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1. Introduction

A traditional question in philosophy concerns what, if anything, we can know
with certainty. Mathematics is the only field of knowledge concerning which
there has been some rough consensus that it actually gives us certain knowledge.
Even though somephilosophers have preferred not to limit the range of certainty
to mathematics alone, this discipline is often put forward as an ideal: ‘this par-
agon of reliability and truth’, as David Hilbert proclaimed.1

Certainty is an enticing concept: we want to be certain, we want to have cer-
tain knowledge. We want to be sure that we have not made any mistakes and
to have a safeguard against error. This is a desire that is motivated by practical
reasons: life is easier if one can avoid (at least sometimes) the consequences of
error or of being wrong. It is motivated by social reasons too: being wrong can
be embarrassing, and being in the know is deeply satisfying.

In many situations, the search for certainty makes us turn to mathematics.
Mathematical techniques are often what brings certainty. They allow us to over-
view situations in such a way that we see clearly what must be the case.When we
have settled something usingmathematical tools, we can rely on that knowledge.

From a philosophical perspective, the question arises:Why is it thatmathem-
atics has this status? This question is raised already by the role that mathematics
plays in our ordinary lives, and the urgency of it is only strengthened by the
role that mathematics plays in the sciences. Stewart Shapiro gives voice to the
need for such an explanation: ‘It is thus incumbent on any complete philosophy
of mathematics to account for the at-least apparent necessity and a priority of
mathematics. … In the present climate, no one can rightfully claim that these
notions are sufficiently clear and distinct.’2

However, what it means to say that mathematics is certain or that mathem-
atics gives us certain knowledge is not sufficiently clear. Therefore, the why-
question must yield to an investigation of what it means to say that mathem-
atics is certain. One cannot determine why something is certain if it is not clear
what calling it certain amounts to. Only when a greater clarity with regard to the
concept of certainty in mathematics is achieved will it be possible to answer the
first question – if it is indeed found to be a meaningful question.

The aim of this thesis is to explore the concept of certainty in mathematics in
order to arrive at a clear view of what is meant thereby.

1David Hilbert. ‘On the Infinite’. In: From Frege to Gödel. A Source Book in Mathematical Logic,
1879-1931. Ed. by Jean van Heijenoort. Cambridge MA: Harvard University Press, 1967, p. 375.

2Stewart Shapiro. Thinking about mathematics: The philosophy of mathematics. Oxford: Oxford
University Press, 2000, p. 23.
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2 1. Introduction

The concept of certainty is not given much attention in contemporary philo-
sophy of mathematics. By contrast, it was a popular topic in the beginning of the
last century. During the nineteenth century, the confidence in mathematics had
been shaken by the discovery of non-Euclidean geometry and by the unclarity
with regard to what the proper methods of analysis were, but also by the discov-
ery of paradoxes in set theory and logic at the turn of the twentieth century.

The foundational programmes – logicism, formalism, and intuitionism– that
came to shape the philosophy of mathematics of the twentieth century grew out
of a wish to establish the certainty of mathematics.This is an explicit goal in Ber-
trand Russell’s and Hilbert’s writings. However, towards the second half of the
twentieth century, the concept of certainty attracted less attention. One reason
for this shift of focus is surely to be found in technical results such asKurtGödel’s
incompleteness proofs, which showed the impossibility of carrying out the lo-
gicist and formalist programmes as intended. This in turn was taken to imply
the impossibility of establishing certainty. As W. V. O. Quine’s philosophical
arguments for the revisability ofmathematics gainedwide acceptance, the philo-
sophical discussion aboutmathematics came to focus on other topics. Questions
about the ontological nature ofmathematical objects and about the objectivity of
mathematical truths became topics of frequent discussion. These are problems
that permeate the contemporary discussion. It seems that objectivity is seen as
a second best option if certainty is no longer studied, but even so – or precisely
therefore – the concept of certainty looms in the background.

The aim of this thesis is thus to reawaken the interest in this concept and
to show what it means for mathematics to be certain. The idea, however, is not
to provide a new foundation for the certainty of mathematics. I shall not argue
that mathematics is certain, but neither that it is not certain. An idea advanced
here is that certainty does not stand and fall with the success of a foundational
programme. Rather, certainty can be seen in the practice of mathematics and in
the status that mathematics has for us. A preliminary discussion of the concept
of certainty is undertaken in chapter 2.

The contemporary discussion with its focus on objectivity and on the on-
tological status of mathematical objects is, to a large extent, a debate between
competing positions that fall under one of the overarching positions realism or
anti-realism. It has become commonplace to distinguish between realism with
regard to the existence of mathematical objects (i.e. ontological realism) and
realism with regard to the truth of mathematical propositions. Ontological real-
ism is the idea that mathematical objects exist independently of the mathem-
atician. Such a theory is attractive since it seems to explain how it is possible
for mathematics to give objectively valid knowledge. The independence of the
objects guarantees that knowledge about them is objectively true. The obvious
example of such a theory is Platonism.
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Realism with regard to truth does not imply any position with regard to the
ontological issue. This form of realism only claims that mathematical proposi-
tions have a definite truth value that is independent of the mathematician. Ob-
jectivity is taken to be guaranteed by the independence of truth. This kind of
realism can be attractive if one feels that ontological realism amounts to bad
metaphysics but that the truth of mathematical propositions cannot be influ-
enced in any way by the mathematician.

Anti-realism amounts to a denial of the existence of mathematical objects. If
the independence ofmathematical truth is also denied, this implies an abandon-
ment of the idea that mathematics provides us with objectively true knowledge.
A position that could be placed under this heading is quasi-empiricism, which
likens mathematical propositions to empirical ones in terms of their revisabil-
ity. In many quasi-empirical texts, one finds the explicit denial of the certainty
of mathematics.

Regardless of which position one favours in this debate, they all seem to be
affected by the problem raised by Paul Benacerraf in his article ‘Mathematical
Truth’.3 He argues that realist positions (in particular ontological realism) have
trouble explaining how it is possible to gain knowledge of mathematical objects.
Anti-realism (and possibly non-ontological realism) does not have this prob-
lem, but, according to Benacerraf, it is questionable whether one can call their
version of mathematical truth, truth. The problem that Benacerraf identified is
still discussed frequently. It is my impression, however, that the debate between
realism and anti-realism has become troublesome.

My idea, and a central topic of chapter 3, is that Benacerraf ’s problem is, in
part, due to a limited conception of mathematics. This is a view of mathematics
as essentially consisting of a body of true propositions. It is usually notmentioned
explicitly as a view that philosophers argue for, but a tacit assumption that guides
one’s thinking about mathematics. I will refer to this as the ‘body of truths con-
ception’ of mathematics. Mathematical knowledge is, then, reduced to knowing
which propositions are true and which false. An important aim which resonates
with the discussion in chapter 2 is to show that this conception of mathematics
does not take into account that mathematics is an activity and that knowledge
of mathematics is, to a large extent, a skill. When this is taken into account, it
is seen that Benacerraf ’s problem becomes acute because of this limited con-
ception. The contemporary debate between realists and anti-realists in math-
ematics is troublesome because it concerns itself with solving a problem that
involves many questionable assumptions. Another aspect of the body of truths
conception that is vital to the overall aim of this thesis is that the certainty of
mathematics takes the form of being certain that a proposition is true. This may,

3Paul Benacerraf. ‘Mathematical Truth’. In: The Journal of Philosophy 70 (1973), pp. 661–80.
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in turn, invite scepticism as to whether it is possible to attain such a position to
a mathematical proposition. Focusing on mathematics as an activity shows that
being certain in mathematics can also be described as being certain that one has
performed an operation correctly, that one has followed the rules correctly.

