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Abstract

Identification of an industrial system is generally a costly and complex process. Making

an identification procedure efficient enough is an ongoing demand. Typically, designing

the excitation for ill-conditioned and directional systems is a challenging task. Tailor-made

input excitation using process knowledge is one way to make the identification more

efficient. The focus of this thesis is to develop a better identification process for multiple-

input multiple-output (MIMO) systems with proper design of input excitation signals. A

distillation column simulator has been constructed as a testbed for the research. Data

from a real-life distillation column system have been used for calibrating the simulator.

In model-based control (e.g., model predictive control, MPC), the model quality has

a critical effect on the performance of the controller. To construct a control-relevant

model via identification, the system has to be excited adequately in all gain directions.

In order to reduce the relative uncertainties associated with these gain directions, it

is especially important to excite the system in the weak gain directions. In this study,

we consider both designs by rotated signals as well as methods based on design in the

frequency domain. We study multiple input design methods using basic signals like steps,

PRBS, and sinusoidal signals with multiple frequencies and compare them through two

case studies. The case studies are a 4× 4 column stripper system and a 2× 2 nonlinear

distillation column system. As most of the previous studies have focused on 2× 2 systems,

a comparative study to choose the proper excitation for identification of an ill-conditioned

system with more inputs and outputs (n×n,n > 2) was chosen.

Practically every system has physical limitations as well as limitations due to the

operation of the process. A useful measure related to input limitations is the plant-

friendliness of an input signal. Several parameters that characterize the plant-friendliness

are calculated and compared for the designed inputs. These parameters depend only on

the inputs, not the rest of the system.
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For the model identification, it is desirable that outputs are excited equally in all

directions. We propose two different tools for analyzing the excitation of the outputs,

namely, projections of the outputs along the gain directions and the determinant of the

correlation matrix of the outputs. Both methods yield measures on how well-balanced the

output distribution is. We show that experiments where the gain directions have been

considered in the input design produce output data that are better balanced than output

data produced by other designs. The models obtained from directional experiments

perform better in cross-validation with data from other experiments than other models.



Svensk sammanfattning

Identifiering av ett industriellt system är allmänt en dyr och komplex process. Det finns

ett fortgående behov av tillräckligt effektiva identifieringsmetoder. Utformning av exci-

teringen för illakonditionerade och riktningsberoende system är typiskt en utmanande

uppgift. Skräddarsydd excitering av insignalerna genom utnyttjande av processkunskap är

ett sätt att göra identifieringen effektivare. Fokus i denna avhandling är utvecklandet av

en bättre identifieringsmetodik för system med multipla insignaler och multipla utsignaler

(MIMO) genom en ändamålsenlig utformning ("design") av insignalexciteringen. En simu-

lator för en destillationskolonn har konstruerats och använts som testbädd i forskningen.

Data från en verklig destillationskolonn har använts för kalibrering av simulatorn.

I modellbaserad reglering (t.ex. modellprediktiv reglering, MPC) har modellkvaliteten

en avgörande betydelse för regulatorns prestanda. För att erhålla en reglerrelevant modell

genom identifiering bör systemet exciteras lämpligt i alla förstärkningsriktningar. Det är

speciellt viktigt att excitera systemet i riktningar med svag förstärkning för att reducera de

relativa osäkerheterna förknippade med förstärkningsriktningarna. I denna studie beaktar

vi design med roterade signaler såväl som metoder baserade på design i frekvensplanet.

Vi studerar designmetoder för multipla insignaler genom användning av elementära

signaler såsom steg, PRBS och sinussignaler med multipla frekvenser och jämför dem i

två fallstudier. Fallstudierna är ett kolonnstrippersystem av storleken 4× 4 och ett olinjärt

destillationskolonnsystem av storleken 2× 2. Eftersom de flesta tidigare designstudierna

gäller 2× 2-system, valdes en jämförande studie av lämplig excitering för identifiering av

ett illakonditionerat system med fler insignaler och utsignaler (n×n,n > 2).

Varje process har i praktiken såväl fysikaliska begränsningar som av driften föran-

ledda begränsningar. Ett nyttigt mått förknippat med begränsningar på insignalerna är

insignalernas processvänlighet (eng. plant-friendliness). Flera parametrar som karaktäris-

erar processvänligheten beräknas för de designade insignalerna och jämförs sinsemellan.
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Dessa parametrar beror enbart av insignalerna, inte processen i övrigt. För modellidenti-

fieringen är det önskvärt att utsignalerna exciteras lika kraftigt i alla riktningar. Vi föreslår

två metoder för analys av utsignalexciteringen, nämligen projektioner av utsignalerna på

förstärkningsriktningarna och determinanten av utsignalernas korrelationsmatris. Båda

metoderna ger mått på hur väl balanserad utsignalspridningen är. Vi visar att experiment

där förstärkningsriktningarna har beaktats i signaldesignen ger en bättre balanserad

utsignalspridning än andra experiment. Modellerna från riktningsbeaktande experiment

fungerar bättre i korsvalidering med data från andra experiment än andra modeller.



Suomenkielinen yhteenveto

Teollisten järjestelmien identifiointi on yleensä kallis ja monimutkainen prosessi. Häir-

iöille ja tulosignaalien yhteisvaikutukselle herkkien järjestelmien identifiointi on erityisen

haastavaa. Räätälöity tulosignaalien suunnittelu prosessituntemuksen avulla on eräs

tapa tehostaa identifiointia. Tämän väitöstyön keskeisenä aiheena on kehittää parempi

identifiointiprosessi monitulo-monilähtö (multiple-input and multiple-output, MIMO)

-järjestelmille suunnittelemalla tulosignaalien asianmukainen viritys.

Mallipohjaisessa prosessinohjauksessa (model predictive control, MPC) käytetyn mallin

laadulla on ratkaiseva vaikutus saavutettuun suorituskykyyn. Hyvä malli kuvaa pros-

essia tarkasti kaikilla tulosignaalien kombinaatioilla. Tällainen malli voidaan rakentaa

järjestelmäidentifioinnin avulla, kun järjestelmää kuormitetaan riittävästi kaikkiin su-

untiin. Suhteellisten epävarmuuksien vähentämiseksi on erityisen tärkeää kuormittaa

järjestelmää heikkojen vahvistuksien suuntiin.

Tulosignaalien suunnittelussa käytetään perusaskelsignaaleja, PRBS-signaaleja, sekä

sinimuotoisia signaaleja useilla taajuuksilla. Näitä verrataan tässä työssä keskenään

kahden eri sovelluksen avulla; toinen sovellus on lineaarinen erotuskolonnijärjestelmä

(stripperi) neljällä tulo- ja lähtösuureella (4× 4−järjestelmä), toinen on epälineaarinen

tislauskolonnijärjestelmä kahdella lähtö- ja tulosuureella (2× 2− järjestelmä). Useimmat

aiemmat tutkimukset ovat keskittyneet lineaarisiin 2× 2− järjestelmiin.

Työssä on kehitetty kaksi erillistä työkalua järjestelmän virityksen tutkimiseksi; lähtösig-

naalien heijastaminen eri vahvistuksien suuntiin sekä niiden korrelaatiomatriisin deter-

minantin analysointi. Molemmat työkalut tuottavat tietoa lähtösignaalijakauman tas-

apainoisuudesta. Kokeet, joissa vahvistuksien suunnat on otettu huomioon tulosignaalien

suunnittelussa tuottavat lähtösignaalidataa, joka on paremmin tasapainossa kuin muissa

kokeissa. Suuntauskokeista saadut mallit toimivat ristiinvalidoinnissa muiden koetulosten

kanssa paremmin kuin muut mallit.
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CHAPTER 1
Introduction

With the advancement of technology, systems are becoming more complex. In order

to achieve better and efficient performance, we are continuously pushing the boundary

where a system can be operated. The demand to improve the outcome, and to achieving

close to perfect operation of a system, often leads to these underlying questions:

1. How well can we model a true system?

2. If a model is not available, what is the best possible way to identify the model with

minimum effort?

3. What is the best possible excitation one should employ to minimize the identifica-

tion cost?

4. Which criteria (e.g. cost function and constrains) should be used to obtain desired

performance in the optimization process?

5. What optimization algorithm should be used?

Interestingly, these are quite common and active research areas in various domains of

engineering and science. Often, multidisciplinary skills are required to tackle these issues.

An accurate and reliable model of a system is vital not only in engineering applications,

but also in biology, bio-informatics and many more areas. The purpose of the model in all

of these depends on the application. For example, in biology a model might be employed

to predict spread of a disease and to prevent or minimize the casualty. On the other hand,

1
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in case of process engineering a model is often used in model predictive control (MPC) or

for tuning a feedback controller of a system to accomplish better performance.

Identifying a multivariable system is an active research area. Designing better excita-

tions of the underlying system and making an identification procedure more informative

are important tasks. Designing excitation for ill-conditioned and directional systems is

often a challenging task. The focus of this thesis is to develop a better identification

process with proper design of input excitation signals. A distillation column simulator has

been constructed as a testbed for the research. Data from a real-life distillation column

system in our laboratory have been used for tuning the simulator in order to achieve

practically comparable results.

1.1 Thesis outline

The thesis is divided into seven chapters (1–7). In Chapter 2, we give a brief introduction

to mathematical modeling and system identification in particular. Chapter 3 reviews

some well-established identification material, which provides the theoretical framework

for design of input signals. Chapter 4 is devoted to a discussion on plant friendly

identification procedures and multiple related parameters. In Chapter 5, we discuss

and analyze existing methods and their applications in tackling ill-conditioned system

identification in literature. In Chapter 6, we discuss our proposed method, experiments

and results with two real world examples, a distillation column system (a 2×2, 2 inputs-2

outputs ill-conditioned system) and another industrial distillation column system (a 4×4,

4 inputs-4 outputs ill-conditioned system) . A comparative study of different methods has

been performed on both case studies. Research outcomes are concluded in Chapter 7.

1.2 Main contributions

Most of the basic input excitation signals (e.g. step, PRBS and multisine) are well-known

in system identification literature. However, a comparative study to choose the proper

excitation to identify a higher order (n×n with n > 2) inputs-outputs ill-conditioned system

is new. Two different tools are proposed for analyzing the excitation of the outputs. Both

methods yield measures on how well-balanced the output distribution is.
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CHAPTER 2
Process Modeling

A model commonly serves as a tool to understand and explain observations and an

abstraction of reality. Typically a real life system is non-linear in character and quite

complex to model completely. Often a model is designed to characterize certain operating

areas or states instead of the true system as a whole. The modeler has to decide how

complicated and detailed the model should be depending on its end use or purpose.

Process models can be built in numerous ways. Considering the vast area of applications,

typically model can be made in different ways in practice, however there is no one

specific approach which can be considered as superior to the rest. Some approaches

are summarized in Figure 2.1. More detailed discussions on this topic can be found in

Söderström and Stoica [1989], Ljung [1999], Ogunnaike and Ray [1994] and Cameron

and Hangos [2001].

Figure 2.1: Different types of process models
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Depending on the level of utilization of process knowledge or data, modeling can be

divided in three major categories, namely a) Black box modeling, b) White box modeling

and c) Gray box modeling; also summarized in Figure 2.2.

2.1 A theoretical modeling approach

In the case of white box modeling, models are constructed based on physical properties

and prior knowledge of the system without using any input-output data. This approach

exclusively use physical properties for the model parameters with all constant parameters

used in the model known a priori. The approach is often referred to as physical modeling

or first principles modeling.

2.2 An experimental modeling approach

In black box modeling, the model is derived from input-output data of the system without

considering any physical insights. Typically the model structure is chosen to be flexible

and may be influenced by the success in other applications. In practice they act as variables

to fit the model with the observed data as well as possible. This implies that the model

parameters may or may not necessarily have any physical significance of the system.

2.3 A practical modeling approach (best of both)

In practice, white box and black box modeling are often combined together. This kind

of modeling is referred to as gray box modeling. Often, the model parameters are tuned

by measured input-output data. Most real world systems comprise of elements such as

reaction rate coefficients, friction coefficients, etc.. Determining their exact values in a

system is close to impossible from the physics alone. Therefore, the above approach is

more logical compared to the white box modeling.

2.4 Discussion

Black box modeling is occasionally used as almost synonyms to system identification;

however this is not absolutely correct. "System identification deals with the problem of

building mathematical models of dynamical system based on observed data from the system."

[Ljung, 1999], would be more correct definition and this is what we have used in most

cases. Therefore, if we are using only white box model or white box model and tuning
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Figure 2.2: Schematic of modeling approaches

few system parameters (constants in the model equations) according to the observed data,

we still consider it as system identification. This also means all identification procedures

can be characterized in the scale ranging from pure white box and pure black box. White

box and black box modeling are the two extreme cases though using one after another,

less or more, is a common practice.

Let us now discuss all three approaches in detail with a real life example of a distillation

column system. In Figure 2.3, a schematic of a typical distillation column system is shown.

In this system, if we use the first principles modeling approach, we need to make a

model for all small components and their physical properties. For this we need in

depth knowledge of various constituents and their properties (physical, mechanical and

chemical). As a result there would be hundreds of equations and variables, as used in our

distillation column simulator , (more explanation can be found in Appendix A). Here,

we need to consider all of its subsystems (e.g. trays, condenser, reboiler etc.) and model

them using its physical properties in mathematical form. The following mathematical

equations can be used for modeling a distillation column(Energy balances, Mass balances

etc.) more details can be found in Appendix A.

Based on the actual size of a column there would be different number of subsystems,
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Figure 2.3: A schematic process diagram of a distillation column system

for example in our case, we have 15 trays along with the boiler and reflux. There are few

equations and variables for each subsystem. Therefore, we need to solve ≈ 100 equations

(for 17 subsystems), as in Appendix A.

On the other hand, if we decided to use data based modeling (black box modeling),

we can measure the input (reflux flow L and vapor flow V ) and output (top concentration

xD and bottom concentration yB) and make a model based on them. In this case the

user does not need to have full system knowledge but only data, for the same example.

Defining parameters from physics of the system while tuning them with the help of

input output data, would be a better approach (gray box modeling), as we have explained

in Section 2.3. One practical advantage of this method is flexibility (modularity) in a

simulator system (e.g. a subsystem model can easily be reused, for example in another
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distillation column maybe with 50 trays and the parameters can be fine tuned with input

output data from such a system). This method would be quite useful in an industrial

scenario where typically many distillation columns are used in a chemical process.

The process to estimate all parameters is a big task, and often in an optimization

finding a correct set of values with practical significance is difficult (e.g. time delays

of a system might deviate considerably from the values suggested by an optimization

algorithm). Moreover, it is much easier to handle a model with lower number of vari-

ables. However, a first principles model, which contains detailed information of physical

properties, is better in treating various operating regions than a black box model, which

is only valid under the conditions that excited during identification. In other words, one

can easily commute model characteristics in vast area of operations with first principles

models. Hence this approach is more popular in simulator design. In our simulator, we

too have used first principles model however later multiple parameters are fine tuned

with the help of practical data, as explained in Paper V [Häggblom and Ghosh, 2011].

Therefore we have used gray box modeling approach.





CHAPTER 3
System Identification

The aim of this section is simply to introduce a few basic concepts of parametric system

identification. It neither contains the complete picture nor states any new results. More

detailed explanations on these topics can be found, for example, in Söderström and Stoica

[1989] and in Ljung [1999].

3.1 Data, model structure and selection criteria

Typically, system identification is an iterative process and is made up of three main

building blocks: a) the data, b) the model structure, and c) the selection criteria. In each

of these three stages personal judgment plays an important role for the final outcome.

3.1.1 The data ZN

To estimate a model we first need proper data. The quality of data depends both on the

system under consideration and the experimental condition under which the data have

been collected. One particular data set can be represent as a row vector

z(t) = [y1(t) . . . yp(t) u1(t) . . . un(t)] ∈R1×(p+n) (3.1.1)

11
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where the system has n inputs and p outputs and data is collected at time t. A data matrix

ZN can construct by stacking N consecutive samples, at t = 1, . . . ,N on top of each other

ZN =



z(1)

z(2)
...

z(N )


∈RN×(p+m). (3.1.2)

It is important that the data reflect all important characteristics of the true system.

The excitation signals u(t) need to be chosen in such a way that the output y(t) contains

all the essential dynamics of the underlying system. However, often there are practical

constraints (e.g. how big input amplitudes one can apply into the system, operating

set-point, stability issues, etc.) which limit the experimental scope. Occasionally, when no

observable input is available, the model has to be generated based on measured outputs

only, i.e. z(t) = y(t). This is called time-series modeling.

3.1.2 Model structureM

The model structure selection is often considered as the single most challenging step in

system identification. This problem can essentially be subdivided into three stages:

1. Selection of the type of the model set to consider in the modeling. In other

words, this essentially means the choice between black box, grey box and physical

parametric methods; between linear and nonlinear, and so forth.

