reaction on faults as well as different internal and external conditions, the
system switches between its operational modes. The design of mode transition
logic in distributed fault tolerant systems is a challenging and error-prone task.
On the one hand, we need to ensure that all components of the system are put in
the states required by a certain mode. On the other hand, we should verify that
the components maintain these states while the system is stable, i.e., before the
conditions for triggering a transition to another mode are reached. To facilitate
the design of complex mode-rich fault tolerant systems, in our thesis, we
demonstrate how to model distributed systems with centralized and distributed
mode management as well as verify their mode transition logic. We validate the
proposed approach in the aerospace domain.

To guarantee that the reconfiguration performed in response to the
changed operating conditions achieves the required goal, fault-tolerant systems
should incorporate the appropriate monitoring capabilities and rely on a set of
explicitly defined rules for triggering adaptation. Usually, these rules establish a

iv

connection between globally observed system properties and behavior of system
components, i.e., span over several architectural layers. To facilitate the
development of such complex systems, in our work, we propose the generic
patterns for architecting adaptive fault tolerant systems in a layered hierarchical
manner. We demonstrate how the proposed patterns can be utilized in the
context of data intensive fault tolerant systems.

Development and verification of fault-tolerant distributed systems also
require the use of advanced verification technologies as well as techniques for
supporting a disciplined systematic analysis of system failure modes. In our
thesis, we demonstrate how to perform formal verification of a fault tolerant
routing protocol and systematically identify system failure modes and recovery
procedures using Failure Modes and Effect Analysis approach. While reliance on
formal techniques increases confidence in the correctness of the implementation
of the fault tolerance mechanisms, the use of a systematic inductive technique
for identifying failure modes improves the completeness of the analysis.

The research work performed in our thesis aims at creating a support for
explicit integration of fault tolerance consideration into the model-driven system
development. We aim at creating a potentially industry-relevant approach and
hence, utilize the modeling and verification techniques that are used in current
industrial practice. Moreover, we validate our approach in a number of case
studies from different domains.

v

Sammanfattning

Tillförlitlighet är ett datorbaserat systems förmåga att kunna leverera tjänster
som med goda argument är pålitliga. Det finns ett brett spektrum av
datorbaserade system som tillhandahåller tjänster som är avgörande för vårt
samhälle, t.ex. kärnkraftverk, transport, hälso- och sjukvård osv. Att säkerställa
pålitligheten för sådana system är ett viktigt tekniskt mål.

Tillförlitlighet är ett integrerat begrepp som omfattar olika
systemegenskaper, inklusive funktionssäkerhet, säkerhet, tillgänglighet etc. För
en omfattande klass av system är det huvudsakliga tekniska målet att säkerställa
en hög grad av tillförlitlighet - en sannolikhet för att ett system fungerar korrekt
under en viss period med en given mängd driftsförhållanden. Eftersom fel som
uppstår kan störa ett korrekt systembeteende, måste vi använda
feltoleranstekniker för att uppnå den tillförlitlighet som krävs.

Huvudmålet med feltolerans är att säkerställa att systemet kan leverera
sina tjänster trots att fel uppstått. Feltolerans introducerar typiskt någon form av
arkitektonisk eller beräkningsmässig redundans och ökar därigenom
systemdesignens komplexitet. För att säkerställa ett korrekt genomförande av
feltoleransmekanismer bör vi utveckla de tekniker som underlättar en
strukturerad analys av systemfelslägen, systematisk utformning av felhantering
och procedurer för omkonfiguration, samt förstärkning av systemets verifiering
och validering.

Modelldriven teknik möjliggör hantering av systemkomplexitet och
analys av systembeteendet på olika abstraktionsnivåer. Avhandling strävar efter
att studera hur man representerar olika statiska och dynamiska aspekter av
feltolerans i modelldriven utveckling.

Ofta är beteendet hos komplexa feltoleranta system strukturerat enligt
operativa lägen - ömsesidigt uteslutande uppsättningar av systembeteendet. Som
en reaktion på fel såväl som olika interna och externa förhållanden växlar
systemet mellan sina driftlägen. Utformningen av logik för lägesövergång i
distribuerade feltoleranta system är en utmanande och felbenägen uppgift. Å ena
sidan måste vi se till att alla komponenter i systemet sätts i de tillstånd som krävs
av ett visst läge. Å andra sidan bör vi verifiera att komponenterna upprätthåller
dessa tillstånd medan systemet är stabilt, dvs. innan förutsättningarna för en
övergång till ett annat läge uppnås. För att underlätta utformningen av komplexa
feltoleranta system med många tillstånd, visar vi i vår avhandling hur man
modellerar distribuerade system med centraliserad och distribuerad
lägeshantering samt verifierar deras logik för lägesövergång. Vi validerar det
föreslagna tillvägagångssättet inom rymdindustrin.

För att säkerställa att omkonfigurationen som utförts som svar på de
ändrade driftsförhållandena uppnår det önskade målet, bör feltoleranta system
inkludera lämplig övervakningsförmåga och förlita sig på en uppsättning
uttryckligen definierade regler för start av anpassning. Vanligtvis etablerar dessa

vi

regler en koppling mellan globalt observerade systemegenskaper och beteenden
hos systemkomponenter, dvs. de spänner över flera arkitektoniska skikt. För att
underlätta utvecklingen av sådana komplexa system, föreslår vi i vårt arbete
generiska mönster för konstruktion av adaptiva feltoleranta system på ett
hierarkiskt sätt. Vi visar hur de föreslagna mönstren kan utnyttjas i samband med
dataintensiva feltoleranta system.

Utveckling och verifiering av feltoleranta distribuerade system kräver
också användning av avancerad verifieringsteknik samt tekniker för att stödja en
systematisk analys av systemets fellägen. I vår avhandling visar vi hur man utför
formell verifiering av ett feltolerant ruttningsprotokoll och systematiskt
identifierar systemets fellägen och återställningsförfaranden med hjälp av FMEA
(Failure Modes and Effect Analysis). Medan formella tekniker ökar konfidensen
för korrekt implementering av feltoleransmekanismerna, förbättrar användningen
av en systematisk induktiv teknik för identifiering av fellägen analysens
fullständighet.

Forskningsarbetet i avhandlingen strävar efter att skapa stöd för en
explicit integration av feltolerans i modelldriven systemutveckling. Vi strävar
efter att skapa ett tillvägagångssätt som är relevant inom industrin och därför
utnyttjar vi de modellerings- och verifieringsmetoder som används i nuvarande
industripraxis. Dessutom validerar vi vårt tillvägagångssätt i ett antal fallstudier
från olika domäner.

vii

Acknowledgements

First of all, I thank Almighty Allah for giving me the courage and strength to
pursue my PhD research work at Åbo Akademi University, Turku, Finland. This
thesis would not have been possible without the financial support of National
University of Sciences and Technology, Islamabad, Pakistan.

I would like to express my gratitude to my supervisor, Associate Professor
Elena Troubitsyna, for her professional guidance, full-time supervision, close
monitoring and timely feedback, which has enabled me to complete this thesis. I
wholeheartedly appreciate her continued support, great encouragement, valuable
advice, and friendly atmosphere during the whole PhD research work. I am
indebted to her for ensuring the provision of conducive and productive research
environment in the Distributed Systems Laboratory of the Department of
Information Technology and Turku Centre for Computer Science (TUCS). I am
very grateful to the administrative and technical staff of the department and
TUCS for providing full assistance during my research work.

I would like to thank my reviewers, Professor Anatoliy Gorbenko from
National Aerospace University and Professor Amund Skavhaug from Norwegian
University of Science and Technology, for sparing their valuable time to read the
thesis and giving extremely useful suggestions for further refining and enhancing
the quality of the thesis work. I am very thankful to Professor Anatoliy
Gorbenko for accepting to be the opponent in the public defense of my thesis. I
owe my special thanks to Professor Anatoliy Gorbenko for his precious time and
efforts to act as a proof reader of my thesis. I would also like to thank Johan and
Jonathan for translating the abstract of the thesis into Swedish.

I would like to extend my special appreciation to Christel Engblom who
always helped me to conduct the experimental work by making necessary
arrangements in the laboratory. I am grateful to Magnus Dahlvik for providing
requisite computer support. I would also like to thank from the core of my heart
Hans Bang Stiftelsen, Ulla Tuominen and Åbo Akademi University for awarding
me the research grants during my PhD work.

I enjoyed the study and research environment provided by the Department
of Information Technology and TUCS. I would like to express my special thanks
to my colleagues, working in the Distributed Systems Laboratory and ICT
building, for giving me technical support and providing cooperation during the
tough hours of research work.

I am very grateful to my parents, Professor Muhammad Younus Javed and
Manzoor Akhtar, whose prayers and patronage have played a pivotal role in the
completion of this work. I would also like to extend my sincere appreciation to
Dr. Qaisar Javed, Shumaila Younus and Munazza Younus who have always
been a great source of inspiration and encouragement for me.

Last but not the least; I owe countless thanks to my wife, Asifa Kashif, and
my son, Muhammad Umer Javed, for standing beside me throughout this

viii

research journey. Their lovely attitude, persistent support, thorough
understanding, humorous behavior and sincere prayers have greatly helped me to
complete this thesis within the scheduled timeline.

Åbo, May 2017
Kashif Javed

ix

List of Original Publications

I Kashif Javed, Asifa Kashif, and Elena Troubitsyna.
Implementation of SPIN Model Checker for Formal Verification
of Distance Vector Routing Protocol. In International Journal of

Computer Science and Information Security (IJCSIS), Vol 8, No
3, pp. 1-6, ISSN 1947-5500, June 2010, USA.

II Kashif Javed, Elena Troubitsyna. Designing a Fault-Tolerant
Satellite System in SystemC. In Proceedings of the Seventh

International Conference on Systems (ICONS 2012), pp. 49–54,
IEEE Computer Press, March 2012, Saint Gilles, Reunion Island.

III Kashif Javed and Elena Troubitsyna. Modelling a Fault-Tolerant
Distributed Satellite System. In Proceeding of the International

Conference Advanced Collaborative Networks, Systems and

Applications (COLLA 2012), pp. 35-41, June 2012, Venice, Italy.

IV Kashif Javed and E. Troubitsyna, A Case Study in Modelling a
Fault-Tolerant Satellite System Implementing Dynamic
Reconfiguration via Handshake. In Proceedings of the Seventh

International Conference on Software Engineering Advances

(ICSEA2012), pp. 44-49, November 2012, Lisbon, Portugal.

V Elena Troubitsyna and Kashif Javed. Towards Systematic Design
of Adaptive Fault-Tolerant Systems. In Proceedings of the Sixth

International Conference on Adaptive and Self-Adaptive Systems

and Applications (ADAPTIVE 2014), pp. 15-21, May 2014,
Venice, Italy.

VI Elena Troubitsyna and Kashif Javed. A Structured Approach to
Architecting Fault-Tolerant Services. In Proceedings of the Ninth

International Conference on Internet and Web Applications and

Services (ICIW 2014), pp. 99-104, July 2014, Paris, France.

x

xi

Contents

Research Summary .. 1
1 Motivation and Research Objectives ... 3
2 Dependability and Fault Tolerance .. 7
2.1 Dependability Taxonomy ... 7
2.2 Fault Tolerance .. 10
3 Design and Verification Methods .. 17
3.1 UML ... 17
3.2 SystemC ... 22
3.3 Model Checking Fault-Tolerant Systems ... 27
3.3.1 Model Checking: Introductory Background 27
3.3.2 SPIN PROMELA ... 30
4 Fault Tolerance in Mode-Rich System .. 35
4.1 Modes ... 35
4.2 Mode-Rich Fault-Tolerant Systems: Centralized Mode Management 37
4.3 Mode-Rich Fault-Tolerant Systems: Distributed Mode Management 44
5 Fault Tolerance in Service-Oriented Distributed Systems 51
5.1 Fault Tolerance in Service Oriented Architectures 51
5.2 Adaptive Fault-Tolerant Systems ... 55
6 Summary of the Original Publications ... 61
7 Related Work ... 65
7.1 Modes and Fault Tolerance .. 65
7.2 Model-Driven Engineering and Verification of Fault-Tolerant Systems . 67
7.3 Centralized Mode Management in Fault-Tolerant systems 68
7.4 Fault Tolerance in Distributed Systems ... 69
8 Conclusion and Future Work ... 73
8.1 Conclusions .. 73
8.2 Future Work ... 75
Original Publications ... 87

xii

List of Figures

Figure 2.1: Dependability Taxonomy ... 9
Figure 2.2: Fault Tolerance Techniques.. 10
Figure 2.3: Triple Modular Redundancy ... 14
Figure 2.4: Dynamic redundancy: standby spare .. 15
Figure 2.5: Dynamic redundancy: duplication pattern .. 15
Figure 3.1: Example of a Use Case Diagram .. 18
Figure 3.2: Example of a Class Diagram .. 19
Figure 3.3: Example of a Sequence Diagram.. 20
Figure 3.4: Examples of State Diagram (a) with explicit representation of failure
(b) with explicit representation of failure and error recovery 21
Figure 3.5: Definition of simple SystemC module ... 23
Figure 3.6: SystemC template for creating ports .. 24
Figure 3.7: Example of a module with a method process declaration 25
Figure 3.8: SystemC Implementation of Fault Tolerant Service Pattern 27
Figure 3.9: Model Checking Process .. 30
Figure 3.10: Promela Implementation of Fault-Tolerant Service 32
Figure 3.11: Example of SPIN output ... 33
Figure 4.1: Mode Logic of Fault-Tolerant System: a General Principle 37
Figure 4.2: Generic Architecture of Mode Rich Systems 38
Figure 4.3: Centralized AOCS Architecture ... 39
Figure 4.4: Centralized Mode-Rich Fault-Tolerant System: Example of GPS unit
 .. 40
Figure 4.5: A general pattern for defining Mode Transition in SystemC (GPS
instance) .. 42
Figure 4.6: Example of Mode Transition Verification .. 43
Figure 4.7: State Diagram of D-AOCS (GPS example) 46
Figure 4.8: Distributed Mode Management (GPS example) 48
Figure 4.9: Distributed Mode Management: Verification of Handshake
Procedure (Mode D example) ... 49
Figure 5.1: Architectural Patterns for Introducing Redundancy 52
Figure 5.2: Service Execution Flow .. 53
Figure 5.3: Generic Form of FMEA Table ... 54
Figure 5.4: Example of Failure Analysis using FMEA 55
Figure 5.5: Architecture of an Adaptive Fault-Tolerant System 57
Figure 5.6: Transitions between Adaptation Modes ... 58

1

Part I

 Research Summary

2

3

1 Motivation and Research Objectives

Dependability is an ability of a computer-based system to deliver services that
can be justifiably trusted. There is a wide range of computer-based systems that
provide services that are critical for our society, e.g., nuclear power plants,
transportation, healthcare, etc. Ensuring dependability of such systems
constitutes an important engineering goal.

Dependability is an integrated notion that encompasses various system
characteristics including reliability, safety, availability, etc. For a wide class
of systems, the main engineering goal is to ensure a high degree of reliability
– a probability of a system functioning correctly over a given period under a
given set of operating conditions. Since the occurrence of faults can disrupt
correct system behavior, to achieve the required reliability, we need to
employ fault tolerance techniques.

The main goal of fault tolerance is to ensure that the system can deliver its
services despite the occurrence of faults. Fault tolerance typically introduces
some form of architectural or computational redundancy and hence, increases
the complexity of the system design. Therefore, to ensure a correct
implementation of fault tolerance mechanisms, we should develop the
techniques that facilitate a structured analysis of system failure modes,
systematic design of error recovery and reconfiguration procedures, as well as
bolster verification and validation of complex fault-tolerant systems.

This goal can be achieved by employing a model-driven development
approach. Reliance on abstraction and rigorous mathematical analysis provides
us with a powerful support while designing complex fault tolerant systems.
However, despite the popularity of model-driven engineering, there is still a
lack of approaches supporting an explicit modeling of fault tolerance aspects of
system behavior. Our first research question

Research question 1. How can we explicitly represent fault tolerance in the

model-driven system development?

aims at addressing this issue.

Often the behavior of complex fault-tolerant systems is structured using
the notion of operational modes – mutually exclusive sets of the system
behavior. As a reaction on faults as well as different internal and external
conditions, the system switches between its operational modes. The design of
mode transition logic in distributed fault tolerant systems is a challenging and
error-prone task. On the one hand, we need to ensure that all components of the
system are put in the states required by a certain mode. On the other hand, we
should verify that the components maintain these states while the system is

4

stable, i.e., before the conditions for triggering a transition to another mode are
reached.
To address this challenge, we formulate the second research question:

Research question 2: How can we facilitate design and verification of

complex mode-rich fault tolerant systems with centralized and distributed

mode management?

Development and verification of fault- tolerant distributed systems also
require the use of advanced verification technologies as well as techniques for
supporting a disciplined systematic analysis of system failure modes. Moreover,
to guarantee that the reconfiguration performed in response to the changed
operating conditions achieves the required goals, fault tolerant systems should
incorporate the appropriate monitoring and adaptation capabilities. Our third
research question:

Research question 3. How can we facilitate systematic analysis of system

failure modes, structure system architecture to support adaptability and

verify fault tolerance capabilities?

aims at studying these problems.

In our thesis, we aim at finding potentially industry-relevant solutions
addressing the identified research questions. Therefore, we will utilize the
modeling and verification techniques that are used in the current industrial
practice. Moreover, we will validate the proposed solutions in a number of case
studies from different industrial domains.

Organization of the Thesis. This thesis consists of two parts. The overview of
the research work reported in this thesis is included in Part I. Part II contains the
original research publications.

Part I is organized as follows. Chapter 2 discusses the dependability
concept and pays special attention to fault tolerance as one of the essential
dependability attributes.

Chapter 3 overviews the development methodologies, which have been
used in the thesis. In this section, we discuss UML, SystemC, SPIN model
checker and the associated modeling language PROMELA. We illustrate a
representation of different aspects of fault tolerance in the corresponding
frameworks.

Chapter 4 focuses on the concept of modes and main issues in
designing fault- tolerant mode-rich systems. We identify the problems and
solutions in implementing distributed systems with the centralized as well as
distributed mode management. We use a case study from the aerospace domain
to illustrate the principles of achieving fault tolerance via mode transitions. In

5

particular, we demonstrate how to address the issue of ensuring correctness
of mode logic. Moreover, we explain how to use the handshake protocol to
synchronizing mode transitions in the distributed mode management.

Chapter 5 focuses on studying architectural aspects of fault tolerance.
Firstly, we discuss how to modify and apply Failure Mode and Effect Analysis
(FMEA) technique to systematically identify system failure modes and define
architectural patterns for error masking or recovery. Then we outline the generic
principles of architecting adaptable fault tolerant systems.

A detailed description of the published research papers is given in Chapter
6. The overview of the related work is presented in Chapter 7. Chapter 8
summarizes the main contributions of the research work carried out in this thesis,
discusses its strengths and limitations, as well as outlines the future research
directions.

6

7

2 Dependability and Fault Tolerance

In this chapter, we give an overview of the dependability concept and in
particular, focus on the fault tolerance aspect.

2.1 Dependability Taxonomy

Dependability of a computing system is the ability to deliver service that can
justifiably be trusted. The notion of dependability was introduced by Laprie [1]
and further refined by Avizienis et al [2]. Nowadays complex computer-based
systems are embedded in the infrastructures supporting the majority of critical
services provided to our society. Therefore, dependability has become the
concern of the highest priority in the development and operation of modern
computer-based systems.

The variety of computing systems on whose services we need to place
our reliance is broad – it ranges from satellite constellations, airplanes, nuclear
power plants, or databases containing sensitive health records. Correspondingly,
different characteristics of system behavior become the main priority in their
development. For instance, for the satellite systems we need to guarantee a
high degree of reliability, i.e., to ensure that despite an occurrence of faults and
other environmental disturbances, the system can continuously operate for a
certain period. For the airplanes and nuclear power plants, we should ensure that
the system is safe, i.e., the likelihood of occurrence of hazardous failures is very
low. Finally, for the databases containing sensitive data, we have to ensure a
high degree of security, i.e., the absence of unauthorized access or data
alternations. The concept of dependability provides us with a unified
framework that allows us to address such diverse concerns within a single
conceptual framework. It consists of three parts: dependability attributes,
threats to dependability and means for achieving dependability. Figure 2.1
presents the dependability taxonomy [1].

The key attributes of dependability are given below:

• Availability: the ability of the system to provide a correct service at
any given moment in time.

• Reliability: the ability of the system to provide a service under a
given set of operating conditions over a specific time interval.

8

• Safety: the ability of the system to provide a service under the
given conditions without jeopardizing its environment and users.

• Maintainability: the ability of the system to undergo repairs and
modifications.

• Integrity: the ability of the system to prevent improper state
alterations.

• Confidentiality: the absence of unauthorized disclosure of
information.

The threats to dependability, often referred to as the impairments to

dependability may introduce the unwanted alterations in the service
provisioning. Dependability is impaired by the occurrence of faults, errors, and
failures.

• Fault: a defect within the system. Faults can be generated due to
internal factors (e.g., software coding mistakes, memory bit
“stuck”) and external factors (e.g., component defects or human
mistakes). Faults may result in errors.

• Error: a deviation from the required operation of the system or
subsystem. Errors are the effect of faults and may lead to
subsequent system failure.

• Failure: a deviation in provisioning a required service to the
system user. Failures are the effects of errors.

9

Figure 2.1: Dependability Taxonomy

The means for dependability are the techniques used to facilitate the
development of dependable systems. The dependability means can be classified
into four categories: fault prevention, fault removal, fault forecasting and fault
tolerance.

• Fault prevention: the techniques aiming at reducing the likelihood
of an introduction of faults during the process of system
development.

• Fault removal: the techniques that facilitate identifying and
removing the faults during the development stage as well as during
the operational life of a system.

• Fault forecasting: the techniques that are applied to predict fault
occurrence and evaluate their possible consequences on the system
behavior.

• Fault tolerance: the techniques that ensure that the system can
continue to deliver its services even in the presence of faults.

Since our thesis focuses on studying methods for achieving fault tolerance,
below we give a detailed overview of the fault tolerance concept.

10

2.2 Fault Tolerance

The main aim of fault tolerance [3] is to ensure that the system continues to
provide its services even in the presence of faults. Typically, fault occurrence
leads to a certain service degradation. However, it is important to ensure that
the system behaves in a predictable deterministic way even in the presence of
faults.

The main techniques to achieve fault tolerance are error processing and
fault treatment, as shown in Figure 2.2.

Figure 2.2: Fault Tolerance Techniques

Error processing: Error processing comprises the measures applied while the
system is operational. The purpose of error processing is to eliminate an error
from the computational state and preclude failure occurrence. Error processing is
usually implemented in three steps: error detection, error diagnosis, and error
recovery [15].

• Error detection: determines the presence of error.
• Error diagnosis: evaluates the amount of damage caused by the

detected error.
• Error recovery: aims at replacing an erroneous system state with

the error-free state.

There are three types of error recovery methods: backward
recovery, forward recovery and compensation.

11

- Backward recovery: tries to return the system to some
previous error-free state. Typically, backward recovery is
implemented by checkpointing, i.e., periodically, during the
normal system operation, the state of the system is stored in
the memory. In the case of a failure, the system retrieves
the information about the error-free state from memory and
resumes its functioning from this state.

- Forward recovery: upon detection of an error, the system
makes a transition to a new error-free state from which it
continues to operate. Exception handling i s a typical
example of forward error recovery.

- Compensation: can be used when the erroneous state
contains enough redundancy to enable its transformation to
an error-free state. Compensations are often used in
complex transactions.

Fault treatment: aims at preventing faults from being activated again. Fault
treatment is usually performed while the system is not operational, i.e., during
the scheduled maintenance. Fault treatment comprises four steps: diagnosis,
isolation, reconfiguration, and re-initialization.

• Diagnosis determines the causes of errors and focuses on localizing
a fault and determining its nature.

• Isolation prevents faulty components from being used or activated
in further system operations.

• Reconfiguration replaces the faulty components with the fault-free
ones to provide an acceptable but possibly degraded service.

• Re-initialization is an update performed after the new configuration
has taken place.

To implement fault tolerance, it is important to understand the types of
faults that might occur in the system. Faults can be characterized as nature,
duration or extent.

• Nature: We distinguish between random and systematic faults. The
random faults are associated with hardware components. For the
components that are the subjects of random faults, we can use the
statistical analysis and estimate various characteristics, e.g., such as
mean time between failures. Systematic faults are typically
associated with the design errors, e.g., mistakes in the system
specification or implementation. Since an error will occur each
time the erroneous state is reached, statistical methods cannot be
applied to the systematic faults. Systematic faults should be
prevented by the use of fault avoidance and fault removal
techniques.

12

• Duration: Faults can be classified regarding their duration into
permanent, transient, and intermittent faults.

- Permanent faults: once they have occurred, they remain in
the system during its entire operational life, if no corrective
actions are performed.

- Transient faults can appear and then disappear after a short
time.

- Intermittent faults: can appear, disappear and then reappear
at a later time.

• Extent: Faults can be categorized according to their effect on the
system as localized and global ones.

- Localized faults affect only a single hardware or software

module.
- Global faults permeate throughout the system.

Hardware faults can be due to either random component failure or mistakes

in the design. The faults can be permanent, transient, or intermittent and can
have a global or local extent. Software faults are systematic. They occur due to
mistakes in the design of the system. These faults can have an unlimited number
of forms, e.g., coding faults, stack overflows or underflows, logical errors in
calculations, use of uninitialized variables, etc.

To detect and recover from faults, we have to introduce some form of
redundancy into the system design. Redundancy can be defined as the use of
resources or components that would not have been needed if the systems were
fault free. Next, we overview different forms of redundancy.

Hardware redundancy is defined as the use of additional hardware to detect or
tolerate faults. Static, dynamic and hybrid redundancy are the three basic forms
of hardware redundancy.

• Static redundancy allows the designers to implement fault masking,
i.e., it allows the system to nullify the effect of fault occurrence.

• Dynamic redundancy: this form of redundancy allows the system to
detect the faults and then perform reconfiguration to deactivate
faulty components.

• Hybrid redundancy: This form of redundancy combines static and
dynamic techniques. Fault masking is used to prevent the error
propagation within the system, whereas fault detection and
reconfiguration are used to remove faulty components from the
system.

13

Information redundancy: The use of additional information that is required to
implement a given function for the purpose of detecting or tolerating faults. The
use of parity bits, checksums, and error detecting or correcting codes are
the examples of this kind of redundancy.

Temporal redundancy: The use of additional time that is required to implement
a given function for the purpose of detecting or tolerating faults. Temporal
redundancy is used to tolerate transient faults, e.g., by repeating the failed
computation.

Software redundancy can be defined as the use of additional software for the
purpose of detecting or tolerating faults. Designing software that controls fault
tolerance-related functionality is one of the main topics of our research work.

In this thesis, we consider static and dynamic forms of redundancy. The
static redundancy relies on a voting mechanism that compares the outputs of
some redundant modules and produces a majority view. This mechanism
allows the system to mask an occurrence of faults. In practice, static redundancy
is often implemented as the triple modular redundancy arrangement, as shown
in

Figure 2.3. The arrangement consists of three identical modules and one
voting element. If the system is fault free, then each module produces the same
output. Any difference between the outputs represents a failure in the module.
A voting element nullifies the effect of any single failure by comparing the
outputs and generating the output corresponding to the majority view.
Therefore, the system can tolerate the failure of any single module.

14

Figure 2.3: Triple Modular Redundancy

Dynamic forms of redundancy employ fault detection instead of fault
masking approach. These systems attempt to detect faults and then to
reconfigure to continue an error-free function. The effectiveness of the fault
detection process determines the success of the dynamic redundancy. This
approach minimizes the required number of redundant components because only
two modules are required to cope with a single fault and three modules to cater
for two faulty units. The examples of dynamic redundancy include a standby
spare and a duplication pattern, as shown in

Figure 2.4 and Figure 2.5 respectively.

• Standby spare: In the standby spare arrangement, one module is in
the operational state, while the other is in the standby state. A
f ault detection system is used to detect the faults and control the
switch. In case the system is fault free, the switch generates the
output corresponding to the output from the single operational
module. When a fault is detected, the switch will reconfigure the
system and generate the output corresponding to the output
produced by the standby module.

• Duplication pattern: In the duplication pattern, the same input
signal is fed into two identical modules. The comparator compares
the outputs from both modules and generates a failure detection
signal in case a discrepancy is detected. One of the module’s
output is then passed to the next stage.

15

Figure 2.4: Dynamic redundancy: standby spare

Figure 2.5: Dynamic redundancy: duplication pattern

In modern computer-based systems, fault tolerance is often implemented by
software. The software is responsible for detecting faults, initiating error
recovery and performing reconfiguration. To design software, which is
responsible for implementing fault tolerance, we should analyze some factors
including the nature of faults, possibility to introduce hardware redundancy in
the system design, timing and memory constraints, and availability of
information and timing redundancy, etc. Therefore, the basic concepts that
we have described above constitute an important background for designing
fault- tolerant systems. However, redundancy and corresponding functionality
required to control it inevitably introduce additional complexity into the system
design. Since complexity is commonly perceived as one of the main

16

dependability threat, we should employ a disciplined software development
process and formal reasoning to ensure functional correctness of fault-tolerant
software-intensive systems.

In the next chapter, we overview the methodologies that we used in our
thesis to design software that is responsible for fault tolerance assurance.

17

3 Design and Verification Methods

To cope with the complexity of modern software-intensive systems, we should
rely on structured and rigorous approaches for software development. Such
approaches allow us to build robust system architectures and ensure functional
correctness of system behavior.

The range of modeling techniques is broad and spans from graphical
notations to formal mathematical languages. Visual modeling frameworks are
widely used in industry. However, in the safety-critical domain, formal
approaches are also used to verify critical system functions. Since, in our thesis,
we aim at proposing a practice-oriented approach to development and
verification of fault-tolerant systems, in our work we adopt both graphical and
formal modeling techniques. Next, we overview them and present various
examples of modeling fault tolerant aspects.

3.1 UML

Unified Modelling Language (UML) [16, 19] is a framework for visualizing
and documenting software systems. It has become de-facto industry standard
graphical notation for describing software analysis and designs. UML employs
object-oriented style and is independent of a specific programming language
[23].

UML supports model-driven software development. It is a part in a variety
of applications including complex distributed systems. The language
employs a set of specific symbols to graphically represent various components
and relationships between them [16, 19]. There are several automated
environments that support modeling in UML. Some of them also offer a
possibility to generate the program code from the defined graphical models.

The most useful UML diagrams are use case diagram, class diagram,
sequence diagram, state diagram, activity diagram and component diagram. In
our thesis, we mainly used a subset of them that comprises use case diagram,
class diagram, state diagram and sequence diagram. We describe them next.

A use case represents a unit of functionality provided by the system [9].
The main goal of the use-case diagram is to support the development teams in
visualizing the functional requirements of a system and defining the
relationships with actors – the human users or other subsystems interacting with
the modeled system. An example of a use case diagram is shown in

18

Figure 3.1.

Figure 3.1: Example of a Use Case Diagram

The diagram shows two actors User1 and User2 that interact with the
system while it provides a functionality called Service. Often the use case
diagram represents the essential system processes and relationships among
different use cases. Typically, a use-case diagram shows a group of use cases —
either all use cases of the system under construction or a particular subset of use
cases with related functionality.

The class diagram [11] shows how system entities relate to each other,
i.e. it defines the static structure of the system [9]. The class diagrams are
usually used to display the classes about the real-world purpose of the
system, so called logical classes. The class diagrams also depict the
relationships between the classes, such as inheritance or association.

In our work, we aim at making the fault tolerance aspect explicit during
system modeling, design, and verification. Hence, we propose a number of
generic patterns that allow the designers to represent system behavior not only
in the nominal conditions but also in the presence of faults.

An example of a class diagram with an explicit representation of fault
tolerance aspect is given in Figure 3.2. The diagram shows three classes called
SD, SC, and ER. The classes are defined to explicitly represent the steps of fault
tolerance-aware service architecture. The class SD is responsible for the
communication with the user. Moreover, it orchestrates the work of the service
executing component SC and error handler ER. SC implements the main
functionality of the service. Since service execution might fail or succeed, the
SC class contains attributes failure and success. The ER class implements error
recovery functionality that again might succeed or fail, as designated by the
corresponding attributes rec_result and unrec_failure. The dynamics of the class
interactions is explained in the accompanying sequence diagram.

19

Figure 3.2: Example of a Class Diagram

A sequence diagram [10] shows a detailed flow of control that is
typically defined for a specific use case (Service in our case). The sequence
diagrams show the calls between the objects in a sequence. A sequence
diagram has two dimensions – the vertical and horizontal. The vertical
dimension shows the sequence of messages/calls in the time order that they
occur. The horizontal dimension shows the object instances to which the
messages are sent.

The top of the diagram contains the identities of the class instances
(objects). To show that a class instance sends a message to another class
instance, we draw a line with an open arrowhead pointing to the receiving class
instance and place the name of the message/method above the line. The returned
message is drawn with a dotted line with an arrowhead pointing back to the
originating class instance. It is labeled with the return value above the dotted
line.

20

An example of a sequence diagram is given in Figure 3.3. Here we again
demonstrate how to explicitly introduce handling of faulty behavior into the
service design. We define three processes – Service Director (SD), Service
Component (SC) and Error Recovery (ER) as the corresponding parallel vertical
lines. The interactions between the processes are carried out according to the
communication between the service and its user in a time sequence.

SD plays two roles: it handles the user communication with the service and
controls the service execution flow. The user sends a request to execute a
service. The request is received by the service director SD. SD initiates service
execution by sending a message send_req(request) to SC. SC tries to execute the
requested service. In case it completes its execution, it returns the message
success to the service director. In case it fails, it sends a failure message to
ER, i.e., requests to initiate error recovery. ER notifies SD about success
rec_result or failure unrec_failure of error recovery.

Figure 3.3: Example of a Sequence Diagram

21

Another diagram representing the dynamic system behavior is the state
diagram. The state diagrams represent the different states that a class or the
entire system can be in and define the transitions from state to state. The state
diagram has five basic elements: the initial starting point (a solid circle), a
transition between states (a line with an open arrowhead), a state (a rectangle
with rounded corners), a decision point (an open circle) and one or several
termination points (a circle with a solid circle inside it).

An example of a state diagram defined on a system level is shown in
Figure 3.4. The model depicts the communication between the service and its
user. To request the service execution, the user generates an event request

that is received by the service. The request is always replied either with success

in the case of error-free system or failure in the case of error occurrence during
the service provisioning.

In Figure 3.4 (a), the possibility of failed response is represented explicitly.
This corresponds to the error detection step of fault tolerance implementation.
The next extension would be to explicitly define the error recovery stage, as
shown in Figure 3.4 (b). If the system is fault-free, then the service execution
terminates normally and produces the required results together with the
notification of success. If an error occurs, the system makes a transition to the
recovery state. If the error recovery is successful, the system continues to
operate normally; otherwise the unrec_failure event is generated designating
that an unrecoverable error has occurred in the system.