A central feature of the contemporary philosophical outlook on mathemat-
ics is to view mathematics as a collection of formal systems that can be studied
as objects on a metalevel. Ordinary mathematics is taken to be represented by
the object systems and a theorem of mathematics by a theorem that is formally
deducible in some system. This view goes well together with the idea of math-
ematics as a body of truths, and, if it is taken as a guide for the philosophical
understanding of mathematics, it can conceal the importance of the ability to
use the mathematical symbols. Working formally is often described as working
with meaningless signs in a mechanical manner that requires no understanding
of the signs. As I will show in chapter 4, already identifying a string of signs as
a formula requires some kind of ability to use formula. This applies a fortiori to
making inferences in a formal system.

This implies that there is no sharp divide to be made between formal and
informal mathematics from a philosophical perspective. From a mathematical
perspective, there is a clear difference; a theory is formal if the validity of the
deductions performed in it does not depend on the interpretation of the terms
used. This difference does not necessarily carry any philosophical implications,
however. One conclusion to be drawn from this is that one cannot capture the
essence of mathematics by turning a theory into a formal system. What makes
mathematics intomathematics cannot be specified in anymore detail than to say
that it consists in using the techniques of calculation, of proof, etc. in accordance
with an established practice.

Another conclusion that is of importance for the present project is that form-
ality cannot be seen as a safeguard against error. It has often been thought that a
greater formality allows for a greater certainty. As working formally is viewed as
working with meaningless signs, the risk of errors associated with the intuitive
or with meaning is supposedly eliminated. Once it is seen that not even purely
formal expressions and deductions are free from the understanding that is as-
sociated with an ability to use them, it becomes clear that the certainty that is
associated with formality is not alien to non-formal mathematics either.

Arguably, the most central concept in the philosophy of mathematics is the
concept of proof. The contemporary discussion of proof is very disparate and
this reflects the development of mathematics during the twentieth century. In
the beginning of the twentieth century, Hilbert’s formalism provided the defin-
ition of formal proof and that concept was often taken to capture the essence of
mathematical proof. Gödel’s incompleteness proofs – and especially the inter-
pretation of these to the effect that any formal system complex enough to en-
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compass arithmetic contains true propositions that are nevertheless not prov-
able – suggest that either the extensions of the concepts ‘provable’ and ‘truth’
do not coincide, or otherwise ‘formal proof ’ does not capture the ordinary no-
tion of proof. Other notable features of twentieth century mathematics are the
increasing complexity of traditional proofs and the use of computers in proofs.

All of these strands in twentieth century mathematics have led some philo-
sophers as well as mathematicians to question that proofs offer conclusive evid-
ence for theorems. At the same time, proof, being that which establishes the-
orems, plays a key role in the understanding of mathematical certainty. Tradi-
tionally, proofs have been regarded as that which brings certainty. Chapter 5 is
devoted to the concept of proof.There it is argued that a particular view of proofs
follows from the body of truths conception. Proofs are seen as devices that show
that a proposition – which is taken to possess a clear meaning also before the
proof – is true. It is, furthermore, common to stress the ability of proofs to con-
fer conviction on the person who reads the proof. Proofs then appear to have
a uniform role in mathematics and a philosophical problem readily announces
itself: ‘How can proofs convince us of the truth of a proposition?’ It seems that
the philosopher must uncover hidden logical functions that all proofs have in
common that enable proofs to prove.

Against this view I contrast three aspects of proofs, or rather of our prac-
tice of working with proofs, that Ludwig Wittgenstein draws attention to. These
aspects – (1) that grasping a proof involves shaping one’s understanding of the
concepts involved, (2) that proving differs from performing experiments, and
(3) that a proof is surveyable – contribute to another perspective on proofs.They
also contribute to forming another perspective onmathematical knowledge and
certainty than viewing mathematics as a body of truths. Proofs do not function
by exerting a convincing force on us, but proofs can be seen as devices that we
use to determine our understanding of concepts. Accepting a proof can thus be
described as being convinced that a concept must be used in a particular way.

This, in turn, is a way of making sense of Wittgenstein’s comparison of math-
ematical propositions to rules. Instead of having a descriptive role, describing
states of affairs that hold amongmathematical objects, they can be seen as having
a normative role. If viewed as descriptive statements about objects, it is evident
that philosophical problems about the possibility of making such descriptions
will arise. These problems do not arise with regard to norms. Other problems
may arise, such as ‘How is it possible that a proof can shape our understanding
of mathematical concepts?’ This problem must be countered with the observa-
tion that a proof, in a surveyable manner, shows us how a concept should be
used, and accepting the proof means that one accepts that this is how one must
use the concept. It will probably not be possible to give a general explanation
of how proofs accomplish this; it must be studied case by case. Furthermore, it
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requires a prior understanding of the techniques that are employed in the proof,
as will be argued in chapter 5.

All in all, what emerges is a picture of mathematics where there is room for
certainty. It is not a justification, however, of the certainty of mathematics, nor is
it an explanation of the certainty in terms of something external to the practice
of mathematics. For example, I will not look for something underlying this cer-
tainty. Rather, I draw attention to central features of mathematics that should
be obvious: that mathematical propositions often have a normative function;
that a certain proficiency is required for an understanding of mathematics, not
only on an everyday level but also in formal mathematics; and that proofs are
grasped by surveying them. These observations contribute to a picture of how
mathematical certainty manifests itself. It is not a justification of this certainty,
but a description of our life with mathematics that allows us to understand in
what sense mathematics is certain.



2. Certainty

I wished to believe that some knowledge is certain and I thought that the
best hope of finding certain knowledge was in mathematics.

(Bertrand Russell, Portraits from Memory)1

The kind of certainty is the kind of language-game.
(Ludwig Wittgenstein, Philosophical Investigations)2

In philosophy, one speaks about ‘certain knowledge’ and about mathematical
knowledge being ‘certain’, or simply about ‘the certainty of mathematics’. What
does one mean by such expressions? Is it clear how one should understand ‘cer-
tainty’ here? Still, it seems to be justified to claim thatmathematics is certain, as is
illustrated by Norbert Wiener in 1915: ‘The place most people would look for ab-
solute certainty is in pure mathematics or logic.’3 A full century has passed since
the publication of his article, but already Wiener remarks that he has ‘become
somewhat suspicious of the absolute certainty of mathematics through hearing
it continually dwelt upon’. Instead of reflecting on the meaning of the phrase,
however, he frames his critical point in a sceptical question: ‘Is, then, mathem-
atics absolutely certain?’4 In this regard, John Stuart Mill, although opting for
the sceptical alternative in the end, asked a crucial set of questions:

[W]herein lies the peculiar certainty always ascribed to the sciences which are
entirely, or almost entirely, deductive? Why are they called the Exact Sciences?
Why are mathematical certainty, and the evidence of demonstration, common
phrases to express the very highest degree of assurance attainable by reason?
Why are mathematics by almost all philosophers … characterized as systems
of Necessary Truth?5

1Bertrand Russell. Portraits from Memory: and Other Essays. London: George Allen & Unwin,
1956, p. 4.