2. Postulate the size of the model set. This consists of the choice of the possible

variables and variable combinations, fixing orders and degrees of the chosen model

types. By fixing these issues we can settled a model setM∗, yet it might be quite large

to handle in practice. Hence in most cases another step is required to construct a

useful model with sensible approximation. Often, using prior structured information

becomes handy in this stage.

3. Finally, we need to find the best possible way to parameterize the model set in

order to estimate reasonable parameter values.

If we consider a model setM∗ can be parameterized from a finite-dimensional param-

eter vector θ. The model structure to which such a model belongs can be specified by the

mapping, where one individual model relate to the data set θ is defined asM(θ).



3.1. DATA, MODEL STRUCTURE AND SELECTION CRITERIA 13

3.1.3 Selection criteria Vn

Almost always, in practice, there is a mismatch between the measured output and the

values estimated from models. The mismatch, quantified as an error ε(t,θ), is often

considered as a combination of unmodeled dynamics and a measurement noise

ε(t,θ) = y(t)− ŷ(t,θ) (3.1.3)

The modeling goal is to make the ε value as small as possible. The selection criteria

we have been adopted here a scalar measure of the fit between measured and predicted

values

VN (θ,ZN ) =
1
N

N∑
t=1

l(y(t)− ŷ(t,θ)) (3.1.4)

where l(.) is a positive scalar-valued function, typically chosen as quadratic: l(.) = (.)2.

Figure 3.1: Typical work–flow in a system identification process
(a. experiment, b. modeling and c. model validation)
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3.2 Design of plant experiments for identification

Data collection from an industrial process is costly and time consuming [Katayama et al.,

2006]. Moreover, the process variables need to be kept within specified safety limits

in normal plant operation. To make an identified model applicable to many operating

regions requires vast amounts of data. The quality of a model depends on the collected

process data. Therefore, limiting the excitation also limits the information available for

system identification. Thus, there is a trade-off between how much one is prepared to

pay for the information and the information needed for system identification. As a result,

one can obtain only a limited amount and quality of experimental data [Gevers, 2005].

Therefore, it is always a challenging task to make the identification procedure efficient

enough. Tailor made input excitation using process knowledge is one way to make the

identification more efficient.



CHAPTER 4
Input excitation

In this chapter we will discuss various input excitation and their design methods. The

idea of plant friendliness input and why it is important in system identification process

are also explained here.

4.1 Typical input excitation

For the purpose of identification, input signals are perturbed to excite the system. The

applied input signal and the resulting output of the system are measured and a model is

identified from the collected data. As perturbation one can utilize many different types

of signals, but step, PRBS (pseudo random binary sequence) and multisine signals are

the most preferred input signals. It has been shown that advanced dedicated signals are

difficult to construct [Pintelon and Schoukens, 2012]. The usual practice is to use step

or PRBS signals. However, in recent years many researchers have suggested the use of

multisine signals over other signals because of their plant friendly appeal [Lee, 2006; Lee

and Rivera, 2006; Pintelon and Schoukens, 2012].

In addition, the excitation signals can be split up broadly into three major categories,

namely general-purpose signals, optimized test signals and advanced dedicated signals,

as illustrated in Figure 4.1.

a. General purpose signal: This kind of signal contains an almost flat power spectrum

band within the user specified frequency band. These kinds of signals are typically

used for identification of an unknown system. Examples of these kinds of signals

15
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Figure 4.1: Input excitation types in system identification

are step, RBS, PRBS, Multisine, Swept sine (also called periodic chirp), white noise

and burst white noise.

b. Optimized input signal: These signals are produced through optimization. In recent

years, as computational power and amount of memory are not restricting factors,

optimized signals have become more popular. Discrete interval binary sequence

( DIBS) [Van den Bos, 1967, 1987] and Guillaume phased optimized multisine

[Guillaume et al., 1991] are examples of this kind. The optimization can involve

many properties of a signal. However, optimization of input power spectrum and

minimizing the crest factor of input signals are popular in the literature [Rees et al.,

1992].

c. Advanced dedicated test signal: The aim of this kind of signal is to deal with specific

system properties. The input excitation for ill-conditioned systems is a good example.

For an ill-conditioned system the inputs for identification is preferred to be designed

in such a way that the output is balanced. A stronger excitation is required along

the relatively weak low-gain direction of the system [Koung and MacGregor, 1993].

Another example is a mechanical system with acceleration; there would be specific

requirements (e.g. within specified limits) on first and second order derivative

of the input signal. The input excitation needs to be designed with controlled
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system properties like, velocity and acceleration [Pintelon and Schoukens, 2012].

Optimization would involve the crest factor of the first and second derivative apart

from the crest factor of the input and output signal of the system. Two other popular

procedures in literature are (i) simultaneous minimization of crest factor at input

and output, and (ii) simultaneous minimization of peak values at the input and

output. Reasonable insight of the system properties is a necessity for this signal

design [Lee, 2006]. More inside information on this topic can be found in Schoukens

et al. [2012].

4.2 Basic input excitation

Typically, any input signals are built using general purpose signals (Section 4.1.a). Here

we discuss further some popular ones.

4.2.1 Step signal

A step signal is defined by

u(t) =

 0 t < 0

u0 t ≥ 0
(4.2.1)

where u0 is the signal amplitude [Ljung, 1999; Söderström and Stoica, 1989]. Due

to its simplicity it has been used extensively in practice. Often steps are used for pre-

identification purpose before applying advanced dedicated signals to grasp the basic

system information such as static gain, time constants, output characteristics, etc. Typically,

this system information is considerably useful for advanced experiment design.

Table 4.1: Parameters in PRBS design

No. Parameter description Value details Choice

1 Low dominating time constant τL System specific
2 High dominating time constant τH parameters
3 Number of inputs p 4

4 Closed-loop response parameter α 2 User defined
5 Settling-time parameter β 3 parameters

6 Switching time Tsw
7 Delay time (parameter for least-

correlated inputs)
D Design parameters

8 Number of bits in PRBS sequence of
length Ns = 2nr − 1

nr
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4.2.2 PRBS (and RBS) signal

A pseudorandom binary sequence (PRBS) is a periodic signal, which switches between

two levels in a certain fashion within a user specified frequency band. A maximum length

PRBS (N = 2nr − 1) is typically generated using a linear shift register (length = nr). The

user must determine the amplitude of the PRBS signal [Ljung, 1999; Söderström and

Stoica, 1989]. The design parameters for the PRBS signal are summarized in Table 4.1.

The desired bandwidth of the PRBS signal can be specified according to

ωL =
1
βτH

≤ω ≤ α
τL

= ωH (4.2.2)

where τH and τL are the high and low dominating time constants of the system, re-

spectively; α specifies the ratio between the open-loop and the desired closed loop time

constants; βτH is the open loop settling time of the system [Rivera et al., 2009]. This

frequency bandwidth can also be expressed as a fraction of the Nyquist frequency. In

practice, often PRBS signal is preferred over RBS (random binary sequence) [Ljung,

1999]. A more detail discussion can be found at Section 13.3 in Ljung [1999] and at

Chapter 5.3 in Söderström and Stoica [1989]. Design procedure of a PRBS is explained in

Table 4.2.

4.2.3 Multisine signal

A characteristic of a sine signal is that all energy is located at a single frequency. In order

to determine a frequency response, it is necessary to measure the output of a system for a

range of frequencies. Since a full signal period is required to measure each frequency, the

experiment time to measure all frequencies can be long and inefficient. Fortunately, long

measurement time can be overcome while retaining all other advantages of a sinusoid

by applying a multisine signal, which is a sum of sine waves with different frequencies

[Pintelon and Schoukens, 2012]. A deterministic multisine signal is defined as

u(t) =
ns∑
i=1

Ai cos(2πfit +φi) (4.2.9)

where φT = [φ1φ2 . . .φns ] is the phases of the multisine u(t) and ns is the number of

sinusoids. The phases φi and the amplitude Ai of each frequency need to be chosen by

the user. Although the change in phase of a multisine does not affect the power spectral

density ( PSD) in the frequency domain, it alters the signal amplitude in the time domain.
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Table 4.2: A1: Design procedure for PRBS signal

Algorithm: PRBS signal design procedure

1. Choose switching time Tsw according to

Tsw ≤
2.8 τL
α

(4.2.3)

where τL is the low dominating time constant of the system.

2. The shifting time D is defined as

D =
5 τH
Tsw

(4.2.4)

3. The period length NsTsw is determined from

Ns ≥max
(
2π β τH
Tsw

, nD

)
Ns = 2nr − 1

(4.2.5)

where nr is the smallest integer that satisfies Eq. 4.2.5.

For the experiments with one input at a time

Ns ≥
2π β τH
Tsw

(4.2.6)

For simultaneous inputs

Ns ≥ nD =
5 n τH
Tsw

(4.2.7)

in addition to Eq. 4.2.6.

4. The sampling time T should be ≤ Tsw. Ljung [1999] recommends

T ≈ Tsw
4

(4.2.8)

In practice T might be smaller because of other conditions.

Thus, one can utilize the relative phase between each of the frequency components in the

multisine to affect the overall signal amplitude while keeping the energy distribution in

desired frequencies [Pintelon and Schoukens, 2012]. The phase distribution of a multisine
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in Eq. 4.2.9 can be linear or random or any specific form, such as

φi = −
π
ns
i(i − 1) (4.2.10)

A multisine signal with this phase distribution is referred to as a Schroeder phase multisine

[Schroeder, 1970]. It has been shown that the Schroeder phase multisine has lower

crest factor (typically 1.7) compared to a multisine signal, whose phase is either linear or

random in nature [Pintelon and Schoukens, 2012].
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Figure 4.2: Auto-correlation function (ACF) of a PRBS and a multisine

The phase can also be determined by optimization to generate a plant-friendly sig-

nal. Often it is accomplished through crest factor ( CF) minimization. The relation

between the phase and the crest factor of a multisine is quite complicated. As a result,

the cost-function has many local minima, which makes the CF optimization problem

challenging. However, using Pólya’s best approximation of the Chebyshev norm it was

possible to determine multisine signals with a crest factor close to the optimal value

[Guillaume et al., 1991]. Another advantage of this design is to grant optimal use of the

available bandwidth (measurement ranges) [Pintelon and Schoukens, 2012]. However,

the crest factor is higher than that of a PRBS. Like a PRBS, multisine signals have a low

degree of autocorrelation as shown in Figure 4.2.
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4.3 Plant-friendly signals

In practice, every system has physical limitations. Such a limitation could, for example,

be the sensing time interval of a sensor or the valve response time. Actuators are physical

systems and have an operating limits. For example, a flow valve might catch into saturation

if the control signal tries to use it beyond its maximum capacity. This might due to certain

portion of the input signal remains its maximum values or the rate of change of the signal

within a short period is so high that it is practically impossible accomplish. The process

actuators are used in practice to introduce the perturbation into the system.

The index of plant friendliness has been expressed in many ways in control literature.

A plant-friendliness of an input sequence can be defined according to the probability of

change with time. The plant friendliness of an input signal is expressed as

Φ =
(
1− nl

N − 1

)
100% (4.3.1)

where nl is the total number of switches and N − 1 is the maximum number possible

switches [Parker et al., 2001]. This means that a constant sequence is 100% plant friendly

while any signal that changes at each sample is 0% plant friendly. For example, a Gaussian

random sequence is a 0% plant friendly. A step input with a one switch has a plant

friendliness index

Φ =
(
1− 1

N − 1

)
100% ≈ 100% (4.3.2)

for large N [Parker et al., 2001]. From a ttent-excitation point of view, random signals

(with 0% plant-friendliness) are efficient for system identification. From a system iden-

tification point of view a constant signal (with 100% plant-friendliness) is least useful.

Therefore, there is a design trade-off between the possibility to change the input signal at

each point and a plant friendly input signal.

In a model based control the quality of a model is a critical factor. An inaccurate model

can significantly impact on the controller performance,and finally deteriorate the quality

of the plant product. It was found that about 66%–80% of the advanced control systems

are not able to achieve the desired performance [Hugo, 2001], where inadequate tuning

would be the main cause. Some authors have also proposed improved minimum entropy

control strategies [Meng et al., 2013; Ren et al., 2014].

The definition of plant-friendliness in the above form might not suitable in formulation

of optimization problem, where the equivalent form

Φi = 1−
∑
(uk −uk−1)2

(N − 1)max(uk −uk−1)2
(4.3.3)
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can be utilized. Here Φi ≈ 1, if uk ≈ uk−1,∀k < N , where uk , k = 1, . . . ,N , is an input

sequence [Rivera and Lee, 2003]. Plant-friendly input design is inherently multi-objective

in nature [Narasimhan and Rengaswamy, 2004]. Commonly inputs are designed based

on an initial estimate and after which the parameters are fine-tuned iteratively for better

performance [Antoulas and Anderson, 1999].

4.3.1 Plant-friendliness parameters

The plant-friendliness of a signal can be quantified in many other ways. In the following

we consider a few of them. The parameters are application independent measures of

perturbation signal performance.

4.3.2 Peak factor

The plant friendliness is often expressed in terms of the peak factor ( PF) [Godfrey, 1999;

Narasimhan and Rengaswamy, 2004; Van der Ouderaa et al., 1988], defined as

xP F =
xmax − xmin
2
√
2xRMS

(4.3.4)

where xmax , xmin and xRMS denotes the maximum, minimum and root mean square

( RMS) value of the signal, respectively. The RMS of a sequence x(k) is defined as

xRMS =

√√√
1
N

N∑
k=1

|x(k)|2 (4.3.5)

We do not consider the peak factor further.

4.3.3 Crest Factor

The crest factor (CF) is defined by the ratio [Barker and Godfrey, 1999; Godfrey, 1999;

Godfrey et al., 2005; Guillaume et al., 2003]

xCF =
max(|x(k)|)
xRMS

(4.3.6)

Minimizing the peak value of the signal effectively minimizes the crest factor of the

signal [Guillaume et al., 1991].

4.3.4 Performance index for perturbation signal (PIPS)

The PIPS for a signal is defined as

xP IP S =

√
x2rms − x2mean
xmax − xmin

200% (4.3.7)
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where xmean is the mean value of the signal [Godfrey et al., 2005]. Both the crest factor

and PIPS quantifies the goodness of energy distribution along the span of the signal. For

any signal, CF can vary in between 1 and ∞ , whereas PIPS varies between 0 and 100%.

A practical advantage of PIPS over CF is that the former always provides a finite value

within 0 and 100. In this work we use both the crest factor and the PIPS as plant-friendly

measures for comparing the performance of the input signals.

The crest factor of a multisine signal can be minimized by properly setting the individ-

ual phases. There are mainly two algorithms involved in this process.

(a) Clipping algorithm: the signal is generated and the pick values (higher amplitudes)

are clipped in time domain. The iteration process goes on until the desired crest factor is

achieved.

(b) Guillaume phase: We have considered this algorithm in our study, detail explanations

can be found in next section. More details on this topic can also be found in Guillaume

et al. [1991] and Schoukens et al. [2012].

Figure 4.3: Designing a multisine signal

4.4 Designing a multisine signal

A multisine signal is a sum of harmonically related basic sine signals. A measure of input

signals quality to extract the characteristics of an unknown plant is the order of persistent
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excitation.

Table 4.3: The design parameters of different input signals [Steenis, 2009]

Signal Design parameters Power spectrum∗∗ Frequency spectrum

a. Signal amplitude (a)
Step

b. Step duration (∆T )
a2√

2(1−cosω)

a. Pulse amplitude (1)
Pulse

b. Pulse duration (∆T )
ψp 0 ≤ω ≤ 2.652

∆T

Double a. Pulse amplitude (1)
Pulse b. Pulse duration (∆T ) ψpp

0.8458
∆T ≤ω ≤ 2.8

Tsw

a. No. of registers (nr )
PRBS for N = 2nr − 1 a2Tsw

(N+1)
N

[ sin(0.5ωTsw)
(0.5ωTsw)

]2 2π
NTsw

≤ω ≤ 2.8
Tsw

b. Switching time (Tsw)

a. Amplitude (a)
DIRBS*

b. Switching time (Tsw)
a2Tsw

[ sin(0.5ωTsw)
(0.5ωTsw)

]2
; p = 0.5 0 ≤ω ≤ 2.652

T
c. Switching probability (p) (asymptotic expression)

Standard
a. Number of sinusoids (Ns)

Multisine
b. Samples per cycle (ns) 0.5Ns(λαi)

2 2π
NsT
≤ω ≤ 2πns

NsT
≤ π
T

c. Sinusoid amplitude (αi)

* Discrete Interval Random Binary Signal

** Power spectrum density (psd) †

†The power spectral density represents the distribution of the power of the signal over the frequency interval
(−∞,∞), i.e. over both positive and negative frequencies. The power of the signal in the frequency band (−ω,ω)
is given by ψω =

∫ ω
−ωRy (f ) df

I. A rectangular pulse of duration ∆T is defined as p(t) =
{
1, 0 < t < ∆T
0, elsewhere.

The energy spectrum of the signal is |P (f )|2 =
(
sin(πf ∆T )

πf

)2
= ∆T 2sinc2(f ∆T )

The power spectral density ψpp has maximum ∆T σ2A for f = 0 and zeros for f = n/∆T , where σ2A is the signal
variance and n is a non-zero integer.