(a)

(b)
Figure 3.4: Examples of State Diagram (a) with explicit representation of failure

(b) with explicit representation of failure and error recovery

22

UML helps to analyze, visualize and discuss the design of software
systems with different stakeholders. It is widely accepted in the industry due to
its readability. However, as a graphical notation, it lacks formality.
Nevertheless, it is a useful front end for a more rigorous notation, such as
SystemC that we discuss next.

3.2 SystemC

SystemC [12, 13] is a widely used system-level modeling language [14] that
allows the designers to represent the system design at different abstraction levels
as well as use various design methodologies. The SystemC specifications can
contain a mixture of abstract models and implementation-level code. The
specifications are executable. Moreover, the framework supports simulation that
allows exploring not only functional but also architectural alternatives.

SystemC provides us with a unified language to define both hardware
and software components. SystemC-based design platforms help to cope with
the complexity of system-level design and often result in reducing system
development cost and time. SystemC has become de-facto verification standard
in real- time embedded systems such as MARTE [17]. It is extensively used in
industrial sectors such as electronic systems, semiconductor technologies,
electronic design automation and embedded software.

SystemC is a high-level, powerful design language written in standard
C++. SystemC uses C++ Class libraries and C/C++ Compiler (such as bcc, gcc,
etc.). It introduces timing, concurrency and structure-related constructs to model
system architecture. It provides capabilities similar to VHDL (Very-High-Speed
Integrated Circuit Hardware Description Language) and strong simulation kernel
that also supports hardware/software co-simulation.

The language of SystemC includes the following constructions: modules,
ports, data types, processes, channels, interfaces, and events.

Modules are the basic building blocks of the language. They allow a
designer to partition system design into smaller parts that encapsulate internal
data representation and algorithms from the rest of the system. Hence, a
SystemC model usually consists of several modules.

A typical module contains ports via which the modules communicate with
each other, processes describing the functionality of a module, internal data,
and channels representing model state and communication between processes.

A template for representing a module in SystemC is given in Figure 3.5.

23

SC_MODULE(Name) {
// ports, processes, internal data, etc
 SC_CTOR (Name) {

// body of construction:
//process declaration, event sensitivities etc.
}

};

Figure 3.5: Definition of simple SystemC module

The SC_MODULE macro designates that the class Name is derived from
the library class sc_module. The macro SC_CTOR declares a constructor,
which maps the membership functions to processes and declares event
sensitivities. The argument should be the name of the module that is currently
declared.

Modules can be instantiated, i.e., there might be several instances with the
identical structure and functionality that are described by one common
module definition.

SystemC uses interfaces, ports, and channels to provide the abstract
modeling primitives for representing communication between modules.
Channels are used to model the actual data transmission; interfaces describe the
sets of operations that the channel provides. Finally, ports are the proxy objects
that facilitate access to the channels through the interfaces. Often one can say
that the port is bound to the channel through an interface.

An interface consists of a set of operations. For each operation, it specifies
the operation’s name, parameters and returns value. The abstract base class
sc_interface is used to derive interfaces in SystemC. It also provides a virtual
function register_port(), which is called to connect a channel with the port via
the interface.

Let us consider an example of a simple interfaces sc_signal_in_if<S>. It
is derived from sc_interface and parametrised by the datatype S. As such, it
provides a virtual function read() that returns constant reference to S. Similarly,
the interface sc_signal_inout_if<S> provides a virtual function write() that
takes as parameter a constant reference to S. Since sc_signal_inout_if<S> is
derived from sc_signal_in_if<S>, it also inherits the function read(). The
semantics of these functions is to read from and write to the channel that
implements the corresponding interface.

Interfaces significantly improve reusability of the modules that we create.
The next step is supporting reusability to provide modules with the ports that
allow them to connect and communicate with the rest of the system.

Ports correspond to interfaces and represent the objects derived from an
abstract class sc_port_base. Figure 3.6 shows a template class for creating
ports.

24

template<class IF, int N=1>
class sc_port : … // class derivation details
{
public:

IF* operator ->();
//member function, member variables

};

Figure 3.6: SystemC template for creating ports

The template class sc_port has two parameters: an interface IF through
which the ports may be connected and an optional integer N denoting the
maximum number of interfaces that may be attached to the defined port. The
method of the port is operator ->(). It returns a pointer to the interface with
which the port is associated.
For instance, we can map the following declaration of the port p into the
definition of the module SC_MODULE given in Figure 3.5:

sc_port<sc_signal_inout_if<int> > p

The port accesses a channel [18] through the interface
sc_signal_inout_if<int>. Since the interface provides the read() and write()
methods, we can read the value of the channel and write to it using the
expressions p->read() and p->write().

Process is a basic unit of functionality that is comprised of a module.
Processes provide us with the means to simulate concurrent behavior, since in
embedded fault-tolerant systems many activities are run in parallel.

A process is a member function of a module and is defined in the module
construction. A defined process accesses external channels through the ports
of its containing module. There are two kinds of processes: method process
declared with the macros SC_METHOD and thread process declared
correspondingly as SC_THREAD.

Figure 3.7 shows an example of a module with a method process
declaration.

25

SC_MODULE(Maximum) {
sc_in<int> n1;
sc_in<int> n2;
sc_out<in> max_n1_n2;

void find_max() {

if (n1>n2) then max_n1_n2 = n1
 else max_n1_n2 = n2;

}

SC_CTOR (Maximum) {
SC_METHOD (find_max);
sensitive << n1 <<n2;
}

 };

Figure 3.7: Example of a module with a method process declaration

When the membership function find_max is invoked, it calculates the
maximum of the inputs n1 and n2 and writes the result to the output max_n1_n2.
However, the member function does not create a process as such. The process
is created inside the constructor by the statement SC_METHOD(Maximum),
which maps the member function to a method process by registering it with the
scheduler. The next statement defines that this process is sensitive to changes in
the values of signals that will be connected to the input ports, i.e., when n1 and
n2 change, the value of max_n1_n2 is recalculated.

Next, we show how to describe the proposed architectural and behavioural
the pattern for fault tolerance-explicit service design described in Chapter 3-1
in SystemC. The fragment of the code in Figure 3.8 illustrates that as a
reaction to a service request received from a user, the service director sends a
request to the service component. The service component can either succeed
or fail to execute a service, i.e., it produces outputs success or failure.

The class1 module can only call member functions of SD interface.
Similarly, the class2 module can only call member functions of SC interface.
The process describes the functionality of the SD and SC in each respective
module blocks. The SC receives a command from SD according to user’s
request (i.e., request). SC class generates output (i.e., result in the case of
success, or failure in case of error). In the case of failure, error recovery is
carried out, i.e., ER class produces rec_result in the case of recoverable error
and unrec_failure otherwise. In the absence of faults, the service returns success.

26

class SD: public sc_interface { // SD class
public:
int request; };
class SC: public sc_interface { // SC class
public:
int result = 1; int failure = 0; int out_;
void output(const SD &sd){
if (sd.request == 1)
out_ = result; // error-free
else
out_ = failure; // fault
};
class ER: public sc_interface { // ER class
public:
int failure = 0; int rec_result = 1;
int unrec_failure = 0; int out_;
void error(const SC &sc){
if (sc.out_ == failure)
out_ = rec_result; // recovered fault
else
out_ = unrec_failure; }; // unrecoverable fault
SC_MODULE(class1) { // module declaration
public:
sc_port<SD> req; // port
SC_CTOR(class1) { // constructor
SC_THREAD(main); }
void main(){ // process
req.request = 1;}};
SC_MODULE(class2) { // module declaration
public:
sc_port<SC> out; // port
SC_CTOR(class2) { // constructor
SC_THREAD(main);}
void main(){ // process
out.output();}};

27

SC_MODULE(class3) { // module declaration

 public:
sc_port<ER> out; // port
SC_CTOR(class3) { // constructor
SC_THREAD(main);}
void main(){ // process
out.error();} };
SC_MODULE(top) { // top level serving module

 public:
SC S_C; SD S_D; ER E_R;
class1* service_director;class2* service_component;
class3* error_recovery;
SC_CTOR(top) { // constructor
service_director = new class1(“Service_Director”);

 service_director -> req(S_C);
service_component = new class2(“Service_Component”);

 service_component -> out(S_D);
error_recovery = new class3(“Error_Recovery”);
error_recovery -> out(E_R);};

Figure 3.8: SystemC Implementation of Fault Tolerant Service Pattern

SystemC provides us with a systematic framework for modeling complex

fault tolerant systems. However, as we have discussed previously, fault
tolerance introduces additional complexity in the system design and hence
increases the likelihood of design mistakes. To ensure correctness of fault
tolerance mechanisms, we should employ the techniques used for fault
avoidance, i.e., use formal verification. The most widely formal verification
technique is model checking. Next, we describe it in details and present an
example of properties that should be verified to guarantee the correctness of
fault tolerant systems.

3.3 Model Checking Fault-Tolerant Systems

3.3.1 Model Checking: Introductory Background

Model checking is a verification technique for verifying functional properties of
computing systems [98, 99, 100, 101,102]. Model checking takes as an input a
finite-state model of the system and the desired property and systematically
checks whether the given model satisfies this property. Typically, the properties
that we are interested in checking include deadlock freedom, invariants, and
request- response properties.

28

Model checking is an automated technique that allows us to check the
absence of errors (i.e., property violations) in the system, i.e., to establish that
the system under consideration has certain properties. In the majority of
distributed systems including fault tolerant systems, we would at least be
interested in establishing that a system never reaches a situation in which no
progress can be made. In other words, more often than not, we are interested at
least in verifying that no deadlock scenario can be found in the specification of
the system.

Since the system specification defines the behavior of the system under
consideration, the specification constitutes the basis for any verification activity.
The system is correct only if it satisfies all properties derived from its
specification. Once a state is found that does not satisfy one (or several) of the
specification’s properties, we can claim that we have discovered an error in the
design. Therefore, correctness as such is relative to a specification.

Model checking is a verification technique that explores all possible
system states in a brute-force manner. State-of-the-art model checkers can
handle state spaces containing up to 109 states. The use of optimizing algorithms
and abridged data structures sometimes allows the model checkers to tackle
models containing up to 1020 states.

The system model is usually automatically generated from a model given
in some programming language like C or modeling language like
SystemC or Promela (which we present later). The model checker examines all
system states to check whether they satisfy a particular property. If the model
checker encounters a state that violates the property under consideration, it
generates a counterexample indicating how the undesired state can be reached.
Essentially, the counterexample shows an execution path leading from the initial
system state to a state that violates the verified property.

A standard way to represent a model is by a transition system – a
directed graph where nodes represent states and edges model transitions, i.e.,
state changes. A state represents some information about a system at a
certain moment of its behavior. Formally, a transition system TS is defined as
a tuple (S,Act,→,I,AP,L) where

• S is a set of states,
• Act is a set of actions,
• →⊆S×Act×S is a transition relation,
• I⊆ S is a set of initial states,
• AP is a set of atomic propositions, and
• L:S→2AP is a labeling function.

29

TS is called finite if S, Act and AP are all finite. In our definition, we describe the
transition systems with the action names for the transitions (state changes) and
the atomic propositions for the states. Intuitively, the behavior of a transition
system is as follows: the system starts in some initial state s0∈I and evolves
according to the transition relation →, i.e., if s is the current state, then a
transition s → α s’ originating from s is selected non-deterministically and
taken. This means that the action α is performed and TS evolves from state s

into the state s’. The procedure repeats until a state that does not have
outgoing transitions is reached.

The labeling function L relates a set L(s) ∈ 2AP of atomic propositions to
any state s, i.e., L(s) identifies only those atomic propositions a∈ AP, which are
satisfied by state s. For a given propositional logic formula Φ, s satisfies the
formula Φ if the evaluation induced by L(s) makes the formula Φ true, i.e.,

s|=Φ iff L(s) |=Φ

Let us consider a simple example – a road crossing. We have two traffic
lights regulating the car movement in the orthogonal direction. Both traffic lights
have two states: red and green. Both traffic lights are described by the similar
transition systems consisting of two states: red and green and two transitions: a

and b indicating the change of the light. For the first traffic light red → a green

and green → b red. For the second traffic light red → b green and green → a red

correspondingly. The crossing can be represented as a parallel composition of
two transition systems. Both traffic lights synchronize using the actions a and b

indicating the change of the light. Let us assume that the initial state for both
of them is red. Since the first traffic light is waiting to be synchronized on
action a, the second light is blocked because it is waiting to be synchronized
with action b. It represents deadlock and an obvious mistake in the system
design.

Linear Temporal Logic (LTL) provides an intuitive but mathematically
rigorous notation for expressing properties about state labels in the model
execution. LTL formulae over the set AP of atomic propositions are formulated
using the following grammar:

φ :: = true | a | φ1˄ φ2 | ¬ φ | Ο φ | φ1 ∪ φ2

where a ∈ AP.
The until operator allows us to derive temporal modalities ◊ eventually,
“sometimes in the future” and □ always, “from now on forever” as follows:

◊φ =true ∪ φ and □ φ = ¬ ◊¬φ

30

For instance, let us express the property that two processes P1 and P2 never
simultaneously access their critical section (a shared resource):

□ (¬crit1 ∨ ¬crit2).
This formula expresses that always □ at least one of the two processes is not in
its critical section (¬criti). This is an example of a safety property. Another
type of properties – liveness properties – describe the progress of the system. For
our example of the critical section, the liveness property states that each process
Pi is infinitely often in its critical section:

(□◊ crit1) ∧ (□◊crit2)
There is a variety of general and specific model checkers that automate

verification. Though they vary in their performance and underlying algorithms,
they follow the same verification process as shown in Figure 3.9. The
preprocessor extracts a state transition graph from a program, model checker
takes the state-transition graph and a LTL formula and determines whether the
formula is true or false.

Figure 3.9: Model Checking Process

One of the popular model checkers is SPIN. Next, we give its overview
and present examples of models of fault-tolerant systems.

3.3.2 SPIN PROMELA

SPIN [22, 66] is a model checker that has been initially developed to verify
communications protocols but quickly became popular for verification of
distributed and concurrent systems in general. The system models verified by
SPIN are written in PROMELA – Process Meta Language. Correspondingly,
SPIN stands for Simple PROMELA Interpreter (SPIN). It is a simulator and
verifier for the properties of PROMELA models.

A program in PROMELA consists of a set of processes that can have
parameters. SPIN compiles and executes PROMELA programs in the simulation
mode. PROMELA adopts the syntax and semantics of C programming language
to define expressions. The control statements are defined using the notion of
guarded commands, which is particularly suitable for expressing

Preprocessor Model
Checker

Program LTL
Formula

Satisfied

Counter
Example

31

nondeterminism inherent in distributed communication systems. There are five
control statements: sequence, selection, repetition, jump, and unless.

The PROMELA programs can contain assertions – the statements
containing predicates that are evaluated during the execution. When an assert

statement is executed during a simulation, the predicate expression is evaluated.
If it evaluates to true, execution proceeds normally, otherwise, the program
terminates and gives an error message. Though assertions are useful for
verification, it is limited to a verification of properties at specific control points in
the processes.

To check the correctness of a model, we should verify that the desired
properties hold through all possible execution paths. For the distributed and
concurrent programs, it means that we have to verify all possible interleaving of
the statements. When SPIN simulates a program, it creates one computation by
interleaving the statements of all the processes. Typically, the design errors
occur due to unforeseen interferences between processes. The use of LTL can
significantly help in finding hidden interferences and debugging complex
distributed and concurrent fault-tolerant systems.

SPIN supports verification of a standard set of temporal operators:
eventually ◊ (denoted as <>), always □ (denoted as []), and until U (denoted as
U).

Figure 3.10 presents the PROMELA model of the fault tolerant service

architecture described in Chapter 3-1. SD process defines request command for
SC and SC process generates the respective output depending on the
request. If the output is a success, the system is error free. In the case of error,
the error recovery is initiated. If error recovery succeeds, then rec_result is
generated otherwise, unrec_failure is produced.

32

bool request, success, failure;
bool rec_result, unrec_failure;
bool ack = true;
active proctype SD() {
if
:: ack == true -> request = true;
:: else
#ifdef FIX
-> break
#endif
fi;
}
active proctype SC() {
if
:: ack == true -> {
success = false; failure = true;
if
:: failure != false -> {
bool error_flag = true; run ER(error_flag);}
fi;}
:: else
#ifdef FIX
-> break
#endif
fi; }
proctype ER(bool e) {
e = false;
if
:: e == false -> rec_result = true;
:: e == true -> unrec_failure = true;
:: else
#ifdef FIX
-> break
#endif
fi;}

Figure 3.10: Promela Implementation of Fault-Tolerant Service

33

State-vector 24 byte, depth reached 14, errors: 0
37 states, stored
22 states, matched
59 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.001 equivalent memory usage for states
(stored*(State-vector + overhead))
0.290 actual memory usage for states
64.000 memory used for hash table (-w24)
0.343 memory used for DFS stack (-m10000)
64.539 total actual memory usage

Figure 3.11: Example of SPIN output

In our case, the verification was successful. In the case of deadlock, the

output file shows a counterexample. The output file also depicts the number of
states and transitions.

SPIN allows us to verify various properties expressed as LTL formulae. For
instance, we can verify that eventually, service execution succeeds as follows:

◊(success = true)

Model checking is a popular verification technique. Its main advantages are
as follows:

• It does not require sophisticated mathematical knowledge from
the user. The user enters a description of the program to be
verified and specifications to be checked. The checking process is
an automatic “push-button” technology.

• Model checking is fast compared to other rigorous techniques such
as proof-based verification.

• The model checker generates a counterexample in the case of
property violations. A counterexample is a concrete execution
trace that shows the error. The counterexamples are helpful in
debugging complex systems.

• Model checking can be utilized during the design of a
complex system with partial specifications. We do not have to
wait until the design phase is complete.

• Temporal Logics can easily express many concurrency properties

34

However, as any brute-force technique, model checking suffers from the

scalability problem known as state explosion.
In our work, we extensively relied on model checking to verify various

aspects of fault tolerance. In particular, we used it to verify the functional
correctness of mode-rich systems – a large class of systems that we overview
next.

35

4 Fault Tolerance in Mode-Rich System

The notion of modes is widely used to structure the behavior of complex
computer- based systems. Often analyzing system fault tolerance, we identify
normal and degraded operational modes. This is an example of a very
simple mode logic. For a large class of systems, mode logic is much more
complex and is defined by a variety of internal and external conditions. In
this chapter, we discuss the problems associated with designing fault-tolerant
systems with complex mode transition schemes.

4.1 Modes

Modes are defined as mutually exclusive sets of system behaviors. Modes are
extensively used to structure the dynamic behavior of systems [4] from different
domains such as automotive, avionic and space.

The system modes are introduced based on the operational conditions of the
system. Designing mode-rich systems is a complex engineering task. Firstly, the
mode logic should be designed in such a way that the conditions triggering
mode transitions are deterministic, and modes themselves are
deterministically deducible from the states of the components. Secondly, for each
mode, we should explicitly define mode entering conditions and mode
invariant, which is preserved all the time while the system remains in this
particular mode. Finally, mode logic should unambiguously define
relationships between the modes at different layers of the system architecture.

Often structuring the system design according to the operational modes
provides us with a suitable basis for introducing fault tolerance mechanisms. The
main principle is to define the mode logic in such a way that every time upon

36

the occurrence of a component failure the system makes a transition to a
more degraded mode in which the failed component is inactive.

While designing the mode logic according to this principle, we introduce
two types of transitions: forward and backward. The forward mode transitions
bring the system from the current mode to the mode in which the system
provides more advanced functionality. Correspondingly, backward mode
transitions occur when an error occurs, and the system should be put into
the more degraded mode compared to the current one.

Figure 4.1 illustrated the general principle described above. Since we
present an excerpt from the overall mode logic, we assume that we start in the
mode current. When there is no error in the current mode, then next mode
is reached as a result of the forward transition. In the case of failure, in the
current mode, the backward transition occurs that brings the system to a more
degraded mode (previous mode) in which the failed component is not used, and
hence the effect of its error is masked.

From the architectural point of view, we need to introduce the dedicated
components that orchestrate mode transitions – we call such components Mode
Managers (MM). MM monitors the states of other system components that are
controlled by unit managers (UM). When the conditions for entering another
mode are satisfied, Mode Manager MM sends the commands to Unit Managers
to make the transitions to the corresponding mode.

Typically, each particular Unit Manager UM controls several units
(components). Often the unit consists of two branches – redundant and nominal,
i.e., there are two components – the nominal and a spare. UM is responsible for
managing the state transition of unit branches.

Let us assume that the initial system mode is Powering. It takes place when
the unit branch state switches from off to on. Similarly, un-powering is carried
out when the unit branch state switches from on to off. Failure Detection,
Isolation and Recovery (FDIR) Manager handles the errors of the units and
provides an error recovery algorithm to recover from faults. In the case of a
nominal unit branch error, FDIR initiates unit reconfiguration by switching
the failure branch (nominal) to backup branch (redundant). After unit
reconfiguration, MM executes forward mode transition. When an error occurs in
the redundant branch of the unit, the corresponding notification is sent to the
FDIR manager, and the backward mode transition is trigged by MM.

37

Figure 4.1: Mode Logic of Fault-Tolerant System: a General Principle

In the case of the centralized mode management, a single mode
manager is responsible for controlling mode transitions. However, in the
distributed mode management, several mode managers (i.e.; MM1, MM2, etc.)
communicate with each other to implement the desired mode logic. The generic
architecture of a fault tolerant with a distributed mode management is shown in
Figure 4.1.2. Next, we consider two cases: a simpler one with one mode
manager, i.e., the case of the centralized mode management and then a more
generic one – with the distributed mode management.

4.2 Mode-Rich Fault-Tolerant Systems:

Centralized Mode Management

We discuss the architecture and properties of a mode-rich fault-tolerant system
with the centralized mode management by an example -- Attitude and Orbit
Control System (AOCS) [5] [7]. The purpose of the Attitude and Orbit
Control System (AOCS) is to acquire and maintain the attitude of a
spacecraft throughout its mission. AOCS is activated upon the spacecraft
separation from the launch vehicle. AOCS is an example of mode-rich systems
with a complex mode transition scheme. AOCS is a generic component of
different kinds of spacec r a f t s . Its development and verification have been
undertaken by various teams, including the EU project DEPLOY [6]. AOCS

38

performs multiple tasks such as sensor data processing, control computation and
actuator commanding [8].

Figure 4.2: Generic Architecture of Mode Rich Systems

The main functionality of AOCS is to control the attitude and the orbit

of a satellite. The satellite is continuously changing its positioning due to
various environmental disturbances. However, to perform the scientific
measurements, the satellite should maintain a certain accurate position for some
period. Therefore, the attitude needs to be monitored and adjusted accordingly.
AOCS consists of several components that manage the attitude and the orbit of a
satellite as well as carry out scientific measurements specific to the particular
mission of the satellite. AOCS instantiates the generic architecture given in
Figure 4.2 as follows: there are four managers -- AOCS Manager, Unit
Manager (UM), Mode Manager (MM) and FDIR Manager (FM).

Figure 4.3 represents the version of the architecture of AOCS with the
centralized mode management.

39

Figure 4.3: Centralized AOCS Architecture

The main operations of MM in AOCS are to check preconditions of mode

transition, execute mode transitions, and manage the controllers and units.
AOCS logic contains the following modes: Off (A), Standby (B), Safe (C),
Nominal (D), Preparation (E), and Science (F) [8, 31]. The UM in AOCS is
responsible for checking the states of the nominal branch (branch A) and
redundant branch (branch B) of the units, to manage the state transition
executions, and to handle the unit reconfigurations. Control Pointing Controller
(CPC) and Fine Pointing Controller (FPC) are two control algorithms that are
used to control computations. AOCS Manager manages them as well. Fault
Manager – FM – handles errors of branch state transition and attitude
errors. FM monitors error occurrence and initiates error recovery. An informal
description of mode logic is given below:

1) All unit branches are put into the inactive state after a
successful completion of mode transition to mode Off or mode
Standby.

2) In mode Safe, the particular branches, i.e., Earth Sensor (ES),
Sun Sensor (SS) and Reaction Wheel (RW) are set to ‘on’ state,
while remaining branches go to ‘off’ state. Only Coarse Pointing
Controller (CPC) is active in this mode.

3) In mode Nominal, GPS is set to ‘coarse’ state. While the
particular branches, i.e., RW, Star Tracker (STR) and Thruster

40

(THR) are set to ‘on’ state and remaining branches go to ‘off’
state. Only Fine Pointing Controller (FPC) is active in this mode.

4) In mode Preparation, Global Positioning System (GPS) is set to
‘fine’ state and Payload Instrument (PLI) to ‘standby’ state, while
the remaining unit branches and controllers maintain the same state
as in the previous mode D.

5) After successful completion of mode Preparation, the satellite
enters in mode Science. Only PLI is set to ‘science’ state in this
mode, and remaining unit branches and controllers maintains the
same state as in previous mode Preparation.

To visualize the AOCS mode logic, we use UML state diagrams. The

detailed description of it is given in papers VI and VII included in part II of the
thesis. Figure 4.4 shows the UML state diagram for GPS. The diagram depicts
the transition from mode D to mode E and includes forward and backward
transitions as well as unit reconfiguration.

GPS activation starts from mode D. If the GPS state is ‘coarse’ and there are
no errors in other components, then forward mode transition occurs. If the
GP S is in mode D, it remains ‘off’ for some period. If it does not change its
state to ‘coarse’, then branch A and branch B of the GPS unit will be checked.
When an error occurs only in branch A, then unit reconfiguration is carried out
by deactivating the branch A and activating the branch B. After successful
completion of unit reconfiguration, mode D is changed to mode E. The
backward mode transition (change to mode C) takes place when both branches
of the GPS have failed.

Figure 4.4: Centralized Mode-Rich Fault-Tolerant System: Example of GPS unit

41

The state diagram serves as a middle hand between the informal
description of AOCS and its formal representation. Since AOCS is an example
of a complex fault-tolerant embedded system, we used SystemC to implement
and subsequently, verify it. The general pattern for modeling mode transitions
in SystemC is given in Figure 4.5. For a given mode, it includes mode
transition, error detection, and error recovery. We have chosen to illustrate it
by the GPS example. The variable declarations include modes, statuses of GPS
and its branches as well as the set of the UM commands to GPS. The status of
GPS unit is checked according to the current mode. When the status of GPS
satisfies the condition of the current mode, then MM switches the mode to the
next mode. If it detects the branch state errors, then two cases are considered. In
the first case, if the failure of branch A occurs but branch B is healthy, then
the unit reconfiguration is performed. In the second case, if both branches
have failed then backward mode transition is initiated.

42

Variables
prev_mode: {A, B, C, D, E, F}
curr_mode: {A, B, C, D, E, F}
next_mode: {A, B, C, D, E, F}

GPS_status: int

Branch_A_status: int

Branch_B_status: int

Begin

if GPS_status of curr_mode satisfied

then initiate a forward transition to next_mode

according to the predefined scenario;

if GPS_status of curr_mode failed
then check the nominal branch A and redundant

branch B of GPS;

if Branch_A_status of GPS failed
then initiate unit reconfiguration of curr_mode

and proceed to next_mode according to the

 predefined scenario;

if Branch_B_status of GPS failed
then initiate a backward transition to prev_mode

according to the predefined scenario and the

choice of previous mode depends on the current

mode and its fault;

End

Figure 4.5: A general pattern for defining Mode Transition in SystemC (GPS
instance)

43

To verify the correctness of our SystemC implementation, we used SPIN.
Figure 4.6 illustrated the verification procedure. Upon powering UM, MM
sends its current mode acknowledgment to UM, then UM sends a command to
GPS to perform the necessary actions. As soon as they are completed, UM sends
an acknowledgment. If the current mode is mode C and mode transition to mode
D is going to take place, then UM authorizes it to send the powering request to
GPS. In case GPS powering is true, then both branches (i.e., A and B) change
their state to ‘coarse’ according to the mode D and proceed to the next mode E.
In the case of a fault, error recovery is initiated.

SPIN checks the absence of deadlocks and livelocks. As it is easy to see,
to implement the desired mode logic, AOCS relies on a complex communication
scheme. The use of model checking allows us to verify the correctness of its
implementation and significantly improves our confidence in the validity of the
developed system.

// initial status of GPS unit N_GPS = off;

R_GPS = off;

Powering = true; // powering for Mode D

if

::(N_GPS == coarse && R_GPS == coarse)�{

error_flag = 0;

run go_to_modeE(N_GPS, R_GPS); }

::(N_GPS != coarse && R_GPS == coarse)�{

error_flag = 1;

run reconfiguration(N_GPS, R_GPS);

run go_to_modeE(N_GPS, R_GPS); }

::(N_GPS != coarse && R_GPS != coarse)�{

error_flag = 1;

run go_to_modeC(N_GPS, R_GPS); }

:: else

#ifdef FIX

�break

#endif fi;

Figure 4.6: Example of Mode Transition Verification

We have considered the case of a centralized mode management. In this

case, the architecture contains one dedicated component – Mode Manager –
that has a “global” view on the system state and hence is capable of making
the decisions about mode transitions.

44

Often satellite systems are composed of several rather independent
subsystems. Each of the subsystems has its mode manager. Therefore, to
make the decisions about “global” mode transitions, the mode managers, which
are distributed across the system, should communicate with each other and agree
on a common decision regarding the next mode.

Next, we consider this case, i.e., discuss fault tolerance of mode-rich
systems with the distributed mode management.

4.3 Mode-Rich Fault-Tolerant Systems:

Distributed Mode Management

Distributed mode management introduces additional complexity into the design
of fault-tolerant systems. Let us consider the following scenario. We have two
subsystems, and each of them has its mode manager. Assume that each
subsystem has reached the conditions to switch to a more advanced operational
mode. However, while making such a transition, an error occurs in one of the
systems, and as a result, its local mode manager issues a command to switch to a
more degraded mode. Obviously, the system would be left in an inconsistent
state if before issuing a command to switch to a new mode the local mode
managers would not agree on the common mode transition.

Such an agreement is often called a handshake protocol. The handshake is a
process in which connection is established between two modules, and the
information is transferred from one module to another. As a result, two modules
agree on a common action (or data).

Let us discuss how to use the handshake protocol to ensure the correctness
of mode logic of fault tolerant systems with the distributed mode management.
We consider a system that consists of two identical modules [32]. When one of
the components of the first module fails, the system switches to the use of the
second module. However, if at a certain point in time, some component of the
spare module fails too, then none of the models remains operational. To avoid
failure of the entire mission, the system should employ healthy components of
both modules and define the desired control flow over them by introducing a
communication between the modules and their corresponding mode managers.

Let us consider a modified version of AOCS – Distributed Attitude and
Orbit Control System (D-AOCS). In D-AOCS, mode transitions and error
recovery involve a sophisticated synchronization between mode managers – the
synchronization that is implemented using a complex handshake protocol.

D-AOCS contains two mode managers – MM1 and MM2, which manage
mode transitions in their respective parts. The mode managers execute mode
transitions in parallel and use handshaking to synchronize on the phases of
changing between modes.

45

The mode managers proceed according to the following generic behavioral
pattern. Assume that the conditions for entering next mode are satisfied in
module 1. Mode manager MM1 sends a request to MM2 with a proposal to enter
the next mode. The Mode manager of the second module, MM2, checks the state
of the module. If the conditions for entering the proposed mode are satisfied,
then it sends a reply-designating that it has agreed on the transition to the
proposed mode. Upon receiving the reply, the first mode manager issues the
command to the components of module 1 to make the transition to the desired
mode. Moreover, it sends the acknowledgment to MM2 that the transition to the
next mode has been initiated. Upon receiving such an acknowledgment, MM2
issues the command to the components of Module 2 to make the corresponding
mode transition. Then it sends the acknowledgment to MM1. Therefore, both
modules agree (i.e., “handshake”) on the mode transition. As a result, the
components of both modules are managed in a synchronized way.

Both forward and backward mode transitions follow the behavioral pattern
described above. The only difference is that the mode manager of the module
that has experienced an error initiates the backward mode transition. Informally,
the requirements of D-AOCS can be described as follows:

1) When both modules enter mode A or B, all units and controllers
have inactive/idle status. MM1 and MM2 periodically
communicate with each other to notify that there is no error
occurred, and the given modes are maintained. After successful
acknowledgment, both managers switch their current mode to the
next mode.

2) When mode transition to mode C is commanded by the managers,
all units except ES, SS, and RW remain in ‘off’ state, and only
CPC is activated. After that, both mode managers confirm error-
free state to each other. MM1 and MM2 go to next mode after a
successful handshake.

3) Upon successful transition to mode C, the modules should try to
achieve mode D. The units – RW, STR, and THR are set to ‘on’
state, GPS is put in ‘coarse’ state. FPC is activated. When the
desired states are reached in both modules, the mode managers
handshake and become ready to progress to the next mode.

4) To enter mode E, only GPS and PLI should change their status to
‘fine’ and ‘standby’ respectively and the remaining units and
controllers maintain the same status as in mode D. Then managers
check that conditions for entering mode E are satisfied. Upon
confirming that the conditions have been indeed achieved, the
mode managers handshake and make a transition to the next mode.

46

5) In the case of the mode F, the PLI unit operates with ‘science’ state.
All other units and controllers keep the states reached in mode E.
MM1 and MM2 both update each other regarding the success of
mode transition and stay in this mode until all desired operations of
the satellite’s mission are accomplished or an error occurs, and a
backward transition is initiated.

Figure 4.7: State Diagram of D-AOCS (GPS example)

The state diagram shown in Figure 4.7 defines the dynamic behavior of the

GPS unit of D-AOCS. The diagram shows the mode transition from mode D to
E and from mode D back to C. GPS activation starts from mode D by both
managers. If GPS status in mode D of MM1 or/and MM2 remain inactive, then
branches of GPS unit will be checked to detect the faulty branch. Mode
transition cannot be made until error recovery (reconfiguration) is completed.
Upon that the mode managers handshake and proceed to the next mode.

If an error occurs only in branch A, then unit reconfiguration is carried out
by switching off branch A and activating branch B. Backward mode transition
takes place in MM1 or/and MM2 to mode C when branch B of GPS has failed.
After successful completion of unit reconfiguration or backward mode transition,
the mode managers send the response notification, and the handshake protocol is

47

initiated. As a result, the mode transition from mode D to mode E can be
initiated by both mode managers. The detailed modeling and verification of
the handshake protocol in D-AOCS are described in Paper III.