2LudwigWittgenstein. Philosophical Investigations. Ed. byG. E.M. Anscombe and Rush Rhees.
3rd ed. Oxford: Blackwell, 2001 (henceforth cited as PI), xi, p. 191.

3Norbert Wiener. ‘Is Mathematical Certainty Absolute?’ In: The Journal of Philosophy, Psycho-
logy and Scientific Methods 12 (1915), pp. 568–74, p. 568.

4Ibid. A contemporary of Wiener, E. T. Bell, even talks of a ‘superstitious reverence for math-
ematical rigor and the “absolute certainty” of pure mathematics’. E. T. Bell. ‘Mathematics and
Credulity’. In: The Journal of Philosophy 22 (1925), pp. 449–58, p. 456.

5John Stuart Mill. Collected Works of John Stuart Mill. Vol. 7–8: A System of Logic: Ratiocinative
and Inductive. Being a Connected View of the Principles of Evidence and the Methods of Scientific
Investigation. Ed. by John M. Robson. Toronto; London: University of Toronto Press; Routledge
& Kegan Paul, 1974, vol. 7, p. 224.

7



8 2. Certainty

The present chapter aims to open up a discussion of the concept of certainty
in mathematics. Certainty has been a major issue in modern philosophy and
mathematics has often been considered a special case in this regard. Descartes,
for example, famously took mathematics as a model for his method of guiding
reason. The issue of the certainty of mathematics received a good deal of at-
tention in the early decades of the twentieth century. During the years of the
foundational crisis, the certainty of mathematics was taken to be threatened by
the paradoxes in set theory and logic. It needed to be secured from this threat.
As the foundational programmes logicism and formalism were quieted by the
incompleteness results of Kurt Gödel, certainty appeared as too high a goal to
work for, and the concept seems to have all but disappeared from the discus-
sion. This is understandable if certainty is thought of as being achievable only
if some kind of foundational programme is completed successfully. As the in-
terest in certainty dwindled, its place was taken by objectivity. If certainty is not
achievable, at least one can hope to show that mathematical knowledge is ob-
jectively valid. This concept is, in contrast to certainty, discussed frequently in
contemporary philosophy of mathematics.6

However, it is by no means evident that the paradoxes actually put the cer-
tainty ofmathematics into question.Manyworkingmathematicians did not lose
their confidence in the discipline although they were aware of the paradoxes.
Another attitude is found among some philosophers who claim that the cer-
tainty of mathematics is only illusory, paradoxes or not. A third attitude could
be one that does not equate certainty with what the foundational programmes
sought to achieve. It is then seen that this concept is indeed puzzling and in the
need of philosophical attention. Wittgenstein can be mentioned as an example
of a philosopher who took this kind of interest in certainty, and the present in-
vestigation is carried out in this spirit.

In his book Foundations without Foundationalism, Shapiro argues that it is
possible to work on the foundations of mathematics while abandoning founda-
tionalism. By foundationalism he means the idea that mathematics needs to be
put on an absolutely secure foundation (i.e. the idea behind the foundational
programmes) while the former merely involves ‘a reconstruction of its prin-
ciples, either its truths or its knowable propositions’.7 One could say that Shapiro
gives up the concept of certainty while keeping foundations.8 I shall, by contrast,

6See e.g. Penelope Maddy. Defending the Axioms: On the Philosophical Foundations of Set The-
ory. Oxford: Oxford University Press, 2011, sections III.4 and V.1.

7Stewart Shapiro. Foundations without Foundationalism: A Case for Second-order Logic. Ox-
ford: Oxford University Press, 2000, p. 26.

8He writes: ‘we have learned to live with uncertainty in virtually every special subject, and we
can live with uncertainty in logic and foundations of mathematics’. Ibid., p. ix. His willingness
to live with uncertainty is tied up with his insistence on using second order logic in his work on
foundations.He notes that the preference for first order logic is a remnant of foundationalism, first
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try to revive a discussion of certainty while detaching it from the attempts to
provide a foundation.

When dealingwith questions likeMill’s, it is easy to search for some quality of
mathematics, of mathematical knowledge or propositions, that will provide an
explanation of why mathematics is certain. Such a quality is often located in the
nature ofmathematical propositions or in the nature of some kind ofmathemat-
ical objects. One can think of the logicist thesis that true mathematical proposi-
tions rest solely on logic, or of the standpoint ofHilbert’s in ‘TheNewGrounding
of Mathematics: First Report’ that ‘the objects of number theory are … the signs
themselves, whose shape can be generally and certainly recognized by us’.9

Before searching for explanations for the certainty of mathematics, I believe
it is important to consider first what is meant by calling mathematics certain.
Therefore, I will begin this chapter by reviewing some suggestions as to how
one can understand certainty. Interestingly, several of these suggestions can be
extracted from various passages in Hilbert’s writings. The fact that Hilbert was
deeply committed to the attempts to establish the certainty ofmathematicsmade
him express his understanding of this concept on several occasions. It is telling of
the unclarity of the concept that he gives voice to somany different ways of view-
ing it. Each of the suggestions discussed captures something of the concept of
certainty, but it will be clear that none of them can constitute a final understand-
ing of the certainty of mathematics. This overview, undertaken in sections 2.2–
2.5, will be of a preliminary kind but it will serve to highlight problematic points
in the concept of certainty.

Another perspective that may give valuable insights is to ask why certainty
has such a strong appeal to us. One point of focus in dealing with such a ques-
tion could be the need for certainty in practical situations. Somebody inquiring
whether themedication of his ageing parent really is accuratemight be given the
answer: ‘Yes, it’s certain that he ought to take three pills a day, but not more than
that!’ In this case, the need for certainty is clear and unproblematic. Another
focus could be the epistemological wish to find a discipline that gives us abso-
lutely certain knowledge in order to establish the philosophical thesis that there
is indeed certain knowledge to be found. In this second case, the issue is the po-

order logic being associated with a greater certainty due to its completeness. As Shapiro advocates
abandoning foundationalism, the special preference for first order goes too. Shapiro’s attitude is an
echo of Russell who – disillusioned by the failure to overcome the paradoxes in a fully satisfactory
way – wrote that ‘an element of uncertainty must always remain, just as it remains in astronomy.
It may with time be immensely diminished; but infallibility is not granted to mortals.’ Russell,
quoted in: Ivor Grattan-Guinness, ed. From Calculus to Set Theory 1630–1910: An Introductory
History. Princeton: Princeton University Press, 1980, p. 234.