II. A double pulse of ∆T /2 is defined as p(t) =
{
1, 0 < t < ∆T /2
0, elsewhere.

The energy spectrum is |P (f )|2 =
(
sin(πf ∆T /2)

πf

)2
=

∆T 2

4
sinc2(f ∆T /2).

The power spectral density ψpp has maximum ∆T σ2A/4 for f = 0 and zeros for f = 2n/∆T . [Proakis and
Manolakis, 1996]
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4.4.1 Multisine design parameters

A multisine signal can be generated in two ways.

1. Frequency adjustment: In this process the frequencies of discrete Fourier transform

( DFT) grid are adjusted while the sample number and the clock frequency are kept

constant.

2. Sample adjustment: The DFT grid frequencies are kept constants. The multisine

signals are generated through adjustments in the number of samples and clock

frequency. Extra attention is required to make sure that the generated signal is one

period or an integer number of periods.

The design parameters of different input signals are summarized in Table 4.3 and

4.4 [Lee, 2006; Pintelon and Schoukens, 2012; Schoukens et al., 2012]. The frequency

content, amplitude and phases of a sinusoidal are briefly described below. Other practical

aspects in multisine design are discussed in [Schoukens et al., 2012].

Table 4.4: Design parameters for specific multisines in addition to (a–c) from Table 4.3 [Pintelon
and Schoukens, 2012; Schoukens et al., 2012]

Multisine type Design parameters In our study Reference

Schroeder phase
[Eq. 4.2.10]

d. Phase (φ) as in
[Eq. 4.2.10]

Exp. 9–12 Schroeder [1970]

Zippered with d–e. Phase (φ) and Exp. 13–16 Guillaume et al. [1991],
Guillaume phase
[Eq. 4.4.18]

amplitude are both
chosen by CF opti-
mizer

Lee [2006]

Modified zippered
with

d–e. Phase (φ) and
amplitude are both

Exp. 17 Guillaume et al. [1991],

Guillaume phase
[Eq. 4.4.21]

chosen by CF opti-
mizer

Lee [2006]

f. Correlated compo-
nents added in weak-
gain direction

(a) Frequency content: In an identification the frequency range of interest is the fre-

quencies where unknown (or little known) characteristics of a system are underlying.
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Input spectrum can be chosen intelligently to reduce variance errors in some fre-

quency region of interest. This frequency range of interest can be established

through the low and high dominating time constants (τL and τH ) as

ωL =
1
βτH

≤ω ≤ α
τL

= ωH ≤
π
T

(4.4.1)

where βs is tuned to capture settling time of the open-loop dynamics of the system

and αs is tuned to ensure the high frequency content of the designed signal to

capture the preferred speed of closed-loop system response. For a periodic signal

the lower frequency is limited to the number of samples of the signal

ωL =
2π
NsT

(4.4.2)

Once the desired frequency range is chosen, the frequency distribution between the

low and high frequency can be assigned by many methods, for example a Chebyshev,

logarithmic, or a geometric sequence. Detailed description of frequency contents

and its effect can be found in the literature [Pintelon and Schoukens, 2012; Rivera

et al., 2009] .

(b) Sinusoidal amplitudes: Collected data in system identification are tainted by mea-

surement noise. Typically, the noise effect is measured by the signal to noise ratio

(SNR) of the output signal. Higher SNR makes better noise effect elimination. By

applying high enough amplitude in the input of the system one can get over the

noise effect, but due to physical limitations we can only have limited amplitude in

the system input. Often this problem can be reduced by using long input signals.

Nevertheless there is a trade-off involved between the amplitude and the duration

of a signal. Amplitude limitation can further assist by avoiding signal leakage in a

periodic signal, for example, using a full period length signal or k periods as input;

where k is an integer [Pintelon and Schoukens, 2012].

(c) Sinusoidal phases: The phases of a multisine signal affects the amplitude in time

domain, which in turn affect the plant-friendliness property of the signal. For

example a linear phase multisine, produces a signal with an impulse centered in τ.

The phase equation is given by

φL(i) = −τωi (4.4.3)

Both linear phase and random phase multisine generate poor plant friendly signal

as shown in Figures 4.4 and 4.5. In a random phase multisine, phases are uniformly
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distributed in [0,2π]. Many design methods for generating lower crest factor multi-

sine signals can be found in literature [Pintelon and Schoukens, 2012; Schoukens

et al., 2012]. Here we discus two popular methods presented by Schroeder [1970]

and Guillaume et al. [1991]. Due to complicated relation between the phase and

the crest factor of a multisine signal, constructing a multisine with an optimum crest

factor is not easy [Guillaume et al., 1991].
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Figure 4.4: Multisine excitation in time domain for linear (φL(i) = −τωi , with τ = 0.25), random
(uniformly distributed in [0,2π]) and Schroeder phases (φ) [Schoukens et al., 2012]

In the Schroeder phase design, it is assumed that the multisine signal is a sum of

harmonically related sine waves as

u(k) =
N∑
j=1

√(
ϑj
2

)
cos

(2πj
T
k +φj

)
(4.4.4)

where
N∑
j=1
ϑj = 1 . The Schroeder phase in closed-form formulation is given by

Schroeder [1970]

φn = φ1 − 2π
n−1∑
j=1

ϑj (n− j) n = 1,2, · · · ,N (4.4.5)
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Figure 4.5: Amplitude diagram of a multisine excitation for linear (φL(i) = −τωi , with τ = 0.25),
random (uniformly distributed in [0,2π]) and Schroeder phases (φ) [Schoukens et al., 2012]

It is found that in a special case where the amplitudes of the multisine are all equal

ϑj = 1/N , the closed-loop phase equation Eq. 4.4.5 becomes

φn = φ1 − 2π
n−1∑
j=1

1
N

(n− j) (4.4.6)

= φ1 −π
n(n− 1)
N

(4.4.7)

The initial phase φ1 can be any arbitrary value including zero. Now, if we set it to

zero then the phase in Eq. 4.4.7 turns into the simple form

φn = −π
n(n− 1)
N

(4.4.8)

This equation is known as the Schroeder phase equation.

4.4.2 Multisine design for a multivariable system

In a multivariable system with n inputs, the dominating time constants can be defined as

τH =max(τ1, τ2, . . . , τn)

τL =min(τ1, τ2, . . . , τn)
(4.4.9)
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A priori knowledge of the system dominating time constants (τL and τH) are essential for

designing the primary frequency bandwidth of the desired input signal, which is defined

as
1
βτH

=ωL ≤ω ≤ωH =
α
τL

(4.4.10)

In a multivariable system with n inputs a multisine input uj (k) for the j−th channel can

be defined as

uj (k) =
nδ∑
i=1

δ̂ji cos(ωikT +φδji) +λj

n(δ+ns)∑
i=nδ+1

√(
2αji

)
cos(ωikT +φji)

+
n(δ+ns+na)∑
i=n(δ+ns)+1

âji cos(ωikT +φaji) j = 1, . . . ,n

(4.4.11)

where T is a sampling time, n is the number of channels. The sequence length NS =

2n(δ + ns + na) constitutes the Fourier coefficient, in Eq. 4.4.11. This is also a design

parameter. The parameters δ , ns , na are the number of sinusoids per channel and φji ,

φδji , φ
a
ji are the phase angles, respectively. The frequency grid is given by ωi = 2πi/NsT .

The snow effect Fourier coefficients in higher and lower frequencies, δ̂ji and âji effectively

reduce the crest factor of a signal [Lee, 2006].

The primary frequency bandwidth of the above multisine (in Eq. 4.4.11) is

ωL ≤ω ≤ωH (4.4.12)

where

2πn(1 + δ)
NsT

≤ωL

ωH ≤
2πn(ns + δ)

NsT
≤ π
T

(4.4.13)

Here, user has to specify α , β , τL , τH , n and δ. At first, we need to decide the

required primary bandwidth, i.e ωL and ωH . Through the following inequality equations

(4.4.14–4.4.16), one can determine the required parameters in a multisine design, such

as number of sinusoids ns , sampling time T and sequence length Ns

(1 + δ)
ωH
ωL
≤ (ns + δ) ≤

Ns
2n

(4.4.14)

T ≤min
(
π
ωH

,
π

ωH −ωL
ns − 1
(ns + δ)

)
(4.4.15)

max
(
2n(ns + δ),

2πn(1 + δ)
ωLT

)
≤Ns ≤

2πm(ns + δ)
ωHT

(4.4.16)
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The number of sinusoidal ns in the multisine with a notch frequency δ also need to

satisfy the following condition

(ωH −ωL)
NsT
2πn

+1+ δ ≤ ns + δ ≤
Ns
2n

(4.4.17)

Few iteration steps might require for finding out appropriate design values [Lee,

2006]. Figure 4.6 shows the differences in amplitude diagram at various frequencies of

an optimization algorithm based multisine and a Schroeder phase multisine signal.
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Figure 4.6: Amplitude spectrum of a multisine with different phases (φ) [Schoukens et al., 2012]

Design modifications for mutlisine signal

Correlated harmonics in low gain direction have been added in this design for boosting

the weak gain-direction. The idea of correlated inputs in the low-gain direction in time-

domain [Zhu and Stec, 2006] has been adopted in frequency-domain using correlated

harmonics. This is referred to as a modified zippered spectrum [Lee, 2006]. It has been

shown that by applying high amplitude correlated inputs one can extract weaker gain

information of a strongly directional system along the low-gain direction in open-loop

identification [Zhu and Stec, 2006]. This type of design with correlated inputs can work

for a 2× 2 system, but for a MIMO system with more than two outputs the design may be

inadequate. The design would be valid only for those systems where all other singular
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values are much bigger than that of the weakest gain direction [Ghosh, 2014]. A detailed

discussion on this topic can be found in Paper III. The Fourier coefficients αji for j−input

uj (k) in Eq. 4.4.11 can be determined as

αji =

, 0, i = nδ+ j,n(δ+1) + j, . . . ,n(δ+ns − 1) + j
= 0, for all other i from nδ to n(δ+ns)

(4.4.18)

The snow effect coefficients, δ̂ji and âji and âji , [Lee, 2006] are defined as

δ̂ji =

, 0 i = j,n+ j, . . . ,n(α +1) + j

= 0 for all other i from 1 to nδ
(4.4.19)

and

âji =

, 0, i = n(δ+ns) + j,n(δ+ns +1) + j, . . . ,n(δ+ns +na − 1) + j
= 0, for all other i from n(δ+ns) to n(δ+ns +na)

(4.4.20)

Other multisine design parameters in Eq. 4.4.11 remain same as Eq. 4.4.19 and

(4.4.20) in the zippered spectrum design along with the inequalities in Eq. 4.4.16 -

(4.4.17). The Fourier coefficients αji in the modified zippered spectrum are defined as

αji =


, 0, i = (n+1)δ+ j, (n+1)(δ+1) + j, . . . , (n+1)(δ+n′s − 1) + j [uncorrelated]

, 0,

= 0,

i = (n+1)(δ+1), (n+1)(δ+2), . . . , (n+1)(δ+n′s) [correlated]

for all other i up to (n+1)(δ+ns) [rest]

(4.4.21)

The Signal Spectrum of above multisine can be represented as

Φu(j) =


ϑL

λ2
2 Ns, j = 1, . . . ,δ

λ2
2 Ns, j = δ+1, . . . ,ns

ϑH
λ2
2 Ns, j = ns +1, . . . ,Ns

(4.4.22)

while in time domain

uj (k) =
nδ∑
i=1
δ̂ji cos(ωikT +φδji) +λj

n(δ+ns)∑
i=nδ+1

√(
2αji

)
cos(ωikT +φji)

+
n(δ+ns+na)∑
i=n(δ+ns)+1

âji cos(ωikT +φaji) j = 1, . . . ,n
(4.4.23)

The zippered (modified) multisine signals are generated by using the CRIDENT toolbox

[Lee, 2006; Lee and Rivera, 2006]. As we are comparing various input excitation we have

tried to keep the experiment length relatively equal.
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4.4.3 Summary of multisine design

As for PRBS design, we need to have some a priori knowledge of the system for multisine

design. A frequency spectrum of interest can be determine by the prior system knowledge

α, β and dominating time constants (τL, τH ) of the system using the relation

1
βτH

=ωL ≤ω ≤ωH =
α
τL

(4.4.24)

Moreover, for an n inputs system, all the frequencies have to fit inside the bandwidth of

the underlying system, i.e.,

ωH −ωL ≤ n
2π
NTs

(ns − 1) (4.4.25)

The design practices have been discussed in Paper III and IV [Ghosh et al., 2016;

Häggblom and Ghosh, 2015] and guidelines can also be found in Rivera et al. [2007].

Standard multisine design

Two important parameters in multisine design are the period length NsT and the number

of frequencies (ns). The normal (non-zippered) design algorithm is summarized in

Table 4.5.

Table 4.5: A2: Design procedure for standard (non-zippered) multisine signal

Algorithm: Standard multisine signal design procedure

1. Because of alias at higher frequencies than the Nyquist frequencies, the sampling
time T must satisfy

T <
π
ωH

(usually � ) (4.4.26)

Usually T is decided by other factors than signal design.

2. Choose smallest integer Ns according to

Ns ≥
2π
TωL

(4.4.27)

3. For equally spaced frequencies choose smallest integer ns such that

ns ≥
NsT
2π

ωH (4.4.28)
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Zippered multisine design

The zippered spectrum with Guillaume phase [Guillaume et al., 1991] is designed by

exciting only one input channel at one frequency grid, so that each input channels main-

tain orthogonality and thereby lower correlated inputs. Furthermore, in order to get

proper direction balance in output, the low-gain direction were emphasized in zippered

frequencies, which is referred as ’modified zippered‘ signal [Lee, 2006]. The zippered

multisine design with n signals and notch frequency δ (= integer, is assumed to be known)

is summarized in Table 4.6.

Table 4.6: A3: Design procedure for multisine zippered signals

Algorithm: Zippered multisine signal design procedure

1. Choose sampling time T according to

T <
π
ωH

(usually � ) (4.4.29)

where ωH is the highest frequency of interest.

2. Choose smallest integer Ns according to

Ns ≥
2π
TωL

n(1 + δ) (4.4.30)

3. Choose smallest integer ns that satisfies

ns ≥
NsT
2πn

ωH − δ (4.4.31)

Note that the zippered design for MIMO systems gives very long period time period

NsT because of the factor n in Eq. 4.4.30. This also means that the experiment time

would be long. In case of multisine design T ≤ 0.6/ωH might also be a good choice (as

we have found in case of PRBS) .





CHAPTER 5
Identification of ill-conditioned

systems

In this chapter we are going to discuss directionality and the identification of ill-

conditioned systems.

5.1 Introduction

Identifying a MIMO system is a challenging task. Often this problem is tackled by

considering a set of MISO (multi-input single-output) schemes, one for each output signal

(i.e. a sub-transfer function) instead of a full MIMO scheme. The frequency response and

model uncertainty regions are then examined for each MISO cases separately [Hakvoort,

1994; Van den Hof et al., 1995].

In geometrical terms, directionality means that the length of the output vector strongly

depends on the direction of the input vector. Now let us consider an example to present

the effects of directionality in a system.

In a distillation column, due to the strong directionality present in the system, a normal

excitation with input changes in same direction, i.e. ∆L/∆V > 0 ( e.g., [1 1]T ) produces

little change in output concentrations (yD , xB). On the other hand, the same amplitude

change in opposite directions, i.e. ∆L/∆V < 0 (e.g [1 − 1]T ), produces significant changes

in outputs. These scenarios are shown in Figure 5.1.

35
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Figure 5.1: Low- and high-gain directions in a distillation column: inputs ( L , V , left) and outputs
(xD , xB , right )

5.2 Directional inputs

To construct a control-relevant model, the system has to be excited adequately in all gain

directions. It is especially important to excite in weak gain directions, to limit the relative

uncertainties associated with these gain directions [Häggblom and Böling, 1998]. In

practice it is difficult to extract system information in the low gain direction. If one input

at a time is perturbed, or if all inputs are perturbed simultaneously but independently

of each other, the system is usually not excited along the gain directions. In both cases,

the weak gain directions tend to excite insufficiently. One can solve this problem in two

different ways: a) apply especially designed inputs based on the gain directions of the

system in open-loop identification, and b) apply set point changes in different directions in

closed-loop identification. In both cases, some prior information of the system is needed.