A fragment of the general scheme implementing distributed mode
management using the handshaking protocol is given in Figure 4.8. If GPS state
in each module fulfills the requirements for entering the next mode, then
mode managers notify through handshake procedure that the modules are in the
error-free state and transition can be initiated. It results in the forward mode
transition. If GPS error occurs in any of the modules, then the mode manager
responsible for controlling the failed unit initiates an error recovery, i.e., the
backward mode transition or the unit reconfiguration. The other mode
manager waits until the error recovery of the failed unit is completed. After
the successful error recovery, both mode managers proceed to the next mode
simultaneously using the described handshake protocol. The detailed modeling
and implementation of handshaking protocol in case of Control and Data
Management Unit (CDMU) are explained in Paper IV.

The implementation of the handshake procedure for D-AOCS is verified
using SPIN. We have checked the correctness of backward mode transition
scenarios, forward mode transition scenarios, unit reconfiguration scenarios and
handshake procedure.

Figure 4.9 presents an excerpt of the model describing the behavior in
mode D. If GPS maintains the required state in both modules, then mode
managers notify each other through the handshake procedure and initiate
forward mode transition to the next mode E. If an error occurs during a mode
transition in any module, then the mode manager responsible for controlling
failed unit initiates an error recovery, i.e., the backward mode transition
or the unit reconfiguration. Verification demonstrates that the system can
deadlock if error recovery does not terminate. To ensure that the deadlock is
excluded, we can introduce a deadline to guarantee that the error recovery
cannot proceed indefinitely.

In this section, we described our approach to modeling and verification of
mode-rich fault- tolerant systems. Such an approach can be used in developing
distributed embedded systems where we can define a finite set of states for each
component. Another large class of distributed systems is service-oriented
systems. The use of mode-based modeling would be cumbersome for such kinds
of systems, since the behavior of services is described via their inputs and
outputs rather than states. Hence, to develop service-oriented fault-tolerant
distributed system, we need to rely on other techniques. We describe them in
the next chapter.

48

 Variables
 prev_mode: {A, B, C, D, E, F}
 curr_mode: {A, B, C, D, E, F}
 next_mode: {A, B, C, D, E, F}
 MM1_GPS_status: int

 MM2_GPS_status: int

 MM1_Branch_A_status: int

 MM2_Branch_A_status: int

 MM1_Branch_B_status: int

 MM2_Branch_B_status: int

Begin

if MM1_GPS_status and MM2_GPS_status of curr_mode satisfied
then initiate a forward transition in MM1 and MM2 to next_mode according to the

predefined scenario after handshaking;

if MM1_GPS_status or MM2_GPS_status of curr_mode failed
then check the nominal branch A and redundant branch B of GPS in current modes of

MM1 and MM2;

if MM1_Branch_A_status of GPS failed
then MM2 maintains the current mode and MM1 initiates unit

reconfiguration according to the predefined scenario and after reconfiguration

both managers initiate a forward transition after handshaking;

if MM2_Branch_A_status of GPS failed
then MM1 maintains the current mode and MM2 initiates unit

reconfiguration according to the predefined scenario and after reconfiguration

both managers initiate a forward transition after handshaking;

if MM1_Branch_B_status of GPS failed
then MM2 maintains the current mode and MM1 initiates backward transition to

prev_mode according to the predefined scenario. The choice of previous mode

depends on the current mode and its fault. After error recovery in MM1, both

mode managers initiate a forward transition after handshaking;

if MM2_Branch_B_status of GPS failed
then MM1 maintains the current mode and MM2 initiates backward transition to

prev_mode according to the predefined scenario. The choice of previous mode

depends on the current mode and its fault. After error recovery in MM2, both

mode managers initiate a forward transition after handshaking;
End

Figure 4.8: Distributed Mode Management (GPS example)

49

Powering = true; //powering for Mode D in MM1 & MM2
// GPS1 denotes for MM1 and GPS2 denotes for MM2
if
::(GPS1 == coarse && GPS2 == coarse)�{
MM1_error_flag = 0;
MM2_error_flag = 0;
run handshake(MM1_error_flag, MM2_error_flag);
run go_to_modeE(GPS1, GPS2); }
::(GPS1 != coarse && GPS2 == coarse)�{
MM1_error_flag=1;
MM2_error_flag=0;
run handshake(MM1_error_flag, MM2_error_flag);
if
::(N_GPS1 != coarse && R_GPS1 == coarse)�{
run reconfiguration(N_GPS1, R_GPS1);}
::(N_GPS1 != coarse && R_GPS1 != coarse)�{
run go_to_modeC(N_GPS1, R_GPS1);
run go_to_modeD(N_GPS1, R_GPS1);

MM1_error_flag = 0;}
fi;
run handshake(MM1_error_flag, MM2_error_flag);
run go_to_modeE(GPS1, GPS2); }
::(GPS1 == coarse && GPS2 != coarse)�{
MM1_error_flag = 0;
MM2_error_flag = 1;
run handshake(MM1_error_flag, MM2_error_flag);
if
::(N_GPS2 != coarse && R_GPS2 == coarse)�{
run reconfiguration(N_GPS2, R_GPS2);}
::(N_GPS2 != coarse && R_GPS2 != coarse)�{
run go_to_modeC(N_GPS2, R_GPS2);
run go_to_modeD(N_GPS2, R_GPS2);

MM2_error_flag = 0;}
fi;
run handshake(MM1_error_flag,MM2_error_flag);
run go_to_modeE(GPS1, GPS2); }
fi;

Figure 4.9: Distributed Mode Management: Verification of Handshake
Procedure (Mode D example)

50

51

5 Fault Tolerance in Service-Oriented

Distributed Systems

In this chapter, we discuss the problem of ensuring fault tolerance of service-
oriented systems. This is a large class of distributed systems, which includes a
variety of networked applications. Ensuring reliable operation of such systems
relies on dedicated architectural solutions as well as systematic analysis of
failure modes of system components. In this section, we discuss our approach to
developing fault tolerant service-oriented systems.

5.1 Fault Tolerance in Service Oriented

Architectures

While ensuring fault tolerance, modern software should cope with an inherent
heterogeneity of networked systems that often work over diverse platforms and
rely on a variety of protocols as well as interact with a wide range of
devices. Service Oriented Architecture (SOA) enables seamless integration of
heterogeneous components and provide the developers with a powerful
mechanism to cope with the complexity of such heterogeneous environment.

SOA is an architectural style that relies on loosely coupled interacting
software components providing services. A service can be defined as a piece of
functionality that is offered by a service provider to a service consumer. All
service-oriented systems follow the same behavioral pattern: a service
consumer sends a service request to a service provider, the service provider,
either by itself or in cooperation with other service providers, executes the
requested service to produce the required result and responds to the service
consumer.

SOA relies on two main architectural principles to support loose coupling
of the components. Firstly, interfaces should be defined for all interacting
services. The interfaces should be available for all service providers and service
consumers. Secondly, all messages are described via an extensible scheme; all
messages are delivered through the interfaces.

The service interface can be seen as a contract defining the functionality of
the service in a generic platform-independent manner. Therefore, the invocation
mechanism including the protocols, service descriptions, and service discovery
facilities should follow the predefined common standards.

52

Services should be self-describing, i.e., they should publish their
capabilities, interfaces, behavior, and quality attributes. The description of the
interface should include a service signature that includes its input, output,
and error messages. The quality of service (QoS) attributed typically
describes non-functional attributes, such as average response time, failure rate,
etc. Moreover, it often includes a description of security policy.

While developing the methods allowing us to guarantee fault tolerance of
service-oriented systems, we should take into account the following constraints.
Firstly, the services are stateless, i .e., we cannot assume that the current
conditions or internal states of a service are known. Secondly, since the
services are loosely coupled, they do not share common modules. Finally,
services should be location-transparent, i.e., we cannot assume that a certain
service would be available locally.

SOA supports the construction of the complex services by coordinated
aggregation of lower level services (subservices). The service director
communicates with subservices. It orchestrates the execution flow of the service
and coordinates error recovery, as explained in Chapter 3.

The important goal of introducing fault tolerance in the service architecture
is to prevent a propagation of faults to the service interface level (i.e., to avoid a
service failure [90, 91]). While we cannot observe the states of the subservices,
we can monitor their responses and, in the case of subservice failure, rely on
redundancy to mitigate the effect of error occurrence.

As we described in Chapter 2, to achieve fault tolerance, we always have to
introduce some form of redundancy into the system architecture. We propose
three types of architectural patterns for introducing redundancy into the
architecture of complex aggregated services, as shown in Figure 5.1.

Figure 5.1: Architectural Patterns for Introducing Redundancy

The duplication pattern relies on introducing a redundant service
component that provides the (sub)service that is identical to a certain subservice
included into the service architecture. Both services can be executed in parallel.
A successful execution of a service by any of two service components is
sufficient to guarantee the reliable execution of the aggregated service.

53

The triple modular redundancy pattern implements the principle described
in Chapter 2-2. The precondition for applying this pattern is that there are at least
three service components available over the network that provide an identical
(sub)service. To use the triple modular redundancy pattern, we also have to
introduce a specific voting service into the architecture of the aggregated
service. To execute a triplicated (sub)service, the request is sent to all three
service providers. The results of the service execution are sent to a voting
element – a dedicated software component that performs a comparison of
the results and produces the final result.

The Stand-by spare pattern is an example of dynamic redundancy. It
assumes an availability of a spare service component providing the desirable
service. The spare is used only if the execution of the service by the main
component fails. If the main service component succeeds in executing a service,
the spare service component remains inactive.

The dynamic behavior of an aggregated service with the integrated fault
tolerance mechanisms is shown in Figure 5.2. Here S1, S2,....Sn designates
services from which the service is composed. IN and OUT correspond to a
service request and service result. The execution flow might include repeated
execution of a certain subset of subservices as well aborting the whole service.

If a transient error occurs in the service execution, then the service director
can recover from the error by re-executing the failed subservice. If the
error is unrecoverable and there are no possible redundant service providers
available, then the service director aborts the entire service execution, and a
failure response is returned. Service execution in case of individual service Si
(where i is 1 to n) might include parallelism, though overall high-level service
execution flow is considered sequential [36].

Figure 5.2: Service Execution Flow

To ensure that fault tolerance mechanisms are introduced into the service
architecture in an appropriate way, we should support a systematic analysis of
possible failure modes of the service. We propose to use Failure Modes and
Effect Analysis (FMEA) technique to achieve this goal.

54

FMEA [76, 77, 78, 84] is an inductive analysis method that provides
information about possible failure modes of the system and its components. It
supports a systematic description of the error detection and recovery procedures.
FMEA is used to investigate the causes of faults, their effects on the entire
architecture and the means to cope with them. The results of FMEA are usually
presented in the tabular form. Typically, an FMEA table contains the
following fields: component name, failure mode, possible cause, local effect,
system effect, detection, and remedial action.

FMEA can be performed at different levels, e.g., system level (focusing on
global functions) or component level (inspecting functions of the individual
component). The content of an FMEA table may vary. For example, it may take into
account the probability of failure occurrence, severity, risk level, etc.

Figure 5.3 depicts the main fields of an FMEA table and their description.

Component Component name

Failure mode Potential failure modes

Possible cause Reason associated with supposed failure mode

Local effects Changes in the performance of a component

System effects Changes in the performance of a system

Detection Methods for failure mode detection

Remedial action Actions to tolerate the failure

Figure 5.3: Generic Form of FMEA Table

Let us exemplify our approach to applying FMEA to systematically analyze

failure modes in the context of SOA. Let S1 be a subservice in the composite
service S. Moreover, we assume that the failure modes of S1 can be either a
transient silent failure (no response) or detectable failure (failure response). In
the case of the transient silent failure, the failures can be detected by timeout.
The other failures are detected by receiving the failed response from the service.

To mitigate the failure of S1, we can use the triple modular redundancy
pattern. However, we should check that there are two other service components
available that provide services identical to S1. Figure 5.4 illustrates an analysis
of the transient silent failure.

55

Component S1

Failure mode Transient silent failure

Detection Timeout

The use of redundancy Available

Available redundancy S11, S12

Redundancy pattern Triple modular redundancy arrangement.

Effect of redundancy Result is produced upon timeout

Recovery Masking failure by use of triple modular

redundancy arrangement. In case of

simultaneous failure of S1, S11 and S12

repeat execution

Figure 5.4: Example of Failure Analysis using FMEA

In our approach to architecting fault tolerant services, we have focused on
analyzing input/output behavior of the services and demonstrated how to
augment service architecture with various redundancy arrangements. In such an
approach, the decision about embedding fault tolerance is done at the design
time. However, often, during system development, our knowledge about system
behavior is incomplete. By integrating capabilities to monitor system behavior at
run-time and introducing the possibility to dynamically adapt system
architecture, we can achieve a more flexible and efficient implementation of
fault tolerance. Next, we discuss an architectural pattern that we proposed to
develop adaptive fault tolerant systems.

5.2 Adaptive Fault-Tolerant Systems

Modern distributed systems should have a high degree of reliability, while
efficiently utilizing the available resources. This is achieved by endowing the
systems with the capabilities to dynamically adapt to changing external and
internal conditions at run time. To ensure that the system architecture has a high
degree of plasticity and can dynamically re-configure, we have to integrate into
the system design the capabilities to monitor its behavior and environment at
run-time, recognize symptoms of upcoming failure and proactively reconfigure
to preclude failure occurrence of mitigating the failure impact.

56

The idea of proactive fault tolerance [82] comes from different domains
such as autonomous computing, adaptive memory management and classic
research on reliability engineering. Proactive fault tolerance encompasses
three main steps: failure prediction, proactive reconfiguration, and recovery.
Failure prediction aims at spotting precarious situations, i.e., the states of the
systems that will probably evolve into a failure. Failure prediction produces an
estimate of how likely the current situation will result in a failure.

Proactive reconfiguration relies on the outcome of failure prediction.
Based on the results of failure prediction, the system should make a decision
about implementing the countermeasures that should be executed to rectify the
problem. Usually, such decisions utilize some objective function that takes
into account the cost of the actions (in terms of time, computational resources,
memory and so on), the confidence in the prediction, and the effectiveness
and complexity of the actions. As a result, it allows the system to determine the
optimal trade-off. The generic problems associated with implementing the
planned actions include the online reconfiguration of globally distributed
systems, data synchronization of distributed data centers, and much more.

Recovery enables graceful degradation of services in case the resources
are insufficient for precluding the failures. For example, if the proactive
reconfiguration progresses more slowly than expected, then the system should
compensate for the insufficient resources. Another example would be
unexpected multiple failures of several components due to sudden adverse
change in the environment.

To enable a systematic development of adaptive fault tolerant systems, we
propose the pattern depicted in Figure 5.5 that ensures architectural plasticity
and supports dynamic reconfiguration. The patterns allow us to define the
system structure in a layered manner [83]. Each layer is responsible for a certain
aspect of the system behavior.

57

Figure 5.5: Architecture of an Adaptive Fault-Tolerant System

The physical layer represents the environment whose state should be
monitored. It might be a complex control system that uses logical sensors to
monitor the health of its components. Another example might be a sensor
network that monitors the desired parameters of the system environment using
physical sensors.

The fault tolerance layer performs the data aggregation and evaluation of
the quality of monitoring. This information is supplied to the adaptation layer
that is responsible for defining the proactive adaptation policy.

The aim of the application and fault tolerance layer is to continuously
supply the application with the monitoring data of an acceptable quality. The
design of the application is defined by its purpose – it varies from the
complex control functions to collecting data intelligence.

Each (logical or physical) sensor produces data about the monitored
parameter that includes the measurement and timestamp, i.e., the reference to the
time when the measurement is taken. By supplying each measurement with the
time stamp, we can detect “stuck at value” type of the sensor failure. By
introducing a feasibility check, i.e., checking that the value falls within a certain
physically reasonable range, we can detect the “incorrect value” type of the
sensor failures.

The fault tolerance manager periodically reads the sensor data, filters out
faulty data and computes the average value over the valid data set. Moreover, it
defines

58

the quality level of the produced data. Essentially, it checks that the
computations of the estimate of a certain parameter are performed over the
sufficiently large set of data. There are certain thresholds, i.e., the data sizes that
allow the fault tolerance manager to estimate the quality level.

The adaptation manager and deployment manager constitute the
adaptation layer. Their task is to determine whether the decline in quality
of data are temporal or permanent. In the first case, no reconfiguration
actions should be performed. In the second case, the reconfiguration actions
should be initiated. Moreover, their scale is determined by the quality level of
the produced data set.

The dynamic behavior of the system can be structured using the notions
of modes introduced in Chapter 4. The generic representation of the mode
transition logic is given in Figure 5.6.

Procedure ModeTransition
Variables
last_mode: {Normal, Adapt, Adapt_Compl, Adapt_activ}
next_target: {Normal, Adapt, Adapt_Compl, Adapt_activ}

prev_target: {Normal, Adapt, Adapt_Compl, Adapt_activ}

 level: int

Begin
if adaptation completed
then initiate a forward transition to next_target according to

the predefined scenario;

if level dropped
then initiate a backward transition to next_target adaptation mode
The choice of target mode depends on severity of level decrease;

if the conditions for entering the target mode are satisfied
then complete a transition to next_target mode and become stable ;

if neither the conditions for entering
the next global mode are satisfied nor the level dropped
then maintain the current mode
End

Figure 5.6: Transitions between Adaptation Modes

59

The main principle that underlies the mode transition is as follows: the
mode is stable and unchanged until a fluctuation in the quality level is registered.
The algorithm describes next_target and prev_target modes in such a way that if
adaptation procedure is completed, then the current mode switches to
next_target. Similarly, if the quality level has dropped, then the current mode
switches to prev_target, i.e., performs a backward transition. In the case of
the quality level deterioration, the adaptation manager starts the remedial
actions. When the system achieves an appropriate level of quality, then
last_mode is reached, and the system becomes stable.

The proposed approach allows the designers to derive a clean architectural
structure and achieve a separation of concerns. The information flow in the
proposed layered architecture enables adaptation and guarantees a continuous
delivery of service with an acceptable quality level. To preclude disruption in the
provision of the services, an adaptive fault tolerant system structured according
to the proposed architectural pattern performs a preventive reconfiguration.

In Chapters 2-5, we have presented a general overview of the methods
and techniques that we used for the development and verification of fault-
tolerant systems and described our contribution to creating a fault-tolerance
explicit development approach. Next, we give an overview of the original
publications in which the presented research has been reported.

60

61

6 Summary of the Original Publications

The chapter presents a brief summary of the publications included in the second
part of this thesis.

Paper I: Implementation of SPIN Model Checker for Formal Verification

of Distance Vector Routing Protocol

This paper presents the approach to modeling and verification of Distance Vector
Routing (DVR) Protocol in the SPIN model checker. We demonstrate how to
model the protocol and verify its correctness. The paper discusses the general
methodology for implementing the distributed protocols relying on distance
routing calculation. The DVR protocol is specified in PROMELA. The
verification of correctness of DVR relies on the use of the SPIN model checker.
The evaluation results suggest that the performance of the implemented protocol
can be enhanced by reducing storage space requirements. Moreover, the
reliability of the protocol can be improved by utilizing timing redundancy in
case of failure of calculations, i.e., repeating the calculations in case of a
transient error. Moreover, to improve protocol security, integration of
mechanisms for message encryption and authentication can be implemented.

The main goal of this paper has been to study the principles of modeling
and to verify complex distributed systems in SPIN. This paper has been
specifically focusing on modeling the communication aspect of distributed
systems.

Paper II: Designing a Fault-Tolerant Satellite System in SystemC

The paper presents an approach to designing fault-tolerant satellite systems in
SystemC. Our goal was to study the principles of implementing mode-rich
systems in SystemC. The paper gives a detailed description and implementation
of an Attitude and Orbit Control System (AOCS). AOCS controls the attitude
and orbit of a satellite. The system consists of a number of components with
different functionality. Each component is represented by a corresponding
module in SystemC. A dedicated component – Mode Manager which is
responsible for monitoring the states of system components and coordinating
mode transitions.

62

AOCS should implement a certain scenario defined in terms of mode
transitions. The main goal is to reach and stabilize in the most advanced mode.
In such a mode, the satellite can perform the scientific experiments and fulfill
the goal of the mission. However, errors might trigger transitions to the more
degraded mode, i.e., cause backward mode transitions.

In our SystemC implementation, we demonstrate how to coordinate both
forward and backward mode transitions as well as perform system
reconfiguration. We propose the patterns for defining components of mode-rich
systems, specifying mode managers and unit managers, which are responsible
for unit reconfiguration. We show how to define the overall architecture of a
distributed system and the communication between the components. Our
SystemC implementation is used not only to describe the design of the system
but also as an input for verification.

Paper III: Modelling a Fault-Tolerant Distributed Satellite System

In this paper, we continue a study of mode-rich fault tolerant systems. In paper
II, we considered the case in which control over the mode changes is performed
by a centralized mode managing component.

In paper III, we consider the case of a distributed mode management.
Ensuring mode consistency in the presence of distributed mode management is
challenging. We should not only ensure that the components are put in the
appropriate states, but also guarantee that mode managers agree and synchronize
before each mode transition. We define and verify the handshake protocol that
is implemented for synchronization of mode managers.

The system is implemented in SystemC, which is again used to not only
describe the design but also to formally verify the system. The approach
presented in this paper extends our earlier work on modeling the centralized
mode rich systems. The main novelty of this paper is in the treatment of the
distributed mode management problem and proposal of the handshake protocol
that ensures synchronization of distributed mode managers.

63

Paper IV: A Case Study in Modelling a Fault-Tolerant Satellite System

through Implementation of Dynamic Reconfiguration via Handshake

To complete long-term missions, the satellite systems should be able to cope
with unforeseen adverse conditions, such as improbable simultaneous failures
of components in both the main and standby systems. In this paper, we study
such a problem and investigate the principles of achieving fault tolerance via
dynamic reconfiguration.

The paper presents a case study in modeling and implementation of a
generic subsystem of satellites Control and Data Management Unit
(CDMU). The architecture of CDMU consists of processor modules,
reconfiguration modules, and telemetry modules. If any of the components in
both the main and spare CDMU fails, then the system should establish a new
communication infrastructure over the healthy components to continue
functioning. Such a dynamic reconfiguration can be achieved by introducing
a sophisticated handshake protocol between two processor modules as well as
the hierarchical Master – Slave coordination.

Since the protocol is complex, we have formally specified it in
PROMELA and used SPIN model checking to verify it. Since the protocol
introduced over the newly established communication infrastructure is complex
and has a large number of different execution paths, verification of correctness
by testing would be rather unfeasible. Formal verification by model checking
provided us with great support for verification of such a complex fault tolerant
system.

Paper V: Towards Systematic Design of Adaptive Fault Tolerant Systems

The complexity of modern large-scale systems requires solutions that ensure that
systems autonomously adapt to the operating environment and internal
conditions. In this paper, we propose a general pattern for architecting and
developing the adaptive fault tolerant systems. The proposed pattern supports a
layered design approach that enables separation of concerns and facilitates the
structured design of fault tolerance mechanisms. In our representation of the
architectural pattern, we define the interfaces between the components at
different levels of abstraction to ensure correct propagation of fault tolerance
related data.

The high-level coordination of the fault tolerance mechanisms is
implemented by an adaptation manager – a component that is responsible for
implementing predictive fault tolerance. To specify the adaptation manager, we
propose an algorithm that allows the adaptation manager to monitor the state of
the system at the run time and implement proactive adaptation. Such an
approach ensures that the overall system would continuously deliver the
services with the acceptable quality. We believe that the proposed approach
ensures a systematic development of adaptive fault tolerant systems.

64

This work demonstrates how the deployment of the predictive
adaptation allows us to ensure that the system would be able to deliver its
services with the acceptable quality despite the occurrence of component
failures.

Paper VI: A Structured Approach to Architecting Fault Tolerant Services

Service Oriented Architecture (SOA) is a widely used software engineering
framework. To enable a rapid service composition, services define their
properties in a standard and machine readable format. It enables service
discovery, selection, and binding. Service composition introduces the
orchestration of the basic services to build applications. However, usually,
research on service orchestration focuses on defining the language for service
composition that does not support reasoning about such essential features as
fault tolerance. Such reasoning can be supported by dependability analysis and
architectural modeling.

We demonstrate how to graphically model the architecture of composite
services and augment it with various fault tolerance mechanisms. We propose
static and dynamic solutions for introducing fault tolerance into the service
composition. The structural solutions rely on the availability of redundant
service providers that can be requested to provide services in case of failures
of the main service providers. This mechanism allows the designers to mask
failures of the individual service providers. The dynamic solutions rely on
re-execution of failed services to recover from the transient faults of services.

To facilitate the design of complex fault- tolerant services, we introduce a
systematic approach to analyzing possible failure modes of services and
defining fault tolerance measures. Our approach is inductive and relies on
Failure Mode and Effect Analysis. It progressively analyses one component
after another in the service execution flow, explores possible fault tolerance
alternatives and systematically introduces them into the service architecture.

We believe that our approach supports structured guided reasoning about
fault tolerance and enables efficient exploration of the design space.

65

7 Related Work

In this chapter, we give an overview of related approaches to development and
verification of distributed fault- tolerant systems. Development and verification
of fault-tolerant distributed systems is an area of active research in these days.
To start with, we consider fault tolerance in the context of mode-rich systems.
Then, the related work of mode modeling is described. Finally, we discuss the
approaches that demonstrate the modeling and verification of fault-tolerant
distributed systems in general.

7.1 Modes and Fault Tolerance

In the existing literature, various approaches relying on the concept of modes
have been presented. The fault tolerance is a major requirement of the control
systems. AGATA (autonomous satellite demonstrator) and formation flying
satellites [93] are two innovative projects in the area of space [53] that
validate the FDIR strategy in the mode-rich system.

A fault-tolerant control scheme for satellites is presented in [30] that deals
with the actuator faults. The authors have proposed an algorithm for error
recovery that utilizes a sliding mode control (SMC) method through finite
reaching a time in case of actuator faults and external disturbances. This
fault tolerant control system can be used for various actuators (i.e., THR and
RW). The work presented in [33, 34] have also proposed the SMC approach
which is used to reconfigure the operation of control systems to confirm
accuracy and robustness of the designed controller. In all cases, authors
present the verification of the SMC method through numerical solutions.

Another approach for fault tolerance in satellite’s system has been
presented in [37]. This work demonstrates the effectiveness of the fault tolerant
control with an on-line control allocation method through numerical solutions.
The on-line control allocation method shows that faults can be recovered
without reconfiguring the controller. In [38, 39], the authors have presented
a decentralized system for the accommodation of actuator faults in the case of
the faulty satellite by utilizing SMC and fuzzy logic. They have validated
their work by modeling of architecture and presenting the numerical solutions
confirming the effectiveness of the used approach.

66

In this thesis, we have proposed an approach for fault tolerance in the mode
rich system. In contrast to [30, 34, 37, 38, 39], our approach is not limited to
actuators of satellites. It is a generic approach that deals with faults of all units of
satellites such as sensors, actuators, and payload instrument. However, we do
not provide the numerical solutions for system validation in contrast to above
approaches, but we present architectural modeling of the fault tolerance
mechanism for the development of the mode-rich system. For verification of the
proposed approach, formal verification has been carried out to examine the
consistency of a mode logic. The formal verification has been used to verify the
correctness of both centralized and distributed mode management.

To ensure synchronization of mode managers controlling mode transitions,
we model and verify the handshake procedure that is an essential part of the
implementation of dynamic reconfiguration of satellite systems. The
reconfiguration process and the handshake procedure enable an efficient
handling of errors in complex distributed system. Our approach is different from
on-line control allocation [37] as it provides dynamic reconfiguration
implementing error handling.

The researcher's work [29, 35] has presented the formal development of
the mode-rich AOCS system by refinement in Event B. The authors have
explained the concept of mode and mode transitions and have also defined
specifications and refinement patterns for development and verification of
mode consistency. In particular, the work has focused on the formal
development of a layered mode-rich system and formalization of the mode
stability property, which is important for the systems with non-instantaneous
mode transitions. The authors have verified the consistency of the modes in the
layered reconfigurable systems [26] by deriving the mode logic [25] using
refinement in Event-B. This approach has aimed at enabling proof-based
verification of mode-rich systems modeled in Event- B. Recent development
[92] represents a much more complex model containing a large set of
invariants describing in detail the relationships not only between modes and
phases but also the effect of failures at different stages of communication. The
researchers [51, 52, 95] have studied mode-rich systems to examine the
problem of mode confusion and automation surprises. They showed
retrospective analysis of mode-rich systems to spot the inconsistencies
between the mental picture of the mode logic and the actual system mode
logic. The approaches [48, 96] utilized theorem proving in PVS, while most
of the approaches [51, 52, 95] rely on model-checking.

Our approach focuses on designing fully automatic systems and ensuring
their mode consistency. In contrast to [51], our approach emphasizes the
complex relationships between the mode logic and system fault tolerance. Unlike
[29, 35, 92], in our approach, we relied on design in SystemC and formal
verification by model checking in SPIN that is better suited for modeling
distributed architectures. Namely, we have designed complex mode-rich
systems in SystemC and have verified its correctness via model checking.

67

7.2 Model-Driven Engineering and
Verification of Fault-Tolerant Systems

Let us now discuss the related work in connection to the chosen development
frameworks –SystemC, UML, and SPIN Promela.

SystemC provides data types for hardware modeling. In [46, 13], the
authors have illustrated that SystemC is a suitable core language for the
complex distributed network that builds the system with the highest level of
abstraction (functional level) to develop and analyze a model. In [45], the
authors have explained the SystemC-based approach for modeling the
network-embedded systems. SystemC verification standard provides an
application-programming interface for transaction- based verification,
constrained and weighted randomization, exception handling, and other
verification tasks [20, 21]. In [91], the researchers use a Concurrent and
Comparative Simulation (CCS) technique to insert faults in SystemC models
to verify the system behavior in the presence of faults.

Model-driven development of complex distributed systems have been
discussed in [41, 43, 44]. In [42], UML state chart diagram has been used
to model the complex system such as hybrid dynamic systems. Modeling in
UML allows us to represent in a compact way the complex interdependencies
of mode-rich systems. UML profiles have been obtained by using constraints,
stereotypes and tagged values [85]. Stereotypes describe the new types of
modified meta-models, constraints define new properties of the proposed model
and tagged values present qualified properties of stereotypes. There are various
UML profiles to support the development of dependable systems. UML profile
for modeling quality of service and fault tolerance characteristics and
mechanisms [86] focuses on the design of the complex fault tolerant system that
ensures high quality in the analysis model and supports additional functional
requirements in the software architecture. Another work [87] has presented fault
forecasting by using a specific UML annotation that enhances the system
reliability and determines the failure rate of the components. The UML profile
for component-based development of dependable systems [88] renders the
safety-related requirements in the UML models. The UML profile for
dependability analysis of real-time embedded systems [89] has included the
dependability requirements in the model definition.

Formal verification is an essential part of ensuring the correctness of
complex fault-tolerant distributed systems. In [54], the authors have
investigated the use of different techniques for model checking and
simulations. In [28], the authors have proposed an abstraction framework
based on PROMELA that reduces the complexity of the model checking formal
verification by reducing the number of generated states [53]. In [70], the
authors have demonstrated how to use a SPIN model checker to verify

68

security properties and propose an approach to translating UML models to
PROMELA. Another work focuses on proposing the general rules for
translation of UML and SystemC models into SPIN PROMELA [40, 55].

In this thesis, we have used SystemC as a system design language, UML as
a graphical modeling language, and SPIN PROMELA as our verification
framework. Our work further extends the approaches presented in [85, 86, 87]
and demonstrates how to explicitly represent fault tolerance in model-driven
development.

Verification of a distributed protocol in SPIN has also been presented in
[70]. However, in our work, we deal with a different class of protocols. The use
of SPIN also differentiates our work from the research presented in [53].

7.3 Centralized Mode Management in
 Fault-Tolerant systems

In the centralized mode management, a single node obtains information from
the rest of the system and controls the mode transitions of the entire system. In
the existing literature, there is a number of approaches that discuss fault
tolerance in mode-rich systems. The related work on mode-rich systems with the
centralized mode management is presented in this section.

In [49], the mode logic operations such as flight phases and on-board
instruments operations for space and avionics systems have been presented and
analyzed. The work in [48] presents PVS formal verification to capture the
process of formalizing by considering formal specifications of avionics
subsystems. The authors have focused on the mode characterization of the
real-time environment that tackles the problem of defining requirements for
mode transitions [50]. The authors [47] have studied the specifications of a
mode-rich system typical in such domains as space and transportation, the
notion of the refinement process of these systems, and its realization. These
ideas have been further applied for architecting fault tolerance techniques [97].
According to this approach, a mode-centric specification of the system neither
defines how the system operates while it is in some specific mode nor how
mode transitions occur. It rather imposes restrictions on concrete
implementations. Such an approach complements traditional modeling but does
not replace it. The authors [50] have described how consistency can be
automated in terms of static analysis. The method has been illustrated by
verifying small parts of a system after decomposition of functional
sp ecifications. This work has been presented using the state chart machine and
Traffic Alert and Collision Avoidance System (TCAS) II software. Other
researchers [4, 52] have presented a scheme that deals with mode confusion
problems by analyzing the system behavior and uses analysis methods that
search the models for predictable error forms. Another approach [75] has

69

indicated that several types of faults can be tolerated in degraded modes for
extended architecture. The authors have utilized quantitative capability to
structure the method. In [63], the authors have presented online failure
prediction methods that exhibit less recovery time because of preventive
treatment of faults. However, the approaches to proactive fault tolerance are not
well integrated into the system development process.

Unlike ours, the work presented in [48] and [49] does not address formal
verification. However, we do not use a refinement process, but we structure
the mode specifications and requirements using UML. Unlike [97], we have
taken an integrated view and analyzed how to combine reasoning about the
system mode logic and its functioning. Another method [4, 50] has studied
inconsistency of automation due to lack of an error recovery mechanism in the
mapping of requirement specifications.

Reliance of UML as a front end of more formal models, allows us to
alleviate this problem. Another implemented approach [50] has described the
occurrence of mode transition, but the authors have not relied on formal
modeling. In contrast to [75], our approach does not work for quantitative
analysis of fault tolerance. Therefore, we can extend our proposed work with
quantitative aspects such as error rates, etc. However, the proactive fault
tolerance presented in [63] is not well integrated into the system development
process. As a result, we have addressed this problem by proposing an
architectural approach of an adaptive fault tolerant system. The main mechanism
of achieving proactive fault tolerance is adaptation [82].

7.4 Fault Tolerance in Distributed Systems

In this section, we overview various methodologies related to the distributed
fault tolerant systems.