9David Hilbert. ‘The New Grounding of Mathematics: First Report’. In: From Brouwer To Hil-
bert. The Debate on the Foundations of Mathematics in the 1920s. Ed. and trans. by PaoloMancosu.
New York: Oxford University Press, 1998, p. 202.
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tential of a discipline to produce absolutely certain knowledge. It thus concerns
an entire category of propositions.

One may wonder why it is so important to find certainty in this absolute
sense. We are in many situations certain after all. Perhaps it is felt that unless we
can establish the truth of the philosophical thesis that there is certain knowledge,
one’s ordinary certitude is not justified. This worry, which is akin to the sceptic’s
doubt about knowledge, is an ingredient in the philosophical discussions about
mathematical certainty. The question is, however, if this need for a justification
– in contrast to the justifications that one gives for being certain in a particular
situation – is not due to a philosophical prejudice.

Bearing this in mind, I will end this chapter with a discussion of the role that
being certain plays in some situations where basic mathematics is involved. The
certainty that pertains to the mathematics that we learn as children is seen to be
indistinguishable from the role that it plays in relation to other activities. They
form, as it were, a backdrop for many situations and contribute to the way we
judge them. They are not among the things that we judge on the scale of cer-
tainty or doubt but figure among that which allows us to form such judgements.
Wittgenstein is famous for his insistence to view mathematical propositions as
being normative and section 2.7 is an elaboration of this idea of Wittgenstein’s.
Their certainty is in this sense greater than the certainty that may pertain to
other kinds of propositions, but it is greater because it is of a different kind, not
because it is certain to a greater degree.

2.1 Hilbert on Certainty
In his work on the foundations of mathematics, Hilbert often mentions the goal
of his efforts. In ‘On the Infinite’ he declares that the aim of his theory ‘is to
endow mathematical method with the definitive reliability that the critical era
of the infinitesimal calculus did not achieve’.10 In other places, he gives different
and more detailed formulations, and his earnest (and rather pompous) attitude
makes them into unusually clear expressions of the unclarity that pertains to our
understanding of the certainty of mathematics.

I will quote some particularly striking passages, although this will not be
a Hilbert exegesis. These passages will serve as a basis for the subsequent dis-
cussion of different aspects of certainty in mathematics. In ‘Problems of the
Grounding of Mathematics’, Hilbert frames, what he calls, ‘the generally held
opinion about mathematics and mathematical thought’ thus:

The mathematical truths are absolutely certain, for they are proved on the basis
of definitions through infallible inferences. Therefore they must also be correct
everywhere in reality.11

10Hilbert, ‘On the Infinite’, p. 370.
11David Hilbert. ‘Problems of the Grounding of Mathematics’. In: From Brouwer To Hilbert. The
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The article ‘On the Infinite’ provides several suggestions:
[H]as the contentual logical inference ever deceived and abandoned us any-
where when we applied it to real objects or events? No, contentual logical in-
ference is indispensable. It has deceived us only when we accepted arbitrary
abstract notions, in particular those under which infinitely many objects are
subsumed. …

One can claim … that [the science of mathematics] is an apparatus that
must always yield correct numerical equations when applied to integers.12

In the already quoted ‘The New Grounding of Mathematics: First Report’, one
finds the following passage which echoes the received view of Hilbert’s work on
the foundations of mathematics:

Accordingly, a satisfactory conclusion to the research into these foundations
can only be attained by the solution of the problem of the consistency of the
axioms of analysis. If we can produce this proof, then we can say that math-
ematical statements are in fact incontestable and ultimate truths – a piece of
knowledge that (also because of its general philosophical character) is of the
greatest significance for us.13

The quotes reveal that the reason for the alarmed reactions to the paradoxes
is that they indicate that there is a problemwithmathematics, and the presumed
existence of such a problem contrasts with the confidence that we (laymen and
professionalmathematicians alike) share with regard to themathematics we use.
When dealing with the concept ofmathematical certainty this confidence is very
important. If it were not for this spontaneous attitude towards mathematics, the
paradoxes would probably not have been as upsetting as they were, nor would
there be anything like securing mathematical certainty.

It is possible to distinguish four different strands in the quotes above: (1)
mathematical methods are reliable, they give us the correct result; (2) mathem-
atical methods are reliable in the sense that they do not lead to contradictory
results; (3) mathematical methods are reliable (genuinely reliable) only when we
have a proof of the consistency of them; and (4) the inferences of logic are reli-
able. I shall now turn to a discussion of these four strands, by turning them into
suggestions as to how one could understand certainty. In addition to these, I will
also consider the idea – not among the strands identified in Hilbert’s writings –
that mathematical truths are eternal. None of the suggestions discussed below
constitutes a free-standing account of certainty in mathematics. None of them,
taken in isolation, will be satisfactory. They will, however, point to aspects that
contribute to our understanding of mathematical certainty. Furthermore, they

Debate on the Foundations of Mathematics in the 1920s. Ed. and trans. by Paolo Mancosu. New
York: Oxford University Press, 1998, p. 228.

12Hilbert, ‘On the Infinite’, p. 376.
13Hilbert, ‘The New Grounding of Mathematics: First Report’, p. 202.



12 2. Certainty

indicate that in discussions of certainty we can be talking past each other by
talking about different things.

2.2 The Infallibility of Mathematical Methods
The first suggestion focuses on Hilbert’s claim in the first and second quotes
above that mathematical methods give us correct results. One can encapsulate
it thus: By the certainty of mathematical knowledge one means the impossibility
of reaching erroneous results when using mathematical methods. As is shown by
the slightly differing emphasis in the two quotes, thismay actually be seen as two
different suggestions.The first could be thatmathematical methods are infallible
when applied in science, trade, construction, etc. and the second that the results
of calculations and deductions in mathematics are always correct as such.

How should one understand the impossibility of reaching erroneous res-
ults when applying mathematics to empirical matters? Mathematical tools are
useful in a great variety of situations and the advantages are of many different
kinds: sometimes one saves time, sometimes the probability of making mistakes
is smaller, sometimes a greater degree of accuracy is obtained, sometimes they
enable one to achieve an overview of the problem, and sometimes there simply is
no alternative to using a mathematical method in order to solve a problem. The
infallibility under scrutiny here has – in contrast to the more practical benefits
mentioned above – an absolute air to it. For practical purposes, the accuracy of
the result of a calculation will be no better than the accuracy of the numbers
entered into the calculation; if it proceeds from measurements, the inaccuracies
of the measurements are reflected in the result. Nevertheless, this is not con-
sidered a shortcoming of the mathematical method, which may be taken to say
only: ‘If this is the correct value (of the length, weight, amount, voltage etc.), then
this is the result.’

This infallibility, however, is not the same thing as a complete absence of er-
roneous results. One has to choose carefully which mathematical method to use
in order to get relevant results. The wrong method will, if applicable at all, give
incorrect results. A mathematical method does not by itself give either correct
or incorrect results with regard to applications. The impossibility of erroneous
results appears in a different light if one considers the fact that we do not use
methods that do not work or that we have no use for.