Excitations can be introduced one direction at a time or all directions simultaneously.
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Consider a singular value decomposition ( SVD) of the steady-state gain matrix

G(0) =WΣV T (5.2.1)

The input ui = viσ−1i will now produce the output yi = wi , with
∣∣∣yi ∣∣∣ = 1. Where vi and

wi are the i−th column vector of V and W matrix, respectively, in Eq. 5.2.1. To properly

excite all gain directions"i", i = 1,2, . . . ,n , the inputs ui should vary between ui− and ui+ ,

defined as

ui− = −σ−1i vi

ui+ = +σ−1i vi
(5.2.2)

This can be achieved by any kind of input signal (step sequence, PRBS or sinusoidal).

The common practice is to use PRBS signals for input excitation, one at a time or

simultaneously while maintaining least correlation among the inputs. However, this

cannot excite the system in all directions adequately, especially in the low-gain direction

[Häggblom and Böling, 1998; Häggblom and Böling, 2013].

5.3 Ill-conditioned systems

In the case of an ill-conditioned system, the outputs with normal inputs are dominated

by high gain direction information. As a result, it is almost impossible to extract low

gain information using normal input excitation. Therefore, one has to design and apply

inputs in such a way that the system output would also contain lower (weaker) gain

informations. Such information is normally important when designing a controller based

on an identified model of the true system. Here we have two other examples of a 2× 2
ill-conditioned system which has been studied extensively in literature. The reader may

refer to Appendix B for more examples of ill-conditioned systems.

Example 1

This system is a distillation column [Skogestad et al., 1988]. Transfer matrix of the system

is

G(s) =


87.8

194s+1
−87.8
194s+1 +

1.4
15s+1

108.2
194s+1

−108.2
194s+1 −

1.4
15s+1

 (5.3.1)
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Using singular value decomposition (SVD) of the steady-state transfer function matrix,

Equation (5.2.1) yields

Σ =

197.21 0

0 1.3914

 W =

−0.6246 −0.7809
−0.7809 −0.6246

 V =

−0.7066 −0.7077
−0.7077 −0.7066

 (5.3.2)

The magnitude of the singular values diag(Σ) are far apart. The condition number

κ = σ1
σ2
> 140 and the system contains a strong directionality.

Example 2

This is another example of an 2× 2 ill-conditioned system. This is an example of a heat

exchanger system [Jacobsen and Skogestad, 1994]. The transfer function matrix ( G(s))

of the system is

G(s) =
89.243

(100s+1)(2.439s+1)


−21(4.76s+1) 20

−20 21(4.76s+1)

 (5.3.3)

SVD of the steady-state transfer function matrix of Eq. 5.3.3 gives

Σ =

3658.96 0

0 89.24

 W =

−0.7071 −0.7071
−0.7071 0.7071

 V =

 0.7071 0.7071

−0.7071 0.7071

 (5.3.4)

Strong directionality is present in the system. The condition number κ = 40.

5.4 Input design methods

The output of an ill-conditioned system with random input excitation is strongly aligned

along the high-gain direction of the system and contains merely little information of the

low-gain direction. In order to avoid this, some design methods have been proposed in

literature, which are summarized in Table 5.1 * Here these design methods are discussed

briefly.

Almost all design methods and related studies except [Koung and MacGregor, 1994]

and [Li and Lee, 1996], are focused on 2× 2 systems. Some design methods are not as

effective for n×n systems where n > 2, as they are for 2×2 systems. Some process systems

used in literature for these studies are summarized in Table 5.2.

*please refer Appendix B for model details.
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5.4.1 Rotated inputs

Koung and MacGregor [1993] have proposed a design method using rotated inputs. The

rotation is determined based on the rotation matrix V from SVD of the steady-state

transfer function matrix of the underlying system. The designed input vectors are aligned

with the system’s high− and low-gain directions and able to excite both high− and low-

gain directions in a balanced way. Another design method based on rotated signals has

been presented in Conner and Seborg [2004] using PRBS signals.

Subspace identification has gained popularity in recent years due to its numerical

appeal, but the possibilities to use prior system knowledge is limited. Determining the

correct system order of an ill-conditioned system is often a challenge. However, this

problem can overcome through rotated inputs. Misra and Nikolaou [2003] have laid out

a design based on a particular rotated angel. However no method, except trial and error,

is given to find the angle. Obviously, this is a drawback of this design method. Moreover,

Micchi and Pannocchia [2008] have argued that finding a rotation angle is a challenge in

this method.

The W and V matrix from Equation (5.3.2) can be re-written as [Misra and Nikolaou,

2003]

Wφ =

cosφ −sinφ
sinφ cosφ

 V Tθ =

cosθ −sinθ
sinθ cosθ

 (5.4.1)

One can identify an ill-conditioned system order by applying a random input with

other input rotated as u2 ≈ u1 cotθ. The angle θ has to be found by iteration through

examining the maximum separation of the pair of singular values.

It has been found that the effectiveness of the rotated angle method is very sensitive to

the accuracy of the applied angle which is determined by trial and error. To avoid multiple

trials to find correct angle(s), random setpoints in closed-loop test identification have been

suggested by Micchi and Pannocchia [2008]. Also, some subspace based algorithms might

not be suitable because of correlation between the inputs. For example the orthogonal

projection method [Huang et al., 2005], is such a method. In case of 2×2 systems, finding

the angle between two inputs is much easier, but for systems with more inputs it becomes

complicated.
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Table 5.1: Main characteristics of signal design methods for ill-conditioned process identification

Design
method

A-priori
knowledge

Calculation
principle

Signal
Ampli-
tude

Signal
Spec-
trum

Reference Input
excitation

Rotated
signal

Steady-
state gain
matrix

Rotation
by W of
SVD(G(0))
matrix

Four
level

Fairly
flexible Conner

and Seborg
[2004];
Häggblom
and Böling
[1998];
Koung and
MacGregor
[1993]

Step,
PRBS

Correlated
high am-
plitude in
low-gain
method A

Sign of low-
gain direc-
tion

Concatenated
signal

Four
level

Fairly
flexible Zhu [2001]

PRBS

Correlated
high am-
plitude in
low-gain
method B

Sign of low-
gain direc-
tion

Combined
signal

Four
level

Fairly
flexible Zhu [2009]

PRBS

SOH with
modified
zippered
power
spectrum

Steady-
state gain
matrix

Phase opti-
mization and
Rotation by
SVD rotation
matrix

Continuous
Flexible Lee [2006];

Lee and
Rivera
[2006];
Rivera et al.
[2009]

PRBS,
multi-
sine

Pseudo
random
trinary
sequence
(PRTS)

Sign of low-
gain direc-
tion

Finite field
arithmetic

Three
level

Inflexible
Tan [2009]

PRTS

5.4.2 Correlated signal method A

A relatively simpler design method for a 2×2 highly-interactive system has been presented

in Zhu [2001]. This method has two stages: a) a normal random input signals to produce
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Table 5.2: Main characteristics of the models originally employed to test the signal design methods
for ill-conditioned process identification

Design
method

Model refer-
ence

Model
order,
size

RGA
(λ) ,
Cond.
No.
(κ)

Identified
model
structure

Identification
reference

Rotated
signal Wood and

Berry [1973]

FOPTD†

2× 2
2.009,
7.48

Low-
order
ARX, FIR

Conner and
Seborg [2004];
Koung and
MacGregor
[1993]

Correlated
high am-
plitude in
low-gain
method A

Jacobsen and
Skogestad
[1994]

2nd

order
2× 2

35.068,
141.73

ARMAX,
BJ, SS
MOSEP

Zhu [2001]

Correlated
high am-
plitude in
low-gain
method B

Jacobsen and
Skogestad
[1994]

2nd

order
2× 2

35.068,
141.73

ARMAX,
SS
MOSEP

Zhu [2009]

SOH with
modified
zippered
power
spectrum

Jacobsen and
Skogestad
[1994]

1st

order
2× 2

35.068,
141.73

ARX,
NARX Lee [2006];

Lee and Rivera
[2006]; Rivera
et al. [2009]

PRTS‡

Ogunnaike
et al. [1983]

SOPTD§

3× 3
2.008,
3540

Frequency
domain
system
identifica-
tion

Tan [2009]

∗ First Order Plus Time Delay
† Pseudo Random Trinary Sequence
‡ Second Order Plus Time Delay

high-gain rich outputs, and b) using the high-gain system information from an earlier

step, a strongly–correlated high–amplitude inputs (almost identical) is applied in the low
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gain direction to extract low-gain rich outputs.

The main advantages of the this method are fast and simpler identification design.

This method is best suited for a 2× 2 systems, especially distillation columns, as shown in

Eq. 5.3.1 and 5.3.3, where typically, high-gain direction is aligned close to [1 1]T vector,

while low-gain direction is aligned towards [1 − 1]T (i.e. changing inputs in opposite

direction). In case of a distillation column operating with L-V configuration (as shown in

Figure 5.1), inputs and outputs are (L,V ) and (yD ,xB), respectively.

5.4.3 Correlated signal method B

Zhu [2009] has presented an extension to the method described in Section 5.4.2 [Zhu,

2001]. Here, both uncorrelated random with low-amplitude and correlated high-amplitude

signals are added and applied together.

5.4.4 Frequency based design

The above idea, from Sections 5.4.2 and 5.4.3, has been employed in frequency domain

design with multisine signals [Lee, 2006]. Multisine signals have been designed by

introducing correlated harmonics in power spectrum in order to compensate low-gain

direction[Lee, 2006]. Rivera et al. [2009] have presented another method to generate

plant-friendly signals while minimizing the crest-factor (CF) of the signal by optimizing

both phases and amplitudes of the frequency harmonics of the designed signal. In

this procedure, Schroeder phase Equation (4.2.10) was used as the initial phase in the

optimization. Finally, the idea of snow effects in order to minimize the crest factor of the

signal, as proposed in Guillaume et al. [1991], was used.

A similar method using frequency domain based design has been used with Wiener

modeling for a non-liner system [Guillaume et al., 2003]. Another input design method

based on correlated harmonics in frequency domain using Galois field, has been presented

in [Tan, 2009]. The method used a three-level signal called PRTS (pseudo-random ternary

signal) that can compensate the low-gain direction. However, this method has two

limitations. The user does not have any control over the frequency content, unlike other

design methods, and knowing the low-gain direction is also a prerequisite.
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5.5 Evaluation of inputs

In our study, we have considered both designs by rotated signals as well as the methods

based on frequency domain design. In Paper I and Paper II, we have studied rotated signal

based designs and frequency domain based design, respectively. We have compared and

studied all the significant design methods and summarized in Paper III. In Paper IV, we

have focused on a few design methods and their design aspects in practical scenarios.

To compare the effectiveness of input signals we have considered both fit percentage and

projection variance of output data in gain directions.

5.5.1 Fit percentage

The fit percentage is considered as a measure of goodness of the estimated models from

the measured data. The normalized root mean square error (NRMSE) is considered to

determine the goodness of fit for each output of the multiple-input single-output (MISO)

model estimated in identification. The fit percentage value is calculated as

Fp[%] =

1− √∑
i(ŷi − yi)2√∑
i(yi − ȳi)2

 100% (5.5.1)

where yi and ŷi are the measured and estimated output, respectively, and ȳ is the mean

value.

5.5.2 Projections of output data in gain directions

The standard deviation of the projections of system output along the gain-directions

illustrates how well the output is balanced in various gain directions. These projections at

each sampled data points are calculated according to

y×i (k) = w
T
i y(k) (5.5.2)

where y×i is the projection of output Y along the i−th gain-direction and wi are the

columns of the W matrix from the singular value decomposition of the system gain matrix

using Eq. 5.2.1.





CHAPTER 6
Case studies

Input signals can be constructed with and without information about gain directions of a

system. An input signal, as explained earlier in Section 4.2, can for example be a step, a

PRBS or a multisine. In this contribution, we have considered various design methods to

construct efficient input signals using all three types of excitations.

6.1 Introduction

Typically, a designer has to decide the amplitude and the desired frequency bandwidth of

a signal (e.g. PRBS or multisine). The phase of a multisine can be used to get the desired

amplitude of the signal in time domain without changing the power spectral density of

the signal in frequency domain. Phase can be modified by an optimization to obtain

more plant-friendly multisine inputs [Lee, 2006]. Typically, Schroeder phase distribution

[Schroeder, 1970] has been used as an initial choice in optimization. The relation between

phase and crest factor (CF) of a signal is complicated. As a result, constructing globally

optimized multisine signal with minimum crest factor (CF) is not easy, however, it is

possible to get a close approximation using Guillaume phase distribution [Guillaume et al.,

1991].

6.1.1 Input excitation design

We have used various input design methods to construct efficient input excitations. Based

on signal types, as explained in Section 4.2, we can divide the experiments into three

45
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categories, namely, (a) step based signals (Exp. 1 & 2), (b) PRBS based signals (Exp.

3–8), and (c) multisine based signals (Exp. 9–17). In each set, some of the designs are

standard designs, some are based on informations about gain directions. In addition, the

designed excitations can be sequential (one at a time) or simultaneous (applied together).

In case of PRBS inputs, design guidelines given by Gaikwad and Rivera [1996] have been

used as a starting point. The design algorithms for PRBS (Table 4.2) and multisine are

used, as explained in Section 4.2. All these experiments are summarized in Table 6.1.

Table 6.1: Designed experiments based on input perturbations

Direction
Exp. Input perturbation description Acronym information

1 Sequential step changes of inputs one at a time stepSeq No
2 Step changes in gain directions stepDir Yes
3 Sequential PRBS perturbation of inputs one at a time prbsSeq No
4 Simultaneous uncorrelated PRBS perturbation of all inputs prbsUnc No
5 Sequential PRBS perturbation of gain directions prbsSeqDir Yes
6 Simultaneous PRBS perturbation of gain directions prbsSimDir Yes
7 Sequential high-amplitude correlated PRBS and prbsDirCorrSeq Yes*

low-amplitude uncorrelated PRBS
8 Simultaneous high-amplitude correlated PRBS and prbsDirCorrSim Yes*

low-amplitude uncorrelated PRBS
9 Sequential Schroeder phase multisine perturbation msSrdSeq No

10 Sequential Schroeder phase multisine perturbation msSrdSeqDir Yes
of gain directions

11 Sequential Guillaume phase multisine perturbation msGlmSeq No
12 Sequential Guillaume phase multisine perturbation msGlmSeqDir Yes

of gain directions
13 Simultaneous Schroeder phase multisine perturbation msSrdSim No
14 Simultaneous Schroeder phase multisine perturbation msSrdSimDir Yes

of gain directions
15 Simultaneous Guillaume phase multisine perturbation msGlmSim No
16 Simultaneous Guillaume phase multisine perturbation msGlmSimDir Yes

of gain directions
17 Guillaume phase multisine modified zippered signal msGlmZipm Yes*

* only low-gain directional information are used.

The design in experiment 1 (stepSeq) is the simplest method. Here steps are applied

to the inputs with both positive and negative amplitude. Although the method is simple,

it provides fundamental information of the system, which is useful in advanced designs.

The amplitude of the signal is a user choice. Typically it is determined based on prior

knowledge, or obtained e.g. by trial and error. Signals from the first experiment have

modified with system gain directions and applied in Experiment 2 (stepDir). The gain

directions are estimated from the step tests in experiment 1, and applied to the inputs

as explained in Section 5.2. For fair comparison of various designs, we have designed
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reasonably equal experiment lengths for all experiments. Each sub-figure in Figure 6.1

shows inputs of each experiments.

1000 1400 1800 2200 2600 3000
−0.1

−5 · 10−2

0

5 · 10−2

0.1

1000 1400 1800 2200 2600 3000
−3

−2

−1

0

1

2

3
·10−2

1000 1400 1800 2200 2600 3000
−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

1000 1400 1800 2200 2600 3000
−6

−4

−2

0

2

4

6
·10−2

1000 1400 1800 2200 2600 3000
−3

−2

−1

0

1

2

3
·10−2

1000 1400 1800 2200 2600 3000
−0.2

−0.1

0

0.1

0.2

1000 1400 1800 2200 2600 3000
−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

1000 1400 1800 2200 2600 3000
−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

3 4 5

21

6 7 8

1000 1400 1800 2200 2600 3000
−0.4

−0.2

0

0.2

0.4

0.6

1000 1400 1800 2200 2600 3000
−0.6

−0.4

−0.2

0

0.2

0.4

1000 1400 1800 2200 2600 3000
−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

1000 1400 1800 2200 2600 3000
−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

1000 1400 1800 2200 2600 3000
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

1000 1400 1800 2200 2600 3000
−0.4

−0.2

0

0.2

0.4

1000 1400 1800 2200 2600 3000
−0.1

−5 · 10−2

0

5 · 10−2

0.1

1000 1400 1800 2200 2600 3000
−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

1000 1400 1800 2200 2600 3000
−0.2

−0.1

0

0.1

0.2

9 1110

12 13 14

1615 17

Figure 6.1: Input excitation signals— step, PRBS and multisine (selective part)
[Ghosh et al., 2016]

Experiment 3 (prbsSeq) has been designed using PRBS signals in each input, one

at a time. The PRBS signals are designed based on the design parameters specified

in Table 4.1. In experiment 4 (prbsUnc), all inputs are excited simultaneously, in an

uncorrelated way. Uncorrelated signals are obtained by time shifting the PRBS signals

suitably among the four inputs [Lee, 2006]. In experiment 5 (prbsSeqDir), the PRBS
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signal from the third experiment is applied to the gain directions with suitably adjusted

amplitudes. In experiment 6 (prbsSimDir), the signals of experiment 4 are applied to the

various gain directions with suitably adjusted amplitudes.