Virginia Tech [56, 57] has proposed DSACSS that implements many types
of distributed control techniques by using Object Oriented Programming in C++.
DSACSS has been used to test both developments of centralized and distributed
control components. This scheme delivers non-linear compensation for a failed
component through mathematical modeling. The dynamically reconfigurable
multi-agent systems [59] represent distributed systems in which agents of
distributed nodes collaborate to fulfill the system requirements according to
the specifications. In this scheme, the authors have proposed a formal
approach to check the validity of the multi-agent system using the Event-B
method. The authors [60] have also presented the working of distributed
environment by incorporating the embedded programming methodology (i.e.,
Giotto and the object-oriented AOCS Framework) with real-time requirements.
The authors have presented the main steps, which are involved in the design
of an optimal feedback control in the satellite formation flying controller (i.e.,
stabilization and optimization of distributed controller). The authors have

70

provided mathematical solutions and computer-based simulations by using
Matlab to describe that distributed systems require less bandwidth and less
control energy as compared to centralized systems. The authors have
implemented a decentralized control system that deals with the tracking of the
robots and maintains formation during the transitions [62]. They have
provided mathematical solutions for implementing the decentralized control
system, but they have not covered the fault tolerance mechanism. The formal
development of a distributed system has been presented by researchers along
with mathematical modeling [58]. This work explains the program that is
executed to fulfill the requirements of the targeted network infrastructure by
assuming middleware behavior. The HATS project [81] has provided abstract
behavioral specification modeling and verification for analysis of highly
configurable adaptive distributed software systems. This technique has been
implemented at the system level by using ABS defined tools.

The simulator in [56, 57] has been used to test or verify the system
components, but it does not provide architectural modeling of fault tolerance.
Although the authors i n [59] have described the formal refinement process
and sufficient redundancy in case of failures they have not given details for
ensuring safety through architectural modeling of reconfiguration or fault
tolerance mechanism. In contrast to [58], we have formally modeled and
developed the code of fully operational distributed control system. The approach
used in [60, 61, 62] does not provide a formal implementation of error
recovery, whereas we have proposed a detailed architectural modeling of fault
tolerance in distributed systems and also formal verification has been carried out
to verify the operation of system components. In contrast to [81], our work
enables design space exploration at the early development stages and
facilitates explicit representation of mechanisms for proactive fault tolerance.

In [68], the authors propose fault tolerant service architecture [80] by using
SOAP for middleware behavior of a service approach named FT-SOAP. It
extends the standard WSDL by proposing a new element to describe the
replicated web services. An active UDDI mechanism [69] enables an extension
of UDDI’s invocation API to enable fault-tolerant and dynamic service
invocation, but the authors do not provide formal modeling and verification of
the fault tolerance mechanism. The authors present composite service
architectures by providing a fault tolerance mechanism to develop new
distributed applications [74]. The work presented in [64] describes the
reliability and availability analysis of service-oriented architectures in the case
of possible failures by using BPEL process and formal language SCA-ASM.
Web services [65] are comparatively new technology that has obtained wide
acceptance as an important implementation of the service-oriented architecture.

In contrast to [68, 69, 74], we have FMEA to facilitate a structured analysis
of failure modes.

71

The integration of FMEA is also discussed in [14, 76, 77]. Other authors
[67, 79] demonstrate how to use FMEA for analyzing safety. In [27], a set of
generic patterns has been defined for representing formal specifications in
Event-B derived from FMEA safety analysis. This work facilitates elicitation of
requirements and also supports traceability of safety and fault tolerance
requirements into the formal development process in Event-B. A formal
approach [67, 71] to introducing fault tolerance to the service architecture by
incorporating results of FMEA has been proposed in [72, 73]. In [24], the work
focuses on deriving, formalizing and verifying the correctness of the mode
transitions in the fault- tolerant control system. The authors have performed
FMEA of each particular mode transition to systematically design error-free
mode transition scheme. In recent research [94], an FMEA technique is extended
with considering all security risks in distributed industrial measurement systems.

Our work is different from [24, 27] because we focus on using FMEA to
introduce fault tolerance into the service architecture.

72

73

8 Conclusion and Future Work

This chapter outlines the main contributions of the thesis, discusses limitations
of the proposed work and indicates the future research directions.

8.1 Conclusions

Nowadays computer-based systems provide a majority of services critical for
our society. Therefore, development of the methodologies enabling the design of
reliable fault tolerant systems constitutes an important research goal. In our
thesis, we have contributed to achieving this goal by proposing a number of
approaches facilitating the design of complex fault-tolerant systems.

In our work, we aimed at creating approaches that can be potentially used
in industrial practice. Since model-driven development is widely used in
modern software engineering, in our thesis, we studied the problem of an
explicit representation of fault tolerance in the model-driven systems
development. We demonstrated how to represent different aspects of fault
tolerance in the UML models.

UML provides us with a convenient graphical notation for representing
the static architectural aspects of the system as well as its dynamic behavior. In
our work, we have proposed a number of patterns allowing us to introduce fault
tolerance into the service architecture, explicitly represent the impact of fault
tolerance on the execution dynamics as well as define the communication
between system components during error detection, recovery, and
reconfiguration.

UML plays an important role in visualizing system requirements, including
the requirements introduced by fault tolerance. In our work, we used UML as
a graphical front-end to representing the formal models and system design.
In particular, we have used it to visualize the requirements of complex mode-
rich systems – a large class of distributed fault- tolerant systems that we have
studied in our thesis.

The notion of modes constitutes an important mechanism for structuring
the behavior of fault-tolerant systems. Typically, the fault-tolerant control
systems have a complex mode logic. The correctness of their behavior, as well
as overall system reliability, depend on whether the mode transitions are
performed in consistent way by all system components. In our thesis, we have

74

proposed a number of architectural and behavioral patterns for design and
verification of mode-rich systems. We have demonstrated how to design mode
managers – the dedicated components orchestrating mode transitions, structure
system reconfiguration required to mask errors and specify the requirements
for the forward and backward mode transitions.

In our study of mode-rich systems, we have also proposed the solutions for
designing the systems with the distributed mode management. Ensuring
consistency of the mode logic in such systems is especially challenging,
because the decisions about the mode transitions are made by several
independent mode managers. In our work, we have proposed a handshake
protocol allowing the mode managers to synchronize the mode transitions. In
our thesis, we presented SystemC implementation of several mode-rich
systems and demonstrated how to formally verify various aspects of their
behavior using SPIN model checker.

Since an error recovery often requires system reconfiguration, in our thesis
we have studied the problem of dynamic reconfiguration of control and service-
oriented fault tolerant systems. To ensure the reliability of the systems that
perform long-term autonomous missions, we have to ensure that the system
can cope with unforeseen adverse conditions, such as improbable simultaneous
failures. In our thesis, we have proposed an approach that allows a system to
recover from such errors by establishing a new communication infrastructure
over the healthy components and adopting a specific handshake protocol to
resume service provisioning.

In the context of service-oriented fault tolerant systems, we have
demonstrated how to structure the system to achieve an architectural plasticity
and efficient propagation of fault tolerance related information between the
architectural layers. The proposed architectural pattern provides a basis for
implementing proactive fault tolerance that ensures a maintenance of a certain
quality level in service provisioning.

To facilitate the design of fault tolerant services, we have also proposed
a number of patterns allowing to introduce different redundancy and error
recovery mechanisms into the service architecture. Moreover, we have
demonstrated how to systematically study possible failure modes of services and
explore the feasibility of using different error recovery solutions.

We believe that the approaches proposed in this thesis can be potentially
applied in the current software engineering practice to facilitate the disciplined
and structured development of complex fault-tolerant systems.

Though we believe that our work has made a contribution to the area of
model-driven development and verification of fault-tolerant systems, it is not
free of several limitations. Firstly, in our work, we have used the generic
development frameworks and tools. The absence of a specialized support
automating the proposed approach constitutes a limitation of our research.
Secondly, in our work, we have focused on modeling logical (qualitative)
aspects of fault tolerance. However, the efficiency of introduced fault tolerance

75

measures is usually evaluated by computing system reliability, i.e., using
quantitative models. Our work does not provide support for quantitative
modeling, which constitutes another limitation of the proposed approach.

8.2 Future Work

The limitations mentioned above lead to possible directions for future work. In
the future, it would be interesting to create an integrated engineering
environment that automates augmenting the system architecture with various
mechanisms for fault tolerance. Moreover, it would also be useful to automate
the translation of graphical models to the models used to represent the system
design and perform formal verification.

Another interesting future research direction is to define the notion of
architectural refinement to facilitate validation of system properties at different
architectural layers.

Finally, it would also be interesting to define a mapping between the
system models augmented with the proposed patterns for representing fault
tolerance and probabilistic models. Such a mapping would enable a quantitative
assessment of reliability and facilitate exploration of the system design space.

76

77

Bibliography

[1] A.Avizienis, J.-C. Laprie, and B. Randell. Fundamental Concepts of
Dependability. In P r o c e e d i n g s o f t h e 3rd IEEE Information

Survivability Workshop, pages 7- 12, 2000.

[2] A.Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts

and Taxonomy of Dependable and Secure Computing. In IEEE

Transactions on Dependable and Secure Computing, Volume 1, pages 11-
33, March 2004.

[3] P.A. Lee, and T. Anderson. Fault Tolerance – Principles and Practice,

Prentice Hall, USA, 1990.

[4] L. Leveson, D. Pinnel, S. D. Sandys, S. Koga, and J. Reese.

Analyzing Software Specifications for Mode Confusion Potential. In
Proceedings of Workshop on Human Error and System Development,
pages 132-146, 1993.

[5] OBSW formal development in Event B, 2010. http://deploy-

eprints.ecs.soton.ac.uk/view/type/rodin=5Farchive.html

[6] Industrial deployment of system engineering methods providing high

dependability and productivity 2011. http://www.deploy-project.eu/.

[7] DEPLOY Deliverable D20. Report on Pilot Deployment in the Space

Sector.
FP7 ICT DEPLOY Project, 2010. http://www.deploy-project.eu/.

[8] J. R. Wertz. Spacecraft Attitude Determination and Control. Volume

78, 1978.

[9] Y. Zhao, Z. Yang., and J. Xie. Formal semantics of UML state diagram

and automatic verification based on Kripke structure. In Proceedings of

the 22nd Canadian Conference on Electrical and Computer

Engineering (CCECE), pages 974-978, 2009.

[10] M. Deubler, M. Meisinger, S. Rittmann, and Kruger, I.

Modelling crosscutting services with UML Sequence Diagram. In
Proceedings of the 8th International Conference on Model Driven

Engineering (MoDELS’05), pages 522-536, 2005.

78

[11] M. Ibrahim, and R. Ahmad. Class Diagram Extraction from Textual
Requirements Using Natural Language Processing (NLP) Techniques.
In Proceedings of 2nd International Conference on Computer Research

and Development (ICCRD’10), pages. 200-204, 2010.\

[12] T. Grotker, S. Liao, G. Marin, and S. Swan. System Design with

SystemC. Kluwer Academic Publishers, 2002.

[13] IEEE Standard SystemC Language Reference Manual. IEEE standard

1666- 2005, 2006.

[14] Open SystemC Initiative (OSCI): Defining and advancing SystemC

standard IEEE 1666–2005. http://www.systemc.org/.

[15] A. Avizienis. Design of Fault-Tolerant Computers. In Proceedings of

the Fall joint Computer Conference, pages.733-743, USA, 1967.

[16] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling

Language. Massachusetts, USA: Addison-Wesley, 1998.

[17] A UML Profile for MARTE: Modelling and Analysis of Real-Time

Embedded systems, Beta 2. 2008.
http://www.omg.org/omgmarte/Documents/Specifications/08-06-09.pdf

[18] Open SystemC Initiative (OSCI): Defining and advancing SystemC

standard IEEE 1666–2005. http://www.systemc.org/.

[19] M. Fowler. UML distilled: a brief guide to the Standard object

modelling language. Boston, Massachusetts, USA: Addison-Wesley, 2003.

[20] L. Singh & L. Drucker. Advanced Verification Techniques: A

SystemC Based Approach for Successful Tapeout, 2004.

[21] J-P. Katoen. Concepts, Algorithms and Tools for Model

Checking,1999.
http://people.cs.aau.dk/~bnielsen/TOV08/material/katoen2.pdf

[22] A. Ebnenasir, R. Hajisheykhi, and S. Kulkarni. Facilitating the Design

of Fault Tolerance in Transaction Level SystemC Programs. In
Proceedings of 13th International Conference on Distributed

Computing and Networking (ICDCN’12), pages 91-105, 2012.

[23] M. Cantor. Dr.Dobbs - The World of Software Development.
http://drdobbs.com/184415683

79

[24] L. Laibinis, Y. Prokhorova, E. Troubitsyna, K. Varpaamiemi, and T.

Latvala. Derivation and Formal Verification of a Mode Logic for
Layered Control Systems. In Proceedings of the 2011 18th Asia-

Pacific Software Engineering Conference (APSEC-11), pages. 49-56,
IEEE Computer Society, USA, 2011.

[25] Y. Prokhorova, L. Laibinis, E. Troubitsyna, K. Varpaaniemi, and T.

Latvala. Deriving a mode logic using failure modes and effects analysis.
International Journal of Critical Computer-Based Systems, Volume 3,
pages 305––328, 2012.

[26] B. Rubel. Patterns for Generating a Layered Architecture. In Pattern

Languages of Program Design, pages 119-128, Addison-Wesley, 1995.

[27] E. Troubitsyna, I. Lopatkin, Y. Prokhorova, A. Iliasov, and A.

Romanovsky. Patterns for Representing FMEA in Formal Specification
of Control Systems. In Proceedings of 13th International Symposium on

High Assurance Engineering, pages 146-151, 2011.

[28] I. Lopatkin, A. Iliasov and A. Romanovsky. Rigorous Development of

Dependable Systems using Fault Tolerance Views. In Proceedings of

the 2011 IEEE 22nd International Symposium on Software Reliability

Engineering (ISSRE-11), pages 180-189, IEEE Computer Society, 2011.

[29] A. Iliasov, E, Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi,

I. Dubravka, and T. Latvala. Developing Mode-Rich Satellite Software
by Refinement in Event B. In Proceedings of the 15th International

Conference on Formal Methods for Industrial Critical Systems (FMICS-

10), pages 50- 66, Springer-Verlag, Belgium, 2010.

[30] H. Lee and Y. Kim. Fault-tolerant control scheme for satellite attitude

control system Theory and Applications, volume 4, pages 1436-1450,
2010.

[31] K. Javed, and E. Troubitsyna. Designing a Fault-Tolerant Satellite System

in SystemC. In Proceedings of the 7th International Conference on

Systems (ICONS’12), pages 49-54, 2012.

[32] A. Tarasyuk, I. Pereverzeva, E. Troubitsyna, T. Latvala, and L.

Nummila. Formal Development and Assessment of a
Reconfigurable On-board Satellite System, In Proceedings of 31st

International Conference on Computer Safety, Reliability and Security

(SAFECOMP 2012), LNCS 7612, pages 210-222, Springer, 2012.

80

[33] M.D.J. Brown, Y. Shtessel, and J. Buffington. Finite Reaching Time

Continuous Sliding Mode Control with Enhanced Robustness. 2000.

[34] Y. Shtessel, J. Buffington, and S. Banda. Tailless Aircraft Flight

Control Using Multiple Time Scale Reconfigurable Sliding Modes. In
Proceedings of IEEE Transcations on Control Systems Technology, pages
288-296, IEEE Control system Society, 2002.

[35] A. Iliasov, E, Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi,

I. Dubravka, P. Vaisanen, and T. Latvala. Verifying Mode Consistency
for On-Board Satellite Software. In Proceedings of 29th International

Conference on SAFECOMP, Volume 6351, pages 126-141, Austria, 2010.

[36] L. Laibinis, E. Troubitsyna, and S. Leppänen. Service-Oriented

Development of Fault Tolerant Communicating Systems: Refinement
Approach. In Proceedings of the International Journal on Embedded

and Real-Time Communication Systems, Volume 1, pages 61-85, October
2010.

[37] F. Yan-Ping, C. Yue-Hua, J. Bin, and Y. Ming-kai. Fault Tolerant

Control with on-line Control Allocation for Flexible Satellite Attitude
Control System. In P roceeding of the 2nd International Conference in

Intelligent Control and Information Processing (ICICIP-11), pages 42-46,
China, 2011.

[38] S.M. Azizi and K. Khorasani. A Decentralized Cooperative Actuator

Fault Accomodation of Formation Flying Satellites in Deep Space. In
Proceedings of 3rd International Systems Conference (SysCon-09),
pages 230-235, Canada, 2009.

[39] Li. Junquan and K.D. Kumar. Decentralized fuzzy fault tolerant control

for multiple satellites attitude synchronization. In Proceedings of

International Conference on Fuzzy Systems, pages 1836-1843, Taiwan.

[40] L. Ji, J. Ma, and Z. Shan. Research on Model Checking Technology

of UML. In Proceedings of International Conference on Computer

Science and Service System, pages 2337-2340, 2012.

[41] B. Zhang and Y. Chen. Enhancing UML Conceptual Modelling through

the use of Virtual Reality. In Proceedings of the International

Conference on System Sciences, pages 11, 2005.

81

[42] J. Shyan Lee and P-L. Hsu. UML-Based Modelling and Multi-
Threaded Simulation for Hybrid Dynamic Systems. In Proceedings of

the International Conference on Control Sytems, pages 1207-1212,
IEEE Computer Society, 2002.

[43] Q. Chunyan. UML-based software process modelling. In Proceeding of

the International Conference on Computer, Mechanics, Control and

Electronic Engineering, pages 247-250, 2010.

[44] Y. Zhou, Y. Chen, and H. Lu. UML-based Systems Integeration

Modelling Technique for the Design and Development of Intelligent
Transportation Management System. In Proceeding of the International

Conference in Systems, Man and Cybemetics, pages 6061-6066, 2004.

[45] F. Fummi, D. Quaglia, and F. Stefanni. A SystemC-based Framework

for Modelling and Simulation of Networked Embedded Systems. In The

Forum on Specification and Design Languages, pages 49-54, 2008.

[46] S.M. Aziz and J.M.D. Tran. Modelling for Performamnce: SystemC

Model of A Communication Bus in A Distributed Network. In
Proceedings of the International Conference on Information and

Communication Technology, pages 231-234, 2007.

[47] F. L.Dotti, A. Iliasov, L. Ribeiro, and A. Romanovsky. Modal

Systems: Specification, Refinement and Realisation. In Proceedings of

the 11th International Conference on Formal Engineering Methods:

Formal Methods and Software Engineering, pages 601-619, Springer-
Verlag, Germany, 2009.

[48] R. W. Butler. An Introduction to Requirements Capture Using PVS:

Specification of a Simple Autopilot, May 1996.

[49] S.P. Miller. Specifying the mode logic of a flight guidance system in

CoRE and SCR. In Proceedings of the 2nd workshop on Formal methods

in software practice, pages 44-53, ACM, 1998.

[50] R. Jorge and C. Alfons. Mode Change Protocols for Real-Time Systems:

A Survey and a New Proposal, In Proceedings of the Real Time Systems,
pages 161-197, 2004.

[51] M. Heimdahl and N. Leveson. Completeness and Consistency in

Hierarchical State Based Requirements. In Proceedings of IEEE

Transactions on Software Engineering, pages 363-377, 1996.

82

[52] J. Rushby. Using model checking to help discover mode confusion and
other automation surprises. In Proceedings of the 3rd Workshop on

Human Error, Safety, and System Development, pages 167-177, 1999.

[53] A.E. Rugina, J_P. Blanquart, and R. Soumagne. Validating failure

detection isolation and recovery strategies using timed automata. In
Proceedings of the 12th European Workshop on Dependable Computing,
France, 2009.

[54] Z. Xin-feng, W. Jian-dong, Z. Xin-feng, L. Bin, Z. Jun-wu, and W.

Jun. Methods to Tackle State Explosion Problem in Model
Checking. In Proceedings of the 3rd International Symposium on

Intelligent Information Technology Application, pages 329-331, 2009.

[55] A. Habibi and S. Tahar. Design and Verification of SystemC

Transaction- Level Models. In Proceedings of the Design Automation and

Test in Europe, pages 560-565, 2005.

[56] J.L. Schwartz and C.D. Hall. The Distributed Spacecraft Attitude

Control System Simulator: Development, Progress, Plans. In Proceedings

of the NASA Space Flight Mechanics Symposium, 2003.

[57] J . L . Shwartz. The Distributed Spacecraft Attitude Control System

Simulator: From Design Concept to Decentralized Control. 2004.

[58] A. Iliasov, L. Laibinis, E. Troubitsyna, and A. Romanovsky. Formal

Derivation of a Distributed Program in Event B. In Proceedings of the

13th International Conference on Formal Methods and Software

Engineering, pages 420-436, 2011.

[59] D. Grostev, A. Iliasov, and A. Romanovsky. Formal Stepwise

Development of Scalable and Reliable Multiagent Systems”, Technical

report series, 2010.

[60] T. Brown, A. Pasetti, w. Pree, T.A. Henzinger, and C.M. Kirsch. A

reusable and platform-independent framework for distributed control
systems. In Proceedings of the 20th International Conference on Digital

Avionics Systems, pages A1/1 - 6A1/11, 2001.

[61] N. Dadkhah, L. Rodrigues, and A.G. Aghdam. Satellite Formation

Flying Controller Design Using an Optimal Decentralized Approach.
In Proceedings of the American Control Conference, pages 3162-3167,
2007.

83

[62] J. Lawton, B. Young, and R. Beard. A Decentralized Approach to
Elementary Formation Maneuvers. In Proceedings of the IEEE

International conference on robotics and automation, pages 2728-2733,
2000.

[63] F. Salfner, M. Lenk, and M. Malek. A survey of online failure

prediction methods. ACM Computer Survey. Volume 42(3), 2010.

[64] R . Mirandola, P. Potena, E. Riccobene, and P. Scandurra. A

r e l i ab i l i t y model for Service Component Architectures. Journal of

Systems and Software. Volume 89, pages 109-12, 2014.

[65] S. Distefano, C. Ghezzi, S. Guinea, and Raffaela Mirandola.

Dependability Assessment of Web Service Orchestrations. IEEE

Transactions on Reliability. Volume 63(3), pages 689-705, 2014.

[66] D. Bosnacki, and D. Dams, Discrete-Time Promela and Spin. In

Proceedings of the 5th International Symposium on Formal Techniques

in Real-Time and Fault-Tolerant Systems (FTRTFT’98), LNCS 1486,
pages 307-310, 1998.

[67] K. Sere and E. Troubitsyna. Safety Analysis in Formal Specification.

In Proceeding of FM'99, LNCS 1709, pages. 1564 – 1583, Springer, 1999.

[68] D. Liang, C. L. Fang, C. Chen, and F. X, Lin. Fault-tolerant web service.

In Proceeding of Tenth Asia-Pacific Software Engineering Conference,
pages 56-61, IEEE Press, 2003.

[69] M. Jeckle, B. Zengler. Active UDDI-An Extension to UDDI for

Dynamic and Fault Tolerant Service Invocation. In P roceeding of 2nd

International Workshop on Web and Databases, pages 91-99, Springer
2002.

[70] P. S. Kaliappan and H. Koenig. Designing and Verifying

Communication Protocols Using Model Driven Architecture and Spin
Model Checker. In Proceedings of the International Conference on

Computer Science and Software Engineering, pages 227-230, 2008.

[71] E. Troubitsyna. Elicitation and specification of safety requirements. In

Proceeding of Third International Conference on Systems (ICONS 08),
pages 202-207, 2008.

84

[72] L. Laibinis, E. Troubitsyna, and S. Leppänen. Service-Oriented
Development of Fault Tolerant Communicating Systems:
Refinement Approach. In Proceeding of International Journal on

Embedded and Real- Time Communication Systems. Volume 1, pages 61-
85, 2010.

[73] L. Laibinis, E. Troubitsyna, A. Iliasov, and A. Romanovsky. Rigorous
development of fault-tolerant agent systems. In Proceeding of Rigorous

Development of Complex Fault-Tolerant Systems, pages 241-260,
Springer 2006.

[74] V. Dialani, S. Miles, L.Moreau, D. Roure, and M. Dialani. Transparent

fault tolerance for web services based architectures. In Proceeding of 8th

Europar Conference (EULRO-PAR02), pages 889-898, 2002.

[75] J. Lygeros, D. N. Godbole, and Broucke. M.E.: Design of an

extended architecture for degraded modes of operation of ivhs. In: In
American Control Conference, pages 3592–3596, 1995.

[76] FMEA Info Centre. http://www.fmeainfocentre.com/.

[77] N.G. Leveson. Safeware: system safety and computers. Addison-

Wesley, 1995.

[78] N. Storey. Safety-critical computer systems. Addison-Wesley, 1996.

[79] F. Ortmeier, M. Guedemann, and W. Reif. Formal failure models. In

Proceedings of the IFAC Workshop on Dependable Control of

Discrete Systems (DCDS 07), Elsevier, 2007.

[80] Web Services Architecture Requirements. http://www.w3.org/TR/wsa-

reqs/.

[81] R. Hahnle. HATS Project: Highly Adaptable and Trustworthy

Software using formal models. In Proceedings of the 4th International

Symposium on Leveraging Applications (ISoLA’10), pages 3-8, 2010.

[82] L. Lao, M. Ellis, and P. D. Christofides. Proactive fault-tolerant model

predictive control: Concept and application. In Proceedings of the

American Control Conference (ACC’13), pages 17-19, 2013.

85

[83] L. Laibinis and E.Troubitsyna. Fault tolerance in a layered architecture:
a general specification pattern in B. In Proceeding of SEFM 2004, pages
346- 355, IEEE Computer Press, 2004.

[84] E. Troubitsyna. Failure Modes and Effect Analysis of Use Cases: A

Structured Approach to Engineering Fault Tolerance Requirements. In
Proceedings of the 4th International Conference in Dependability

(DEPEND’11), pages 82-87, 2011.

[85] OMG. UML 2.0 Superstructure Specification, 2005.
http://doc.omg.org/formal/2005-07-04.pdf

[86] OMG. UML Profile for Modelling Quality of Service (QoS) and Fault

Tolerance Characteristics and Mechanisms, 2006.
http://www.omg.org/spec/QFTP/1.0/PDF/

[87] V. Cortellessa and A. Pompei. Towards a UML profile for QoS: a

contribution in the reliability domain. SIGSOFT Software Engineering

Notes. Volume 29, pages 197-206, 2004.

[88] J. Jurjens and S. Wagner. Component-based Development of

Dependable Systems with UML. In Component-Based Software

Development for Embedded Systems – An Overview on Current

Research Trends. Volume 3778 of LNCS, pages 320-344. Springer-
Verlag, 2005.

[89] S. Bernardi and J. Merseguer. A UML profile for dependability analysis

of real-time embedded systems, In P roceedings of the 6th

international workshop on Software and performance (WOSP’07), pages
115-124, ACM Press, 2007.

[90] L. Laibinis, E. Troubitsyna, S. Leppänen, J. Lilius, and Q. Malik.

Formal Service-Oriented Development of Fault Tolerant Communicating
Systems. In Proceedings of the Rigorous Development of complex Fault-

Tolerant Systems, LNCS 4157, pages 261-287, Springer 2006.

[91] J. C. Laprie. Dependability: Basic Concepts and Terminology.

Springer- Verlag, 1991.

[92] Lu. Weiyun and M. Radetzki. Efficient Fault Simulation of SystemC

Designs. In Proceeding of the 14th Euromicro Conference on Digital

System Design (DSD), pages 487–494, 2011.

86

[93] A . Tarasyuk, I. Pereverzeva1, E. Troubitsyna1, and T. Latvala. The Formal

Derivation of Mode Logic for Autonomous Satellite Flight Formation. In
Proceedings of the 34th International Conference on Computer Safety,
Reliability, and Security (SAFECOMP’15), pages 29-43, 2015.

[94] C. Schmittner, T. Gruber, P. Puschner, and E. Schoitsch. Security

Application of Failure Mode and Effect Analysis (FMEA). In
Computer Safety, Reliability, and Security. Volume 8666, pages 310-325,
2015.

[95] B. Buth. Analysing mode confusion: An approach using fdr2. In
Proceedings of SAFECOMP, pages 101–114. Springer, Lecture Notes
in Computer Science, Vol. 3219, 2004.

[96] A. Joshi, S. P. Miller, and M. P. Heimdahl. Mode confusion analysis of

a flight guidance system using formal methods. In Proceedings of 22nd

IEEE Digital Avionics Systems Conference (DASC’2003), Indianapolis,
USA, October 2003.

[97] I. Lopatkin, A. Iliasov, and A. Romanovsky. On fault tolerance reuse

during refinement. In Proceedings of 2nd International Workshop on

Software Engineering for Resilient Systems, April 2010.

[98] A. Pnueli. The temporal semantics of concurrent programs. In 18th

Annual Symposium on Foundations of Computer Science, 1977.

[99] S. Owicki and D. Gries. Verifying properties of parallel programs: an

axiomatic approach. Volume 19, number 5, pages 279-285, ACM, 1976.

[100] S. Owicki and L. Lamport. Proving liveness properties of

concurrent programs. Volume 4, Number 3, pages 455-495, ACM, 1982.

[101] E. A. Emerson. The Beginning of Model Checking: A Personal

Perspective. Pages 27-45, Springer-Verlag, 2008.

[102] M. C. Edmund. The Birth of Model Checking. Pages1-26, 2008.

Part II

 Original Publications

Paper I.

Kashif Javed, Asifa Kashif, and Elena Troubitsyna,
“Implementation of SPIN Model Checker for Formal Verification
of Distance Vector Routing Protocol”, International Journal of
Computer Science and Information Security (IJCSIS), Vol 8, No 3,
pp. 1-6, June 2010, USA, ISSN 1947-5500.

Implementation of SPIN Model Checker for Formal

Verification of Distance Vector Routing Protocol
�

KASHIF JAVED
�

Department of Information

Technologies Abo Akademi University

Turku, FIN-20520, Finland
�

Kashif.javed@abo.fi

ASIFA KASHIF
�

Department of Electrical Engineering

National University of Computer and

Emerging Sciences, Islamabad,

Pakistan
�

asifa.ilyas85@gmail.com

�

ELENA TROUBITSYNA
�

Department of Information

Technologies Abo Akademi University

Turku, FIN-20520, Finland
�

Elena.Troubitsyna@abo.fi

�

�

�

Abstract—Distributed systems and computing requires routing

protocols to meet a wide variety of requirements of a large number

of users in heterogeneous networks. DVR is one of many other

employed protocols for establishing communication using routes

with minimum cost to different destinations from a given source.

Research work presented in this paper focuses on implementation

of DVR in SPIN and provides formal verification of correctness of

DVR behaviour covering all required aspects. Simulation results

clearly show a proof of the established paths from each router to

different destinations in a network consisting of six routers and a

number of links.

�

Keywords: Formal Verification, DVR Protocol, SPIN Model

Checker, Distance Vector Routing, Implementation in PROMELA
�

I. INTRODUCTION

A computer network consists of a number of routers which

have the capability to communicate with each other. Routing
Information Protocol (RIP) is widely used for routing packets

from a source to its destination in computer networks. RIP

requires information about distance and direction from source

to destination. Each router, in the Distance Vector Routing

(DVR) methodology, keeps updated record of distances and

hops of its neighbours. Various techniques are used to gather

useful routing table information for each router. In one
approach, special packets are sent by each router and are

received back after having time-stamped by the receivers.

Chromosomes have been employed in the Genetic Algorithm

[1] to select the most optimal path by utilizing its fitness

function, selection of next generation and crossover operation

for updating the routing tables in an efficient manner. Thus, all

routers keep refreshing their routing tables and maintain latest

information about other neighbouring routers in order to

provide optimized performance in the available network [1-3].
�

Mahlknecht, Madni and Roetzer [4] has presented an

efficient protocol that uses hop count and cost information in

its Energy Aware Distance Vector (EADV) routing scheme

and makes use of shot-multi-hop routing for consuming lesser
energy in the wireless sensor networks. EADV can do well for

long lasting battery-powered sensor nodes while using the

lowest cost path towards the selected sink node. An algorithm

is considered the most effective if it contains the correct and
latest information about its neighbours in its DVR table. An

effort has been made by Liwen He by devising a computational

method to protect a network from internal attacks (such as mis-

configuration and compromise) through the use of verifying

routing messages in the DVR protocols [5]. Formal verification

of standards for DVR protocols has also been comprehensively

presented by Bhargavan, Gunter and Obradovic [6] using three

case studies. The researchers have used HOL (an interactive

theorem prover and SPIN (model checker) to verify and prove

salient properties of DVR protocols. HOL and SPIN have been

employed by these researchers for providing a proof of

convergence for the RIP [7].
�

The remaining paper is organized as follows. DVR protocol

is presented in Section II and Section III describes the use of

SPIN tool and PROMELA language for formal verification.

System design and implementation has been discussed in
Section IV covering network topology, implementation details

and operation of DVR protocol. Formal verification of

simulation results has been illustrated in Section V and finally

conclusions and future work is given in Section VII.
�

II. DISTANCE VECTOR ROUTING PROTOCOL
�

A. General Methodology

A routing table is required to be maintained for each router

in the network for the purpose of working of a DVR scheme.
Routing table information is used to determine the best path

(i.e. having minimum cost in terms of distance or hops) from a

source to destination. Links are needed to connect concerned

routers for establishing communication. An optimal DVR

protocol has to exchange frequent messages in order to update

the routing table of each router. So, exchanging information

among neighbours is carried out on regular intervals.
�

Routing table of every router keeps necessary information

(i.e. id of neighbouring routers, most suitable outgoing link to
be used for the destination, distance, hops (number of routers

on the route), time delay, number of queued messages on the

link). The process of making forwarding decision for selecting

the best optimal path from source to destination is based on a
combination of these parameters. The objective of routers is to

send packets to hosts connected to the networks for

heterogeneous requirements of a large number of users. In this

way, efficient DVR schemes ultimately establish good global

paths by connecting hosts in a distributed environment

covering very long distances. Those routers are taken as
neighbours which have links/interfaces to a common network.

�

B. Routing Information Protocol

RIP [8,9] is a widely used protocol for finding the optimal

path to the destination in a network. Each router has a routing
table and all routers periodically updated their routing tables by

using advertising approach. All routes of a router are advertised

through the mechanism of broadcasting RIP packets to all the
neighbouring routers in the network. Every router checks the

advertised information of neighbouring nodes and changes

information only in its routing table if the new route to the

same destination further improves the existing route length. In
other words, the updated routing table information now takes to

the best available route so far for the relevant destination.
�

The number of hops in the RIP are kept low (up to 15) for

the route length for faster convergence [6,7]. RIP methodology,

however, prevents formation of loops between pairs of routers

in order to minimize convergence time as well as permitted

route length. Timer expiry record is also maintained in every

routing table and is normally set to 180 seconds whenever a

routing table is updated. As routers advertise after every 30

seconds, the destination is considered unreachable if a router is

not refreshed for 180 seconds. It further waits for another 120

seconds. If the router remains un-refreshed during this time as

well, then its route is removed from the routing tables of the
concerned routers. This requirement is incorporated to cater for

broken links, faulty networks and congestions.
�

III. USE OF SPIN AND PROMELA
�

A. Formal Verification

A number of new systems and methodologies are being

devised by the researchers in different areas of science,

technology and engineering as a result of meaningful R&D

work being undertaken by academic and research institutes all

over the world. Every proposed system requires a proof of its

correctness by gathering results using simulation and testing

techniques. Formal verification terminology [10,11] is in fact a

process of actual demonstration of the system in order to check

its correctness under the defined boundaries and valid

conditions of used parameters/variables.
�

Precision and accuracy of the system is verified by running

the programming modules by employing required algorithms in

the model checking approach. Errors occurred (if any) are

properly identified under varying conditions so that such errors

can be easily located by the users and are later on

repaired/tackled by adjusting specifications of the model.