Another, arguablymore important,matter is that we often use basicmathem-
atics as, so to speak, a measure or framework for ordinary experience. If meas-
urements happen to diverge from what one has predicted through calculation,
this kind of discrepancy is usually attributed to inaccuracies in the measure-
ments, or to some feature of the thing measured that is not taken into account,
e.g. thermal expansion. The discrepancies, unless they are taken to show that
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this particular mathematical method was inappropriate for the application, will
not be assumed to be caused by flaws in the rules of arithmetic (whatever that
means). On the contrary, a major incentive to look for inaccuracies in the meas-
urements is the occurrence of such a discrepancy. The calculation is taken as the
norm and it guides one in the search for errors in other places.This idea is found
in Wittgenstein’s writings, but it is also advanced by many of the logical empir-
icists.

A. J. Ayer discusses an example where one has five pairs of objects but only
nine objects when one counts them one by one. With regard to the attempts to
come to terms with this disagreement, he remarks:

One would say that I was wrong in supposing that there were five pairs of ob-
jects to start with, or that one of the objects had been taken away while I was
counting, or that two of themhad coalesced, or that I had countedwrongly.One
would adopt as an explanationwhatever empirical hypothesis fitted in best with
the accredited facts. The one explanation which would in no circumstances be
adopted is that ten is not always the product of two and five.14

Ayer sees this as evidence for his claim that mathematical truths cannot be re-
futed by experience. Our reactions in this kind of case show that mathematical
propositions are not analogous to empirical ones. In addition, I think Ayer’s ob-
servation reveals that this difference is tied to the normative character of math-
ematical propositions. Thus, it might be worth considering if the infallibility of
mathematical methods is not a consequence of our judging the world of experi-
ence through our mathematical methods. Cora Diamond contrasts the practice
of mathematics with practices where one formulates descriptive propositions.
Mathematical propositions play a normative role in relation to descriptive ones.
‘Mathematics is integrated into the body of standards for carrying out methods
of arriving at descriptive propositions, for locating miscounts (for example), or
mistakes or inaccuracies of measurement.’15

I will return to the theme of normativity in the end of this chapter, but for
now these comments will be enough to show that this first suggestion is not a
straight forward way of understanding certainty.

If the infallibility of mathematical methods is considered while bracketing
any possible applications outside mathematics, one has the second suggestion:
Mathematics will never produce an erroneous result.To this and the previous sug-
gestion, one has to add the proviso: the method will give a correct result only if
one has calculated correctly. In the discussion of this suggestion, it becomes im-
portant to distinguish errors that are due to humanmistakes from errors that are

14Alfred Jules Ayer. Language, Truth and Logic. Harmondsworth: Penguin, 1971, p. 101.
15Cora Diamond. ‘Wittgenstein, Mathematics and Ethics: Resisting the Attractions of Realism’.

In: Cambridge Companion to Wittgenstein. Ed. by Hans Sluga and David G. Stern. Cambridge:
Cambridge University Press, 1996, p. 234.
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due to the methods of mathematics. David Hume argues that ‘[i]n all demon-
strative sciences the rules are certain and infallible’, but he seizes on ‘our fallible
and uncertain faculties’ and concludes that we ‘are very apt to depart from them
and fall into error’.16 For Hume, this possibility of error licenses the conclusion
thatmathematical knowledge is, after all, not certain. However, Hume’s sceptical
conclusion does not bear on this suggestion since the fact that our capacities are
limited does not infringe upon the value of mathematics. The certainty of math-
ematics should rather be associated with what Hume refers to as the rules being
‘certain and infallible’.

If mathematical certainty is interpreted as an absence of errors that are due
to the methods of mathematics, it becomes evident that we have no clear con-
ception of what kind of error certainty excludes.This point applies to both of the
suggestions considered so far. As mentioned above, the methods of mathemat-
ics have all kinds of advantages in comparison with other ways of determining
a value, but the idea of absolute correctness leads one to expect that there is an-
other kind of failure that is excluded by the mathematical methods. It is as if our
mathematics could have been a mathematics where following the correct rules
and procedures in some cases led to the wrong result – only, luckily, it happens
not to be such.

When one says: ‘mathematical methods cannot go wrong’ – what is it that
they cannot do? If one thinks about calculation, ‘going wrong’ could mean that
a mistake is made; if one thinks of measurements, it could mean that one reads
the wrong number from the calliper. We have in these cases a clear conception
of what ‘going wrong’ could mean. The infallibility of mathematics, however,
seems to ensure protection from yet another kind of error. This error would be
one where correctly following the rules of calculation led to an incorrect result.
What kind of situation is this? Consider first a case where one tries to apply a
certainmathematical method and arrives at a result that is not usable or diverges
strongly from what seems reasonable. One would probably assume that one has
made amistake and try again. If one is successful the next time, one would prob-
ably not think more about it. If, however, the same result occurs once more and
one feels confident that no mistakes were made, the conclusion would probably
be that this method was inappropriate for the application. These outcomes are
not yet examples of the mystical error that I am trying to make sense of. Assume
now that one calculates once more, checks the steps thoroughly, and a new, dif-
ferent result stands. Furthermore, the first calculation is also checked and no
mistakes are found; the original result is, thus, confirmed too. This seems to be a
description of a fallible mathematics where doing the same thing, following the
same rules in the same way leads to different results at different times.

16David Hume. A Treatise of Human Nature. Ed. by David Fate Norton and Mary J. Norton.
Oxford: Oxford University Press, 2000, I.4.1, p. 121.
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This does not seem to be a genuine description, however. Is it not a criterion
for ‘having done the same thing’, for ‘having followed the rules in the same way’
that one arrives at the same result? The two identical calculations would have to
part ways at some particular step, be it the last one or some intermediate one.
Having done the same thing at a particular step means writing the same thing.
There seems to be no logical space for going wrong other than through deviation
from the rules, i.e. through mistakes made by the calculator. Doing the same
thing means getting the same result, otherwise one has not done the same thing.
That one does not have a clear idea of the nature of this kind of error is also seen
in the fact that the above description (of doing the same thing, getting different
results) can hardly be called a genuine description of mathematics at all.

The above remarks apply both to the first and to the second suggestions, but,
if one restricts the discussion to the second (i.e. to pure mathematics), the issue
of how one is able to distinguish the correct from the incorrect becomes a press-
ing matter. One is faced with the question of whether there exists some standard
of correctness against which to weigh the result of a calculation. That is to say, is
there some standard for the correctness of the result other than the calculation
itself and the rules one has followed in completing it?

For a Platonist, this presents no problem at first sight. If mathematics pro-
duces truths that correspond to what can be truthfully said about the entities
in the mathematical realm, then it produces correct results, otherwise incorrect
results. Even so, the impossibility of somehow describing mathematical objects
without actually doingmathematics,makes it highly questionable that one could
establish true descriptive propositions against which to judge the ones reached
through calculation or inference. As I shall argue in the next chapter, the Pla-
tonist, like everybody else, is left with the ordinary techniques ofmathematics in
order to determine what is correct and what is not – and this is no shortcoming.