Experiments 7 and 8 are motivated by the design method in Zhu [2009], where only

the low-gain direction is emphasized with an explicit excitation combined with standard

uncorrelated excitation. Thus, this method requires knowledge of low-gain direction

of the system. We have used the estimated low-gain direction obtained from Exp. 1

(stepSeq). In accordance with Zhu [2009], a correlated high-amplitude signal was applied

in the low-gain direction of the system while the high-gain direction was excited by

uncorrelated signals of lower amplitude. In Both experiments, PRBS signal were used and

the signals were scaled so that output magnitudes were similar to the ones in the other

experiments. The difference between experiment 7 (prbsDirCorrSeq), and experiment 8

(prbsDirCorrSeq) is that the inputs are applied sequentially in 7 and simultaneously in 8.

In experiments 9–17 multisine inputs are used. In a few experiments 9–12, the inputs

are applied sequentially, while in experiments 13–16, they are applied simultaneously,

either directly to the inputs or to the gain directions. In experiment 9 (msSrdSeq), the

multisine signal is designed with Schroeder phase distribution [Schroeder, 1970] and

is applied directly to the inputs, one by one. In experiment 10 (msSrdSeqDir) the same

signals with suitably adjusted amplitudes, are applied to the various gain directions.

Experiments 11 (msGlmSeq) and 12 (msGlmSeqDir) are similar to experiment 9 and 10,

but instead the Guillaume phase distribution is used. The phase is determined based

on an optimization algorithm for minimal crest-factor of the signal by iterative p−norm

optimization [Guillaume et al., 1991]. The designs in experiment 13 (msSrdSim) and

14 (msSrdSimDir) are similar to those in experiment 9 (msSrdSeq) and 10 (msSrdSe-

qDir). Experiment 15 (msGlmSim) and 16 (msGlmSimDir) are similar to the design

in experiments 11 (msGlmSeq) and 12 (msGlmSeqDir), but all excitations are applied

simultaneously instead of sequentially.

In experiment 17 (msGlmZipm), mulstisine zippered signals with Guillaume phase

distribution has been used. The CRIDENT toolbox [Rivera and Lee, 2003] has been

used in designing the multisine signals. This is an adaptation in frequency domain with

correlated frequencies [Rivera et al., 2007], of the earlier methods (as in experiment 7

and 8) in time-domain Zhu [2009]. In this design, low-gain direction of the system is

compensated, whereas algorithm generated certain low and high frequency contents are

added for minimizing the crest factor of the signal [Lee, 2006].
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6.1.2 Modeling and cross validation

MATLAB’s Simulink and System Identification Toolbox have been used for modeling

[Ljung, 1999, 2012]. Various model structures (e.g. transfer function matrix model,

state space model, polynomial model) have been tried out. But there was no significant

difference in performance. For easy comparison with the true system, we have chosen the

transfer function matrix structure. It has been shown that the lower gain dynamics is much

faster than the dynamics of the higher gain direction in distillation columns [Skogestad

et al., 1988]. Hence, in order to consider both slow and fast dynamics of the system in

estimated model, we have considered two poles model with time delay for each transfer

function

Gij =
Kp e

−sTd

(1 + sTp1 )(1 + sTp2 )
(6.1.1)

where Gij is the ith row and jth column element of the transfer function matrix of the

system. To avoid impractical delay parameters in the numerical optimization, which was

often an issue, a realistic upper limit of 20 minutes was used for the delay values.

The designed inputs are applied and the system response (i.e. outputs) are measured

for each experiment. Models are determined from the experimental data and the model

that fits the data most is chosen. The performance of a model estimated from an experi-

ment is also validated through data from other experiments not used in estimating the

model.

A two-pole with time delay model for each transfer function is fitted to each experiment

as Equation (6.1.1). The performances of the designed inputs are then verified with each

data-set, separately. As we have designed input signals using various methods, as in

Table 6.1, we could consider them a good set of validation data for rest of the experiments.

Hence, the merits of the input excitations are also evaluated through cross-validations

with the data of the other designed experiments.

6.2 Experiment design example - a distillation column system

We have considered design methods as explained in Section 6.1.1 for a 2×2 distillation col-

umn system. This nonlinear simulator is designed to complement a pilot-scale distillation

column system at Process Control Laboratory (Åbo Akademi University). Therefore, by

tuning a number of parameters of the simulator, the behavior of the simulator is adapted

to that of the real column. A schematic of a two-product distillation column is shown in

6.2.
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Figure 6.2: Schematic of distillation column system

Apart from the projections of output data on gain directions, as explained in Sec-

tion 5.5.2, the spread of outputs produced by designed inputs can be characterized by the

determinant of the correlation matrix of the outputs, i.e.,

Υ = det(corr[y1 y2 . . . yn]) (6.2.1)
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Figure 6.3: Calculation of determinant of output-correlation (Υ ) of designed experiments in
simulator



6.2. EXPERIMENT DESIGN EXAMPLE - A DISTILLATION COLUMN SYSTEM 51

Figure 6.3 shows determinant of output-correlation (Υ ) values for all the designed

experiments. Based on the Υ value, we can distinguish between the experiments which

produce more balanced outputs and which do not. A few screen-shots of our designed

input excitations and corresponding outputs are shown in Figures 6.4 to 6.6.



52 CHAPTER 6. CASE STUDIES

0 500 1,000 1,500 2,000

136

138

140

142

144

Input1 L (u-in1,iExp)

0 500 1,000 1,500 2,000
94

95

96

97

98

Input2 V (u-in2,iExp)

0 500 1,000 1,500 2,000
0.9

0.91

0.92

Output1 xD

0 500 1,000 1,500 2,000
0

1

2

3

4
·10−2

Output2 xB

0 500 1,000 1,500 2,000
120

130

140

150

160

Input1 L (u-in1,iExp)

0 500 1,000 1,500 2,000
85

90

95

100

105

Input2 V (u-in2,iExp)

0 500 1,000 1,500 2,000
0.91

0.91

0.92

0.92

0.93

Output1 xD

0 500 1,000 1,500 2,000
0

1

2

3

4
·10−2

Output2 xB

(Exp. 1) (Exp. 2)

0 500 1,000 1,500 2,000

136

138

140

142

144

Input1 L (u-in1,iExp)

0 500 1,000 1,500 2,000
94

95

96

97

98

Input2 V (u-in2,iExp)

0 500 1,000 1,500 2,000
0.91

0.91

0.91

0.91

0.92

0.92

Output1 xD

0 500 1,000 1,500 2,000
0

1

2

3
·10−2

Output2 xB

0 500 1,000 1,500 2,000

136

138

140

142

144

Input1 L (u-in1,iExp)

0 500 1,000 1,500 2,000
94

95

96

97

98

Input2 V (u-in2,iExp)

0 500 1,000 1,500 2,000
0.91

0.91

0.92

0.92

0.93

Output1 xD

0 500 1,000 1,500 2,000
0

1

2

3

4
·10−2

Output2 xB

(Exp. 3) (Exp. 4)

0 500 1,000 1,500 2,000
120

130

140

150

160

Input1 L (u-in1,iExp)

0 500 1,000 1,500 2,000
85

90

95

100

105

Input2 V (u-in2,iExp)

0 500 1,000 1,500 2,000
0.91

0.91

0.91

0.91

0.92

0.92

Output1 xD

0 500 1,000 1,500 2,000
0

1

2

·10−2
Output2 xB

0 500 1,000 1,500 2,000
120

130

140

150

160

Input1 L (u-in1,iExp)

0 500 1,000 1,500 2,000
90

95

100

105

Input2 V (u-in2,iExp)

0 500 1,000 1,500 2,000
0.88

0.9

0.92

0.94

Output1 xD

0 500 1,000 1,500 2,000
0

2

4

6

8
·10−2

Output2 xB

(Exp. 5) (Exp. 6)

Figure 6.4: Simulator inputs and outputs (Exp. 1–6)
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Figure 6.5: Simulator inputs and outputs (Exp. 7–12)
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Figure 6.6: Simulator inputs and outputs (Exp. 13–17)
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6.3 Experiment design example - a 4× 4 column stripper system

The performance of designed input excitations are compared on a column stripper system

[Alatiqi and Luyben, 1986]. The system contains a broad range of time constants and

time delays. It is a highly interactive and ill-conditioned (condition number > 100) system.

The transfer function matrix of the system is

G(s) =



4.09e−1.3s
(33s+1)(8.3s+1)

6.36e−1.2s
(31.6s+1)(20s+1)

−0.25e−1.4s
21s+1

−0.49e−6s
22s+1

−4.17e−5s
45s+1

6.93e−1.02s
44.6s+1

−0.05e−6s
(34.5s+1)2

1.53e−3.8s
48s+1

1.73e−18s

(13s+1)2
5.11e−12s

(13.3s+1)2
4.61e−1.01s
18.5s+1

−5.49e−1.5s
15s+1

−11.2e−2.6s
(43s+1)(6.5s+1)

14(10s+1)e−0.02s

(45s+1)(17.4s2+3s+1)
−0.1e−0.05s

(31.6s+1)(5s+1)
4.49e−0.6s

(48s+1)(6.3s+1)



(6.3.1)

A Gaussian distributed measurement noise [s2 = 0.03] was added to all outputs. A

sampling time Ts = 1 min was used for all simulations. Various input design methods are

used as summarized in Table 6.1. The step signals were designed with length of 330 min.

From the step changes, we have found that the system under study has dominating

time constants τH = 50 min and τL = 12 min, whereas α and β are chosen as 2 and 3,

respectively. The parameter β = 3 signifies the 95% settling time of the system.

Now, with the help of ‘cut and shifting technique’ we can design least-correlated PRBS

signal and apply simultaneously among all inputs with the help of following equations

[Lee and Rivera, 2006]

Tsw ≤
2.8 τL
α

(6.3.2)

D ≥ 5 τH
Tsw

(6.3.3)

Ns ≥max
(
2π β τH
Tsw

,
5 p τH
Tsw

)

Ns = 2nr − 1

(6.3.4)

For nr = 6, we get Ns = 26 − 1 = 63 . Now, Tsw ≥ 15.87 and Tsw = 16 minutes has chosen.

We found, the longest experiment would be the sequential PRBS inputs, where each

four inputs are excited one after another. For this case, the experiment length (TL) would
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be 4032 minutes with Tsw = 16. However, for the experiments with simultaneous inputs

(e.g. Exp. 4, prbsUnc), we can use longer PRBS sequences, for example, nr = 7 or 8.

Since 4032/16 = 252 is closed to Ns = 28 − 1 = 255, we have chosen nr = 8 for long PRBS

sequences. All experiment signals were designed considering this (lengths) assumption.

Figure 6.7 shows all inputs and outputs from one of the experiment is shown in. A

switching time Tsw = 16 min, two PRBS length of 63 and 255 (2n − 1; for n number of

bits) are considered for short (for Exp. 3, prbsSeq ) and long (for Exp. 4, prbsUnc ) PRBS,

respectively. Total experiment length ( TL = 4080 min) was the same for all cases.

Figure 6.7: Input-output signals with simultaneous PRBS in all gain-directions (Exp. 8)



6.3. EXPERIMENT DESIGN EXAMPLE - A 4× 4 COLUMN STRIPPER SYSTEM 57

Table 6.2: Input signal characteristics

Input Avg. PIPS(ui ) Avg. PIPS
Exp. CF(ui ) CF(u) % (u) % min(ui ) max(ui ) max(|∆ui |)

u1 2.487 40.22 -0.094 0.094 0.188
1 u2 2.487 2.487 40.22 40.22 -0.068 0.068 0.136

stepSeq u3 2.487 40.22 -0.26 0.260 0.520
u4 2.487 40.22 -0.165 0.165 0.330
u1 2.471 40.47 -0.589 0.589 1.178

2 u2 2.365 2.452 42.28 40.80 -0.129 0.129 0.129
stepDir u3 2.486 40.23 -2.265 2.265 4.531

u4 2.486 40.23 -1.965 1.965 3.930
u1 2.011 49.72 -0.141 0.141 0.282

3 u2 2.012 2.012 49.70 49.70 -0.102 0.102 0.204
prbsSeq u3 2.012 49.70 -0.39 0.390 0.780

u4 2.012 49.70 -0.248 0.248 0.495
u1 1.000 100 -0.078 0.078 0.157

4 u2 1.000 1.000 100 100.00 -0.057 0.057 0.113
prbsUnc u3 1.000 100 -0.217 0.217 0.433

u4 1.000 100 -0.138 0.138 0.275
u1 2.000 50.01 -0.589 0.589 1.178

5 u2 1.914 1.984 52.26 50.42 -0.129 0.129 0.258
prbsSeqDir u3 2.011 49.71 -2.265 2.265 4.531

u4 2.011 49.72 -1.965 1.965 3.930
u1 1.162 86.05 -0.551 0.551 0.943

6 u2 1.481 1.179 67.53 86.62 -0.161 0.161 0.206
prbsSimDir u3 1.032 96.86 -1.872 1.872 3.625

u4 1.041 96.05 -1.637 1.637 3.144
u1 1.402 71.31 -0.589 0.589 1.178

7 u2 1.294 1.379 77.18 72.58 -0.129 0.129 0.258
prbsDirCorrSeq u3 1.408 71.00 -2.265 2.265 4.531

u4 1.411 70.85 -1.965 1.965 3.930
u1 1.124 88.98 -0.472 0.472 0.833

8 u2 1.316 1.127 75.97 89.65 -0.131 0.131 0.182
prbsDirCorrSim u3 1.000 100.00 -1.755 1.755 3.510

u4 1.068 93.66 -1.487 1.487 2.779
u1 5.295 18.91 -0.531 0.532 0.559

9 u2 6.202 5.685 17.32 18.34 -0.39 0.454 0.417
msSrdSeq u3 5.549 19.23 -1.536 1.341 1.508

u4 5.694 17.89 -1.01 0.973 0.993
u1 5.659 18.00 -2.164 2.085 2.126

10 u2 5.419 5.616 18.80 18.15 -0.456 0.474 0.441
msSrdSeqDir u3 5.692 17.89 -8.323 8.019 8.177

u4 5.692 17.90 -7.22 6.955 7.093
u1 3.073 32.70 -0.21 0.207 0.400

11 u2 2.497 2.784 40.16 36.42 -0.124 0.123 0.241
msGlmSeq u3 3.042 33.13 -0.577 0.568 1.092

u4 2.524 39.68 -0.305 0.304 0.563
u1 2.509 39.92 -0.677 0.675 1.251

12 u2 2.401 2.489 41.70 40.25 -0.148 0.148 0.263
msGlmSeqDir u3 2.524 39.69 -2.603 2.594 4.812

u4 2.523 39.69 -2.258 2.250 4.174
u1 2.794 35.79 -0.311 0.311 0.312

13 u2 3.102 2.901 34.68 35.47 -0.215 0.250 0.229
msSrdSim u3 2.750 36.36 -0.845 0.845 0.876

u4 2.958 35.07 -0.577 0.535 0.546
u1 3.006 33.63 -1.379 1.349 1.363

14 u2 3.171 3.027 32.93 34.08 -0.305 0.333 0.310
msSrdSimDir u3 2.961 34.79 -5.193 4.889 4.964

u4 2.969 34.97 -4.517 4.185 4.259
u1 1.537 65.07 -0.11 0.110 0.207

15 u2 1.271 1.397 79.69 72.51 -0.066 0.064 0.125
msGlmSim u3 1.518 65.89 -0.299 0.299 0.566

u4 1.261 79.38 -0.158 0.158 0.292
u1 1.442 69.48 -0.445 0.443 0.720

16 u2 1.879 1.480 53.96 69.47 -0.133 0.129 0.160
msGlmSimDir u3 1.289 77.74 -1.52 1.515 2.754

u4 1.309 76.68 -1.329 1.340 2.387
u1 1.279 78.63 -0.718 0.710 1.267

17 u2 1.465 1.318 70.14 76.96 -0.171 0.181 0.265
msGlmZipm u3 1.264 79.51 -2.726 2.700 4.866

u4 1.262 79.58 -2.362 2.341 4.222
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6.3.1 Plant friendly parameters

The plant friendly parameters of the designed input signals of all the experiments are

calculated and compared. The crest factor (CF), PIPS and their average values over all

four inputs are summarized in Table 6.2. For comparison of various inputs we also have

considered the maximum (max(ui)) and minimum (min(ui)) value of the input as well as

the difference (or change) between two consecutive input samples (|∆ui |). It was found

that the PRBS signal in Exp. 4, (prbsUnc) has the smallest average CF (= 1), while Exp. 9

(msSrdSeq), has the highest CF (=5.685).
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Figure 6.8: Crest factor of the design inputs and their average values (—)
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Figure 6.9: PIPS of the design inputs and their average values (—)

The determinant of corr(Y ) ) value is calculated based on the output data for each

experiment. This scalar value can provide an indication if the designed inputs are able

to extract various gain direction informations equally well or not. Figure 6.10 shows

det(corr(Y )) values of each designed experiments in 4× 4 system. A few design methods
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Figure 6.10: Determinant of output-correlation (Υ ) of designed experiments in 4× 4 system

are able to extract all gain directions (higher values), whereas a few are not able to extract

so well (smaller values).