Afterwards, the model description is fine tuned to achieve

required model specifications for verification of correct results
of the system.

�

B. SPIN Tool and PROMELA High Level Language

�

SPIN [12,13] is a open-source software tool and is widely

used for the formal verification of software systems working in

the distributed environment. Inspiring applications of SPIN

include the verification of the control algorithms for various

applications, logic verification of the call processing software

for a commercial data communication, critical algorithms for

space missions, operating systems, switching systems,

distributed & parallel systems and formal verification of

various routing protocols. This tool also supports interactive,

random and guided simulations for a wide variety of

applications. Spin can be used in four main modes (i.e. as a

simulator, as an exhaustive verifier, as a proof approximation

system and as a driver for swarm verification).

�

Spin provides efficient software verification and supports

the PROMELA (PROcess MEta LAnguage) high level

language to specify systems descriptions [14]. It is a SPIN’s

input language which is used to build detailed PROMELA

models for complete verification of system designs. It provides

a way for making abstractions of distributed systems. Different

assumptions are used in SPIN to verify each model. After

checking correctness of a model with SPIN, it can then be used

to build and verify subsequent models of the system so that the

fully developed system produces the required behavior.

PROMELA programs consist of processes, message channels,

and variables.

�

IV. SYSTEM DESIGN AND IMPLEMENTATION
�

A. Network Topology

The network topology shown in Figure 1 has been used for

implementation of DVR protocol. There are six routers (A,

B, C, D, E & F) and seven links (edges). Each link

connects two routers. Weight values range from 2 to 23 for

different links and these values indicate distances between

routers. Integer values have been used and distance units

can be chosen during actual implementation of the

network. For example, the distance between routers A and

C via B is 6 using 2 hops and via D, E and F is 33 using 4

hops.

Figure 1: Network Topology
�

B. System Implementation

SPIN’s PROMELA language has been used to construct

complete model of DVR protocol on a Pentium machine.

Packets from the source to destination travel using links

provided by routers by making use of their routing tables for

the given distributed environment of the network. After

�� ��

�� ��

�����

��� ���

���

����

��	���
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2: System Flowchart

�

initialization of the variables, distance is calculated from each

router at time period T=0, T=1, T=2, T=3, T=4 and T=5. At

each stage it checks whether the measured distance forms a
new shortest path or not. Whenever the shortest path is found

from the source to destination, routing table entry for the

concerned router is automatically updated to make good

forwarding decision in order to ensure optimal path, having
minimum distance, for faster communication. Thus, each router

updates its routing table after each time period. The main

objective of the DVR protocol is to provide the current best

route (path) from source to destination for each

communication. Flowchart of the modeled system in

SPIN/PROMELA is shown in Figure 2.

�

�

For the given network, the PROMELA program has six

processes (one for each time period) to find distance based

upon the time period conditions (0 to 5). The found distance

from a particular source to destination for each time period is

compared with all the available alternate routes. Router’s table

is only updated if the new distance is minimum between the

selected source and destination. The new shortest path is

recorded after each calculation. If the determined route does
not find minimum distance during the given time period, then it

ignores its path without updating any entry in the routing table.

Routers improve their routes whenever a router advertises its

routing table to its neighbours. So, new routes are determined
purely based on their length measured in distance. For timely

convergence, the number of hops involved in the length is

limited to 15 as already highlighted by Bhargavan et. al. [7].
�

C. Operation of DVR Protocol

DVR protocol works independently for every destination

and it is assumed that there is no topology change for

protocol’s convergence during every time period. The router

broadcasts after every 30 seconds and the destination is taken

as inaccessible if it is not refreshed for 180 seconds. The route

is removed from the tables of concerned routers if the
particular router fails to refresh itself for 300 seconds.

�

� Via � Via � Via

� From A A B C D E F From B A B C D E F From C A B C D E F

�

�

T=0

A � � � � � � A 3 � � � � � A � � � � � �

B � 3 � � � � B � � � � � � B � 3 � � � �

C � � � � � � C � � 3 � � � C � � � � � �

D � � � � 23 � � � D � � � � � � D � � � � � �

E � � � � � � E � � � � 5 � E � � � � � �

F � � � � � � F � � � � � � F � � � � � 3

�

�

T=1

A � � � � � � A � � � � � � A � 6 � � � �

B � � � � � � B � � � � � � B � � � � � �

C � 6 � � � � C � � � � � � C � � � � � �

D � � � � � � D 26 � � � � 10 � � D � � � � � �

E � 8 � 28 � � E � � � � � � E � 8 � � � 5

F � � � � � � F � � 6 � 7 � F � � � � � �

�

�

T=2

A � � � � � � A � � � � 33 � A � � � � � �

B � � � 33 � � B � � � � � � B � � � � � 10

C � � � � � � C � � � � 10 � C � � � � � �

D � � 13 � � � � � D � � � � � � D � 13 � � � � 10 �
E � � � � � � E 31 � 8 � � � E � � � � � �

F � 9 � 30 � � F � � � � � � F � 10 � � � �

�

�

T=3

A � � � � � � A � � � � � � A � 36 � � � � 13 �
B � � � � � � B � � � � � � B � � � � � �

C � � 13 � � 33 � � C � � � � � � C � � � � � �

D � � � � � � D � � 13 � � � D � � � � � �

E � 11 � � � � E � � � � � � E � 34 � � � �

F � � � � � � F 33 � � � � � F � � � � � �

�

�

T=4

A � � � � � � A � � 36 � � � A � � � � � �

B � � � 36 � � B � � � � � � B � � � � � 36

C � � � � � � C 36 � � � � � C � � � � � �

D � � 16 � � � � � D � � � � � � D � � � � � 36

E � � � � � � E � � � � � � E � � � � � �

F � � � 39 � � F � � � � � � F � 36 � � � �

�

�

T=5

A � � � � � � A � � � � � � A � � � � � �

B � � � � � � B � � � � � � B � � � � � �

C � � � � � � C � � � � � � C � � � � � �

D � � � � � � D � � � � � � D � � � � � �

E � � � � � � E � � � � � � E � � � � � �

F � � � � � � F � � � � � � F � � � � � �

�

Table1: Calculated Distance from Routers A, B and C for Different Destinations at Time Periods T=0 to T=5
�

�

Although the PROMELA’s built model can be used for any

number of routers but its operation is restricted only to the

topology given in Figure 1. For the purpose of explanation of
the model, it is assumed that every router operates without any

problem and updates its routing table during regular intervals

of time.
�

At Time=0, it calculates distances to neighbouring routers

from each router having maximum one hop. Thus, distance

from A to B is 3 & A to D is 23from router A; from router B it

is 3, 3 & 5 for routers A, C & E respectively; and distances are

5, 5 & 2 for routers B, D & F respectively from router E. These

distances can be observed in Tables 1 and 2. Now two hops

from the current router are taken for T=1. So, distance from A

to C via B is 6; A to E via D 28; and A to E via B is 8 as given

in Table 1.
�

When T is taken as T=2, three hop lengths are counted for

determining the distance from each router. From router D,

measured distances are 13 via E to A, 29 via A to C, 10 via E

to C and 31 via A to E. Same can be seen in Table 2. Hop

length is four when T=3, distance covered to B via E, D via C

and D via E is 33, 16 and 33 respectively from router F as

shown in Table 2. Similarly, routes have distances of 36 (B via
F), 36 (D via F) and 36 (F via B) from router C (for T=4) as

given in Table 1. Both Tables 1 and 2 clearly indicate that no

routes are available from any router when T=5 (six hops) for

network configuration of Figure 1.

�

� Via � Via � Via

� From D A B C D E F From E A B C D E F From F A B C D E F

�

�

T=0

A � 23 � � � � � � A � � � � � � A � � � � � �

B � � � � � � B � 5 � � � � B � � � � � �

C � � � � � � C � � � � � � C � � 3 � � �

D � � � � � � D � � � 5 � � D � � � � � �

E � � � � 5 � E � � � � � � E � � � � 2 �

F � � � � � � F � � � � � 2 F � � � � � �

�

�

T=1

A � � � � � � A � 8 � 28 � � A � � � � � �

B 26 � � � � 10 � � B � � � � � � B � � 6 � 7 �

C � � � � � � C � 8 � � � 5 C � � � � � �

D � � � � � � D � � � � � � D � � � � 7 �

E � � � � � � E � � � � � � E � � � � � �

F � � � � 7 � F � � � � � � F � � � � � �

�

�

T=2

A � � � � � 13 � � A � � � � � � A � � 9 � 10 �
B � � � � � � B � � � 31 � 8 B � � � � � �

C 29 � � � � 10 � � C � � � � � � C � � � � 10 �
D � � � � � � D � 31 � � � � D � � � � � �

E 31 � � � � � E � � � � � � E � � 11 � � �

F � � � � � � F � 11 � � � � F � � � � � �

�

�

T=3

A � � � � � � A � � � � � 11 A � � � � � �

B � � � � 13 � B � � � � � � B � � � � 33 �
C � � � � � � C � � � 34 � � C � � � � � �

D � � � � � � D � � � � � � D � � � 16 � � 33 �
E � � � � � � E � � � � � � E � � � � � �

F 32 � � � � 16 � � F � � � � � � F � � � � � �

�

�

T=4

A � � � � � 16 � � A � � � � � � A � � 39 � � �

B � � � � � � B � � � � � � B � � � � � �

C 36 � � � � � C � � � � � � C � � � � 36 �
D � � � � � � D � � � � � 34 D � � � � � �

E 34 � � � � � E � � � � � � E � � 37 � � �

F � � � � � � F � � � 37 � � F � � � � � �

�

�

T=5

A � � � � � � A � � � � � � A � � � � � �

B � � � � � � B � � � � � � B � � � � � �

C � � � � � � C � � � � � � C � � � � � �

D � � � � � � D � � � � � � D � � � � � �

E � � � � � � E � � � � � � E � � � � � �

F � � � � � � F � � � � � � F � � � � � �
�

Table 2: Calculated Distance from Routers D, E and F for Different Destinations at Time Periods T=0 to T=5

�

�

V. FORMAL VERIFICATION OF SIMULATION RESULTS

The implemented system in PROMELA programming

language has been tested exhaustively and obtained simulation

results are shown in Tables 1 and 2. Spin model checker has

been used to verify all the results. The developed model
ensures that all the routers correctly maintain and update their

tables as and when new routes are searched and visited. The

broadcast mechanism works well at different time periods and

the system provides correct and optimized results from each
router to various destinations depending upon network

topology, layout of routers and links connecting different

routers in the network.
�

The SPIN’s verification model successfully checks all the

available routes via different routers and permits only the

shortest path from the available options. It is evident from the

following decisions (only four out of many are presented here):
�

1) At T =1, the route length from E to C via B is 8 where

as it is 5 via F. So, E router adopts F router’s path to

reach C.

2) The distance between routers B & E via A and via C is

31 and 8 respectively. SPIN’s checker confirms that

minimum distance is covered for reaching to C from E

when T=2.

3) When T=3, the path cost determined by the model is

13 from C to A via F, E & B but another path for

connecting the same two router via B, E & D is 36,

each path makes use of four hops. Of course, the

longer path is simply ignored.

4) Similarly, route length from F to D through C, B & A

is 32 and it is 16 via routers C, B & E. A saving of 16

is noted while using the most economical path.

�

A careful analysis of the simulation results shown in Tables

1 & 2 clearly indicates that the modeled system in PROMELA
operates correctly and provides the best possible routes

involving minimum distances using DVR protocol on the given

network environment. The system works efficiently under all

conditions and the SPIN model checker has guarantees
correctness of all results. It means that all the routing tables are

timely updated while messages are being sent to various

destinations from a particular source. Now, this can be

extended to bigger networks in the distributed environment for

efficient and correct functioning using SPIN tool.
�

VI. CONCLUSIONS AND FUTURE WORK

Many researchers have implemented DVR protocols for

various applications. In this research work, PROMELA
language has been used to implement DVR protocol on a six

router model. Formal verification of DVR protocol properties

has been shown through the use of SPIN checker model. The

simulation results amply demonstrate correctness and
reliability of DVR protocol under varying conditions.

Performance of the implemented has been extremely well and

it can further be improved to make it more efficient in terms of

reducing storage space requirements, incorporating security

mechanism for safer communication, minimizing congestion at

peak loads and making it fault-tolerant for enhancing its

reliability and flexibility.

REFERENCES

[1] M. R. Masillamani, A. V. Suriyakumar, R. Ponnurangam and and
G.V.Uma, “Genetic Algorithm for Distance Vector Routing
technique”, AIML International Conference, 13-15 June 2206, Egypt,
pp. 160-163.

[2] Andrew S.Tanenbaum, “Computer Networks”, 4th Edition,. Prentice-Hall
Inc., 2005.

[3] G. Coulouris, J. Dollimore and T. Kindberg, “Distributed Systems :
Concepts and Design, 4th Edition, Addison-Wesley, 2005.

[4] S. Mahlknecht, S. Madani and M. Rötzer, "Energy Aware Distance

Vector Routing Scheme for Data Centric Low Power Wireless Sensor
Networks," Proceedings of the IEEE International Conference on
Industrial Informatics INDIN 06, Singapore, 2006.

[5] Liwen He, “A Verified Distance Vector Routing Protocol for Protection

of Internet Protocol”, Lecture Notes in Computer Science, Networking –
ICN 2005, Volume 3421, Springer, pp. 463-470.

[6] K. Bhargavan, D. Obradovic and C. A. Gunter, “Formal Verification of
Standards for Distance Vector Routing Protocols", Journal of the ACM,
Vol. 49, no. 4, July 2002, pp. 538-576.

[7] K. Bhargavan, C. A. Gunter, and D. Obradovic, “Routing Information

Protocol in HOL/SPIN", Proceedings of the 13th International
Conference on Theorem Proving in Higher Order Logics 2000, August
14 - 18, 2000, London, UK, pp. 53-72.

[8] C. Hendrick, “Routing Information Protocol”, RFC 1058, IETF, June
1988.

[9] G. Malkin, ‘RIP Version Carrying Additional Information’, IETF RFC
1388, January 1993.

[10] J. Katoen, “Concepts, Algorithms and Tools for Model Checking",
Lecture Notes 1998/1999, Chapter1: System Validation.

[11] N. A. S. A. Larc, “What is Formal Methods?",
http://shemesh.larc.nasa.gov/fm/fm-what.html, formal methods program.

[12] R. de Renesse and A. H. Aghvami “Formal Verification of Ad-Hoc
Routing Protocols using SPIN Model Checker”, Proceedings of IEEE
MELECON'04, Croatia, May 2004.

[13] G. J. Holzmann, “The Model Checker SPIN", IEEE Transactions on
Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-295.

[14] G. J. Holzmann, “Design and Validation of Computer Protocols”,
Prentice Hall, November 1990.

Paper II.

Kashif Javed, Elena Troubitsyna, “Designing a Fault-Tolerant Satellite System in
SystemC”, ICONS 2012, The Seventh International Conference on Systems, pp. 49–54,
IEEE Computer Press, March 2012, Saint Gilles, Reunion Island.

ICONS 2012 : The Seventh International Conference on Systems

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7 49

Designing a Fault-Tolerant Satellite System in SystemC

Kashif Javed
Department of Information Technologies

Abo Akademi University
Turku, FIN-20520, Finland

Kashif.Javed@abo.fi

Elena Troubitsyna
Department of Information Technologies

Abo Akademi University
Turku, FIN-20520, Finland
Elena.Troubitsyna@abo.fi

Abstract—Designing fault-tolerant satellite systems is a

challenging engineering task. Often behavior of satellite

systems is structured using notion of modes. Ensuring

correctness of mode transitions is vital for guaranteeing safe

and fault-tolerant functioning of a satellite. In this paper, we

propose an approach to designing fault-tolerant satellite

systems in SystemC. We demonstrate how to develop Attitude

and Orbit Control System in SystemC and verify its

correctness via model checking.

Keywords-component; Fault-Tolerance; Mode-Rich Systems;

Design; Verification

I. INTRODUCTION

Designing a system controlling a spacecraft is a
challenging engineering task. The system should satisfy a
large number of diverse functional and non-functional
requirements. In particular, the designers should aim at
building a fault-tolerant system, i.e., the system that should
cope with faults of various system components. Often
behavior of satellite systems is structured using the notion
of modes – mutually exclusive sets of system behavior.
Fault-tolerance is achieved by putting the system to some
downgraded mode when an error occurs. In this paper, we
consider an Attitude and Orbit Control System (AOCS) – a
generic subsystem of a spacecraft [1]. We demonstrate how
to achieve fault-tolerance via backward mode transitions.

AOCS is a complex control system consisting of several
components. To ensure correctness of mode transition, we
need to guarantee that all components reach a certain state.
Moreover, when a component fails we need to guarantee
that all other components make an appropriate backward
transition.

In this paper, we propose an approach for designing
more-rich system in SystemC programming language. We
propose an algorithm defining mode-transition scheme of
AOCS. To confirm correctness of our algorithm, we have
converted it into Promela [6,7] and the results have been
verified using SPIN model checker [7,8].

Section II presents architecture of the system. Unit
branch state and state transitions have been explained in
Section III and the controller phases & phase transitions of
the AOCS are described in Section IV. Mode transitions and
fault-tolerance procedures for correct functioning of the
satellite under faulty conditions are illustrated in Sections V
and VI respectively. Section VII explains verification of the

implemented system and the paper is summarized in Section
VIII besides giving direction for the future work.

II. ARCHITECTURE

The main purpose of AOCS is to control attitude and
orbit [1] of a satellite. AOCS consists of a number of
components -- AOCS Manager, FDIR (Failure Detection,
Isolation and Recovery) Manager, Mode Manager and Unit
Manager. The AOCS manager plays key role while dealing
with the processing of sensor data, managing actuator
movements relating to the units of Reaction Wheel (RW)
and Thruster (THR) and doing computation for various
controls. The responsibility of FDIR is to timely deal with
such tasks as failure detection, isolation and recovery. Mode
transitions are handled by the Mode Manager whereas the
Unit Manager deals with unit reconfigurations and unit level
state transitions [2,3]. Mode and Unit Manager
Architectures are further elaborated in the following
paragraphs.

A. Mode Manager

The responsibilities of mode include checking of mode
transition preconditions, execution of mode transitions,
management of controller phases and partially management
of related units. There are six different types of controlled
modes (i.e. Off, Standby, Safe, Nominal, Preparation and
Science) in the mode manager and each mode has its own
well-defined unique function. A brief summary of these
modes is given below:

1) Off Mode: The satellite is immediately switched in
the off mode as soon as the AOCS software booting is
completed from the central data management unit.

2) Standby Mode: It is important to check and ensure
successful separation of the spacecraft from the launcher
and this work is continuously monitored and completed by
the software process during the standby mode.

3) Safe Mode: Satellite enters this mode when the
separation from the launcher is done. As soon as the system
is in the safe mode, the relevant portions of Earth Sensor
(ES), RW (Reaction Wheel) and Sun Sensor (SS) are
switched to on state, the coarse pointing controller goes in
the running phase and fine pointing controller is put in the
idle phase. Initially the satellite acquires a stable attitude
and then it achieves the coarse pointing.

ICONS 2012 : The Seventh International Conference on Systems

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7 50

4) Nominal Mode: When a mode transitions to nominal,
the coarse pointing controller becomes idle and the fine
pointing controller is set to the running phase. The selected
branches of RW, Star Tracker (STR) and THR are switched
to on state. In this mode, the satellite utilizes fine pointing
control so that the Payload Instrument (PLI) in the AOCS is
properly used for measurements.

5) Preparation Mode: The moment the mode is
transitioned to the preparation, the concerned portion of
Global Positioning System (GPS) is set to fine state, the
relevant branch of PLI is switched to standby state and
needed processes of RW, STR and THR go to on state.
Thus, this mode ensures that the fine pointing control is
reached and PLI gets ready for fulfilling its required tasks.

6) Science Mode: In science mode, the selected branch
of GPS remains in the fine state, the concerned branch of
PLI goes in the science state and the relevant parts of RW,
STR and THR maintain their on state. Therefore, the PLI in
this mode is ready to perform the tasks for which it has been
designed. It stays in this mode till the completion of planned
tasks.

B. Unit Manager

The AOCS consists of seven different units and internal
state changes in these units are controlled by the unit
manager. Mode manager controls the components of unit
manager. Seven different controlled units are ES, SS, STR,
GPS, RW, THR and PLI. Their brief description is as
under:

1) ES is a device that measures the direction to the
earth in the sensor’s field of view. ES’s internal state is
either on and off.

2) SS is a tool to measure the direction to the sun in the
sensor’s field of view. It is also in the on or off state.

3) STR is an optical device that measures the position of
stars in its field of view and performs pattern recognition on
these stars in order to identify the portion of the sky at
which it is looking. Two possible STR’s operational states
are on and off.

4) GPS is a sophisticated gadget that receives readings
related to the satellite position and makes calculations to
determine satellite’s attitude. Two possible states of GPS
operation are coarse navigation and fine navigation.

5) RW is a rotating wheel which is essentially required
in order to apply the required torque to the satellite. It is
achieved by accelerating or breaking the wheel. RW’s state
can be either on or off.

6) THR is a position actuator that is used to force the
satellite to change its position and its orbit by emitting gas.
It can also be in either on or off state.

7) The PLI is an instrument which provides required
measurements pertaining to the specific mission. It can
operate in standby or science state.

III. UNIT BRANCH STATE AND STATE TRANSITIONS

Every unit is implemented as a pair of identical devices
to maintain the nominal branch and the redundant branch.
For each unit, one and only one branch is selected at a time.
Every selected branch is in on state and its status is locked.
In other words, a branch in the off state is always allocated
an unlocked status.

In total, there are six states of unit components (i.e. on, off,
coarse, fine, standby and science). Whenever an unit state
goes from off to on, the powering takes place. Similarly,
when the unit switches from on to off state, un-powering
takes place. Powering and un-Powering are associated with
the states and state transitions of a branch of ES, SS, STR,
RW or THR. Occurrence of such states and state transitions
is shown in Figure 1. For the GPS unit, unit state goes from
off to coarse state and coarse to fine state, then powering
and upgrading is carried out respectively. In case of fine to
off state transition, first downgrading is performed then un-
powering is done. States and State Transitions of a Branch
of GPS are depicted in Figure 2.

Figure 1: States and State Transitions of a Branch of ES,

SS, RW, STR or THR [1]

In case of PLI unit, when the unit state goes from off to
standby and from standby to science state, then powering
and upgrading is achieved respectively. In case of science to
off state transition, first downgrading occurs and then un-
powering takes place. Figure 3 demonstrates states and their
transitions of a branch of PLI.

Figure 2:States and State Transitions of a Branch of GPS [1]

Figure 3: States and State Transitions of a Branch of PLI [1]

ICONS 2012 : The Seventh International Conference on Systems

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7 51

State transitions are very fast to accommodate time
constrains for real-time satellite operations. Hence, any state
transition to powering, un-powering, upgrading or
downgrading takes less than one AOCS cycle. However,
every state transition to off takes minimum three and
maximum four AOCS cycles. Any state transition to on,
coarse, fine, standby or science has a success condition if
the transition gets completed during the first AOCS cycle
when the condition is observed to hold. However, any state
transition to on, coarse, fine, standby or science is
overridden if the associated success condition is not
observed to hold within a predefined number of AOCS
cycles from start of the transition.

IV. CONTROLLER PHASES AND PHASE TRANSITIONS

The AOCS has two controllers -- Coarse Pointing
Controller (CPC) and Fine Pointing Controller (FPC). The
main objective of these two controllers is to direct the line
of sight with a specified coarse accuracy and fine accuracy
respectively. It is an essential requirement and must be met
within given time limits. The following rules have to be
observed during the controller phase transitions when a
certain operational mode is reached:

1) Both controllers go to idle phase when the mode
transition is set to off or standby state.

2) When the mode transition is switched to safe state,
the CPC enters the running phase and the FPC remains in
the idle phase.

3) When the mode transition shifts to nominal,
preparation or science, the CPC goes in the idle phase and
the FPC moves in the running phase.

Only one controller can be in non-idle phase at any point of
time. When a controller phase has to switch from idle to
running, first of all it is set to preparing. After predefined
number of AOCS cycles, the controller is set to ready phase.
Finally, the phase of controller is shifted to running as
indicated in Figure 4. It can also be noticed that the
controller can directly move to the idle phase from any of
the other three phases (preparing, ready and running).

Figure 4: Phases and Phase Transitions of a Controller [1]

V. MODE TRANSITIONS

The following rules are imposed on mode transitions in
order to ensure correct satellite function in nominal (fault-
free) and faulty conditions:

1) When a mode transition to off or standby is
completed, it is ensured that every branch in every unit is
put in the off state.

2) On reaching to the safe mode, the selected branches
of ES, RW and SS are set in the on state and all other
branches pertaining to different units go to the off state.

3) In case of a transition to the nominal mode, the
selected branch of GPS is turned in the coarse state, the
concerned branches of RW, STR and THR are set to on
state, and remaining every branch in every unit is put in the
off state.

4) Completion of a mode transition to preparation
ensures that the relevant branch of GPS is in the fine state,
the chosen branch of PLI is in the standby state, the selected
parts of RW, STR and THR are in the on state, and rest
every branch in every unit is in the off state.

5) A mode transition to science requires that the needed
branch of GPS is in the fine state, the selected branch of PLI
is in the science state, the concerned branches of RW, STR
and THR are in the on state, and all other branches
pertaining to different units remain in the off state.

VI. FAULT TOLERANCE

Fault-tolerance should guarantee that the system
continues to operate in predictable way even in case of
failure of any of its components. Recovery from errors in
fault-tolerant systems can be characterized as either roll
forward or roll back. Forward error recovery aims at
bringing the system to a new error-free state. Backward
error recovery rolls back the system to some previous state
before an error occurrence. In mode-rich systems, the
backward error recovery is achieved via backward mode
transition, i.e., mode downgrading. The mode down-
gradation depends on various errors, which are explained
below:

A. Branch State Transition Errors

A branch state transition error means that when some unit
transitions to on state, the mode coarse, fine, standby or
science gets overridden due to timeout condition. Because
operation and state transition delays have to be avoided, we
should time each mode transition. If a step of transition is not
completed within a specified time limit, timeout signal is
generated to get into a safe condition. The important error
checks concerning to the branch state transitions are:

1) A branch state transition error on the redundant

branch of ES, RW or SS causes a mode transition to off.
2) A mode transition to safe takes place when there is a

branch state transition error on the redundant branch of
GPS, STR or THR and there is no branch state transition
error on the redundant branches of ES, RW and SS.

3) When a branch state transition error on the redundant
branch of PLI occurs, it results into a mode transition to

ICONS 2012 : The Seventh International Conference on Systems

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7 52

nominal provided that there is no branch state transition
error on the redundant branches of ES, SS, GPS, RW, STR
and THR.

B. Phase Transition Errors

A phase transition error or an attitude error may arise
during the computations done by the selected controller. An
attitude error is generated when there is a problem in the
execution of an AOCS algorithm. It means that an error
occurs only when one of the two controllers (i.e. CPC and
FPC) is in the running phase. The key factors relating to the
attitude errors are:

1) If the current mode is safe, then a non-ignored
attitude error causes a transition to the off mode.

2) In case the existing mode is nominal and a non-
ignored attitude error occurs, a mode transition to safe takes
place.

3) A mode transition to nominal takes place when the
current mode is preparation and a non-ignored attitude error
is generated.

4) The generation of a non-ignored attitude error moves
the mode transition to preparation with the condition that the
existing mode is science.

C. Unit Reconfiguration

Each logical unit consists of two hardware units known
as nominal and redundant. Initially, the nominal unit works
in the active role and provides all the necessary support for
normal operation of the system. The redundant unit serves
as a backup resource. When an error is detected in the
nominal unit, it becomes “reconfigured”. It means that the
nominal unit is switched off and the redundant unit takes
over the operational tasks.

The important errors that take place during the unit
reconfiguration are:

1) A branch state transition error on the nominal branch
of ES, SS or RW causes a reconfiguration of the unit if there
is no branch state transition error on the redundant branches
of ES, SS and RW.

2) A branch state transition error on the nominal branch
of GPS, STR, THR or PLI causes a reconfiguration of the
unit if there is no branch state transition error on the
redundant branches of ES, SS, GPS, RW, STR and THR.

Figure 6 shows detailed flow chart of the implemented

system.

VII. VERIFICATION

We have implemented mode-transition algorithm in
SystemC language. The SystemC Verification Standard
provides API for transaction based verification, constrained
and weighted randomization, exception handling, and other
verification tasks [4,5]. SystemC supports the use of special
data types which are often used by the hardware engineers.
It comes with a strong simulation kernel to enable the

designers to write good test benches for easy and speedy
simulation. It is extremely important because the functional
verification at the system level saves a lot of money and
time.

The system architecture that is implemented in SystemC
is verified in the SPIN model checker. SPIN [6,7,8] is often
used to verify behavior of distributed and parallel systems.
PROMELA (PROcess MEta LAnguage) is a high level
language which is widely used to specify systems
descriptions and is fully supported by SPIN for the purpose
of verification of software-based applications. SPIN
PROMELA is used to carry out detailed testing and
verification of design and architecture of various systems.

The simplified system architecture for AOCS is shown in
Figure 5.

Figure 5: System Architecture [1]

An example of an interfaces between the FDIR Manager,
Mode Manager and Unit Manager shown in Figure 5 are
given below.

When failure occurs in the system, FDIR detects the
error and issues the requests of mode transition, and then
Mode Manager is responsible for mode transitions to the
downgraded mode on the basis of error type. The following
part of the code represents the Interface I scenario for
Science Mode.

if (Mode==F) // Mode F: Science Mode
{ if (ES==off && SS==off && GPS==fine && STR==on &&

RW==on && THR==on && PLI==science && CPC==idle
&& FPC==run)
{/* The associated code describes that the conditions are valid
for Science Mode. The current mode is Science. */}
else if ((ES!=off || SS!=off || RW!=on) && STR==on &&
GPS==fine && THR==on && PLI==science && CPC==idle
&& FPC==run)
{/* The associated code describes that the conditions are not
valid for Science Mode as error occurs on the unit branch of ES,
SS or RW. It causes the mode transition to Off Mode. */}
else if ((GPS!=fine || STR!=on || THR!=on) && ES==off &&
SS==off && RW==on && PLI==science && CPC==idle &&
FPC==run)
{/* The associated code describes that the conditions are not
valid for Science Mode as error occurs on the unit branch of
GPS, STR or THR. It causes the mode transition to Safe Mode.
*/}
else if (ES==off && SS==off && GPS==fine && STR==on
&& RW==on && THR==on && PLI!=science && CPC==idle
&& FPC==run)
{/* The associated code describes that the conditions are not
valid for Science Mode as error occurs on the unit branch of
PLI. It causes the mode transition to Nominal Mode. */}
else if (ES==off && SS==off && GPS==fine && STR==on
&& RW==on && THR==on && PLI==science &&
(CPC!=idle || FPC!=run))
{/* The associated code describes that the conditions are not
valid for Science Mode as error occurs in the phase of Coarse or

ICONS 2012 : The Seventh International Conference on Systems

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7 53

else

Fine Pointing Controller. It causes the mode transition to
Preparation Mode. */}
else
{/* The associated code describes that no transitions take place.
*/ } }

REFERENCES

[1] “DEPLOY Work Package 3 - Attitude and Orbit Control

System Software Requirements Document”, Space Systems

{/* The associated code describes that it is an invalid mode. Program is
terminated.*/}

The SPIN’s verification model successfully checks all the
global mode transitions and the fault-tolerance of the system
architecture. We have successfully verified forward and
backward mode transitions and ensured correctness of
global mode transitions with respect to component states.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an approach to
designing fault tolerant mode-rich control systems. Our
work aimed at demonstrating how to design satellite control
system in SystemC and verify correctness using model
checking. Our approach has been demonstrated by the
design of Attitude and Orbit Control System – a generic
subsystem of spacecrafts.

The proposed system has been implemented in
SystemC language as it is being used as a defacto
verification standard in embedded systems. SystemC
specification was easily aligned with Promela which works
as the input language to SPIN for model checking and
verification.

We have presented the design of the system and
verification steps pertaining to unit branch transition errors,
controller phase transition errors and unit reconfiguration.

Our work complements research done on formal
modeling of mode-rich satellite systems. The formal
modeling undertaken in [9,10] aimed at enabling proof-
based verification of mode-rich systems modeled in Event-
B. In [11] the authors perform failure modes and effect
analysis of each particular mode transition to systematically
design mode transition scheme. Our work aims at building a
gap between formal specification and code. This motivated
our choice of SystemC as a design language and model-
checking based verification.

As a future work, we are planning to investigate design
and verification of decentralized mode-rich systems. In
particular, we will study how to ensure correctness of mode
transitions as a result of negotiation between several mode
managers.

Finland, Ltd., December 2010.
[2] M. Heimdahl and N. Leveson, “Completeness and

Consistency in Hierarchical State-Based Requirements”,
IEEE Transactions on Software Engineering, Vol.22, No. 6,
June 1996, pp. 363-377.

[3] N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga, and J. D.
Reese, “Analyzing Software Specifications for Mode
Confusion Potential”, Proceedings of Workshop on Human
Error and System Development, C.W. Johnson, Editor, March
1997, Glasgow, Scotland, pp. 132-146.

[4] C. Ip and S. Swan, “A tutorial introduction on the new
SystemC verification standard”, Technical report,
www.systemc.org, 2003.

[5] L. Singh and L. Drucker, “Advanced Verification Techniques
: A SystemC Based Approach for Successful Tapeout”,
Springer, 2004.

[6] J. Katoen, “Concepts, Algorithms and Tools for Model
Checking", Lecture Notes, Chapter 1: System Validation,
1999.

[7] N. A. S. A. Larc, “What is Formal Methods?", NASA
Langley Methods, http://shemesh.larc.nasa.gov/fm/fm-
what.html, formal methods program, 2001.

[8] Kashif Javed, Asifa Kashif, and Elena Troubitsyna,
“Implementation of SPIN Model Checker for Formal
Verification of Distance Vector Routing Protocol”,
International Journal of Computer Science and Information
Security (IJCSIS), Vol 8, No 3, June 2010, USA, ISSN 1947-
5500, pp. 1-6.