Sometimes the term intuition is proposed to compensate for the lack of a
mathematical counterpart of sensory experience.17 Nevertheless, if intuition is
regarded as a way of apprehending mathematical truths that is parallel to dedu-
cing and calculating, one may wonder which of them that is the more reliable
one. Gödel suggested that the reliability of this intuition is no less than that of
sense perception, but if the problem under consideration is whether intuition
can furnish a criterion of correctness for the results arrived at through deduc-

17C.f. Kurt Gödel’s well-known defence of intuition as a kind of perception: ‘[T]he objects of
transfinite set theory … clearly do not belong to the physical world … But, despite their remote-
ness from sense experience, we do have something like a perception also of set theory, as is seen
from the fact that the axioms force themselves upon us as being true. I don’t see any reasonwhywe
should have less confidence in this kind of perception, i.e., inmathematical intuition, than in sense
perception.’ Kurt Gödel. ‘What is Cantor’s Continuum Problem?’ In: Philosophy of mathematics.
Selected readings. Ed. by Paul Benacerraf and Hilary Putnam. 2nd ed. Cambridge: Cambridge
University Press, 1983, pp. 483–84.
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tion or calculation, then surely intuition is not sufficient. The reliability of our
mathematical methods must be greater.

To be sure, one develops an ability, a skill – often called intuition – which al-
lows one to judge what sounds plausible, to judge whichmethod of proof, which
rule, or what theorem one should rely on in order to solve some particular prob-
lem. This intuition allows one to judge, among other things, if the outcome of
a calculation seems reasonable. This is, however, not the same as judging if it is
correct by means of intuition. As William Tait remarks: ‘What we call “mathem-
atical intuition”, it seems to me, is not a criterion for correct usage.’18 In applied
mathematics, the correspondence between results of calculations and measure-
ments might make sense as an external criterion of correctness but this is not an
option in pure mathematics. Proofs are the supreme courts in mathematics, and
if a proof is correct, then what it proves is eo ipso correct.

2.3 Consistency
The third suggestion is that certainty inmathematics is to be understood as free-
dom from contradictions: Mathematics, to the extent that is certain, will never
produce a contradiction. This suggestion is a natural one in face of the para-
doxes that arose in set theory and logic in the late nineteenth and early twen-
tieth centuries. The clearest expression of this attitude is found in Hilbert’s writ-
ings, the fourth of the above Hilbert quotes being a good example. Marcus Gi-
aquinto’s The Search for Certainty can be given as a contemporary example. He
asks: ‘When we cannot be certain of the reliability, hence consistency, of some
mathematics, can we none the less have a high degree of confidence in it?’19

As it was pointed out in the introduction, many have felt that one is not en-
titled to claim that mathematical knowledge is certain after all, since (1) para-
doxes did arise, and (2) Gödel proved that consistency is impossible to prove for
central areas of mathematics. In this context, it is remarkable that Gödel’s proof
made use of such techniques that Hilbert called finitary and that according to
Hilbert were the most reliable ones. The paradoxes, he thought, arose because
techniques involving the concept of infinity were employed. Thus he wrote: ‘It is
necessary to make inferences everywhere as reliable as they are in ordinary ele-
mentary number theory, which no one questions and in which contradictions
and paradoxes arise only through our carelessness.’20

This third suggestion – as is seen in the quotes from Hilbert and Giaquinto –
indicates a distinction between certainty in the sense ‘the confidence that I feel’

18W. W. Tait. ‘Truth and Proof: The Platonism of Mathematics’. In: Synthese 69 (1986), pp. 341–
70, p. 346.

19Marcus Giaquinto. The Search for Certainty: A Philosophical Account of Foundations of Math-
ematics. Oxford: Oxford University Press, 2002, p. 222.

20Hilbert, ‘On the Infinite’, p. 376.
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and ‘the impossibility of reaching contradictory results’. It is the latter that is im-
portant according to this suggestion. An expression of this contrast is the strong
confidence in set theory among a large part of the mathematicians working at
the turn of the twentieth century, despite the fact that set-theoretical antinomies
could be derived.

The fact that the paradoxes were considered a threat to the certainty of math-
ematics is, I think, due to their unexpected appearance. One has the feeling that
one might be doing mathematics in the ordinary fashion and – through the cor-
rect application of rules of inference or calculation – arrive at contradictory res-
ults. Perhaps the result contradicts an earlier one. Perhaps one does not even
notice that it does. Georg Henrik von Wright expresses this uneasiness that the
paradoxes gave rise to: ‘Could one be confident that one would not one day run
into contradictions in arithmetic, algebra, or geometry too?’21 Uncertainty ac-
quires an air of distrust of mathematics.

The idea that the set theoretical paradoxes remove certainty from mathem-
atics, lives within a fear that contradictions might appear where one would not
expect them to – and not because of an error on the part of human beings, but
on the part of mathematics itself. This idea can be accompanied by the further
worry that one would not necessarily recognise a contradictory result at once
or fail to realise that the result contradicts another that one depends on. It is as
if mathematics produced results in the manner of a machine, and if certainty is
found in mathematics one can trust it not to produce a contradiction.

Of course, mathematics is not amachine that produces results independently
of mathematicians. If a paradox arises, the usual response is to review the cal-
culations or the proof once more to make sure no mistakes have been made.
If none are found and the contradiction remains, a layman will perhaps ask a
mathematician or somebody more skilled for an explanation of the unexpected
result. A mathematician might turn to colleagues for advice or conclude that
a contradiction arises if one follows certain rules in a certain way and perhaps
make this publicly known by publishing it. There is much prestige in finding a
contradiction. It is then up to the community of mathematicians to decide what
to do about it.

Now, the occurrence of contradictions, the set-theoretical ones in particular,
is seldom seen as a reason to abandon mathematics or even a part of it, as the
malfunctioning of a machine might.22 Assume that a machine, e.g. a computer,

21Georg Henrik von Wright. Logik, filosofi och språk. 2nd ed. Lund: Doxa, 1965, p. 77, my trans-
lation from Swedish.