6.3.2 Model fitting and cross-validation

First, a model is determined from the experimental data. The average fit percentage value

of all four outputs of the system is given in Table 6.3. Moreover, the performance of the

estimated model has been validated through the other experiments. From Figures 6.11

and 6.12, we can clearly see some differences among the models generated from the data.

We found that models from the experiments that considered the gain directions during

the input signal design can perform better in cross validation in all cases (best and worst

cases).

Experiment 14 (msSrdSimDir) gave best model based on cross validation [best fit:

91.83% and worst fit: 83.14%]. Experiment 10 (msSrdSeqDir) [best 91.67% and worst

84.55%], Exp. 12 (msGlmSeqDir) [best 91.81% and worst 82.63%], Exp. 16 (msGlm-

SimDir) [best 91.78% and worst 82.27%] and Exp. 17 (msGlmZipm) [best 91.53% and

worst 82.87%] also gave near good models based on cross validation. In all these experi-

ments multisine excitation was used and directional information was considered in the

design process. Hence, it is important to consider directional information in the input

design. On the other hand, experiment 2 (stepDir), gave a good model with the best fir to

identification data [best 92.63%] but the model did not perform well in cross validation

[worst 82.63%]. However, as explained earlier, steps are very useful for estimation of

basic system properties. PRBS excitations with gain directions, Exp. 5 (prbsSeqDir)
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Table 6.3: Overall performance of the models

Average Average Best Worst
Model Input excitation model-fit

(%)
cross-fit
(%)

cross-fit
(%)

cross-fit
(%)

1 stepSeq 92.72 79.24 89.55 64.51
2 stepDir 88.02 84.94 92.63 73.56
3 prbsSeq 89.36 81.94 91.54 72.49
4 prbsUnc 89.26 83.95 91.35 75.52
5 prbsSeqDir 85.21 87.28 91.08 82.08
6 prbsSimDir 88.78 87.10 91.11 82.35
7 prbsDirCorrSeq 88.79 87.13 91.32 81.66
8 prbsDirCorrSim 89.32 87.24 91.37 81.31
9 msSrdSeq 88.12 83.30 91.44 75.65

10 msSrdSeqDir 83.38 87.78 91.67 84.55
11 msGlmSeq 89.99 83.31 91.64 74.72
12 msGlmSeqDir 85.85 87.69 91.81 82.63
13 msSrdSim 89.34 83.61 91.54 75.99
14 msSrdSimDir 85.21 87.81 91.83 83.14
15 msGlmSim 90.41 82.76 91.71 73.75
16 msGlmSimDir 87.21 87.50 91.78 82.27
17 msGlmZipm 92.15 87.44 91.53 82.87

and Exp. 6 (prbsSimDir), perform significantly better in cross validation [worst ≈ 82%]

compared to their counterparts with no directional information, Exp. 3 (prbsSeq) and

Exp. 4 (prbsUnc) [worst ≈ 72− 75%], as shown in Table 6.3. The design methods with

combination of highly correlated and uncorrelated signals, Exp. 7 (prbsDirCorrSeq) and

Exp. 8 (prbsDirCorrSim), did not perform [worst ≈ 81%] as well as PRBS with gain

directions (Exp. 5 & 6). However, they perform better than standard PRBS without gain

direction information (Exp. 3 & Exp. 4), as anticipated.

6.3.3 Singular values of estimated models

The singular values (σi) of the steady-state gain matrix of the generated models are shown

in Table 6.4. Many models are able to produce condition numbers near to the true ones,

except Exp. 4 (prbsUnc), Exp. 9 (msSrdSeq), Exp. 11 (msGlmSeq), Exp. 13 (msSrdSim)

and Exp. 15 (msGlmSim), where estimated values are at-least 16% lower. Whereas in case

of σi values, it is quite clear that the only some models are able to capture the singular

values near to its true values. One reason behind this could be not enough excitation in

weaker directions of the system.
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Table 6.4: Singular Values (σi ) and their ratios (ξi ) of the estimated models

Singular values Ratios
Model from σ1 σ2 σ3 σ4 ξ1 =

σ1
σ2

ξ2 =
σ1
σ3

ξ3
∗ = σ1

σ4

Exp. 1 stepSeq 20.30 10.19 5.05 0.17 2.0 4.0 121.07
Exp. 2 stepDir 20.31 10.14 5.05 0.16 2.0 4.0 125.03
Exp. 3 prbsSeq 19.34 10.32 5.08 0.14 1.9 3.8 138.03
Exp. 4 prbsUnc 18.96 10.35 5.09 0.18 1.8 3.7 103.31
Exp. 5 prbsSeqDir 18.65 10.20 4.98 0.15 1.8 3.7 122.53
Exp. 6 prbsSimDir 17.90 10.16 5.03 0.15 1.8 3.6 119.79
Exp. 7 prbsDirCorrSeq 17.38 10.49 5.10 0.16 1.7 3.4 110.20
Exp. 8 prbsDirCorrSim 18.28 10.38 5.10 0.16 1.8 3.6 115.19
Exp. 9 msSrdSeq 18.89 10.35 5.08 0.20 1.8 3.7 96.25
Exp.10 msSrdSeqDir 18.51 10.22 4.99 0.15 1.8 3.7 122.34
Exp.11 msGlmSeq 19.07 10.34 5.07 0.19 1.8 3.8 102.35
Exp.12 msGlmSeqDir 18.52 10.08 5.11 0.16 1.8 3.6 118.85
Exp.13 msSrdSim 19.06 10.37 5.09 0.18 1.8 3.7 105.08
Exp.14 msSrdSimDir 18.90 10.31 5.11 0.15 1.8 3.7 122.64
Exp.15 msGlmSim 19.14 10.35 5.06 0.20 1.8 3.8 96.22
Exp.16 msGlmSimDir 18.85 10.10 5.05 0.16 1.9 3.7 120.20
Exp.17 msGlmZipm 19.30 10.37 5.17 0.16 1.9 3.7 121.68
TRUE system – 20.23 10.11 5.05 0.16 2.0 4.0 125.2

ξ3
∗ also known as the condition number (CN) of the system.

The singular values of the identified models and the true system in frequency domain

are shown in Figure 6.11. Most models actually fit of the singular values with the true

system quite well for lower frequencies, but less so for higher frequencies. This is expected

as the input signals were designed primarily for the lower range of the frequencies, (for

PRBS ωL = 0.01 , ωH = 0.2), and we fit a lower order model [Eq. 6.1.1] of the true

system.

In case of the fourth singular value (σ4), the mismatch between estimated model

and true system is substantial. One reason of this mismatch could be system dynamics

mismatch in true system compare to the estimated lower order model. Also, note that

the amplitude of σ4 in all frequencies is quite low (below -15dB to as low as -60dB)

[Figure 6.11].
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Figure 6.11: Singular values in frequency domain (a comparison with true system and estimated
models)
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6.3.4 Projections of output data on gain directions

The projections on gain directions of the outputs are obtained using the W matrix from

the SVD (Eq. 5.2.1). This projection of all experiments onto the low-gain and high-gain

spaces are shown in Figure 6.12. Each sub-figure illustrates data-set from different design

methods and how well they are balanced or imbalanced in strongest (σ1) to weakest (σ4)

direction.

Using Eq. 5.5.2, the projection of output along the high-gain direction is given by

y×1 (k) = w
T
1 y(k) and that in low-gain direction is y×4 (k) = w

T
4 y(k) . In Table 6.5, the standard

deviations of projections onto all four spaces along the gain-directions are presented.

Table 6.5: Standard deviation of projection along gain directions

High- Middle- Middle- Low- min/max
Exp. Input excitation gain gain 1 gain 2 gain Ratio

1 stepSeq 0.603 0.555 0.349 0.018 0.030
2 stepDir 0.252 0.268 0.204 0.179 0.668
3 prbsSeq 0.568 0.605 0.409 0.052 0.086
4 prbsUnc 0.573 0.672 0.443 0.058 0.086
5 prbsSeqDir 0.275 0.457 0.236 0.123 0.269
6 prbsSimDir 0.453 0.743 0.383 0.193 0.260
7 prbsDirCorrSeq* 0.483 0.733 0.411 0.184 0.251
8 prbsDirCorrSim* 0.520 0.603 0.302 0.174 0.289
9 msSrdSeq 0.470 0.562 0.368 0.045 0.080

10 msSrdSeqDir 0.231 0.421 0.222 0.100 0.238
11 msGlmSeq 0.511 0.618 0.413 0.044 0.071
12 msGlmSeqDir 0.254 0.451 0.232 0.107 0.237
13 msSrdSim 0.547 0.635 0.415 0.050 0.079
14 msSrdSimDir 0.285 0.510 0.273 0.122 0.239
15 msGlmSim 0.550 0.650 0.428 0.046 0.071
16 msGlmSimDir 0.295 0.525 0.268 0.123 0.234
17 msGlmZipm* 0.487 0.905 0.419 0.221 0.244

* only low-gain direction information are used in input design.

Based on the min/max ratio of the standard deviation of projections, we can categorize

the experiments in Table 6.5 into three major groups: (a) > 0.5, (b) in the range of 0.2

to 0.3, and (c) < 0.1 . Experiment 2 (stepDir, 0.668) is the only experiment belongs to

group (a). Group (b) contains nine experiments (Exp. 5, 6, 7, 8, 10, 12, 14, 16 and

17) and the rest (Exp. 1, 3, 4, 9, 11, 13, 15) belong to group (c), which fail to generate

well-balanced data in all gain-directions. This ratio is one of the indication, how well the



64 CHAPTER 6. CASE STUDIES

system is excited in various gain directions i.e. in terms of gain directions collected data

are balanced or not.

The data points are scattered different ways in low- and high-gain direction in Fig-

ure 6.12. The reason why the standard deviations are not equal in all directions in the

cases that is designed to be in balance, is that the projection data points are calculated

based on dynamic output data, though the design methods concerned steady-state only.
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6.4 Ill conditioned system and its κ,σ values

The condition number (κ), from which the degree of ill-conditioning is inferred, is the ratio

between the highest singular value (σ1) and the smallest singular value (σn). However if

n > 2 the system might also be ill-conditioned due to other small singular values. Consider

the transfer function matrix

G(s) =



0.173e−3.79s

(21.74s+1)2
−3.4e−7.75s
(22.22s+1)2

−8.66e−1.59s
11.36s+1

11.94e−27.33s
33.3s+1

−0.268e−60s
400s+1

2.79e−0.71s

(66.67s+1)2
5.05e−2.24s
14.29s+1

−5.65e−8.72s
(250s+1)2

−0.084e−0.68s
(2.38s+1)2

0.94e−0.59s

(7.14s+1)2
1.31e−0.42s

(1.43s+1)2
−0.56e−s

−0.047e−0.52s
11.11s+1

−15.5e−0.48s
(6.90s+1)2

−9.03e−1.91s
12.19s+1 −8.71e−s


(6.4.1)

with singular values, diag(Σ) = [20.39, 16.71, 0.185, 0.156]. In this example, even after

compensating lowest gain-direction, system will remain ill-conditioned due to the second

smallest singular value. Therefore, exciting only the weakest gain direction (which is

popular in dealt with 2× 2 systems) is not enough here. One need to consider all gain

directions, or at-least the potential ones.

Higher gain direction dominates in normal excitation. Hence, one has to excite all

those directions with ξi � 1, where ξi = σ1/σi .





CHAPTER 7
Conclusion

"Now this is not the end. It is not

even the beginning of the end. But

it is, perhaps, the end of the

beginning."

- W. Churchill

In this chapter, we present a brief summary of the results. We also mention some of

the important problems that will be addressed in the near future.

7.1 Summary of results in the thesis

We have discussed and compared various input design methods (with general signals

like step, PRBS, multisine ) in order to find the best method to tackle the underlying

challenge in ill-conditioned system identification. The plant friendly input aspect is also

discussed and considered in our design. We have used a few methods (such as projection

of output data along the gain directions, determinant of correlation matrix of outputs etc.)

to evaluate various methods in order to design balanced outputs in directional systems.

Prior to the input design, in addition to other practical checks, one should check if the

underlying system is ill-conditioned or not? This can be done using step tests. Using the

ratios of singular values of a system one can identify all weak gain directions, which need

special attention in order to excite the system in balance. The results indicate that in order
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to obtain a model suitable for control design, it is advisable not only to excite the low-gain

direction, but also excite inputs according to all weak ones if not all gain directions. Since

an accurate steady-state system model is unavailable in most situations, one can use an

approximate model, which may be acquired from step test to obtain estimates of Vi and

σi .

Two parameters have been defined to check whether the collected data are balanced

or not. These parameters are the scattering of projections along the gain directions y∗ and

determinant of output-correlation (Υ ). Both of these parameters only need the output

data of the system. Hence, one can use for any multivariable system (n× n,n > 2) and

easily determine whether the data are in good balance or not, before the modeling process.

This is useful in ill-conditioned system modeling.

7.2 Future work

Following areas might be interesting to consider for continue research in near future.

1. Input design for closed-loop MIMO identification

We have focused our work on open loop identification. However, it would be natural

to extend the methods to closed loop identification.

2. Practical implementation of input design

Collection of normal process data is quite common in industrial application. Much

of them can not be used for system identification, however, using proper filtering

algorithms some useful information of the system might be extracted. It would

be interesting to study for suitable algorithms (may be some adaptiveness i the

algorithm) to detect if the system is prone to ill-conditioning or not, using available

process data. Accordingly, we could implement the necessary framework in system

identification process.

3. Input design for nonlinear systems

More study is required to consider nonlinear systems and the design of plant-

friendly input signals. Multisine signals (e.g., odd and even) in frequency domain

identification can be use for this purpose.

4. Integration of model based control and input design
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Model based control (e.g. MPC, economic MPC etc.) is quite popular in industry.

Generating a model based on process data is also a popular. Hence, integration of

model based control with input design would be an interesting area to look upon. A

number of model quality constraints can be formulated as linear functions of the

covariance matrix in parameter estimation.

5. Integration of optimal input design and robust control

Input design can be formulated as an optimization problem, it would also be

interesting to study optimal input design and robust control together.
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APPENDIX A
Distillation column simulator

Detail discussion on the parameter tuning can be found in Paper V.

A.1 Distillation column simulator modeling

A.1.1 General tray

The total material balance for a general tray i is

dMi

dt
= Vi+1 −Vi +Li − 1−Li +Fi , i = 1, . . . ,N (A.1.1)

variables: Mi = is holdups of liquid on tray i [kmol],

Vi+1 = flow rate of incoming vapor stream [kmol/h]; VN+1 = flow rate from reboiler

[kmol/h]; Vi = flow rate of outgoing vapor stream [kmol/h];

Li−1= flow rate of ingoing liquid stream [kmol/h]; L0 = flow rate of reflux [kmol/h];

Li= flow rate of outgoing liquid stream [kmol/h];

Fi = flow rate of feed stream [kmol/h],

At constant pressure, Li depends on other variables

Li = f (Mi ,xi ,Vi) (A.1.2)

Typically, in practice, we use Francis weir formula, which is independent of Vi . The

material balance of the light component (here, ethanol) is

Mi
dxi
dt

= Vi+1yi+1 −Viyi +Li − 1xi−1 −Lixi +Fizi , i = 1, . . . ,N (A.1.3)
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variables: xi = fraction of light component in liquid on tray i;

yi+1 = fraction of light component in incoming vapor; yN+1 = fraction of light

component from reboiler; yi fraction of light component in outgoing vapor;

xi−1 = fraction of light component in incoming liquid; x0 = fraction of light compo-

nent in reflux;

zi = fraction of light component in feed stream (applicable only for a feed tray);

The Vapor-liquid equilibriums can be modeled as follows. The fraction of ethanol in

the outgoing vapor flow is

yi = Eiy
∗
i + (1−Ei)yi+1, y∗i =

αixi
1+ xi(αi − 1)

(A.1.4)

where Ei is Murphree’s tray efficiency (in principle 0 < Ei < 1 ) and αi is the relative

volatility , which may depend nonlinearly on xi . Ei is tuned based on the column data.