[9] Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander
Romanovsky, Kimmo Varpaaniemi, Dubravka Ilic, and Timo
Latvala. Developing Mode-Rich Satellite Software by
Refinement in Event B . In Proceedings of FMICS 2010, the
15th International Workshop on
Formal Methods for Industrial Critical Systems, September
2010, LNCS 6371. Springer.

[10] Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander
Romanovsky, and Kimmo Varpaaniemi, Pauli Väisänen.
Verifying Mode Consistency for On-Board Satellite Software,
2010, LNCS 6351, Computer Safety, Reliability, and
Security, Pages 126-141, Springer.

[11] Yuliya Prokhorova, Elena Troubitsyna, Linas Laibinis,
Kimmo Varpaaniemi, and Timo Latvala. Derivation and
Formal Verification of a Mode Logic for Layered Control
Systems. Asia-Pacific Software Engineering Conference.
IEEE Computer, December 2011.

ICONS 2012 : The Seventh International Conference on Systems

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7 54

Figure 6: System Flow Chart

Paper III.

K. Javed and E. Troubitsyna, “Modelling a Fault-Tolerant Distributed Satellite System”,
COLLA 2012, The International Conference Advanced Collaborative Networks, Systems
and Applications, pp. 35-41, June 2012, Venice, Italy.

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6 35

Modelling a Fault-Tolerant Distributed Satellite System

Kashif Javed
Turku Centre for Computer Science (TUCS)

Department of Information Technologies
Abo Akademi University

Turku, FIN-20520, Finland
Kashif.Javed@abo.fi

Elena Troubitsyna
Department of Information Technologies

Abo Akademi University
Turku, FIN-20520, Finland
Elena.Troubitsyna@abo.fi

Abstract— Ensuring correctness of a complex distributed and

mode-rich collaborative satellite system is a challenging task

that requires formal modeling and verification. In this paper,

we propose a model of a distributed Attitude and Orbit

Control System. Mode transitions in such systems are

governed by a sophisticated synchronization procedure. We

demonstrate how to model and verify such a procedure in

order to ensure mode consistency.

Keywords-distributed mode-rich systems; satellite software; fault

tolerance; synchronization

I. INTRODUCTION

Behavior of satellite systems is often structured in terms
of modes. Modes – mutually exclusive sets of system
behavior define different functional profiles of the system
[4,5]. An important problem associated with designing
mode-rich satellite systems is to ensure correctness of mode
transitions.

In this paper, we propose an approach to modeling and
verification of distributed Attitude and Orbit Control System
– D-AOCS [1,2]. D-AOCS is a typical example of a mode-
rich collaborative system. It consists of two independent
mode managers that should negotiate and coordinate their
actions. Collaboration between mode managers is not trivial
– faults of components might prevent the mode managers
from following the agreed course of actions. As a result new
negotiations would be initialized to achieve synchronization
under the new conditions.

The proper synchronization is paramount for ensuring
mode consistency. In general mode consistency can be seen
as a high-level guarantee of a proper functioning of a
distributed system deployed on the space craft. The complex
collaboration procedure precedes each mode transition step.

We demonstrate how to model and verify handshaking
protocol ensuring that modes are changed consistently. An
important part of our modeling is fault tolerance. We
demonstrate how to ensure consistency of not only nominal
but also backward mode transitions, i.e., transitions to the
degraded modes that are responsible for error recovery. The
novelty of the proposed approach is in treating fault
tolerance of collaborative systems as a problem of ensuring
mode consistency.

Section II explains the state-of-the-art of AOCS structure.
Section III presents AOCS architecture covering unit
manager, mode manager, and fault tolerance. Handshake

protocol is explained in detail in Section IV and the proposed
system design using handshake is discussed in Section V.
Finally, Section VI provides a brief summary of conclusions
and future work.

II. STATE-OF-THE-ART STRUCURE

Attitude and Orbit Control System (AOCS) is extensively
used in the design and development of modern satellites. The
major objective of an AOCS is to ensure controlled
movements of the satellites in order to maintain required
attitude and remain in the given orbit. As disturbance of the
atmosphere tends to change orientation of the satellites, there
is a serious need to continuously control and monitor its
attitude. A number of sensors are employed to collect data
for the purpose of controlling attitude. Appropriate corrective
measures are taken by the actuators to keep the right path
and orbit whenever there is change detected in the data sent
by the sensors. This requirement is very essential for
supporting needs of payload instruments as well as for the
fulfillment of satellite’s mission.

The top level schema of an AOCS is shown in Figure 1.

Figure 1: Top Level Schema of AOCS

The AOCS manager consists of three components (i.e.,
sensor data processing, control computation and actuator
commanding). Control computation part handles all the data
and measurements using state-of-the-art control algorithms
and gives commands to the actuators for ensuring correct
path and attitude. Different types of controllers are required
for completion of specific mission stages. Normally, two

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6 36

control algorithms are used during the operational mode of
the satellites.

Each unit of the satellite has a unique status (i.e., free,
reserved, or locked) for its usage while avoiding conflicts
during reconfiguration [10]. An actuator, payload or sensor
remains free when it is idle in any mode. The reserved status
means that a sensor/actuator/payload is to be used shortly but
it is not yet ready. When any unit is allocated and is being
used for its required operation, then it is turned into the
locked status.

III. ARCHITECTURE

In this paper, we consider a distributed version of
Attitude and Orbit Control System. Attitude and Orbit
Control System (AOCS) [1] is a generic component of a
spacecraft. Behavior of AOCS is structured using the notion
of modes – mutually exclusive sets of system behavior. The
complexity of designing distributed AOCS lies in the fact
that mode management is decentralized, i.e., it is performed
by several mode managers. Distributed AOCS (D-AOCS)
has a complex architecture. It consists of AOCS Manager,
Unit Manager, Several Mode Managers and FDIR (Failure
Detection, Isolation and Recovery) Manager. AOCS
Manger deals with two controllers -- Control Pointing
Controller (CPC) and Fine Pointing Controller (FPC). The
purposes of CPC and FPC are to direct line of sight as well
as to provide coarse and fine accuracy. Unit level state
transitions and mode transitions are managed by Unit
Manager and Mode Manager respectively. FDIR Manager
ensures handling of branch state transition errors and
controller phase transition errors [2]. Two managers --
Mode Manager 1 (MM1) and Mode Manager 2 (MM2) are
responsible for the global mode logic of D-AOCS. The
architecture of Unit Manager and Mode Managers is
described below.

A. Unit Manager

The Unit Manager in D-AOCS organizes the internal
states of the units. The components of Unit Manager are
supervised by the Mode Manager. The controlled units
include Earth Sensor (ES), Sun Sensor (SS), Star Tracker
(STR), Global Positioning System (GPS), Reaction Wheel
(RW), Thruster (THR) and Payload Instrument (PLI). All
unit components are responsible for mode synchronization,
decision making on unit states, performing branch state
transitions and unit reconfiguration [4,5]. SS, STR, GPS,
RW and PLI provide data to the AOC Manager. RW and
THR execute the commands from AOC Manager. These
units are also responsible for detection and reporting the
branch state transition errors [1].

Every unit consists of two identical branches -- the
nominal and redundant ones. At any instance of time only
one branch is active. A unit branch in the ‘on’ state is
always assigned locked status and the unit branch in ‘off’
state has unlocked status. There are six states of unit
components -- on, off, coarse, fine, standby and science.

The internal states of ES, SS, STR, RW and THR are either
‘on’ or ‘off’. Three possible GPS’s operational states are
‘off’, ‘coarse’ and ‘fine’. PLI’s state can be in ‘off’,
‘standby’ or ‘science’ [3].

B. Mode Managers

The global mode transitions are managed by the two
mode managers -- MM1 and MM2. Each mode manager’s
controls different units. Each mode manager is responsible
for checking the preconditions of mode transitions,
managing the controllers and the units, and initiating and
completing the mode transitions. The global modes are
correspondingly Off, Standby, Safe, Nominal, Preparation,
and Science [10]. Below we give a brief description of each
mode:

Off: After the central data management unit completes
booting of AOCS software, the satellite instantly goes into
the off mode.

Standby: The process of separation of the satellite from
the launcher is monitored during the standby mode.

Safe: After successful separation from the launcher, the
satellite switches to the safe mode. The satellite obtains a
stable attitude and the CPC is activated.

Nominal: After transition to this mode, FPC is activated,
while CPC is switched off. PLI is actoviated to provide
measurements for FPC.

Preparation: FPC is achieved in the preparation mode
and PLI gets ready to perform the necessary tasks.

Science: PLI carries out the required tasks and stays in
science mode till the desired tasks are completed.

MM1 and MM2 communicate with each other to
synchronize on mode transitions that are performed in
parallel. Let us describe the scenario of mode transitions.
After a mode transition to off or standby is done, every unit
branch goes to off state and both controllers are idle. After
that, both mode managers communicate with each other. If
there is no error then transition to the next mode is executed.
When the mode is switched to safe, the selected branches of
ES, SS and RW are turned to ‘on’ state and only FPC
remains idle. Both mode managers send messages to inform
each other that no error occured in the given modes. After a
handshake, they perform the mode transition to the nominal
mode. In a mode transition to the nominal mode, the
required branches of RW, STR and THR are put to the ‘on’
state and GPS is put into the‘coarse’ state. The messages
sent and received by the mode managers notify each mode
manager that no unit or controller error has occured. Then
the preparation mode is reached, the concerned branches of
RW, STR & THR are in the ‘on’ state and GPS & PLI are in
the ‘fine’ state and ‘standby’ state respectively. They ensure
the correctness of the modes in MM1 and MM2 and make a
transition to the science mode. In case of the science mode,
the preffered branch of PLI operates with ‘science’ state. All
other units keep their previous state. When a mode

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6 37

transition goes to nominal, preparation or science mode,
only CPC remains idle. MM1 and MM2 both inform each
other regarding success of mode transition.

C. Fault Tolerance

Fault tolerance aims at providing the system with the
means to continue its function in spite of errors of its
components. In the D-AOCS backward error recovery is
adopted, i.e., if an error occurs, the system gets back to
some previous state to handle the error. The roll back error
recovery is implemented by the backward mode transitions.
The mode roll-back depends on branch state transition
errors and phase transition errors.

There are different aspects relating to the branch state
transition errors. When a branch state transition error on the
redundant branch of ES, RW or SS occurs and there is no
error in the remaining redundant branches, then the mode
goes back to off mode. If the redundant branch of GPS,
STR or THR gets corrupted, it results a mode transition to
safe. A mode transition to nominal takes place when there is
a branch state transition error on the redundant branch of
PLI.

The important error checks are incorporated to deal with
the attitude or phase transitions. When the current mode is
safe and a non-negligible phase error is produced, it results
in a mode transition to off. If the phase error is generated in
the nominal, then it goes back to safe. In case the existing
mode is preparation and a phase error occurs, a mode
transition to nominal takes place. A mode transition to
preparation takes place when a phase error occurs in the
science mode [3].

In case of unit reconfiguration, a branch state transition
error on the nominal branch of any unit causes a unit
reconfiguration if there is no branch state transition error on
the redundant branches of that particular unit.

If the mode task is not completed within a given time
interval or multiple errors occur in the unit branches and
controller phases, then timeout signal is produced for safe
condition.

IV. HANDSHAKE PROTOCOL

Handshaking is a process in which connection is
established among two processes and information is
transferred from one process to another without the need for
human involvement to set constraints. MM1 and MM2 do
handshake with each other to update the condition of their
modes. Different scenarios of handshake protocol are
explained covering the following key points:

If all conditions of unit states and controller phases
within each mode of MM1 and MM2 fulfill their
requirements, then mode managers pass the ‘no error’
message to notify that the mode is in the error-free state. It
results in the forward mode transition, i.e., the mode

manager switches the current mode to the next mode as
described in Section III.

If an error occurs during a mode transition of MM1 and
there is no error in the mode of MM2, then MM1 sends an
‘error’ message to MM2. MM1 executes error recovery, i.e.,
starts backward mode transtion according to the Section III.
Until the error recovery of MM1 is not completed, MM2
keeps on waiting. After the successful error recovery, both
mode managers proceed to the next mode.

When an error occurs only in the mode of MM2, then
MM1 receives an ‘error’ message from MM2. MM1 waits
until error has been recovered in MM2. The mode managers
switch to next mode after receiving the information from
MM2 that the error is recoverd.

Upon receiving an ‘error’ message from MM1 and MM2
simultaneously, error recovery starts in both mode managers
as mentioned in Section III. The backward mode transitions
are executed in MM1 and MM2. After achieving the
successful recovery, mode managers move to the next
mode.

There are two types of errors -- the unit branch state
transition errors and controller phase transition errors.
Handshaking algorithm for handling such type of errors is
quite complex as specified below:

void handshake(int u_MM1, int u_MM2,int c_MM1,int c_MM2) {
// ‘u’ denotes unit error flag and ‘c’ denotes controller error flag
if (u_MM1==0&&u_MM2==0&&c_MM1==0&&c_MM2==0) {

/* The associated code illustrates that no error occurs in the unit
branchs of ES, SS, RW, GPS, STR, THR or PLI and controller
phase of CPC or FPC in the given mode of MM1 and MM2. It
accounts the forward mode transition according to the Section
III. */}

elseif(u_MM1==1&&u_MM2==0&&c_MM1==0&&c_MM2==0) {
/* The associated code illustrates that an error occurs in the unit
branch of ES, SS, RW, GPS, STR, THR or PLI in the given
mode of MM1. It accounts the backward mode transition
according to the Section III. MM2 stays on waiting until an
error is recovered. */}

elseif(u_MM1==0&&u_MM2==1 &&c_MM1==0&&c_MM2==0) {
/* The associated code illustrates that an error occurs in the unit
branch of ES, SS, RW, GPS, STR, THR or PLI in the given
mode of MM2. It accounts the backward mode transition
according to the Section III. MM1 stays on waiting until an
error is recovered. */}

elseif(u_MM1==1&&u_MM2==1&&c_MM1==0&&c_MM2==0) {
/* The associated code illustrates that an error occurs in the unit
branch of ES, SS, RW, GPS, STR, THR or PLI in the given
mode of both mode managers. MM1 and MM2 account the
backward mode transition according to the Section III. */}

elseif(u_MM1==0&&u_MM2==0&&c_MM1==1&&c_MM2==0) {
/* The associated code illustrates that an error occurs in the
controller phase of CPC or FPC in the given mode of MM1. It
accounts the backward mode transition according to the Section
III. MM2 stays on waiting until an error is recovered. */}

elseif(u_MM1==0&&u_MM2==0&&c_MM1==0&&c_MM2==1) {
/* The associated code illustrates that an error occurs in the
controller phase of CPC or FPC in the given mode of MM2. It
accounts the backward mode transition according to the Section
III. MM1 stays on waiting until an error is recovered. */}

elseif(u_MM1==0&&u_MM2==0&&c_MM1==1&&c_MM2==1) {
/* The associated code illustrates that an error occurs in the
controller phase of CPC or FPC in the given mode of both mode

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6 38

managers. MM1 and MM2 account the backward mode
transition according to the Section III. */}

else {
/* The associated code describes that it is an invalid condition.
Program is terminated.*/} }

V. PROPOSED SYSTEM DESIGN USING HANDSHAKE

The proposed system design has been implemented
using SystemC. SystemC can be used at system level for
functional verification. The framework also supports event
driven simulation environments [6]. It offers application
program interface for transaction based verification,
handling exceptions and verification tasks [7]. The system
model consists of six defined modes named as A (Off), B
(Standby), C (Safe), D (Nominal), E (Preparation) and F
(Science). Three different operations have been
implemented (i.e., forward mode transitions, backward
mode transitions, and unit reconfiguration). The flow chart
given in Figure 3 describes detailed design structure for only
one transition from Mode E to Mode F of the system. When
the system reaches to Mode E, it checks the error in the
Mode E of both mode managers. Figure 3 shows the
operations regarding error condition according to the
scenarios and backward mode transitions according to the
error types (Unit branch error (redundant/nominal) and
controller phase error) they are discussed in Section IV and
Section III respectively.

After necessary declarations of modes, units and
controllers, the verification of the system are described in
the following sections.

A. Verification of Forward Mode Transition

Figure 2: Forward Mode Transitions

When all the units are in off state, controller phases are
in the idle phase, and no unit reconfiguration is in progress,
then current mode is A in MM1 and MM2. The
unit/controller error flag is set to low and mode managers
exchange the information (‘no error’ message) of error-free
mode status. After this, the mode moves forward to the next
mode (i.e., Mode B) in MM1 and MM2. Hence, when all
conditions of unit states and controller phases within each
mode of each manager fulfill their requirements, mode
managers update each other about the error-free mode
conditions. Then the current mode switches to the next
mode within each mode manager until it completes its
operation after Mode F. Figure 2 illustrates the implemented
procedure that corresponds to the forward mode transition
for MM1 and MM2.

B. Verification of the Steps in the Backward Mode

Transition

The backward mode transition depends on the two types
of errors (i.e., unit branch state transition error and
controller phase transition error). Handshaking procedure
for handling these errors is given below.

1) Verification of the Steps in Unit Branch State

Transition Error

Following part of the code segment describes the unit
branch transition error in case of Mode E as shown in
Figure 2. If there is an error in ES, SS or RW of
MM1, MM1 switches to Mode A. If an error occurs
in GPS, THR or STR of MM2, MM2 return to Mode
C. However, if PLI gets an error in both mode
managers, MM1 and MM2 both go back to Mode D.
Before backward transition to the desired mode, the
messages exchange information between the effected
mode manager and the error-free mode manager to
acknowledge the error status.

// Variable declarations
int FPC1,CPC1,FPC2,CPC2,u_MM1,c_MM1,u_MM2,c_MM2;
// unit states
const int off=0;const int on=1;const int coarse=2;
const int fine=3;const int unit=0;const int Standby=4;
const int Science=5;const int idle=0;const int run=1;
const int A=1;const int B=2;const int C=3;
const int D=4;const int E=5;const int F=6;
/* Each unit has two branches i.e., Nominal and Redundant,
here we deal with redundant branch of the units. */
int ES1,SS1,GPS1,STR1,RW1,THR1,PLI1; // MM1 Units
int ES2,SS2,GPS2,STR2,RW2,THR2,PLI2; // MM2 Units

if(mode==E) {// Preparation Mode
if((ES1!=off || SS1!=off || RW1!=on) && STR1==on &&
GPS1==fine && THR1==on && PLI1== standby &&
CPC1==idle && FPC1==run && ES2==off &&
SS2==off && RW2==on && STR2==on &&
GPS2==fine && THR2==on && PLI2== standby &&
CPC2==idle && FPC2==run){

u_MM1=1;c_MM1=0;
u_MM2=0;c_MM2=0;
/* The remaining part of the code, by calling the
handshake protocol function on the basis of unit and
controller error flag, is mentioned in Section IV.*/}

else if(ES1==off && SS1==off && RW1==on &&
STR1==on && GPS1==fine && THR1==on &&

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6 39

PLI1==standby && CPC1==idle && FPC1==run &&
ES2==off && SS2==off && RW2==on && (STR2!=on ||
GPS2!=fine || THR2!=on) && PLI2==standby &&
CPC2==idle && FPC2==run){

u_MM1=0;c_MM1=0;
u_MM2=1;c_MM2=0;
/* The remaining part of the code, by calling the
handshake protocol function on the basis of unit and
controller error flag, is mentioned in Section IV.*/}

else if(ES1==off && SS1==off && RW1==on &&
STR1==on && GPS1==fine && THR1==on &&
PLI1!=standby && CPC1==idle && FPC1==run &&
ES2==off && SS2==off && RW2==on && STR2==on
&& GPS2==fine && THR2==on && PLI2!=standby &&
CPC2==idle && FPC2==run){

u_MM1=1;c_MM1=0;
u_MM2=1;c_MM2=0;
/* The remaining part of the code, by calling the
handshake protocol function on the basis of unit and
controller error flag, is mentioned in Section IV.*/}

else{
/* The associated code describes that no transitions
take place. */ } }

else cout<<" Program is terminated.";

2) Verification of the Steps in Controller Phase

Transition Errors

When CPC and FPC do not fulfill the requirement of
mode of any mode manager, the error flag is set to
high and the affected mode manager is downgraded
to previous mode after utilizing the handshake
protocol by sending message to error-free mode
manager. In case the phase of controllers in the given
mode of both mode managers is corrupted, then both
managers do the backward mode transition at once
after acknowledging each other. The following
portion of the code represents the scenario of phase
transition for Mode E as illustrated in Figure 2.

//Variables are declared in the previous section.
if(mode==E) {// Preparation Mode
if(ES1==off && SS1==off && RW1==on &&
STR1==on && GPS1==fine && THR1==on &&
PLI1==standby && CPC1!=idle && FPC1==run &&
ES2==off && SS2==off && RW2==on && STR2==on
&& GPS2==fine && THR2==on && PLI2==standby &&
CPC2==idle && FPC2==run){

u_MM1=0;c_MM1=1;
u_MM2=0;c_MM2=0;
/* The remaining part of the code, by calling the
handshake protocol function on the basis of unit and
controller error flag, is mentioned in Section IV.*/}

else if(ES1==off && SS1==off && RW1==on &&
STR1==on && GPS1==fine && THR1==on &&
PLI1==standby && CPC1==idle && FPC1==run &&
ES2==off && SS2==off && RW2==on && STR2==on
&& GPS2==fine && THR2==on && PLI2==standby &&
CPC2==idle && FPC2!=run){

u_MM1=0;c_MM1=0;
u_MM2=0;c_MM2=1;
/* The remaining part of the code, by calling the
handshake protocol function on the basis of unit and
controller error flag, is mentioned in Section IV.*/}

else if(ES1==off && SS1==off && RW1==on &&
STR1==on && GPS1==fine && THR1==on &&
PLI1==standby && CPC1==idle && FPC1!=run &&
ES2==off && SS2==off && RW2==on && STR2==on

&& GPS2==fine && THR2==on && PLI2==standby &&
CPC2!=idle && FPC2==run){

u_MM1=0;c_MM1=1;
u_MM2=0;c_MM2=1;
/* The remaining part of the code, by calling the
handshake protocol function on the basis of unit and
controller error flag, is mentioned in Section IV.*/}

else{
/* The associated code describes that no transitions
take place. */ } }

else cout<<" Program is terminated.";

C. Verification of the Steps in Unit Reconfiguration

If error exists on nominal unit branch at any mode of
MM1 or MM2, then it is replaced by redundant unit branch
in the given mode of mode manager. The unit
reconfiguration is done to complete the remaining operation
of the system. Unit reconfiguration is, however, a burden on
the system and takes some time while switching from
nominal branch to redundant branch of the unit. In case of
the nominal unit branch in the given mode of both mode
managers is corrupted, then unit reconfiguration is done in
both mode manager after exchanging the information
between the mode managers regarding unit reconfiguration.

The following piece of the code shows the scenario of
unit reconfiguration for Mode E as shown in Figure 2.

//Variables are declared in the previous section. In reconfiguration
module, we also deal with nominal branch of the units. So, both
branches of the unit are declared separately.
//Nominal branches of MM1 and MM2
int N_ES1, N_SS1, N_RW1, N_GPS1, N_STR1, N_THR1, N_PLI1;
int N_ES2, N_SS2, N_RW2, N_GPS2, N_STR2, N_THR2, N_PLI2;
//Redundant branches of MM1 and MM2
int R_ES1, R_SS1, R_RW1, R_GPS1, R_STR1, R_THR1, R_PLI1;
int R_ES2, R_SS2, R_RW2, R_GPS2, R_STR2, R_THR2, R_PLI2;
if (mode==E) { // Preparation Mode
if((N_ES1!=off || N_SS1!=off || N_RW1!=on) && R_ES1==off &&
R_SS1==off && R_RW1==on && N_ES2==off && N_SS2==off
&& N_RW2==on && R_ES2==off && R_SS2==off &&
R_RW2==on) {

u_MM1=1;c_MM1=0;
u_MM2=0;c_MM2=0;
/* The remaining part of the code, by calling the handshake
protocol function on the basis of unit and controller error flag, is
mentioned in Section IV.*/}

else if(N_GPS1==fine && N_STR1==on && N_THR1==on &&
N_PLI1==standby && R_GPS1==fine && R_STR1==on &&
R_THR1==on && R_PLI1==standby && (N_GPS2!=fine ||
N_STR2!=on || N_THR2!=on || N_PLI2!=standby) &&
R_GPS2==fine && R_STR2==on && R_THR2==on &&
R_PLI2==standby) {

u_MM1=0;c_MM1=0;
u_MM2=1;c_MM2=0;
/* The remaining part of the code, by calling the handshake
protocol function on the basis of unit and controller error flag, is
mentioned in Section IV.*/}

else if((N_ES1!=off || N_SS1!=off || N_RW1!=on) && R_ES1==off
&& R_SS1==off && R_RW1==on && (N_ES2==off || N_SS2!=off
|| N_RW2!=on) && R_ES2==off && R_SS2==off && R_RW2==on
) { u_MM1=1;c_MM1=0;

u_MM2=1;c_MM2=0;

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6 40

Figure 3: System flow chart for Mode E to Mode F

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6 41

/* The remaining part of the code, by calling the handshake
protocol function on the basis of unit and controller error flag, is
mentioned in Section IV.*/}

else if((N_ES1!=off || N_SS1!=off || N_RW1!=on) && R_ES1==off
&& R_SS1==off && R_RW1==on && (N_ES2==off || N_SS2!=off
|| N_RW2!=on) && R_ES2==off && R_SS2==off && R_RW2==on
) { u_MM1=1;c_MM1=0;

u_MM2=1;c_MM2=0;
/* The remaining part of the code, by calling the handshake
protocol function on the basis of unit and controller error flag, is
mentioned in Section IV.*/}

[4] M. Heimdahl, and N. Leveson, “Completeness and Consistency in
Hierarchical State-Based Requirements”, IEEE Transactions on
Software Engineering, Vol.22, No. 6, pp. 363-377, June 1996.

[5] N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga, and J. D. Reese,
“Analyzing Software Specifications for Mode Confusion Potential”,
Proceedings of Workshop on Human Error and System Development,
C.W. Johnson, Editor, Glasgow, Scotland, pp. 132-146, March 1997.

[6] N. Blanc, D. Kroening, and N. Sharygina, “Scoot: A Tool for the
Analysis of SystemC Models”. TACAS'08/ETAPS'08 Proceedings of
the Theory and practice of software, 14th international conference on
Tools and algorithms for the Construction and Analysis of Systems,
Springer-Verlag, Berlin, Heidelberg, pp. 467–470, 2008.

else{

/* The associated code describes that no transition takes place.
*/ } }

[7] L. Singh, and L. Drucker, “Advanced Verification Techniques: A
SystemC Based Approach for Successful Tapeout”, Kluwer

else cout<<" Program is terminated.";}

Our verification efforts are focused on checking
correctness of mode syncornization and verification of the
proposed collaboration scheme. To obtain quantitative
measures of the performance of the discussed protocol we
would need to further refine our specification and to
integrate model of hardware platform in the loop. We are
planning to perform quantitative evaluation as a part of the
future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated how to model and verify
distributed satellite systems with complex mode transition
logic. Our approach is validated by a case study – design of
a distributed Attitude and Orbit Control System.

The proposed system has been implemented in SystemC
language. SystemC specification can be easily interfaced
with various model checking techniques to perform formal
verification. The work presented in this paper extends our
previous work done on modeling centralized mode-rich
system. In the current approach, we have put the main focus
on mode synchronization aspect and demonstrated how to
achieve mode consistency via handshaking protocol.

Our work complements research done on formal
modeling of mode-rich satellite systems. The formal
modeling proposed by Iliasov et al. [8,9] focused on proof-
based verification of centralized AOCS. Formal modeling of
the distributed architecture presented in our paper is a
completely novel aspect.

As a future work, we are planning to investigate how to
interface architectural modeling with our design approach.

REFERENCES

[1] “DEPLOY Work Package 3 - Software Requirements Document for
Distributed System for Attitude and Orbit Control for a Single
Spacecraft”, Space Systems Finland, Ltd., June 2011[retrieved:
November, 2011].

[2] “DEPLOY Work Package 3 - Attitude and Orbit Control System
Software Requirements Document”, Space Systems Finland, Ltd.,
December 2010 [retrieved: January, 2012].

[3] J. Kashif, and E. Troubitsyna, "Designing a Fault-Tolerant Satellite
System in SystemC", ICONS 2012, The Seventh International
Conference on Systems, XPS Press,
pp. 49-54, March 2012.

Academic Publishers, Springer, 2004.

[8] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K.
Varpaaniemi, D. Ilic, and T. Latvala, “Developing Mode-Rich
Satellite Software by Refinement in Event B”. In: Proc.of FMICS
2010, the 15th International Workshop on Formal Methods for
Industrial Critical Systems, Lecture Notes for Computer Science,
Springer, 2010.

[9] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K.
Varpaaniemi, P. Väisänen, D. Ilic, and T. Latvala, “Verifying Mode
Consistency for On-Board Satellite Software”. In Proc. of
SAFECOMP 2010, The 29th International Conference on Computer
Safety, Reliability and Security, September 14-17, Vienna, Austria,
Lecture Notes for Computer Science, Springer, September 2010.

[10] “DEPLOY deliverable D20 – Pilot Deployment in the Space Sector”,
Space Systems Finland, Ltd., January 2010 [retrieved: March, 2012].

Paper IV.

K. Javed and E. Troubitsyna, “A Case Study in Modelling a Fault Tolerant Satellite System
Implementing Dynamic Reconfiguration via Handshake”, ICSEA2012, The Seventh
International Conference on Software Engineering Advances, pp. 44-49, November 2012,
Lisbon, Portugal.

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 44

A Case Study in Modeling a Fault-tolerant Satellite System

through Implementation of Dynamic Reconfiguration via Handshake

Kashif Javed
Turku Centre for Computer Science (TUCS)

Department of Information Technologies
Abo Akademi University

Turku, FIN-20520, Finland
Kashif.Javed@abo.fi

Elena Troubitsyna
Department of Information Technologies

Abo Akademi University
Turku, FIN-20520, Finland
Elena.Troubitsyna@abo.fi

Abstract— Fault tolerance of satellite systems is critical for

ensuring the success of the space mission. To minimize

redundancy of the on-board equipment, the satellite systems

should rely on dynamic reconfiguration in case of failures of

some of their components. In this paper, modeling and

implementation of a handshake procedure has been presented

that becomes a crucial part of the dynamic reconfiguration

process of a satellite subsystem for data processing. The model

for handshake methodology is specialized software for quickly

and successfully recovering from the crisis and failure situation

of the satellite system.

Keywords – dynamic reconfiguration; fault tolerance; advanced

software for handshake procedure; modeling and verification.

I. INTRODUCTION

To ensure high reliability during long-term missions, the
satellite systems rely on redundancy to achieve fault
tolerance and guarantee that the system would be able to
deliver its services despite component failures. However,
the use of redundancy in the satellites is restricted by the
constraints put on the weight and volume of the on-board
equipment.

Despite a careful analysis performed to ensure the
desired degree of reliability, recently one of the satellites
has experienced a double-failure problem with a system that
samples and packages scientific data [6]. The system
consisted of two identical modules. When one of the
subcomponents of the first module failed, the system
switched to the use of the second module. However, after a
while a subcomponent of the spare module also failed, so it
became impossible to produce scientific data. In order to
avoid failure of the entire mission, the company controlling
the operation of the system has invented a solution that
relies on healthy subcomponents of both modules and
provides complex communication mechanism based on the
handshake procedure to restore functioning and to resume
production of scientific data.

In this paper, we present a case study in modeling and
implementation of Control and Data Management Unit
(CDMU) [1] - a generic subsystem of satellites. In
particular, we focus on modeling fault tolerance aspect of
the system that is implemented as a handshake procedure
between two redundant systems. This mechanism is

introduced to achieve the dynamic reconfiguration. For this
purpose, a formal model of the handshake procedure has
been designed and implemented in Promela. Handshake
modeling is an advanced software application to deal with
dynamic reconfiguration for ensuring fault-tolerance when
the mission-critical satellite system encounters faults in its
component and errors in data communication.

This paper is structured as follows. Section II describes
the state-of-the-art model of CDMU and Section III presents
the architecture of the control and data management unit.
Section IV describes the handshake procedure performed to
reconfigure the system from simple redundant two-module
architecture to the Master-Slave architecture. The proposed
system model for handshake is explained in Section V
covering all relevant details of master and slave modules.
Section VI discusses the handshake model between the two
reconfiguration modules that has been implemented and
verified using SPIN/PROMELA. Finally, conclusions and
future work are summarized in Section VII.

II. STATE-OF-THE-ART MODEL

CDMU is a state-of-the-art platform to monitor and
control the satellites system and to organize the collected
on-board data. The major objective of CDMU is to acquire
and transmit the data to the ground after carrying out
appropriate processing. Moreover, it also distributes and
decodes the given commands to its all redundant systems
consisting of processor, reconfiguration and telemetry
modules. Whenever any failure or data error takes place
during the operation of the satellite system, there is an
emergent requirement to dynamically reconfigure the
components of CDMU for its smooth and crisis-free control
and data management. Processing and storing of satellite
data at the right time is of top-most importance during the
working and recovery procedure of the proposed system. In
case of experiencing any failure, the implemented CDMU
structure and the developed model of handshake procedure
immediately adapts to the well-defined and specialized
switchover mechanism for shifting from one redundant
processor to another in order to reconfigure and provide safe
operation of the satellite system during its critical mission.

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 45

III. ARCHITECTURE

The CDMU consists of two Processor Modules (PM1
and PM2), two Reconfiguration Modules (RM1 and RM2),
and two Telemetry Modules (TMM1 and TMM2). It their
own turns, each PM consists of Random Access Memory
(RAM), Integer Unit (IU), Floating Point Unit (FPU), and
Erasable Electrically Programmable Memory (EEPROM).
Each Reconfiguration Module (RM) has two components --
Mass Memory (MM) and On-Board Reference Time
(OBRT). Telemetry Modules generate Telemetries (TMs)
that are processed by Processor Modules.

In CDMU, only one Processor Module (PM1 or PM2) is
in active mode and can access one or both RM1 and RM2.
TMs are received by the active processor module and
accumulated only in MM of its local RM. However, TMs
can be retrieved from the MM of partner RM after switching
is done from one processor module to another. When each
particular PM has experienced a failure, the Master and
Slave policy is introduced for error recovery. It aims at
ensuring that the CDMU functionality can be preserved
even when failures are present in the system.

In our case study, we consider the following two
consecutive errors in CDMU that might occur during the
execution of the system:

1) PM1 fails due to the failure in FPU.
2) TM ceases to function due to the failure in the link

between TMM2 and PM2.