22Haskell B. Curry comments on Hilbert’s insistence on consistency proofs that inconsistency
does not make a theory useless for applications and ‘[e]ven if an inconsistency is discovered this
does notmean complete abandonment of the theory, but its modification and refinement.’ Haskell
B. Curry. ‘Remarks on the Definition and Nature of Mathematics’. In: Philosophy of mathematics.
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produces strange results. The same commands give one output at one time and
a different output at another when they are supposed to give the same output
every time. There seem to be two kinds of problem to look for. Either a part of
the machine is worn down or the machine was not properly constructed from
the start. If the mathematical machine produces contradictions, the possibility
of parts being broken is, naturally, excluded. If it produces contradictions this
must be due to poor construction. If themachine analogy is followed strictly, the
natural solutionwould be to abandon themachine or to reconstruct it. However,
nobody abandoned the machine of mathematics. (Although the intuitionist re-
sponse to abandon the law of the excluded middle could be viewed in analogy
with reconstructing the machine.) Both logicism and formalism tried to solve
the problems by mathematical means.23

In conclusion, one could say that the existence of contradictions does not
seem to introduce uncertainty intomathematics, even though it does call for cla-
rification. In this context, ‘clarification’ can mean two things, and the paradoxes
of set theory necessitated both. Firstly, there is room for philosophical clarific-
ation of the situation where the paradox arises and worries us. This is, arguably,
what Wittgenstein sought to do in his remarks on the subject as is brought for-
ward in the following passage: ‘It is the business of philosophy, not to resolve
a contradiction by means of a mathematical or logico-mathematical discovery,
but to make it possible for us to get a clear view of the state of mathematics that
troubles us: the state of affairs before the contradiction is resolved.’24 Secondly, it
becomes necessary to overview the mathematics where the contradiction arises
in order to see if and how it can be avoided, but also to see what mathematical
results it possibly endangers. This is mathematical work, and it is what Wittgen-
stein refers to as ‘resolving the contradiction’. That paradoxical results call for
such clarification accords well with the reaction to them displayed in the his-
tory of mathematics. In this sense, much of the foundational work in the early
twentieth century could also be called clarificatory. Nevertheless, I am inclined
to think that what gave work on the foundations of mathematics much of its

Selected readings. Ed. by Paul Benacerraf and Hilary Putnam. 2nd ed. Cambridge: Cambridge
University Press, 1983, p. 206.

23A more serious problem with this picture is perhaps the nature of ‘wrong answer’. A machine
is usually associated with a purpose. If it functions properly, there is some kind of job it will
accomplish. ‘Giving out a result/product that it is supposed to’ becomes meaningful in light of
the purpose of the machine. This purpose is, moreover, determined by matters external to the
machine. The output of the machine of mathematics, on the other hand, cannot be judged in the
samemanner. True, the purpose ofmathematics is, among other things application, but ‘the result
it is supposed to give’ cannot be understood extra-mathematically. The assessment of the result
is also a piece of mathematics and would accordingly belong to the working of the machine. An
absurd consequence of the analogy would be that one simply has to accept whatever it pleases to
give out.

24PI, § 125.
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drive was precisely the idea that one thought of it as attempting to establish the
certainty of mathematics.

2.4 Eternal Truths
The fourth suggestion is similar to the second: Mathematical propositions are al-
ways true; they express eternal truths. It is frequently stated that mathematical
truths, in contrast to other truths, are timeless and everlasting. In Plato’s The Re-
public, Socrates states that ‘the knowledge at which geometry aims is knowledge
of the eternal, and not of aught perishing and transient’.25

Again, this is not sufficiently clear as it stands, and the choice of the word
‘eternal’ gives the suggestion a mystical air. Still, there is something to the idea
that mathematics is not dependent on particular situations and the change of
circumstances. The validity of an inference based on a rule of calculation does
not depend on the time the conclusion is drawn. In this respect, mathematics
is timeless. However, to understand this non-temporality, one must distinguish
between something being extended in time, possibly indefinitely, and something
where references to time does not enter. An example of the first case could be that
Finland has been an independent state since 1917. A sentence stating asmuch has
been true for almost a hundred years.The timelessness of mathematics must not
be understood in analogy with this example, with the addition that the truth
of mathematical propositions extends indefinitely in time. As Sören Stenlund
notes:

The expression ‘timeless’ is used as though it made sense to relate mathemat-
ical truths to time at all, as though it made sense to talk about a mathematical
fact as being a fact, before, after or simultaneous with something else, which it
obviously does not. We do not ask questions like: ‘When did 2 + 2 = 4 become
true and who made it true?’26

With mathematical truths, time is not an issue. If the students, who are told
that it is possible to calculate the volume of a certain body by using techniques
from integral calculus, responded by asking their teacher: ‘Since when is this
possible?’ – the teacher would probably recount some relevant parts of the his-
tory of calculus.There seems to be no room for taking the question as being ana-
logous to the question ‘Since when is Finland an independent state?’ Recounting
the historical background of the integral calculus is in these cases not analogous
to recounting the events that led to Finland’s independence.

Consequently, there is an important sense in which mathematics is time-
less. There is nothing about this understanding of non-temporality, however,
that implies the eternal existence of mathematical objects. One could say that

25Plato. The Republic. New York: P. F. Collier, 1901, p. 527b.
26Sören Stenlund. Language and Philosophical Problems. London: Routledge, 1990, p. 126.
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a grammatical or logical remark about the nature of mathematical propositions
is mistaken for a remark about the nature of mathematical objects. Anyway, the
claim thatmathematical knowledge is certain does not seem to be given a proper
illumination by it.

Another way of understanding ‘eternal’ in this context could be that the res-
ults of past mathematicians are as good today as they were thousands of years
ago. Bell remarks: ‘Euclid’s Proposition I, 47 stands, as it has stood for over 2,200
years. Under the proper assumptions it has been rigorously proved.’27 In view of
the fact that many ideas of antiquity have been revised since then, it is indeed re-
markable that their mathematics still stands. However, as Bell notes, they have
been proved ‘under the proper assumptions’: considered as a theory of phys-
ical space, the geometry of Euclid is no longer true. Its timelessness is therefore
restricted to the inferences from the assumptions stated in the axioms and pos-
tulates of Euclid, that is, restricted to Euclidean geometry considered as a system
of pure mathematics. This is, of course, in line with the suggestion that math-
ematics is eternal, since it did not concern physical theories after all. However,
that we still view the inferences of Euclid as valid can simply be a consequence
of the relative stability of human reasoning. We still reason in the same way as
the Greeks of antiquity, or our reasoning is at least sufficiently close to theirs.
We can also appreciate the philosophy of Plato and the plays of Sophocles. This
is another sense of ‘timeless’ but it is not related to the concept of certainty in
any direct way.

2.5 Deductive and Empirical Sciences
The claim that mathematics is certain can be a reminder that there is a differ-
ence between sciences. Perhaps one wants to say that, whereas there is an inher-
ent uncertainty in the empirical sciences, we can have certainty in mathematics.
Sometimes this difference is underlined with a reference to proof. The fact that
in mathematics we prove things deductively distinguishes it from other discip-
lines. Shapiro points to this difference: ‘Unlike science, mathematics proceeds
via proof. A successful, correct proof eliminates all rational doubt, not just all
reasonable doubt.’28

The distinction between rational and reasonable doubt is ambiguous, how-
ever. One possible interpretation is that rational doubt is to be equated with
Descartes’s methodical doubt, i.e. any logically possible (however far-fetched)
doubt. Yet, this is not a kind of doubt that one needs a proof to eliminate. It is
better countered by philosophical work on scepticism, since it is a doubt that
arises from a philosophical confusion. Anyhow, I will not argue this issue here.