The energy balance can be formulate as [Häggblom, 1991]

VihVi = Vi+1hVi+1 +Li−1qLi−1hLi−1 +FihFihFi −Qi (A.1.5)

where Qi is the heat loss from the tray through conduction, hS is the heat of vaporization

of a stream S and qS is the thermal condition of the stream such that qShS is the difference

between the specific or molar enthalpy of S and corresponding enthalpy of a saturated

liquid with the same composition as S (e.g., hVi = specific heat of vaporization of outgoing

vapor stream [kJ/kmol]). This means that q < 0 for a subcooled liquid, q = 0 for a

saturated liquid, 0 < q < 1 for a partially vaporised feed, and q = 1 for a saturated vapor.

A.1.2 Condenser

The total material balance of the reboiler is

dM0

dt
= V1 −L−D (A.1.6)

The material balance is

M0
dx0
dt

= V1y1 − (L+D)xD (A.1.7)

The energy balance is

dU0

dt
= V1hV1 − (L+D)

U0

M0
−Q0. qLhL =

U0

M0
(A.1.8)
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where M0 is the total component holdups and m0 is light component (ethanol) holdups

in the reflux drum. For the tray 1, L0 and x0 are equivalent to L and xD , respectively. The

heat removal in the condenser can be defined as

Q0 = kchV1V1 +C [kJ/h] (A.1.9)

where kc and C are two adjustable parameters.

A.1.3 Reboiler

The reboiler is a vertical thermosyphon reboiler, detail can be found in Paper V. According

to the construction a fraction (r) of the liquid might return to a compartment connected to

the reboiler. Assuming constant density of the liquid in the compartment and immediate

mixing of the liquid, the balance equations of the reboiler are

Lb = LN − (1− rR)Lr (A.1.10)

where R = LN +1/Lr ,

xb =
LNxN + rRLrxN+1

LN + rRLr
(A.1.11)

Mr
dxr
dt

= Lr (xb − xr ) (A.1.12)

The materials balances for the bottom product sump, are

dMB

dt
= Lb + (1− r)RLr −B (A.1.13)

dmB
dt

= Lbxb + (1− r)RLrxN+1 −BxB (A.1.14)

where xB =
mB
MB

. For the rebolier, we assume that the dynamic relationship between the

steam flow rate V and the heat input Qr from the condensing steam is first order dynamics

with time constant τr , and we obtained

τr
dQr
dt

= hVV −Qr (A.1.15)

VN+1hVN+1
=Qr (A.1.16)

Lr =
VN +1
1−R

(A.1.17)

xr = RxN+1 + (1−R)yN+1 (A.1.18)

yN+1 = Ery
∗
N+1 + (1−Er )xr (A.1.19)

y∗N+1 =
αN+1xN+1

1+ xN+1(αN+1 − 1)
(A.1.20)

For a given set of inputs (L, V , F, zF , and TF , or (qF)), one can determine the steady

state solution xD and xB using Eq. A.1.1–A.1.20.



82 APPENDIX A. DISTILLATION COLUMN SIMULATOR

A.2 Model library

Model library has been created to facilitate different types of model for different purpose

of applications as shown in Figure A.1.

The simulator is constructed by combining various trays, reboiler and condenser

system, as shown in Appendix A.2. The subsystem models are shown in A.2b. Using

the modularity of model library we can easily reuse the tray models for all general trays

and their subsystems, however equations are little bit different in feed-tray as shown in

fig A.2a. Similarly, the model of condenser and reboiler system have shown in fig A.2b

and fig A.2c.

Figure A.1: Snapshot of the simulator model library
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(a)

(c) (b)

Table A.1: Simulator sub-systems and trays: (a) main interface, (b) trays and subsystems, and (c)
model of a general tray.
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(a) feed tray

(b) condenser system

(c) reboiler system

Figure A.2: Inside simulator: specific subsystems
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A.3 Parameter tuning with real-life data

Here we have shown in Figures A.3 to A.5, the model performance with few experimental

data sets from real life experiments [Häggblom and Böling, 1998]. Experimental data

has been compared with the top yD and bottom concentration xB and the temperature at

topmost tray 1 T01. First, 100 data points with sample time Ts = 30sec (30sec*100) are

added to acquire the desired steady state before experimental L and V dynamics added

into simulator.

Figure A.3: Simulator versus experimental data (Exp. A)
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Figure A.4: Simulator versus experimental data (Exp. B)

Figure A.5: Simulator versus experimental data (Exp. C)
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A.4 Time delay in a state space model

We have formulated a state space system equation with couple of inter variable and have

shown with a case study that there is a possibility to achieve better performance than

modeling the system with higher order modeling in order to compensate the effect of

time delays. Interestingly we can formulate the internal relations from inputs to outputs,

among outputs. From their sensitivity analysis, as shown in Figure A.6, we can decide

whether a optimization for more accurate time delay is worthy or not. Here each color

represents different experimental data.
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Figure A.6: 3D plot for sensitivity of time delays





APPENDIX B
Examples of ill-conditioned

process models

The case studies (or models) from the literature are summarized here.

Example 1

A 2× 2 a simplified linear model of a heat exchanger [Jacobsen and Skogestad, 1994].

y1(s)y2(s)

 = 89.243
(100s+1)(2.439s+1)


−21(4.76s+1) 20

−20 21(4.76s+1)


u1(s)u2(s)

 (B.0.1)

Example 2

A 2×2 reduced 2nd order model of a distillation column [Skogestad and Morari, 1988a,b]

having condition number κ = 143.

y1(s)y2(s)

 =


87.8
194s+1

−87.8
194s+1 +

1.4
15s+1

108.2
194s+1

−108.2
194s+1 −

1.4
15s+1


u1(s)u2(s)

 (B.0.2)

Example 3

A 2×2 distillation column system, popularly known as Wood–Berry column with condition

number κ = [Wood and Berry, 1973]

89



90 APPENDIX B. EXAMPLES OF ILL-CONDITIONED PROCESS MODELS

y1(s)y2(s)

 =

12.8e−1s
16.7s+1

−18.9e−3s
21s+1

6.6e−7s
10.9s+1

−19.4e−3s
14.4s+1


u1(s)u2(s)

 (B.0.3)

Example 4

A 3 × 3 model of distillation column [Koung and MacGregor, 1994; Li and Lee, 1996]

modified from [Vasnani, 1994] and used in [Häggblom and Ghosh, 2015] with condition

number κ = 30.


y1(s)

y2(s)

y3(s)

 =

6e−5s
22s+1

20e−5s
337s+1

−1e−5s
10s+1

8e−5s
50s+1

77e−3s
28s+1

−5e−5s
10s+1

9e−5s
50s+1

−37e−5s
166s+1

−103e−4s
23s+1



u1(s)

u2(s)

u3(s)

 (B.0.4)

Example 5

A 4 × 4 model of distillation column system* [Alatiqi and Luyben, 1986; Ghosh, 2014;

Ghosh et al., 2014]. The system has high condition number κ = 125.

G5(s) =



4.09e−1.3s
(33s+1)(8.3s+1)

6.36e−1.2s
(31.6s+1)(20s+1)

−0.25e−1.4s
21s+1

−0.49e−6s
22s+1

−4.17e−5s
45s+1

6.93e−1.02s
44.6s+1

−0.05e−6s
(34.5s+1)2

1.53e−3.8s
48s+1

1.73e−18s

(13s+1)2
5.11e−12s

(13.3s+1)2
4.61e−1.01s
18.5s+1

−5.49e−1.5s
15s+1

−11.2e−2.6s
(43s+1)(6.5s+1)

14(10s+1)e−0.02s

(45s+1)(17.4s2+3s+1)
−0.1e−0.05s

(31.6s+1)(5s+1)
4.49e−0.6s

(48s+1)(6.3s+1)


(B.0.5)

Example 6

Here is an interesting example where the system is ill-conditioned not only because of its

smallest σ (σ4), but also for σ3. Interestingly both σ s (σ3,σ4) are atleast 110 times smaller

than σ1. The singular values of this system are Σ = diag {20.39,16.71,0.185,0.156}.

G6(s) =



0.173e−3.79s

(21.74s+1)2
−3.4e−7.75s
(22.22s+1)2

−8.66e−1.59s
11.36s+1

11.94e−27.33s
33.3s+1

−0.268e−60s
400s+1

2.79e−0.71s

(66.67s+1)2
5.05e−2.24s
14.29s+1

−5.65e−8.72s
(250s+1)2

−0.084e−0.68s
(2.38s+1)2

0.94e−0.59s

(7.14s+1)2
1.31e−0.42s

(1.43s+1)2
−0.56e−s

−0.047e−0.52s
11.11s+1

−15.5e−0.48s
(6.90s+1)2

−9.03e−1.91s
12.19s+1 −8.71e−s


(B.0.6)

*More detail discussion on the system can be found in Paper II–IV and in Chapter 3



APPENDIX C
Estimated models of 4× 4

case-study

Estimated transfer function matrix models from the case study 2 are listed here (two

pole with time delay model, 2P+TD), as in Equation (6.1.1)

Gij =
Kp e

−sTd

(1 + sTp1 )(1 + sTp2 )

where Gij is the ith row and jth column element of the transfer function matrix of the

system (as shown in Equation (6.3.1)). For detail description of experiments and their

design methods please refer to Chapter 6, particularly at Table 6.1.

91



92 APPENDIX C. ESTIMATED MODELS OF 4× 4 CASE-STUDY

Table C.1: Estimated model of 4× 4 case study

Exp Esimated model

1

4.10e−2.12s
(32.75s+1)(7.69s+1)

6.36e−0.42s
(26.02s+1)(26.02s+1)

−0.25e−1.56s
(19.35s+1)(0.06s+1)

−0.49e−5.62s
(21.91s+1)(0.32s+1)

−4.15e−3.87s
(45.18s+1)(0.49s+1)

6.96e−0.00s
(44.43s+1)(1.20s+1)

−0.05e−16.94s
(22.53s+1)(22.53s+1)

1.53e−3.82s
(48.24s+1)(0.04s+1)

1.73e−15.10s
(14.65s+1)(14.65s+1)

5.15e−14.32s
(17.11s+1)(7.05s+1)

4.61e−0.00s
(18.42s+1)(1.16s+1)

−5.49e−0.18s
(14.42s+1)(1.60s+1)

−11.20e−2.39s
(42.82s+1)(6.77s+1)

13.75e−0.00s
(0.00s+1)(36.06s+1)

−0.10e−1.59s
(22.94s+1)(9.99s+1)

4.49e−0.73s
(48.03s+1)(6.10s+1)

2

4.08e−1.69s
(33.27s+1)(7.49s+1)

6.35e−0.45s
(26.26s+1)(26.26s+1)

−0.26e−2.04s
(20.94s+1)(0.04s+1)

−0.48e−5.78s
(20.72s+1)(0.34s+1)

−4.17e−4.90s
(45.03s+1)(0.50s+1)

6.91e−0.40s
(44.59s+1)(0.89s+1)

−0.05e−12.87s
(38.33s+1)(38.33s+1)

1.53e−4.11s
(48.58s+1)(0.05s+1)

1.72e−16.69s
(16.69s+1)(10.11s+1)

5.11e−14.48s
(17.60s+1)(6.63s+1)

4.61e−0.00s
(18.40s+1)(0.61s+1)

−5.48e−0.00s
(14.69s+1)(1.25s+1)

−11.22e−2.66s
(42.52s+1)(7.11s+1)

13.78e−0.64s
(0.00s+1)(36.03s+1)

−0.12e−2.16s
(34.26s+1)(34.59s+1)

4.50e−2.48s
(46.53s+1)(6.73s+1)

3

4.11e−1.65s
(33.92s+1)(7.50s+1)

6.34e−0.97s
(25.59s+1)(25.59s+1)

−0.25e−1.52s
(21.14s+1)(0.04s+1)

−0.48e−5.97s
(22.10s+1)(0.02s+1)

−4.20e−4.94s
(45.37s+1)(0.02s+1)

6.96e−0.94s
(45.00s+1)(0.08s+1)

−0.05e−9.10s
(37.50s+1)(37.50s+1)

1.52e−3.82s
(47.18s+1)(0.00s+1)

1.74e−18.06s
(16.62s+1)(9.32s+1)

5.11e−12.17s
(13.15s+1)(13.33s+1)

4.61e−0.93s
(18.47s+1)(0.12s+1)

−5.47e−1.10s
(14.98s+1)(0.45s+1)

−11.27e−2.94s
(45.11s+1)(5.59s+1)

12.39e−0.00s
(0.00s+1)(23.23s+1)

−0.25e−0.02s
(42.95s+1)(1.66s+1)

4.44e−0.74s
(47.63s+1)(6.26s+1)

4

4.10e−1.60s
(33.64s+1)(7.63s+1)

6.34e−0.97s
(25.50s+1)(25.50s+1)

−0.25e−1.52s
(20.47s+1)(0.01s+1)

−0.48e−5.98s
(21.97s+1)(0.02s+1)

−4.17e−4.97s
(45.10s+1)(0.02s+1)

6.93e−0.94s
(44.53s+1)(0.08s+1)

−0.06e−1.91s
(41.91s+1)(41.91s+1)

1.54e−3.78s
(48.06s+1)(0.00s+1)

1.72e−18.17s
(16.71s+1)(9.63s+1)

5.16e−12.03s
(11.76s+1)(14.79s+1)

4.62e−1.00s
(18.50s+1)(0.00s+1)

−5.49e−1.38s
(14.90s+1)(0.15s+1)

−11.11e−2.67s
(42.88s+1)(6.52s+1)

11.98e−0.00s
(0.00s+1)(22.63s+1)

−0.15e−0.20s
(50.00s+1)(1.02s+1)

4.43e−0.79s
(48.07s+1)(6.13s+1)

5

4.13e−1.26s
(33.01s+1)(8.10s+1)

6.35e−1.56s
(18.59s+1)(33.45s+1)

−0.24e−1.37s
(19.74s+1)(0.00s+1)

−0.51e−5.97s
(22.45s+1)(0.00s+1)

−4.21e−4.76s
(45.50s+1)(0.25s+1)

7.05e−0.50s
(45.44s+1)(0.49s+1)

−0.04e−9.79s
(34.49s+1)(34.49s+1)

1.54e−3.78s
(48.58s+1)(0.00s+1)

1.81e−17.86s
(15.18s+1)(11.57s+1)

5.08e−11.94s
(11.36s+1)(15.25s+1)

4.55e−1.05s
(18.13s+1)(0.00s+1)

−5.45e−1.44s
(14.83s+1)(0.10s+1)

−10.19e−1.81s
(25.71s+1)(11.88s+1)

12.17e−0.98s
(0.00s+1)(21.94s+1)

−0.28e−4.35s
(2.53s+1)(2.52s+1)

4.24e−0.37s
(32.17s+1)(6.35s+1)

6

4.05e−1.36s
(33.01s+1)(8.24s+1)

6.37e−0.83s
(25.67s+1)(25.67s+1)

−0.25e−1.48s
(21.50s+1)(0.01s+1)

−0.47e−6.01s
(21.20s+1)(0.02s+1)

−4.17e−4.99s
(45.23s+1)(0.02s+1)

6.96e−0.95s
(44.74s+1)(0.08s+1)

−0.05e−1.91s
(33.71s+1)(35.50s+1)

1.53e−3.80s
(47.98s+1)(0.00s+1)

1.75e−17.94s
(13.15s+1)(13.21s+1)

5.01e−12.11s
(11.91s+1)(14.79s+1)

4.57e−1.06s
(18.37s+1)(0.00s+1)

−5.46e−1.38s
(14.93s+1)(0.17s+1)

−9.96e−2.67s
(25.76s+1)(11.65s+1)

11.36e−1.64s
(0.00s+1)(20.21s+1)

−0.25e−5.09s
(2.38s+1)(2.39s+1)

4.06e−1.39s
(31.98s+1)(6.20s+1)
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7

4.10e−1.32s
(33.11s+1)(8.23s+1)

6.41e−1.09s
(19.63s+1)(32.28s+1)

−0.25e−1.45s
(21.03s+1)(0.01s+1)

−0.49e−6.01s
(21.94s+1)(0.02s+1)

−4.19e−4.97s
(45.40s+1)(0.01s+1)

6.91e−1.00s
(44.07s+1)(0.03s+1)

−0.05e−6.97s
(47.11s+1)(26.39s+1)

1.54e−3.77s
(48.42s+1)(0.00s+1)

1.75e−18.14s
(16.17s+1)(10.20s+1)

5.21e−12.24s
(9.78s+1)(17.02s+1)

4.59e−1.01s
(18.42s+1)(0.00s+1)

−5.47e−1.47s
(14.93s+1)(0.04s+1)