The basis of the Master and the Slave is to prepare a
work-around in order to address above mentioned failures.
In this case, PM1 and PM2 are converted into the Slave and
the Master respectively. Similarly, Master and Slave
comprise of the functional program running in PM2 and
PM1 respectively and it is mainly established to execute the
system without the FPU and connection link.

At a time, both the Master and the Slave interface with
RM1 and RM2, respectively, as shown in the CDMU
structure. However, RM1 and RM2 are not capable to hold
simultaneous access to both of them.

Despite the error in the connection link of PM2, the PM2
is still in operational mode and stores TM in the MM.
Similarly, PM1 is also in operational mode by using only IU
program (without FPU) that recovers TM from the MM and
sends to the operator. The operator interacts with the Master
and the Slave by sending Tele-Commands (TCs). Figure 1
shows that each processor module is connected to both RM1
and RM2 and to both TMM1 and TMM2. The
TeleCommand (TC) receiver is also linked to both PM1 and
PM2.

Figure 1: CDMU Structure [1]

IV. FACTORS CONTRIBUTING IN HANDSHAKE

The important key factors that are involved in the
handshake procedure are as follows:

1) Time Event Register (TER) is used for messaging

between the Master and the Slave. As there is no
direct link between the Master and the Slave, so
TER is used as a shared device. Both can access
TER to read and write messages. RM1 and RM2
have their own TER devices.

2) The two interrupts -- Time Event Interrupt (TEI)
and Time Synchronization Interrupt (TSI) caused
by RM1 and RM2 are sent to the Slave and the
Master respectively. If the Master uses RM1 and
interrupt triggers, then interrupt is only sent to the
Slave because it is a local processor module of
RM1.

3) The interrupts can be used as a signal from the
Master to the Slave for the acknowledgement of
the messages because the Master has a charge of
the interrupt timing.

4) OBRT Status Register is used to find out that
interrupt has triggered in the system. The Master
holds the check of this register and clears the
interrupt flag for allowing the coming up
interrupts.

5) The Master and the Slave cannot use the same RM
at a time. However, both the Master and the Slave
are informed through handshake procedure in order
to choose required RM at a given time interval.

6) Handshaking is done through Communication
Channel (CCH) between the Master and the Slave.
RM1 or RM2 is used as CCH. The TER in the
CCH is expressed as Communication Time Event
Register (CTER).

7) The selection of RM1 or RM2 as CCH depends on
the Master as it utilizes both RM1 and RM2. On
getting the TC instruction from the operator, it

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 46

switches to one module of RM (RM1 or RM2) and
releases the other RM for CCH. If the Master is
using only one RM module initially, the unused
RM will be selected as CCH. The Master can
switch the RM at the end of the handshake
procedure.

8) The handshake message contains the phase content
and timing of the message that is encoded in the
CTER. The timing of the interrupt is slightly
affected by the phase content that is encoded in the
four Least Significant Bits (LSB) of the CTER, but
this affect of interrupt timing is less than 0.3 ms
and is, therefore, ignored.

9) The phase content in the four least significant bits
of the CTER is as under:

i. When 4 LSB of CTER has value ‘1’, then
the Master informs the Slave to
communicate through RM1. Similarly,
when 4 LSB of CTER has value ‘2’, then
the Master informs the Slave to
communicate through RM2. This phase is
known as “Select Communication RM”.

ii. If the value is ‘4’ in the 4 LSB of CTER,
the Slave updates the Master to confirm the
communication through RM1. Likewise, if
the value is ‘5’ in the 4 LSB of CTER, then
the Slave informs the Master that it
confirms the communication through RM2.
This phase of the handshake procedure is
called “Confirm Communication RM”.

iii. Upon setting the value of ‘10’ in 4 LSB of
CTER, the Slave is informed by the Master
that if RM1 is not in use then switch to it
and use it. For the value ‘11’, the Slave has
to switch to use RM2. When the value is
‘14’, then the Master instructs the Slave to
release both RM1 and RM2. This phase is
named as “Command Slave”.

iv. The Master sends a message to the Slave in
which it verifies the RM1 or RM2 selection
by putting the value ‘8’ in 4 LSB of CTER.
This phase is entitled as “Confirm
Command”.

10) The encoding of the handshake messages is done

within one second (s) - Pulse Per Second (PPS).
The interrupts according to the PPS time slot are
given below:

i. When interrupts occur from 0.10 to 0.40 s,
RM1 and RM2 are not selected in this time
slot. It means that the Master instructs the
Slave to confirm the change to use no RM.

ii. For the selection of RM1, interrupts take
place in the time slot ranging from 0.42 to
0.70 s. The Master orders the Slave either
to communicate with RM1 or confirm

change to use RM1 during the handshake
procedure.

iii. In the 0.72 - 1.00 s time slot, interrupts are
taken into account. This selection is
encoded for RM2 where master notifies the
Slave either to communicate with RM2 or
confirm change to use RM2 during the
handshake procedure.

iv. The purpose of the remaining unused slots
0.00 – 0.10 s, 0.40 – 0.42 s and 0.70 – 0.72
s is to avoid overlaps. Any interrupts
appearing in these timing slots will be
ignored.

11) The minimum time between two TSIs is greater

than 0.3s to ensure that two TSIs do not trigger
during the same time slot. On the other hand,
interrupt can be triggered two times during the
same time slot.

V. PROPOSED SYSTEM MODEL FOR HANDSHAKE

The handshake procedure [2] has been modeled for the
Master and the Slave as shown in Figure 2. Handshake is a
procedure in which the Master communicates with the Slave
to update the selection of RM1 and RM2. It is a complicated
process as there is no direct communication link between
them.

Figure 2: Model of Handshake Procedure

A. Master Handshake Procedure

The handshake procedure that is executed by the Master
Module is shown in Figure 2. Below we give its brief
description:

Upon the reception of TC from the operator, the
handshake procedure is started by the Master. The Master

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 47

informs the Slave that other RM will be used as CCH by
updating the value of 4 LSB TER. If the Master is using
RM2 and storing TM, then the Slave will be informed to
make RM1 as CCH. Likewise, if RM1 is operated by the
Master, then the Slave has to use RM2 as CCH. When CCH
is RM1, then system operation is performed from 0.42 to
0.70 s PPS slot. Similarly, for RM2, 0.72 to 1.00 s, PPS slot
is used for the system operation. System has to wait for
starting of the right PPS slot according to the CCH.

In order to send information to Slave, interrupts are
triggered from the Master after setting the value of OBRT
Status Register to zero. For accuracy, the value of TER for
the Slave RM is set to 0.04 s. The interval between two
interrupts is 0.06 s. The Master ensures by reading the
CTER value from the Slave that selection of CCH is done.
The Master can swap the CCH selection at the end of
handshake procedure. The Master commands the Slave by
setting the future CCH selection value in the 4 LSB CTER
and triggers a TEI only. The time value of TEI is not
relevant to the CTER, so the time slot of TEI makes no
changes in the end result of the system. Only operator is
responsible for the new RM selection and determining
which RM is used as CCH as stated in Section IV. In the
system, operator initially notifies the RM selection to the
Master, it changes CCH selection from used RM to other
RM according to the swapping information that is encoded
in 4 LSB CTER and also confirms the RM selection. The
confirmation message is also forwarded to the Slave by
sending two interrupts within the correct time slot. At this
moment, the Master ends the handshake procedure and
updates the operator for successful working by sending the
corresponding TM.

B. Handshake Procedure: Slave Behaviour

When the operator starts the handshake, the following
operations are carried out by the Slave as shown in Figure 2.

If the Slave is using RM1 or RM2, then it will deselect
the current RM on the reception of TC command from the
operator. When RM is discontinued from the Slave, then
OBRT Status Register will be set to zero and no more
interrupts will be triggered. The Slave waits for 0.03 s to get
the new command along with two interrupts (i.e. TEI and
TSI) which will be generated from the Master during the
expected PPS slot. When the Slave receives a message from
the Master, then it decodes it from the interrupts time slot as
mentioned in Section IV (para # 10). For verification, the
Slave also interprets the value of 4 LSB CTER as described
in Section IV (para # 9). If the values derived from the
interrupts time slot and 4 LSB CTER are the same, then the
Slave achieves the specified CCH selection. After that, the
Slave sends acknowledgement of confirmation to the Master
by setting the value of 4 LSB CTER according to Section
IV. Now, the Slave has to wait again for 0.02 s for the new
response or interrupt from the Master according to the PPS
slot. On the arrival of message from the Master, the Slave is
triggered by TEI. The Slave has no opportunity to change

the decision of new selection and waits for 10s for the
confirmation message from the Master. Again, the Slave
receives two interrupts with the CTER message and
compares the time slot of interrupts with previous CTER
value. If both are same, then the Slave begins the operation
with released RM. Finally, the Slave also completes the
handshake procedure by sending TM to the operator.

VI. VERIFICATION OF THE HANDSHAKE MODEL

The handshake model has been implemented by using
PROMELA (PROcess MEta LAnguage) high level
modeling language with SPIN model checker for verifying
the required results. SPIN [3,4] is extensively used in formal
verification of distributed and parallel processing systems.
SPIN has greatly facilitated the process of verification in the
areas of mission-critical algorithmic applications, message
and data communication in the client-server environment,
synchronization and coordination of large number of
processes in the parallel and distributed systems, deadlock
handling methodologies in the modern multi-tasking
operating systems, verification of the mission-oriented
control models for space aircrafts, utilization of intelligent
models for determining most suitable and economical paths
over wide area networks, checking performance of routing
protocols [5], testing of fault-tolerant strategies and
implementation of a wide variety of switching techniques.
The literature review reveals that most of the software-based
systems/models are checked and verified by the SPIN model
checker.

The handshake model between two processors in control
and data management unit has been successfully
implemented and verified using SPIN/PROMELA. The
flow chart for handshake procedure model is shown in
Figure 3. The following algorithm along with description of
each condition of the processes shows part of the
implemented SPIN/PROMELA model.
/*Variable Declarations */
active proctype Slave_starts_HP()
{S_TC=true;
if
::(S_TC==true)->RM1=0;RM2=0;
::(S_TC!=true)-> printf("\n\nExit Handshake Procedure.\n\n");
fi
S_TM=true;}

The above code depicts that when TC command is

received to Slave from the operator, Slave starts handshake
procedure by deselecting the RM selection. After successful
execution of the TC command, Slave sends TM to operator
and waits for Master’s response. In any other condition,
handshake procedure will be terminated.
active proctype Master_starts_HP()// time value is taken in (ms)
{M_TC=true; RM1=0;RM2=1; // set by the operator
if
::(RM1==0 && RM2==1)->// I_time denotes timing of interrupts
{CTER_4_LSB=1;I_time=500;TEI=true;TSI=true;OBRT_SR=1;
run Slave_read_wrtie_operation(CTER_4_LSB,I_time,TEI,TSI);}
::(RM1==1 && RM2==0)->
{CTER_4_LSB=2;I_time=800;TEI=true;TSI=true;OBRT_SR=1;

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 48

run Slave_read_wrtie_operation(CTER_4_LSB,I_time,TEI,TSI);}
fi}

The code associated with the above process describes
that Master starts handshake on the operator command.
When operator selects RM2 for Master, then Master uses
RM2 and notifies Slave (by sending CTER and interrupts)
to use RM1 as CCH. Likewise, if operator selects RM1,
then Master uses RM1 and updates the Slave (through
CTER and interrupts) to use RM2 as CCH. After that, it
waits for Slave’s response.
proctype Slave_read_wrtie_operation(int CTER_4_LSB,I_time;bool
TEI,TSI)
{if
::((CTER_4_LSB==1) && (TEI==true && TSI==true) && (I_time>=420
&& I_time<=700))->
{CTER_4_LSB=4;run Master_decides_future_selection(CTER_4_LSB);}
::((CTER_4_LSB==2) && (TEI==true && TSI==true) && (I_time>=720
&& I_time<=1000))->
{CTER_4_LSB=5;run Master_decides_future_selection(CTER_4_LSB);}
::((CTER_4_LSB!=1) || !(I_time>=420 && I_time<=700))->
{printf("\n\nExit Handshake Procedure.\n\n");}
::((CTER_4_LSB!=2) || !(I_time>=720 && I_time<=1000))->
{printf("\n\nExit Handshake Procedure.\n\n");}
fi}

The above piece of code illustrates that when timing of
interrupts is in line with the information that is encoded in
CTER 4 LSB, then Slave confirms the selection to Master
and waits for 0.02 s in order to get Master’s response. So,
when interrupts occurs between 0.42 to 0.70 s time slot and
CTER 4 LSB is ‘1’, it means Slave confirms to use RM1 as
CCH by encoding the value ‘4’ in CTER 4 LSB. Similarly,
if time slot for interrupt is 0.72 to 1.00 s and CTER 4 LSB is
‘2’ then RM2 is confirmed as CCH by the Slave through
updating the value ‘5’ in CTER 4 LSB. If timing of the
interrupts is not compatible with the encoded information in
CTER 4 LSB, handshake procedure exits at this stage.
proctype Master_decides_future_selection(int CTER_4_LSB)
{if
::(CTER_4_LSB==4)->
{OBRT_SR=0;CTER_4_LSB=11;TEI=true;OBRT_SR=1;
if
::(CTER_4_LSB==11)->
{RM1=1;RM2=0;aa= CTER_4_LSB;OBRT_SR=0;CTER_4_LSB=8;
I_time=800;TEI=true;TSI=true;OBRT_SR=1;M_TM=true;
run Slave_interprets_message(aa,I_time,TEI,TSI);}
::(CTER_4_LSB==14)->
{RM1=0;RM2=0;OBRT_SR=0;aa=CTER_4_LSB;CTER_4_LSB=8;
I_time=200;TEI=true;TSI=true;OBRT_SR = 1;M_TM=true;
run Slave_interprets_message(aa,I_time,TEI,TSI);}
fi;}

The above fragment of the code describes that when
Slave is using RM1, Master updates the up-coming
selection of RM by placing the value ‘11’ or ‘14’ in CTER 4
LSB with only TEI. If Master selects RM1, it releases RM2
to be used as CCH by putting the value ‘11’ in CTER 4
LSB. When Master picks RM1 and does not release RM2 to
be used as CCH, it writes the value ‘14’ in CTER 4 LSB.
After a half second to give the Slave sufficient time to read
value of CTER, the Master confirms the selection to the
Slave by encoding the value ‘8’ in CTER 4 LSB on the
specified time

Figure 3: Flow Chart of Handshake Procedure Model

slot according to Section IV and exits the handshake
procedure.

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 49

::(CTER_4_LSB==5)->
{OBRT_SR=0;CTER_4_LSB=10;TEI=true;OBRT_SR=1;

The associated code with above condition illustrates this.
if
::(CTER_4_LSB==10)->
{RM1=0;RM2=1;OBRT_SR=0;bb=CTER_4_LSB;CTER_4_LSB=8;
I_time=800;TEI=true;TSI=true;OBRT_SR=1;M_TM=true;
run Slave_interprets_message(bb,I_time,TEI,TSI);}
::(CTER_4_LSB==14)->
{RM1=0;RM2=0;OBRT_SR=0;bb=CTER_4_LSB;CTER_4_LSB=8;
I_time=200;TEI=true;TSI=true;OBRT_SR = 1;M_TM=true;
run Slave_interprets_message(bb,I_time,TEI,TSI);}
fi;}
fi}

nor RM2 as CCH. After then Slave exits the handshake
procedure. If interrupts timing is not in line with the
information that is encoded in earlier CTER 4 LSB,
handshake procedure exits at this stage too.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a formal approach for
modeling a fault-tolerant satellite system that relies on the
handshake procedure for dynamic reconfiguration. We have
demonstrated how to create a Promela model of the
handshake and carry out its analysis. Since the handshake

The above part of the code shows that when the Master
is using RM1, it updates the up-coming selection of RM by
setting the value ‘10’ or ‘14’ in CTER 4 LSB with only TEI.
If the Master selects RM2, it releases RM1 to be used as
CCH by putting the value ‘10’ in CTER 4 LSB. When the
Master picks RM2 and does not release RM1 to be used as
CCH, it writes the value ‘14’ in CTER 4 LSB. After a half
second to give the Slave sufficient time to read value of
CTER, the Master confirms the selection to the Slave by
encoding the value ‘8’ in CTER 4 LSB on the specified time
slot according to Section IV and exits the handshake
procedure.
proctype Slave_interprets_message(int previous_CTER,I_time;bool
TEI,TSI)
{if
::((I_time>=420 && I_time<=700) && (previous_CTER==10) &&
(TEI==true && TSI==true))->
{S_TM=true;}
::((I_time>=720 && I_time<=1000) && (previous_CTER==11) &&
(TEI==true && TSI==true))->
{S_TM=true;}s
::((I_time>=100 && I_time<=400) && (previous_CTER==14) &&
(TEI==true && TSI==true))->
{S_TM=true;}
::(!(I_time>=420 && I_time<=700) || (previous_CTER!=10))->
{ printf("\n\nExit Handshake Procedure.\n\n");}
::(!(I_time>=720 && I_time<=1000) || (previous_CTER!=11))->
{ printf("\n\nExit Handshake Procedure.\n\n");}
::(!(I_time>=100 && I_time<=400) || (previous_CTER!=14))->
{ printf("\n\nExit Handshake Procedure.\n\n");}
fi}
init
{atomic// Atomic is used to reduce the complexity.
{run Slave_starts_HP();
run Master_starts_HP();}
}

procedure has a number of non-trivial properties caused by
the distributed nature of the system, such a model allows the
designers to ensure correctness of the handshake
implementation. In our future work, we are planning to
extend the proposed approach to derive the generic
modeling patterns. Moreover, it would be interesting to
explore the handshake in the presence of more complex
network architecture.

REFERENCES

[1] “DEPLOY – Software Requirement Specification,

Master/Slave Software”, Space Systems Finland, Ltd., July
2011.

[2] J. Kashif, and E. Troubitsyna, “Designing a Fault-Tolerant
Satellite System in SystemC”, ICONS 2012, The Seventh
International Conference on Systems, IEEE Computer Press,
pp. 49–54, March 2012.

[3] C.Baier and J.-P. Katoen. “Principles of Model Checking”.
MIT Press, 2008.

[4] N. A. S. A. Larc, “What is Formal Methods?", NASA
Langley Methods, http://shemesh.larc.nasa.gov/fm/fmwhat.
html, formal methods program, 2001.

[5] J. Kashif, A. Kashif, and E. Troubitsyna,, “Implementation of
SPIN Model Checker for Formal Verification of Distance
Vector Routing Protocol”, International Journal of Computer
Science and Information Security (IJCSIS), Vol 8, No 3,
USA, ISSN 1947-5500, pp. 1-6, June 2010.

[6] A. Tarasyuk, I. Pereverzeva, E. Troubitsyna, T. Latvala, and
L. Nummila, Formal Development and Assessment of a
Reconfigurable On-board Satellite System, In: Frank
Ortmeier, Peter Daniel (Eds.), Proceedings of 31st
International Conference on Computer Safety, Reliability and
Security (SAFECOMP 2012), LNCS 7612, pp.210-222,
Springer, 2012.

The code given above indicates that after waiting for 10
s, Slave receives the confirmation message with two
interrupts from Master. The timing of interrupts is matched
with the information that is encoded in previous CTER 4
LSB as mentioned in Section IV. Therefore, when timing of
the interrupts lies between 0.42 to 0.70 s time slot and
previous CTER 4 LSB is ‘10’, it notifies that Slave uses
RM1 as CCH that is released by the Master. Similarly,
timing of the interrupts lies between 0.72 to 1.00 s time slot
and previous CTER 4 LSB is ‘11’, it notifies that Slave uses
RM2 as CCH that is released by the Master. Also, when
interrupts timing lies between 0.10 to 0.40 s and the value of
previous CTER 4 LSB is ‘14’, then Slave uses neither RM1

Paper V.

E. Troubitsyna and K.Javed, “Towards Systematic Design of Adaptive Fault Tolerant
Systems”, ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications, pp. 15-21, May 2014, Venice, Italy.

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 15

Towards Systematic Design of Adaptive Fault Tolerant Systems

Elena Troubitsyna, Kashif Javed
Åbo Akademi University, Finland

e-mails: {Elena.Troubitsyna, Kashif.Javed}@abo.fi

Abstract—The development of modern distributed software

systems poses a significant engineering challenge. The system

architecture should exhibit plasticity and high degree of

reconfigurability to enable an automated adaptation to

continuously changing operating conditions and component

failures. Traditional engineering approaches are inefficient to

cope with complexity of such systems to ensure their

robustness and fault tolerance. Therefore, there is a clear need

for the approaches explicitly addressing the problem of

designing adaptive fault tolerance mechanisms. In this paper,

we propose a systematic approach to the development of

adaptive fault tolerant systems. We discuss the main principles

of architecting such systems to enable plasticity and

reconfigurability. We demonstrate how deployment of the

predictive adaptation allows us to ensure that the system would

be able to continuously deliver its services with the acceptable

quality despite occurrence of component failures.

Keywords-adaptable systems; fault tolerance, predictive

adaptation; reconfiguration.

I. INTRODUCTION

The complexity of modern large-scale systems requires

solutions that ensure that systems autonomously adapt to the
operating environment and internal conditions. Often, such
systems are put into a wide class of autonomic systems --
the software-intensive systems that, besides providing their
intended functionality, are also capable to diagnose and
recover from errors caused either by external faults or
unforeseen state of environment in which the system is
operating [3]. In this paper, we focus on the fault tolerance
aspect of such systems.

Fault tolerance is an ability of a system to deliver its
services in a predictable way despite faults [8]. The generic
principle underlying design of fault tolerant systems is to
detect a discrepancy between a model representing fault free
system behaviour and the observed state, and implement
error recovery [8] .

In this paper, we propose a general pattern for
architecting and developing the adaptive fault tolerant
systems. The proposed pattern supports a layered design
approach [6] that enables separation of concerns and
facilitates structured design of fault tolerance mechanisms.
In our representation of the architectural pattern, we define
the interfaces between the components at different levels of
abstraction to ensure correct propagation of fault tolerance
related data. The high-level coordination of the fault

tolerance mechanisms is implemented by an adaptation
manager – a component that is responsible for implementing
predictive fault tolerance. To specify the adaptation manager,
we propose an algorithm that allows the adaptation manager
to monitor state of the system at the run time and implement
proactive adaptation. Such an approach ensures that the
overall system would continuously deliver the services with
the acceptable quality. We believe that the proposed
approach ensures a systematic development of adaptive fault
tolerant systems.

The paper is structured as follows: in Section II, we
overview the state-of-the-art in designing adaptive fault
tolerant systems. In Section III, we describe general
principles of achieving fault tolerance, and, in particular,
proactive fault tolerance. In Section IV, we present our
proposal for structuring adaptive fault tolerant system. In
Section V, we present our proposal for algorithms that
implement proactive fault tolerance. Finally, in Section VI,
we discuss the proposed approach and future work.

II. RELATED WORK

The need for high performance and continuous service
provisioning demands novel solutions for achieving system
fault tolerance. We are increasingly observing deployment
of proactive fault tolerance techniques that replace
traditional reactive approaches [10]. In modern large-scale
systems, error rate is increasing and reliance on traditional
“error-detection – error-recovery” pattern leads to poor
performance and prolonged system downtime, which is
often unacceptable. The approaches for proactive fault
tolerance are based on preventive treatment of faults aiming
at precluding failures and minimising recovery time [10].
The main mechanism of achieving proactive fault tolerance
is adaptation.

The problem of software adaptation has been extensively
studied at the implementation level, (see e.g., [2] for an
overview). However, there is a lack of approaches that
attempt to derive appropriate adaptation mechanisms from
system-level goals as well as support layered reasoning
needed to efficiently cope with system complexity. A
prominent work on formal modelling of adaptive systems
has been done within the HATS project [2]. In [13][14], an
approach to quantitative assessment of reconfiguration
strategy has been proposed. In our previous work, we also
investigated the impact of faults on dependability, as well as

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 16

structured approach to designing fault tolerant distributed
systems [7][11].

Current engineering practice takes an architecture-
centric perspective on adaptive systems. Among the most
prominent examples are the Rainbow framework proposed
at Carnegie Mellon University [12] and the autonomic
computing initiative by IBM [3]. These frameworks outline
the main abstractions for describing and managing dynamic
system changes. However, currently, the approaches to
proactive fault tolerance are not well-integrated into the
system development process [10]. In this paper, we will
address this problem by proposing a structured approach to
architecting adaptive fault tolerant systems. Our approach
aims at facilitating design space exploration at the early
development stages and enabling explicit representation of
the mechanisms for proactive fault tolerance.

III. FAULT TOLERANCE

The main goal of introducing fault tolerance is to design
a system in such a way that faults of components do not
result in a system failure. A fault cannot be detected by a
system until the manifestation of the fault generates errors in
the component function. The first step in implementing fault
tolerance is error processing [10]. Error processing aims at
removing errors from the computational state.

The first step in error processing is error detection. An
error is a manifestation of a fault. The general mechanism of
error detection is to intercept outputs produced by a system
(or a component) and to check whether those outputs
conform to the specification of fault free behaviour.
Discrepancy between produced outputs and the specification
indicates an occurrence of an error. The next step in error
processing – damage confinement – is concerned with
structuring the system to minimise the spread of errors. Once
the damage is assessed and confined the error recovery can
be performed. Error recovery has two main forms – forward
and backward error recovery. The forward error recovery
mechanisms manipulate the current system state to produce a
new system state, which is presumably error free. The
success of error recovery strongly depends on how precisely
the error is located and how well it is confined. A typical
example of forward recovery is failsafe [1]. If a system has a
safe though non-operational state then it may be possible to
recover from an error by forcing the system permanently to
that safe state (obviously, this strategy is only appropriate
where shut down of the system operation is possible).

By analyzing actions to be undertaken for error
processing, we observe that error processing imposes
additional requirements on the system design. Namely:

- The system should be specified in such a way that

error occurrence conditions are easily deduced and
then explicitly checked;

- The system architecture should enable error
confinement;

- Error recovery procedures should be identified for
every output, which differs from the specified one.

Obviously, an incorporation of error processing in the
system design has a strong impact on all levels of the system
structure. Hence, fault tolerance should be an intrinsic part of
system development and should start from the early stages of
the system design.

To embrace complexity challenge, fault tolerance
community has been proposing new concepts that can be
seen from initiatives and research efforts on autonomic
computing [3] and various forums on self-healing [9] or
self-protection (see, e.g., [1]). These terms span a wide
range of research fields ranging from adaptive memory
management to advanced security mechanisms.

A promising direction among them focuses on
determining how computer systems can proactively handle
failures: if the system knows about a critical situation in
advance, it can try to apply countermeasures in order to
prevent the occurrence of a failure, or it can prepare repair
mechanisms for the upcoming failure, in order to reduce the
time-to-repair.

Such an approach can be called proactive fault
tolerance. It encompasses three main steps:

1. Failure prediction: it aims at identifying failure-

prone situations, i.e., the situations that will
probably evolve into a failure. The result of failure
prediction is an evaluation of whether the current
situation is failure-prone.

2. Proactive reconfiguration: based on the outcome of
failure prediction, a system should make a decision
and implement the countermeasures to be executed
in order to remedy the problem. These decisions
are based on an objective function taking into
account the cost of the actions, the confidence in
the prediction, and the effectiveness and
complexity of the actions to determine the optimal
tradeoff. Challenges for action execution include
online reconfiguration of globally distributed
systems, data synchronization of distributed data
centers, and many more.

3. Recovery: this stage enables graceful degradation
of services while the resources are insufficient for
mitigating the failures. For instance, the predictive
reconfiguration might not be completed as
promptly as expected and the system should
compensate for insufficient resources. Another
example would be a sudden simultaneous failure of
several components due to unexpectedly adverse
situations in the environment.

Each one of these stages is important for an efficient
implementation of the proactive fault tolerance. Hence,
novel architectural solutions, algorithms and development
approaches are needed to attain the goal of building adaptive
fault tolerant systems.

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 17

To build a proactive fault tolerance solution that is able
to boost system dependability, the best techniques from all
fields for the given surrounding conditions have to be
combined.

In this paper, we consider the proactive fault tolerance to
be the main adaptation mechanism to achieve system
dependability. In the next section, we present our approach
to structuring an adaptive fault tolerant system. Then, we
focus on designing the proactive adaptation mechanisms.
Our proposal aims at enhancing self-adaptation system
capabilities. Our goal is to design the mechanisms that allow
a system to autonomously adapt to changing operating
conditions without human intervention. Essentially, our
proposal follows a spirit of the autonomic computing
paradigm.

IV. ARCHITECTURE OF ADAPTIVE FAULT TOLERANT

SYSTEMS

In this paper, we propose to structure an adaptive fault

tolerant system in a layered manner [6]. The layered
architecture significantly simplifies the development of
complex software-intensive systems. Each layer becomes
responsible for a certain aspect of the system behaviour. It
facilitates a clear separation of concerns and simplifies the
interfaces between the layers. The main issue is to device a
well-structured clean architecture that does not introduce
tangled interdependencies between layers. In this paper, we
propose to structure the architecture of a fault tolerant
adaptive system in four layers:

• Application layer
• Adaptation layer
• Fault tolerance layer
• Physical layer

The physical layer represents the environment whose

state should be monitored. It might be a complex control
system that uses sensors to monitor the health of its
components. Another example might be an indoor sensor
network that monitors such conditions as temperature,
humidity, the level of CO, etc. Finally, it might also be a
sensor network for monitoring the outdoor environment, e.g.,
such as used for forest fire detection, air pollution etc.

The fault tolerance layer performs the data aggregation
and evaluation of the quality of monitoring. This information
is supplied to the adaptation layer that is responsible for
defining the proactive adaptation policy. The aim of the
application and fault tolerance layer is to continuously
supply the application with the monitoring data of an
acceptable quality. The design of the application is defined
by its purpose – it varies from the complex control functions
to collecting data intelligence. The graphical representation
of the system architecture is given in Fig.1.

The physical layer consists of the component to be
controlled by the application software. In order to implement

proactive fault tolerance, the software should continuously
monitor the state of the controlled components.

Adaptive Fault Tolerant System

Application

Adaptation layer

Fault tolerance layer

Physical layer

Figure 1. Structure of an adaptive fault tolerant system.

The monitoring capabilities are achieved by integrating
sensors that measure the parameters required to observe the
behaviour of the system in real-time. Usually, complex
systems contain a large number of sensors. Hence, from the
fault tolerance perspective, the physical layer can be
considered as a sensor network.

It generates raw data. Each sensor produces the data in
the following format

<value, timestamp>

We consider two most typical failure modes of the sensors:
stuck at previous value and producing a (detectably)
incorrect value. In the former case, the sensor fails silently
by failing to update its reading, i.e., the timestamp indicates
that the produced data is old. In the latter case, the sensor
produces the value that is outside of the feasible range.

At the fault tolerance layer resides fault tolerance
manager. The goal of the fault tolerance manager is

• To periodically read the sensor data,
• To filter out faulty data,
• To compute the average value of valid data together

with defining the quality level.

The fault tolerance manager produces the input for the
adaptation manager as a tuple

<value, level>

To compute the quality level, the fault tolerance manager
keeps track of the number of sensors that have produced
valid data. There are two thresholds: lim1 and lim2 such that
lim2 > lim1. They determine the quality level. If the number
of the sensors that produced the valid data is greater than
lim2 then the quality level is set to Level 3. If the number of
sensors produced valid data is between lim1 and lim2 then

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 18

the quality level is set to Level 2. If the number of valid
readings is between 1 and lim1 then the quality level is set to
Level 1. Finally, if none of the sensors have produced valid
results then the quality level is assigned value Level 0.

The adaptation manager and deployment manager
constitute the adaptation layer. The adaptation manager
receives the data from the fault tolerance manager in the
format

<value, level>

where level is an integer between 0 and 3. If the level has
value 3, then, the value has a good quality and the adaptation
manager simply forwards the received value to the
applications. However, if the quality level is below 3 but
greater that 0 then the adaptation manager still forwards the
received data to the application but starts an observation
period.

The aim of the observation period is to establish
whether the decline in the quality of data is temporal or
permanent. Assume that, after receiving a value with the
levels 1 or 2, the adaptation manager observes a continuous
period of receiving data with quality level 3. Then, the
observation period terminates and no reconfiguration is
initiated, i.e., the adaptation manager treats the decline in the
quality of data as a temporal one and considers the system to
be healthy.

If, during the observation period the adaptation
manager continuously receives data with quality level 1 or 2
then after the observation period expires, it initiates
reconfiguration, i.e., considers the quality deterioration to be
the permanent one.

The reconfiguration is triggered by sending a request to
the deployment manager to deploy a new set of sensors. The
deployment can be achieved in several different ways. For
instance, if we consider a wireless sensor network that is
used to monitor the state of the environment then the
deployment is performed via a distribution of a set of fresh
sensors (e.g., from an airplane). If the sensors are used to
monitor an indoor environment then the deployment triggers
a request to the maintenance company. The same principle
applies if the sensor network is used to monitor the
behaviour of a complex control system. In any case, the main
advantage of the proposed approach is a possibility to
preventively react on the deterioration of the quality of
monitoring and avoid the loss of the observability of the
physical layer.

The requested number of new sensors to be deployed
depends on how deeply the level of data quality has
deteriorated. If the quality level has value 1 then the
deployment manager requests n new sensors to be deployed.
If the quality level has the value 2 then m new sensors are to
be deployed, where m<n.

In general, we could design a more sophisticated
deployment mechanism. For instance, if each sensor or a
group of sensors is assigned an id then the failures can be
diagnosed precisely. This would allow the adaptation
manager to communicate the exact requirements for the
deployment of new sensors.

When the new sensors are deployed, the deployment
manager acknowledges the completion of the reconfiguration
and the adaptation manager notifies the fault tolerance
manager about availability of the new sensors. The fault
tolerance manager closes the connection with the failed
sensors and establishes connection with the newly deployed
ones.

An important aspect to be considered is how to define
the behaviour of the adaptation manager when the quality
level keeps fluctuating between the values 2 and 3. On the
one hand, the adaptation manager should not trigger the
reconfiguration prematurely. On the other hand, delaying a
reaction on such an unstable situation might result in an
abrupt deterioration of the quality of data that should be
prevented.

To resolve this issue, we let the adaptation manager to
maintain the observation period as long as no continuous
improvement in quality has been observed. Every time when
the data are received with the quality threshold lower than 3,
the adaptation manager increments the counter of the
observation period. When this counter exceeds the
predefined threshold, the adaptation manager triggers the
reconfiguration. This approach is taken to ensure that the
preventive reconfiguration will be initiated even if the
system keeps fluctuating between quality levels.

Finally, if the adaptation manager receives data with
the quality level equal to 0, then it immediately initiates
reconfiguration of the data flow. In this case, it starts to send
to the application data received at the previous cycle. It
continues to send the last data with an acceptable quality
value until the reconfiguration is completed and the fault
tolerance manager starts to send the data with an acceptable
quality level.

In the next section, we define the main behavioural
patterns of adaptation manager and fault tolerance manager.

V. ALGORITMS FOR PROACTIVE FAULT TOLERANCE

Let us focus first on defining the module specifying the

fault tolerance manager.
The module should implement the procedures of

• Reading the sensor data,
• Checking validity of sensor data with respect to

time and feasibility
• Calculating the average of the received valid data

and the quality level.

In our definition of the fault tolerance manager, we used two
abstract functions fresh and valid. The function fresh relies
on the specific parameters to determine whether the
produced data is fresh. Since the clocks of the sensors might
fluctuate, the function checks whether the timestamp is
within certain boundaries.

The function valid checks feasibility of the data
produced by a sensor. It returns the Boolean value True if the
data is valid and False otherwise.

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 19

Module Fault Tolerance Manager

Global Variables
in_buffers: array of <float, INT>
out_buffer: seq of <float, INT>

Local Variables
count: INT /*counter of healthy sensors
sum : float /*sum of readings
avg: float /*average value
level: [0..3]

Initialisation:
count:= 0;
sum:= 0;
avg:= 0;
level:= 0

Begin

for i = 1 to k do

read (data, time_stamp, in_buffer[i]);
if

fresh (time_stamp) = True & valid(data)= True
then count:= count +1; sum := sum +data

end;

if counter > 0 then avg:= sum/count;

case count = 0 then level:= 0
elseif count>0 & count<lim1 then level:=1
elseif count>lim1 & count<lim2 then level:=2
else level:=3;

out_buf:= out_buf^<avg,level>;
count:= 0;
sum:= 0;
avg:= 0

End

Figure 2. Fault Tolerance Manager.

Reliance of the abstract functions allows us to

parameterise the definition of the module and reuse the
proposed definition in different contexts.

In our definition of the module, we have abstracted
away from the implementation details of the communication
between the fault tolerance manager and the sensors. We
assume that they communicate by shared variables -- data
and time stamps that are stored in the in_buf array of pairs.

The proposed algorithm implements the procedure of
reading the sensor data, checking their validity with respect
to time and feasibility and calculates the average of the
received valid data.

By keeping track of the number of valid readings, the
fault tolerance manager calculates the quality level. It
compares this number with two constants – lim1 and lim2.
The pair of calculated data and the quality level is appended
to the output buffer that is read by the Adaptation Manager.
The specification of the Fault Tolerance Manager module is
given in Fig. 2 and the Adaptation Manager in Fig. 3.

Module Adaptation Manager

Global Variables
a_out_buf: float

Local variables:

observ : Bool
cur_level : INT
cur_data:float
fault_count : INT
suc_count : INT
mode: {Normal, Adapt, Adapt_Compl, Adapt_activ}

Initialisation:
observ :=0;
cur_level :=0;
fault_count :=0;
suc_count :=0;

Begin

cur_level, cur_data := head(out_buf);

if observ= False & cur_level= 3 then out_buf:= cur_data

if observ= False & cur_level= 2 & fault_count<thr
then fault_count:= fault_count+1; out_buf:= cur_data;

if observ= False & cur_level<3 & cur_level>0 &

fault_count>thr-1
then mode := adapt_active, adapt_req:= True;

if observ= False & cur_level=3 & fault_count>0 & fault_count<thr-

1
then observ:= True; suc_count := suc_count +1;

observ:= 0;

if observ= True & cur_level=3 & fault_count>0 &
fault_count<thr-1 & suc_count<thr_s

then suc_count:= suc_count+1;
observ_s_iter:= observ_s_iter:=+1;

if observ= True & cur_level=3 & fault_count>0 &

fault_count<thr-1 & suc_count>thr_s-1 &
suc_count =observ_s_iter

then observ:= False ; suc_count:= 0; fault_count:= 0;
observ_s_iter:= 0;

if observ= True & cur_level<3 & fault_count>0 &

fault_count<thr-1 & suc_count<thr_s
then suc_count:= suc_count+1;

observ_s_iter:= observ_s_iter+1;

if mode= adapt_activ then adapt_req ;

if adapt_conf then mode:= normal

End

Figure 3. Adaptation Manager.

In the specification of the Adaptation manager, the
variable observ indicates whether the observation period has
started. The variable obtains the value True when the first

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 20

data with the quality level below 3 is received. The variable
is reset to True if the quality has recovered or a new period
of observation is initiated.

The variables cur_level and cur_data designate the data
and the quality level received from the fault tolerance
manager. The variable fault_count is used to keep track of
the number of iterations, in which the data with the quality
level lower than 3 have been received. When the value of
fault_count exceeds the predefined threshold thr, the
reconfiguration is triggered.

The variable suc_count is used to keep track of the
iterations that produced data with the quality level 3 after the
observation period has been initiated. When the value of
suc_count exceeds the predefined threshold thr_s the
adaptation manager has continuously received the data with
the quality level 3 for sufficiently long period of time.
Therefore, the quality level has recovered and the
observation period can be deactivated.

The adaptation manager provides the application with the
latest data by updating the global variable a_out_buf. It
forwards the data received from the fault tolerance manager
if the quality level is higher than zero. Otherwise, it simply
does not update the variable.

The adaptation manager triggers the reconfiguration by
issuing the adaptation request adapt_req that is received by
the deployment manager. When the new sensors are
deployed the deployment manager confirms the
reconfiguration by issuing the signal adapt_conf.

After triggering the reconfiguration, the adaptation
manager enters the mode Adapt. After the reconfiguration is
completed, the adaptation manager enters the mode
Adapt_Compl. In this mode [4] [5], it notifies the fault
tolerance manager about availability of new healthy sensors.
As a response to this, the fault tolerance manager shuts down
the connection with the failed sensors and establishes a new
connection with the newly deployed sensors. After this
procedure is completed, the fault tolerance manager notifies
the adaptation manager. It enables transition to the mode
Normal.

The general scheme of an implementation of the mode
transition is given in Fig. 4. The main principle that underlies
the mode transition is as follows: the mode is stable and
unchanged until a fluctuation in the quality level is
registered. We show the snippet implementing this principle
as a generic mode changing procedure.

The proposed architecture ensures a separation of
concerns and clear allocation of responsibilities between the
components. Indeed, the fault tolerance manager is
responsible for collecting data and validating them. It
encapsulates the failures of sensors and gives only the high-
level indication of the current health of the system by
annotating the data with the quality level. The adaptation
manager is responsible for diagnosing the situation and
executing the preventive reconfiguration – requesting the
new sensors to be deployed before the quality of data
deteriorates below the acceptable level. At the same time, it
also ensures remedial actions when no data is produced – it
outputs to the application the last healthy value. Such
behaviour ensures graceful degradation of quality of service.

Procedure ModeTransition

Variables
last_mode: {Normal, Adapt, Adapt_Compl, Adapt_activ}
next_target: {Normal, Adapt, Adapt_Compl, Adapt_activ}

prev_target: {Normal, Adapt, Adapt_Compl, Adapt_activ}

level: int

Begin

if adaptation completed
then initiate a forward transition

to next_target according to
the predefined scenario;

if level dropped
then initiate a backward transition to next_target

adaptation mode
The choice of target mode depends on severity
of level decrease;

if the conditions for entering the target
mode are satisfied

then complete a transition to next_target mode
and become stable ;

if neither the conditions for entering
the next global mode are satisfied nor the level dropped
then maintain the current mode

End

Figure 4. Mode transition procedure.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a systematic approach to
architecting adaptive fault tolerant systems. We have
demonstrated how to structure the system to facilitate layered
design of proactive fault tolerant mechanisms. We defined
the information flow between the layers of the system
architecture that enables adaptation and guarantees a
continuous delivery of services with an acceptable quality
level.

Proactive fault tolerance is a promising research direction
that aims at providing systems with capabilities of executing
preventive reconfiguration to preclude occurrence of failure
and disruption in service provision. In our paper, the main
mechanism of achieving proactive fault tolerance relies on
several levels of error detection and monitoring of system
health.

As a future work, we are planning to investigate
alternative approaches to preventive reconfiguration as well
as conduct quantitative assessment of various system
characteristics, e.g., correlation between frequency of the
network rejuvenation with new sensors and quality of data,
proportion between periods of low quality data and different
thresholds etc. Such a work, would allow us to define
heuristics for designing proactive fault tolerance.

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 21

REFERENCES

[1] O. Babaouglu, M. Jelasity, A. Montresor, C. Fetzer, S.

Leonardi, A. van Moorsel, and M. van Steen (Eds.) Self-Star
Properties in Complex Information Systems. LNCS 3460.
Springer-Verlag, 2005.

[2] HATS Project: Highly Adaptable and Trustworthy Software
using formal models. www.hats-project.eu/.Accessed
20.03.2014

[3] P. Horn, Autonomic Computing: IBM's perspective on the
State of Information Technology.
http://researchweb.watson.ibm.com /autonomic/. Accessed
20.03.2014

[4] A .Iliasov, E. Troubitsyna, L. Laibinis, A.Romanovsky, and
K.Varpaaniemi. Verfifying Mode Consistency for On-Board
Satellite Softyware. In.Proc. SAFECOMP 2010, LNCS 6351,
pp. 126-141, Springer, 2004.

[5] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky,
K.Varpaaniemi, D. Ilic, T. Latvala, Developing Mode-Rich
Satellite Software by Refinement in Event B . In: Proc. of
FMICS 2010, LNCS 6371, pp. 50-66, Springer, 2010.

[6] L. Laibinis and E.Troubitsyna. Fault tolerance in a layered
architecture: a general specification pattern in B. In Proc. of
SEFM 2004. pp. 346-355, IEEE Computer Press, 2004.

[7] L. Laibinis, E. Troubitsyna, A. Iliasov and A. Romanovsky.
Rigorous Development of Fault-Tolerant Agent Systems.

Rigorous Development of Complex Fault-Tolerant Systems.
LNCS 4157, pp. 241-260, Springer, 2006.

[8] J. C. Laprie, Dependability: Basic Concepts and Terminology.
New York, Springer-Verlag, 1991.

[9] M. Salehie, L. Tahvildari: Self-adaptive software: Landscape
and research challenges. ACM Transactions on Autonomous
and Adaptive Systems 4(2). ACM, 2009.

[10] F. Salfner, M. Lenk, and M. Malek: A survey of online failure
prediction methods. ACM Comput. Surv. 42(3), 2010.

[11] K. Sere and E. Troubitsyna. Safety Analysis in Formal
Specification. In Proc. of FM'99, LNCS 1709, pp. 1564 –
1583, Springer, 1999.

[12] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan.
Discovering Architectures from Running Systems. In IEEE
Transactions on Software Engineering, Vol. 32(7), July 2006.

[13] A. Tarasyuk, I. Pereverzeva, E. Troubitsyna, T. Latvala, and
L. Nummila, Formal Development and Assessment of a
Reconfigurable On-Board Satellite System. In Proc. of
SAFECOMP 2012, LNCS 7612, pp. 210–222, Springer-
Verlag, 2012.

[14] E. Troubitsyna. Reliability assessment through probabilistic
refinement. Nordic Journal of Computing 6(3), 320-342,
1999.

Paper VI.

E. Troubitsyna and K.Javed, “A Structured Approach to Architecting Fault Tolerant
Services”, ICIW 2014, The Ninth International Conference on Internet and Web
Applications and Services, pp. 99-104, July 2014, Paris, France.

A Structured Approach to Architecting Fault Tolerant Services

Elena Troubitsyna, Kashif Javed
Åbo Akademi University, Finland

Elena.Troubitsyna@abo.fi, Kashif.Javed@abo.fi

Abstract— Service-oriented computing offers an attractive

paradigm to designing complex composite services by

assembling readily-available services. The approach enables

rapid service development and significantly increases

productivity of the development. However, it also poses a

significant challenge in ensuring quality of created services

and in particular their fault tolerance. In this paper, we

propose a systematic approach to architecting complex fault

tolerant services. We demonstrate how to graphically model

the architecture of composite services and augment it with

various fault tolerance mechanisms. We propose an

approach facilitating a systematic analysis of possible

failures of the services, recovery actions and alternative

solutions for achieving fault tolerance. Our approach

supports structured guided reasoning about fault tolerance

at different levels of abstraction. It allows the designers

evaluate various architectural solutions at the design stage

that helps to derive clean architectures and improve fault

tolerance of developed complex services.

Keywords - services; fault tolerance, architecture, service

composition, service orchestration; failure modes and effect

analysis

I. INTRODUCTION

Web-services [13] constitute one of the fastest growing
areas of software engineering. With a strong support for
compositionality, the process of developing an application
essentially becomes a process of composing available
services. Services – the basic building blocks of complex
applications are platform and network independent
components implementing computations that can be
invoked by clients or other services.

To enable a rapid service composition, services define
their properties in a standard and machine readable
format. It enables service discovery, selection and
binding. Service composition introduces the orchestration
of the basic services to build applications. However,
usually research on service orchestration focuses on
defining the language for service composition that does
not support reasoning about such essential features as
fault tolerance. Such reasoning can be supported by
dependability analysis and architectural modelling [5].

In this paper, we propose a systematic approach to
architecting fault tolerant services. We demonstrate how
to graphically model the architecture of composite

services and augment it with various fault tolerance
mechanisms. We propose static and dynamic solutions for
introducing fault tolerance into the service composition.
The structural solutions rely on availability of redundant
service providers that can be requested to provide services
in case of failures of the main service providers. This
mechanism allows the designers to mask failures of the
individual service providers. The dynamic solutions rely
on re-execution of failed services to recover from the
transient faults of services. This solution requires
modifications of the service execution flow.

To facilitate design of complex fault tolerant services,
in this paper, we introduce a systematic approach to
analysing possible failure modes of services and defining
fault tolerance measures. Our approach is inductive – it
progressively analyses one component after another in the
service execution flow, explores possible fault tolerance
alternatives and systematically introduces them into the
service architecture.

We believe that our approach supports structured
guided reasoning about fault tolerance and enables
efficient exploration of the design space. It allows the
designers to evaluate various architectural solutions at the
design stage that helps to derive clean architectures and
improve fault tolerance of developed complex services.

The paper is structured as follows: in Section II, we
demonstrate how to model a fault tolerant service from a
service user’s perspective. In Section III, we demonstrate
how to unfold service architecture, i.e., explicitly
represent the service composition and the service
execution flow. We also propose different fault tolerance
mechanisms that can be introduced to enhance fault
tolerance. In Section IV, we introduce a structured
approach to designing a fault tolerant architecture.
Finally, in Section V, we overview the related work and
discuss the presented work.

II. ABSTRACT MODELING OF FAULT-

TOLERANT SERVICES

The main goal of introducing fault tolerance in the service
architecture is to prevent a propagation of faults to the
service interface level, i.e., to avoid a service failure [7] [9].
A fault manifests itself as error – an incorrect service

serv_rec

idle

serv_cnf

serv_fail_cnf

serv_tfail_cnf

serving

Figure1. Use case representation of a service.

state [9]. Once an error is detected, an error recovery
should be initiated. Error recovery is an attempt to restore a
fault-free state or at least to preclude system failure.

Error recovery aims at masking error occurrence or
ensuring deterministic failure behaviour if the error cannot
be masked. In the former case, upon detection of error,
software executes certain actions to restore a fault-free
system states and then guarantee normal service
provisioning. In the latter case, the service provisioning is
aborted and failure response is returned.

In this paper, we focus on the architectural graphical
modelling [12] of fault tolerant services [13]. We
demonstrate how to explicitly introduce handling of faulty
behaviour into the service architecture. We follow the

Figure 3. State diagram of communication.

As shown in Fig.4, the abstract model represents an
interaction of the service with a user. An abstract
architectural diagram defines an interface for
communicating with the user. The state diagram formally
defines the communication between the user and the
service.

aUser : User

 aPositioning : Positioning

<<usecase>>
PositionCalculation

I_FromPositioning

model-driven development paradigm and start our
modelling from a high level of abstraction [8]. The
consecutive model transformations introduce the detailed
representation of the service architecture.

The high-level model of a fault tolerant service is given
in Fig.1. The service is defined via its interactions with
different service users. Each association connecting an
external user and a service corresponds to a logical
interface, as shown in Fig.2. The logical interfaces are

I_ToPositioning

idle

Positioning

pc_req

pc_cnf

pc fail cnf

servin

attached to the class with ports. At the abstract modelling
level, we treat a service as a black box with the defined
logical interfaces.

The UML2 interfaces I_ToService and I_FromService

define the request and request parameters of the service
user. We formally describe the communication between a
service and its user(s) in the I_Communication state
machine as illustrated in Fig.3. The request ser_req

received from the user is always replied: with the ser_cnf in
case of success, with the ser_fail_cnf in case of
unrecoverable failure and with the ser_tfail_cnf in case of a
recoverable failure. Let us point out, that already at the
abstract level of modelling, we explicitly introduce
representation of faulty behaviour and reaction on it.

To exemplify an abstract modelling of a fault tolerant
service, let us consider a positioning service. It provides the
services for calculating the physical location of the service
user.

1 FromService
1 ToService

Service

Figure 2. Abstract architectural diagram.

Fig.4. Modelling positioning service

The request to calculate the position is modelled by the

event pc_req. In case of a normal execution, the positioning
service returns the reply pc_cnf. Let us observe, that in our
modelling we explicitly define the possibility of a service
failure following the pattern proposed above. Indeed, in
case of the unrecoverable failure, the positioning service
returns pc_fail_cnf. In case of a recoverable failure, the
service returns pc_tfail_cnf. Such a fault-tolerance explicit
approach to modelling ensures that the service execution
always terminates, i.e., the service never becomes
unresponsive.

III. ARCHITECTURAL DECOMPOSITION

Our abstract modelling has defined the service from the

service user’s point of view. The model transformation
presented next focuses on defining the composition that
constitutes the overall service.

An execution of composite service consists of executing
several subservices. Coordination of a service execution
is performed by a service manager (sometimes

called service composer). It is a dedicated software
component that on the one hand, communicates with a
service user and on the other hand, orchestrates the service
execution flow.

To coordinate service execution, the service manager
keeps the information about subservices and their execution
order. It requests the corresponding service components to
provide the required subservices and monitors the results of
their execution.

Let us note, that any subservice might also be composed
of several subservices, i.e., in its turn, the subservice
execution might be orchestrated by its (sub)service
manager. Hence, in general, a composite service might
have several layers of hierarchy [5].

To model a composite service, we introduce the
providers of the subservices into the abstract architectural
service model. The model includes the external service

Figure 5. Architecture of a positioning service.

providers communicating with the aggregated service via
their service director. For each association between the
main service and the corresponding subservice, we define a
logical interface. The logical interfaces are attached to the
corresponding classes via the corresponding ports. This
enables a structured representation of the modular structure
of the composite service. The functional architecture is
defined in terms of the service components, which
encapsulate the functionality related to a single execution
stage of another logical piece of functionality.

The architectural diagram of the position calculation [5]
[14] – the composite service example described above is
presented in Fig. 5. The service manager role is two-fold: it
orchestrates service execution flow and handles
communication with the service user. The dynamics of the
execution flow is refined by introducing the corresponding
sub-states in the service state as shown in Fig. 6.

Figure 6. Unfolded dynamic behaviour.

Now, let us discuss the fault tolerant aspect of the
composite services. Execution of any subservice can fail.
To ensure fault tolerance of composite services, we propose
a two-fold approach. On the one hand, we define a set of
patterns [11] that allow us to introduce structural means for
fault tolerance using various forms of redundancy. On the
other hand, we propose to extend the responsibilities of a
service manager, to implement dynamic error recovery.
Next, we propose the architectural patterns for introducing
structural fault tolerance and define the corresponding
modeling artifacts.

Figure 7. Duplication scheme.

Duplication pattern. The duplication is a simplest

arrangement for structural fault tolerance. It can be
introduced if there are two service components available
that provide the same functionality. In this case, the
services can be executed in parallel. A successful execution
of a service by any out of two service components suffices
for the successful service provisioning.

An architectural diagram of the duplication arrangement
is given in Fig. 7. We introduce a dedicated service
manager to take care of the execution of the duplicated
service. The dynamical behavior of the duplication pattern
is shown in Fig. 8. An alternative architectural approach
would be to allow the main service manager to orchestrate
this arrangement.

Figure 8. Dynamic behavior of duplication pattern.

Stand-by spare. This arrangement relies on availability
of a spare service component implementing the desirable
service. The spare is used only if the execution of the
service by the main component fails. If the main service
component succeeds in executing a service, the spare
service component remains inactive. However, if the main
service component fails to execute a service then the spare
service component is requested to provide the service.

The stand-by spare arrangement can be implemented
with and without an introduction of the dedicated service

director. The design decision depends on the complexity of
the composite service, i.e., whether the design of the main
service manager would become too complex with the
introduction of this additional responsibility.

The architecture of the stand-by-spare implemented with
the dedicated service manager coincides with the
duplication pattern. However, the dynamic behavior is
different as shown in Fig.9.

reply S1 or timeout

ready S1 analysing results of S1

ok_result output
failed result output

Figure 10. Architecture of triple modular redundancy.

req_S1

req S2
ok_result output

S2 analysing results of S1

reply S2 or timeout

might be non-implementable. However, they provide an
efficient means to cope with permanent service failure. In

Figure 9. Dynamic behavior of stand-by spare.

Triple modular redundancy pattern. A more complicated
scheme for structural redundancy – triple modular
redundancy is shown in Fig.10. The precondition for
implementing it is that we have three service components
available that provide identical services with the same
functionality. All three service components receive the
same service request and work in parallel. The results of
the service execution are sent to a voting element.

The voting element is a dedicated software component
that performs comparison of the results and produces the
final result. The voting element takes a majority view over
the produced results of the successfully executed services
and outputs it as the final result of the service execution.

In the context of the service-oriented computing, the
voting component might be implemented in two different
ways: it might output the results after receiving the first two
replies or it might start to act only after the certain deadline
when all non-failed services have replied.

Let us discuss a difference between triple modular
redundancy scheme adopted in hardware and services. In
hardware context, the scheme can mask failure of a single
component by adopting the majority view. In the service-
oriented context, it gives more fault tolerance options.
Indeed, if two out of three services failed to reply within
the timeout, the voter component can be design to simply
output the result of the non-failed service. Obviously, in
case of a failure of a single service, it gives better fault
tolerance guarantees, because it can compare the results of
two non-failed services and take the one, which is more
accurate as the output.

Since the triple modular redundancy scheme has a rather
complex architecture by itself, we propose to introduce a
dedicated service manager to integrate the arrangement in
the architecture of a composite service. The proposal is
depicted in Fig. 10.

The dynamic behavior of the triple modular arrangement
is depicted in Fig.11. Here, the dedicated service manager
performs voting before outputting the service result.

The static redundancy schemes require availability of
redundant service components and hence, sometimes,

contrast, dynamic fault tolerance relies on service re-execu-

Figure 11. Dynamic behaviour of triple modular redundancy.

tion to increase the chances of the successful service
execution and does not require an availability of the
redundant service components. Obviously, the dynamic
fault tolerance solutions can cope with transient failures.

To leverage fault tolerance of a composite service, the
service manager might alter the normal flow of service
execution to dynamically cope with failures. For instance, it
might repeat service execution, roll-back or abort service
execution.

If service execution failed, but the returned exception
indicates that the error is transient then by re-executing the
failed subservice, the service manager might recover from
the error. The service execution flow is shown in Fig.12.

Figure 12. Service execution flow.

If service execution failed but the returned exception
indicates that the error is unrecoverable and there are no
alternative services available, then the service manager can
abort the entire service execution and return failure
response.

Obviously, designing fault tolerant composite services is
a non-trivial task that requires a systematic support. In the
next section, we propose an approach to systematic
development of fault tolerant architecture by a structured

analysis of failure modes of the services and fault tolerance
schemes.

IV. DEVELOPMENT OF A FAULT TOLERANT

SERVICE ARCHITECTURE

The main motivation behind our approach is to facilitate
a structured disciplined derivation of fault tolerant service
architecture. Essentially, we define the guidelines for
analyzing faulty behavior of the services and deciding on
the mechanisms for fault tolerance.

Our approach is inspired by the Failure Modes and
Effect Analysis (FMEA) technique. FMEA [16] is an
inductive analysis method, which allows designers to
systematically study the causes of components faults, their
effects and means to cope with these faults. FMEA is used
to assess the effects of each failure mode of a component
on the various functions of the system as well as to identify
the failure modes significantly affecting dependability of
the system.

FMEA step-by-step selects the individual components of
the system, identifies possible causes of each failure mode,
assesses consequences and suggests remedial actions. The
results of FMEA are usually represented in the tabular form
that contains the following fields: component name, failure
mode, possible cause, local effect, system effect, detection,
and remedial action.

Let us exemplify the proposed approach. Assume that a
service S1 is a part of the composite service S. The services
S11 and S12 have identical functionality. Assume that the
service S1 might experience transient silent failures, i.e.,
become temporally irresponsive. Such failures can be
detected by timeout. Then we can arrange services into a
triple modular redundancy scheme. The structured analysis
of the fault tolerance arrangement around the service S1

according to the proposed approach is shown in Table I.

TABLE I. TRANSIENT FAILURE ANALYSIS

Service S1

Failure mode Transient silent failure

Detection Timeout

Available

redundancy
S11, S12

Structural

redundancy

Triple modular redundancy
arrangement. Result is produced upon
timeout

Recovery

Masking failure by use of triple
modular redundancy arrangement. In
case of simultaneous failure of S1,
S11 and S12 repeat execution

Let us now assume that a service S2 is also part of the
composite service S. Assume that the service S2 might
experience transient failures that are identified by receiving
the response S2_tfail_cnf from it. Since no redundant
service components are available for this case and the

service failure is detectable with the corresponding
notification, we can rely on dynamic redundancy to cope
with failures of S2. The structured analysis of the fault
tolerance arrangement around the service S2 according to
the proposed approach presented in Table II.

TABLE II. FAILURE MODE ANALYSIS

Service S2

Failure mode Transient detectable failure

Detection S2_tfail_cnf response

Available

redundancy
No

Structural

redundancy
No

Recovery
Re-execute service. Maximal allowed
number of retries is 3.

It easy to observe that reliance on the proposed approach
facilitates structured derivation of fault tolerance
architecture for both structured and dynamic fault tolerance
schemes.

As a result of introducing various means for fault
tolerance, we also should modify the design of the service
manager. Fig 13 depicts the modified flow with a retry.

Figure 13. Execution flow with retry.

The process of introducing fault tolerance mechanisms
can be iteratively applied to unfold all the architectural
layers. As a result of this process, we obtain a hierarchical
structure of service managers augmented with fault
tolerance properties.

V. RELATED WORK AND CONCLUSIONS

While the topic of service orchestration and composition
has received significant research attention, the fault
tolerance aspect is not so well addressed. Liang [10]
proposes a fault-tolerant web service on SOAP (called FT-
SOAP) using the service approach. It extends the
standard WSDL by proposing a new element to describe
the replicated web services. The client side SOAP engine
searches for the next available backup from the group
WSDL and redirects the request to the replica if the
primary server failed. It is a rather complex mechanism
that hinders interoperability.

Artix [2] is IONA's Web services integration product.
It provides a WSDL-based naming service by Artix
Locator. Multiple instances of the same service can be
registered under the same name with an Artix Locator.

When service consumers request a service, the Artix
Locator selects the service instance based on a load-
balancing algorithm from the pool of service instances. It
provides useable services for the service consumers. An
active UDDI mechanism [4] enables an extension of
UDDI’s invocation API to enable fault-tolerant and
dynamic service invocation. Its function is similar to the
Artix Locator. A dependable Web services framework is
proposed in [1]. Once a failure for one specific service
occurs, the proxy raises a “WebServiceNotFound”
exception and downloads its handler from DeW. The
exception handling chooses another location that hosts the
same service and re-invoks the method automatically. The
main goal of DeW is to realize physical-location-
independence. Providing fault-tolerance capability for
composite Web service has also been discussed in [3].

A formal approach [15] [17] to introducing fault
tolerance to the service architecture has been proposed in
[5] [6]. This work extends the set of architectural patterns
that can be introduced to achieve fault tolerance as well as
propose a systematic support for deriving fault tolerance
solutions.

In this paper, we have proposed a systematic approach
to architecting fault tolerant services. We demonstrated
how to graphically model the architecture of composite
services and augment it with various fault tolerance
mechanisms. We defined a set of static and dynamic
solutions for introducing fault tolerance into the service
composition. The proposed mechanisms can cope with
different types of failures to increase reliability of
complex composite services.

To facilitate design of fault tolerance mechanisms, we
proposed an approach to a structured analysis of possible
failure modes of services and introducing fault tolerance
measures. The proposed approach is inductive – it
progressively analyses services in the execution flow,
explores possible fault tolerance alternatives and
systematically introduces them into the service
architecture.

We believe that our approach supports structured
guided reasoning about fault tolerance and enables
efficient exploration of the design space while
architecting complex composite services.

ACKNOWLEDGMENT

Troubitsyna thanks the Need for Speed program.
http://www.digile.fi/N4S for a financial support.

REFERENCES

[1] E. Alwagait, S. Ghandeharizadeh, “A Dependable Web

Services Framework” 14th International Workshop on
Research Issues on Data Engineering 2004. [Online].
Available from http://fac.ksu.edu.sa/alwagait/publication/
31143 2014.30.05.

[2] Artix Technical Brief. [Online]. Available from
http://www.iona.com/artix 2014.30.05.

[3] V. Dialani, S. Miles, L.Moreau, D. Roure, M. Dialani,
“Transparent fault tolerance for web services based
architectures”. 8th Europar Conference (EULRO-PAR02),
Springer 2002, pp. 889-898. ISBN:3-540-44049-6.

[4] M. Jeckle, B. Zengler, “Active UDDI-An Extension to
UDDI for Dynamic and Fault Tolerant Service Invocation”
2nd International Workshop on Web and Databases,
Springer 2002, pp. 91-99. ISBN:3-540-00745-8.

[5] L. Laibinis, E. Troubitsyna and S. Leppänen, “Service-
Oriented Development of Fault Tolerant Communicating
Systems: Refinement Approach” International Journal on
Embedded and Real-Time Communication Systems, vol. 1,
pp. 61-85, Oct. 2010, DOI: 10.4018/jertcs.2010040104.

[6] L. Laibinis, E. Troubitsyna, A. Iliasov, A. Romanovsky,
“Rigorous development of fault-tolerant agent systems”, In
in M. Butler, C. Jones, A. Romanovsky and E. Troubitsyna
(Eds.), Rigorous Development of Complex Fault-Tolerant
Systems, LNCS 4157, pp. 241-260, Springer 2006, ISBN
978-3-642-00867-2.

[7] L. Laibinis, E. Troubitsyna, S. Leppänen, J. Lilius and Q.
Malik, “Formal Service-Oriented Development of Fault
Tolerant Communicating Systems”, in M. Butler, C. Jones,
A. Romanovsky and E. Troubitsyna (Eds.), Rigorous
Development of Complex Fault-Tolerant Systems, LNCS
4157, pp. 261-287, Springer 2006, ISBN 978-3-642-00867-
2.

[8] L. Laibinis, E. Troubitsyna “Fault Tolerance in use-case
modelling“, In Workshop on Requirements for High
Assurance Systems (RHAS 05), [Online]. Available from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8
4.4950 2014.01.05.

[9] J. C. Laprie. Dependability: Basic Concepts and
Terminology. Springer-Verlag, 1991.

[10] D. Liang, C. L. Fang, C. Chen, F. X, Lin. ”Fault-tolerant
web service”. Tenth Asia-Pacific Software Engineering
Conference, IEEE Press, Dec. 2003, pp.56-61, ISBN 973-4-
642-01867-1.

[11] I. Lopatkin, A. Iliasov, A. Romanovsky, Y. Prokhorova, E.
Troubitsyna, “Patterns for representing FMEA in formal
specification of control systems” High-Assurance Systems
Engineering Conference (HASE), IEEE Nov 2011, pp. 146
– 151, ISBN 978-1-4673-0107-7.

[12] J. Rumbaugh, I. Jakobson, and G .Booch, The Unified
Modelling Language Reference Manual. Addison-Wesley,
1998.

[13] Web Services Architecture Requirements. [Online]
Available from http://www.w3.org/TR/wsareqs.
2014.01.05.

[14] 3GPP. Technical specification 25.305: Stage 2 functional
specification of UE positioning in UTRAN. Available at
http://www.3gpp.org/ftp/Specs/html-info/25305.htm.
Accessed 01.05.2014.

[15] K. Sere, E. Troubitsyna, “Safety analysis in formal
specification” In Formal Methods (FM’1999), Springer
Sep. 1999, pp 1564-1583, ISBN:3-540-66588-9.

[16] N. Storey. Safety-critical computer systems. Addison-
Wesley, 1996.

[17] E. Troubitsyna. “Elicitation and specification of safety
requirements”. In Third International Conference on
Systems (ICONS 08), IEEE Apr. 2008, pp. 202-207,
ISBN978-0-7695-3105-2.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance
203. Inna Pereverzeva, Formal Development of Resilient Distributed Systems
204. Mikhail Barash, Defining Contexts in Context-Free Grammars
205. Sepinoud Azimi, Computational Models for and from Biology: Simple Gene

Assembly and Reaction Systems
206. Petter Sandvik, Formal Modelling for Digital Media Distribution

207. Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

208. Simon Holmbacka, Energy Aware Software for Many-Core Systems
209. Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional

Subshifts of Finite Type
210. Mika Murtojärvi, Efficient Algorithms for Coastal Geographic Problems
211. Sami Mäkelä, Cohesion Metrics for Improving Software Quality
212. Eyal Eshet, Examining Human-Centered Design Practice in the Mobile Apps Era
213. Jetro Vesti, Rich Words and Balanced Words
214. Jarkko Peltomäki, Privileged Words and Sturmian Words
215. Fahimeh Farahnakian, Energy and Performance Management of Virtual

Machines: Provisioning, Placement and Consolidation
216. Diana-Elena Gratie, Refinement of Biomodels Using Petri Nets
217. Harri Merisaari, Algorithmic Analysis Techniques for Molecular Imaging
218. Stefan Grönroos, Efficient and Low-Cost Software Defined Radio on Commodity
 Hardware
219. Noora Nieminen, Garbling Schemes and Applications
220. Ville Taajamaa, O-CDIO: Engineering Education Framework with Embedded
 Design Thinking Methods
221. Johannes Holvitie, Technical Debt in Software Development – Examining
 Premises and Overcoming Implementation for Efficient Management
222. Tewodros Deneke, Proactive Management of Video Transcoding Services
223. Kashif Javed, Model-Driven Development and Verification of Fault Tolerant
 Systems

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3553-5
ISSN 1239-1883

http://www. tucs.fi

tucs@abo.fi

K
ashif Javed

M
odel-D

riven D
evelopm

ent and Verification of Fault Tolerant S
ystem

s