−10.46e−0.61s
(32.26s+1)(12.78s+1)

10.23e−1.40s
(0.00s+1)(16.22s+1)

−0.17e−5.88s
(1.80s+1)(1.81s+1)

4.08e−0.02s
(39.14s+1)(6.23s+1)

8

4.08e−1.33s
(32.89s+1)(8.42s+1)

6.36e−1.05s
(21.57s+1)(29.72s+1)

−0.24e−1.40s
(20.94s+1)(0.01s+1)

−0.49e−6.01s
(21.99s+1)(0.02s+1)

−4.19e−5.00s
(45.16s+1)(0.01s+1)

6.91e−1.00s
(44.88s+1)(0.00s+1)

−0.05e−6.05s
(34.06s+1)(37.13s+1)

1.53e−3.80s
(48.18s+1)(0.00s+1)

1.74e−18.09s
(14.24s+1)(11.64s+1)

5.09e−12.28s
(12.97s+1)(13.17s+1)

4.61e−1.02s
(18.48s+1)(0.00s+1)

−5.49e−1.42s
(14.99s+1)(0.09s+1)

−10.90e−1.40s
(37.72s+1)(11.22s+1)

11.19e−0.95s
(0.00s+1)(19.20s+1)

−0.17e−5.54s
(2.09s+1)(1.58s+1)

4.28e−0.00s
(42.47s+1)(6.25s+1)

9

4.10e−1.60s
(33.84s+1)(7.66s+1)

6.34e−0.97s
(25.51s+1)(25.51s+1)

−0.24e−1.52s
(19.94s+1)(0.00s+1)

−0.48e−5.99s
(21.83s+1)(0.02s+1)

−4.13e−4.96s
(44.36s+1)(0.01s+1)

6.93e−1.00s
(44.73s+1)(0.06s+1)

−0.04e−2.34s
(35.73s+1)(35.73s+1)

1.53e−3.79s
(47.89s+1)(0.00s+1)

1.72e−17.67s
(13.12s+1)(13.06s+1)

5.17e−12.02s
(11.24s+1)(15.25s+1)

4.61e−1.00s
(18.58s+1)(0.00s+1)

−5.47e−1.32s
(14.83s+1)(0.21s+1)

−11.08e−2.56s
(42.37s+1)(6.64s+1)

11.91e−0.48s
(0.00s+1)(24.28s+1)

−0.08e−5.19s
(25.40s+1)(0.76s+1)

4.44e−0.59s
(46.93s+1)(6.41s+1)

10

3.99e−1.48s
(32.74s+1)(7.96s+1)

6.39e−1.16s
(25.33s+1)(25.33s+1)

−0.24e−1.44s
(20.84s+1)(0.01s+1)

−0.47e−6.01s
(20.41s+1)(0.02s+1)

−4.21e−4.98s
(44.84s+1)(0.00s+1)

6.91e−0.96s
(43.97s+1)(0.08s+1)

−0.07e−2.59s
(35.85s+1)(35.85s+1)

1.57e−3.81s
(48.13s+1)(0.00s+1)

1.75e−18.20s
(14.74s+1)(11.58s+1)

5.16e−11.98s
(13.32s+1)(13.26s+1)

4.59e−1.01s
(18.22s+1)(0.00s+1)

−5.47e−1.41s
(14.79s+1)(0.10s+1)

−10.30e−1.49s
(27.40s+1)(12.36s+1)

11.92e−0.69s
(0.00s+1)(24.28s+1)

−0.28e−3.17s
(3.47s+1)(3.46s+1)

4.25e−0.00s
(33.72s+1)(7.14s+1)

11

4.12e−1.59s
(33.79s+1)(7.71s+1)

6.35e−0.96s
(25.39s+1)(25.39s+1)

−0.24e−1.52s
(20.10s+1)(0.00s+1)

−0.48e−5.99s
(21.04s+1)(0.01s+1)

−4.12e−5.13s
(44.15s+1)(0.02s+1)

6.92e−0.96s
(44.47s+1)(0.08s+1)

−0.05e−1.91s
(35.04s+1)(35.04s+1)

1.51e−3.84s
(47.66s+1)(0.00s+1)

1.75e−17.75s
(13.71s+1)(12.95s+1)

5.13e−12.11s
(11.25s+1)(15.75s+1)

4.61e−1.00s
(18.45s+1)(0.00s+1)

−5.48e−1.30s
(14.99s+1)(0.21s+1)

−11.07e−2.65s
(42.33s+1)(6.60s+1)

12.18e−0.00s
(0.00s+1)(25.27s+1)

−0.15e−4.65s
(43.46s+1)(1.77s+1)

4.47e−0.68s
(47.78s+1)(6.23s+1)

12

4.08e−1.54s
(33.24s+1)(7.91s+1)

6.46e−0.85s
(25.51s+1)(25.51s+1)

−0.23e−1.47s
(20.50s+1)(0.01s+1)

−0.50e−6.01s
(21.47s+1)(0.02s+1)

−4.22e−4.96s
(45.46s+1)(0.02s+1)

6.95e−0.91s
(44.59s+1)(0.08s+1)

−0.05e−1.91s
(32.28s+1)(32.28s+1)

1.55e−3.78s
(48.03s+1)(0.00s+1)

1.70e−18.29s
(14.71s+1)(10.72s+1)

5.13e−12.11s
(12.73s+1)(13.44s+1)

4.61e−1.08s
(18.42s+1)(0.00s+1)

−5.48e−1.45s
(14.92s+1)(0.11s+1)

−10.12e−2.65s
(34.69s+1)(7.28s+1)

12.15e−0.47s
(0.00s+1)(23.75s+1)

0.24e−12.78s
(9.24s+1)(3.00s+1)

3.62e−0.00s
(39.57s+1)(8.51s+1)

13

4.10e−1.60s
(33.91s+1)(7.65s+1)

6.34e−0.97s
(25.60s+1)(25.60s+1)

−0.24e−1.52s
(20.39s+1)(0.00s+1)

−0.48e−5.98s
(21.81s+1)(0.02s+1)

−4.14e−4.98s
(44.66s+1)(0.07s+1)

6.95e−0.87s
(44.58s+1)(0.14s+1)

−0.04e−8.13s
(33.16s+1)(33.16s+1)

1.53e−3.82s
(48.03s+1)(0.00s+1)

1.73e−18.05s
(15.41s+1)(11.03s+1)

5.16e−11.81s
(13.85s+1)(13.02s+1)

4.60e−1.01s
(18.39s+1)(0.00s+1)

−5.50e−1.30s
(15.02s+1)(0.22s+1)

−11.24e−2.55s
(43.11s+1)(6.56s+1)

12.02e−0.46s
(0.00s+1)(24.57s+1)

−0.10e−0.86s
(31.02s+1)(4.00s+1)

4.48e−0.66s
(47.61s+1)(6.37s+1)
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Exp Esimated model

14

4.10e−1.31s
(33.08s+1)(8.36s+1)

6.39e−1.58s
(18.88s+1)(32.98s+1)

−0.25e−1.45s
(20.55s+1)(0.00s+1)

−0.49e−6.01s
(22.33s+1)(0.02s+1)

−4.15e−4.96s
(44.00s+1)(0.03s+1)

6.91e−1.00s
(44.23s+1)(0.00s+1)

−0.07e−1.42s
(36.35s+1)(36.35s+1)

1.55e−3.79s
(47.42s+1)(0.00s+1)

1.69e−18.06s
(13.73s+1)(12.24s+1)

5.16e−11.85s
(11.80s+1)(14.86s+1)

4.66e−1.00s
(18.57s+1)(0.00s+1)

−5.53e−1.36s
(15.03s+1)(0.14s+1)

−10.71e−1.57s
(30.18s+1)(11.22s+1)

12.20e−0.82s
(0.00s+1)(25.76s+1)

−0.23e−3.86s
(3.06s+1)(2.91s+1)

4.33e−0.40s
(35.62s+1)(6.98s+1)

15

4.09e−1.34s
(33.01s+1)(8.21s+1)

6.36e−1.13s
(20.79s+1)(30.89s+1)

−0.25e−1.24s
(20.39s+1)(0.00s+1)

−0.50e−5.79s
(22.69s+1)(0.02s+1)

−4.17e−5.10s
(44.60s+1)(0.02s+1)

6.94e−1.03s
(44.39s+1)(0.08s+1)

−0.06e−1.91s
(37.00s+1)(37.00s+1)

1.53e−3.99s
(48.20s+1)(0.00s+1)

1.77e−17.51s
(13.33s+1)(13.51s+1)

5.15e−12.12s
(11.97s+1)(14.49s+1)

4.59e−1.07s
(18.26s+1)(0.00s+1)

−5.50e−1.34s
(15.04s+1)(0.16s+1)

−11.10e−2.56s
(42.19s+1)(6.76s+1)

12.22e−0.00s
(0.00s+1)(25.76s+1)

−0.10e−4.75s
(29.78s+1)(1.98s+1)

4.47e−0.69s
(48.05s+1)(6.15s+1)

16

4.07e−1.38s
(32.91s+1)(8.31s+1)

6.33e−1.02s
(25.68s+1)(25.68s+1)

−0.24e−1.42s
(21.01s+1)(0.01s+1)

−0.49e−6.05s
(21.53s+1)(0.02s+1)

−4.14e−4.97s
(44.71s+1)(0.00s+1)

6.90e−1.00s
(44.34s+1)(0.04s+1)

−0.05e−8.35s
(34.59s+1)(34.90s+1)

1.52e−3.79s
(47.76s+1)(0.00s+1)

1.74e−17.75s
(13.31s+1)(13.36s+1)

5.23e−11.38s
(12.15s+1)(15.06s+1)

4.61e−1.03s
(18.42s+1)(0.00s+1)

−5.48e−1.42s
(14.92s+1)(0.11s+1)

−10.37e−2.58s
(35.34s+1)(7.40s+1)

12.50e−0.49s
(0.00s+1)(24.37s+1)

0.30e−13.69s
(13.31s+1)(0.07s+1)

3.66e−0.00s
(40.50s+1)(8.50s+1)

17

4.15e−1.38s
(33.38s+1)(8.31s+1)

6.48e−1.46s
(18.40s+1)(34.36s+1)

−0.25e−1.43s
(20.98s+1)(0.00s+1)

−0.50e−6.01s
(22.73s+1)(0.01s+1)

−4.19e−4.99s
(45.26s+1)(0.02s+1)

6.89e−0.95s
(44.05s+1)(0.07s+1)

−0.05e−1.82s
(34.50s+1)(35.33s+1)

1.53e−3.78s
(47.91s+1)(0.00s+1)

1.67e−18.09s
(15.23s+1)(10.09s+1)

5.12e−11.95s
(10.58s+1)(14.53s+1)

4.68e−1.00s
(18.50s+1)(0.00s+1)

−5.55e−1.40s
(14.97s+1)(0.09s+1)

−11.05e−0.76s
(37.55s+1)(10.11s+1)

12.48e−0.53s
(0.00s+1)(26.12s+1)

−0.27e−2.95s
(3.34s+1)(3.33s+1)

4.52e−0.00s
(41.94s+1)(5.29s+1)



Symbols and Abbreviations

y×i projection of output Y along the i−th gain-direction, [43]

α closed-loop response parameter, [18]

β settling-time parameter, [18]

δ notch frequency, [30]

Φ plant friendliness of an input signal, [21]

σi i-th singular value, [31]

Υ determinant of correlation matrix of system outputs, [vii]

ξi ratio of singular values (σi) of a system, where ξi = σ1/σi , [65]

G(s) the transfer function matrix of a system, [38]

Ns sequence length of a signal, [29]

T sampling time, [29]

TL the experiment length, [55]

Tsw switching time of a PRBS, [56]

Φu(j) signal spectrum in frequency domain, [31]

uj (k) signal spectrum in time domain, [31]

δ̂ji and âji snow effect coefficients, [31]

τH high dominating time constant, [32]

τL low dominating time constant, [32]

ε(t,θ) model mismatch, [13]

κ condition number, [89]

ZN a data set, [12]

φi phase of a signal, [20]

n×n n-inputs n-outputs system, [vii]

αji Fourier coefficients for j−input uj (k), [31]
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152 Symbols and Abbreviations

CF crest factor, [20]

DFT discrete Fourier transform, [25]

DIBS discrete interval binary sequence, [16]

MIMO multiple-input multiple-output, [vii]

MISO multi-input single-output, [35]

MPC model predictive control, [vii]

PF peak factor, [22]

PIPS performance index for perturbation signal, [23]

PRBS pseudo random binary sequence, [vii]

PSD power spectral density, [18]

RBS random binary sequence, [16]

RMS root mean square, [22]

SVD singular value decomposition, [37]

The page numbers where the symbols/abbreviations are explained are given in the

brackets.



Index

a priori, 6, 29, 32

ACF, 20

advanced control systems, 21

advanced dedicated signals, 15

balanced output, 2, 67

burst white noise, 16

case studies, 2

CF optimization, 20

Chebyshev norm, 20

Chebyshev sequence, 26

clipping algorithm, 23

closed-loop identification, 36

closed-loop MIMO identification, 68

condition number (CN), 89

control-relevant model, 36

controller performance, 21

covariance matrix, 69

crest factor, see CF, 22

crest factor minimization

clipping algorithm, 23

Guillaume phase, 23

cross validation, 59

data based modeling

see black box modeling, 8

DFT, see discrete Fourier transform

DIBS, 16, 24

directionality, 35

discrete Fourier transform, 25

distillation column, 2, 7, 9, 35, 79

2× 2 system, 2

4× 4 system, 2

4× 4 system, 90, 91, 93

bottom concentration, 8

energy balance, 7

top concentration, 8

bottom concentration, 86

condenser, 82

feed tray, 80

mass balance, 7

reboiler, 8, 80

reflux, 8, 80

top concentration, 86

dominating time constant, 18, 29

experiment design, 14, 17

frequency adjustment, 25

frequency bandwidth, 18

frequency distribution, 26

frequency domain, 20
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frequency domain identification, 68

gain direction, 59

Gaussian random sequence, 21

general purpose signal, 15, 17

geometric sequence, 26

grid frequencies, 25

Guillaume phase, 23, 33

identification, 1

identification procedures, 7

identified model, 1, 14

ill-conditioned system, 17, 37

2× 2 system, 42, 49, 89, 90

3× 3 system, 90

4× 4 system, 55

4× 4 system, 90, 91, 93

input design, 2

input excitation, 2, see signals, 15

logarithmic sequence, 26

measurement noise, 13

minimum entropy control, 21

model, 1, 5

model characteristics, 9

model error, 13

model estimation, 11

model parameter, 6

model quality, 14

model selection, 11

model structure, 11, 12

model based control, 21

model predictive control, 2

MPC, 2

model quality, vii

model-based control, vii

modeling

first principles, 9

black box, 6

first principles, 6, 7

gray box, 6, 9

mathematical, 2

physical, 6

time-series, 12

white box, 6

modeling approach, 7

multi-objective optimization, 22

multiple-input single-output (MISO), 35,

43

multisine

design parameter, 24

even, 68

Guillaume phase, 16

modified zippered, 25

odd, 68

range of frequencies, 18

Schroeder phase, 25

signal period, 18

zippered with Guillaume phase, 25

multivariable system, 2

Murphree’s tray efficiency, 80

NRMSE, 43

Nyquist frequency, 18

open-loop identification, 36

optimal input design, 69

optimization, 1, 9, 17, 69

optimized test signals, 1, 15

Pólya’s best approximation, 20
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parameter estimation, 69

parameter tuning, 7

peak factor, 22

periodic chirp, 16

persistent excitation, 21, 24

perturbation, 15, 21, see signals

PF, see peak factor

phase distribution, 20

Guillaume phase, 20

linear phase, 20

random phase, 20

Schroeder phase, 20

physical operating limit, 21

physical properties, 6, 7, 9

PIPS, 23

plant friendliness, 2, 15, 20, 21

plant friendliness index, 21, 58

power spectral density(PSD), 20

power spectrum density, 16

PRBS

design parameter, 18

design procedure, 18

priori information, see a priori

process model, see model

process variables, 14

ratios of singular values, 68

robust control, 69

root mean square (RMS), 22

scattering of projections, 68

sensitivity analysis, 88

settling time, 26, 55

signal bandwidth, 18

signals, 2

input excitation, 14

multisine, 2, 16, 18

periodic signal, 26

PRBS, 2, 16, 18

RBS, 16

step, 2, 16, 17

simulator, 2, 7, 9

design, 9

model library, 82

parameter estimation, 9

parameter tuning, 9

singular value, 38

Swept sine, see periodic chirp

switching probability, 24

switching time, 56

system

directional, 2, 67

ill-conditioned, 2

nonliner, 68

system identification, 2, 6, 11, 15

time delay, 9, 88, 93

transfer function matrix, 38, 93

weak gain direction, 36

white noise, 16

Zippered multisine, 33
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