27E. T. Bell. The Development of Mathematics. 2nd ed. New York: McGraw-Hill, 1945, p. 12.
28Shapiro, Thinking about mathematics, p. 22.
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The most likely interpretation (and one that is in line with the reminder about
the difference between science and mathematics) is that reasonable doubt can
be eliminated by experimental corroboration of a hypothesis, whereas rational
doubt can only be eliminated by a mathematical proof. Accordingly, one can in
science reach certainty (only) to such a degree that doubt is no longer reasonable.
Yet, since there is a possibility that future experiments can, in principle, falsify
any hypothesis, it may still be rational to doubt the hypothesis.

Nevertheless, this construal of the difference between science and mathem-
atics is potentially misleading. There is a risk that one understands the function
of proofs as merely one of increasing conviction. This, however, seems to leave
out themost important aspects of proofs, i.e. that understanding a proof involves
the exclusion of doubt, involves changing the status of the theorem in relation
to other propositions. (I shall return to these features of proof in chapter 5). It
connects with the discussion of certainty since it invites the idea that the differ-
ence in certainty is one of degree. One thinks – mistakenly, I believe – that one
has a clear grasp of what certainty is and that certainty is only partly attainable in
science, but fully attainable inmathematics, and that this is what separatesmath-
ematics from science. That certainty in mathematics differs from other kinds of
certainty not in degree but in kind will be the point of section 2.7.

2.6 Uncertainty
Among these different suggestions concerning how one should understand the
certainty in mathematics it is also worth mentioning the possibility of denying
it altogether. There is a line of thought, running from Mill, claiming that math-
ematics‚ contrary to common belief, rests upon empirical generalisations and
therefore cannot reach a higher degree of certainty than those generalisations.
This is argued by, for example, Harold Smart:

It would seem incontestable, therefore, that mathematical reasoning, like other
reasoning, when examined objectively, presents features or aspects which can
only be consistently described as inductive in nature. The characterization of
mathematics as a purely deductive science accordingly reveals itself as the result
of an uncritically accepted tradition, coupled with certain ‘metaphysical’ pre-
posessions, such as that of the ability of ‘pure’ thought to generate out of itself,
wholly apart from ‘experience’, results of real significance.29

A contemporary form of this criticism departs from the fact that the length
of many proofs implies a substantial risk of error. Philip Kitcher argues that if
there is a reasonable probability of error, the theorem proved cannot be said

29Harold R. Smart. ‘Is Mathematics a “Deductive” Science?’ In: The Philosophical Review 38
(1929), pp. 232–45, p. 241.
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to be known a priori.30 This line of thought is reinforced by the introduction
of computer assisted proofs, the length of which makes it impossible for any
human being to assess them. In both cases, proofs are found not to live up to the
demands of certainty.

Another line of thought takes as its starting point the observation that the
standards of proof have changed throughout history. Bell claims: ‘The stand-
ard of mathematical proof has risen steadily since 1821, and finality is no longer
sought or desired. … It is clear that we must have some convention regarding
“proof ”.’31 Since these standards of proof have changed, there are no guarantees
that they will not change in the future. That is, we may have to revise what we
now consider proved conclusively. This implies that the mathematics we know
does not live up to absolute certainty, although we feel confident about it.

A third line of thought, which in many respects is similar to the second,
is found in Lakatos’s quasi-empiricism. In Proofs and Refutations, he gives ex-
amples of proofs that have been found inconclusive and later improved to over-
come the errors of the earlier version. Lakatos explicitly criticises a dogmatism
that he finds in formalism and in the metamathematical tradition. This dog-
matism, he claims, manifests itself in a neglect of the historical development
of mathematics, which, according to Lakatos, displays a series of conjectures,
proofs, and refutations. The history of mathematics is, therefore, not a steady
cumulative progress, but a process where conjectures are made and proofs are
suggested and refined, but where no proof reaches a final state of absolute cer-
tainty.There is a resemblance between empirical andmathematical propositions
in the sense that both are revisable.32 Lakatos summarises: ‘We never know: we
only guess.We can, however, turn our guesses into criticizable ones, and criticize
and improve them.’33

These lines of thought have had a substantial influence on contemporary
philosophy of mathematics. This influence has been valuable in that it has dir-
ected the attention of philosophers to the history of mathematics but also to the

30Philip Kitcher. The Nature of Mathematical Knowledge. New York: Oxford University Press,
1984, pp. 40, 42.

31Bell, The Development of Mathematics, p. 10.
32See the author’s introduction in: Imre Lakatos.Proofs and Refutations:The Logic ofMathemat-

ical Discovery. Ed. by JohnWorrall and Elie Zahar. Cambridge: Cambridge University Press, 1976.
Similar considerations are also voiced by Hilary Putnam, although he is not associated with the
quasi-empiricist philosophy. He writes that ‘mathematical knowledge resembles empirical know-
ledge – that is … the criterion of truth in mathematics just as much as in physics is success of our
ideas in practice, and thatmathematical knowledge is corrigible and not absolute.’ Hilary Putnam.
‘What is Mathematical Truth?’ In: Philosophical Papers. Vol. 1: Mathematics, Matter, and Method.
Cambridge: Cambridge University Press, 1975, p. 61.

33Imre Lakatos. ‘Infinite Regress and Foundations of Mathematics’. In: Philosophical Papers.
Vol. 2: Mathematics, Science and Epistemology. Ed. by John Worrall and Gregory Currie. Cam-
bridge: Cambridge University Press, 1978, p. 10.
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practice of mathematics. Quasi-empiricism, in particular, has also had a con-
siderable impact on the didactics of mathematics. William Aspray and Kitcher
describe the current situation as a debate between the mainstream and maverick
philosophers of mathematics.34 The dissatisfaction among the mavericks con-
cerning the present state of the philosophy of mathematics (i.e. the dissatisfac-
tion with the mainstream) is pointedly expressed by Reuben Hersh: ‘Our inher-
ited and unexamined philosophical dogma is that mathematical truth should
possess absolute certainty. Our actual experience in mathematical work offers
uncertainty in plenty.’35

Since the aim of this thesis primarily is to work out how we can understand
the certainty ofmathematics, rather than to argue for its certainty or uncertainty,
I will not devote much attention to the debate between the mainstream and the
maverick traditions. I will, however, make a brief comment towards the end of
this thesis about the possibilities of arguing for one or the other of these posi-
tions. At present, I will onlymake a short comment about the difference between
research mathematics and the mathematics shared by anybody who has learnt
mathematics in school.

It lies in the nature of research that itmoves on the frontiers of our knowledge.
There will in such cases often be an uncertainty concerning the correctness of
the results or the interpretation of the results. Mistakes that have been made
may not have been spotted yet by the research community. This goes for any
science, mathematics not excluded. The history of mathematics has shown that
new methods of proof have been met with suspicion and that it takes a while
to settle the range of applicability of such methods. That there exists a degree of
openness in the new results of research, however, should not be taken as a defect
of established mathematics. When thinking about the certainty of mathematics,
the starting point should rather be our ordinary mathematics, which is shared
by most human beings – not only by research mathematicians.

2.7 Certainty and Being Certain
At this point, having surveyed these suggestions, I shall turn to a more general
discussion of the concept of certainty – of being certain, and of attributing cer-
tainty to something. I make no claims to a complete discussion of this concept,
but I shall in particular explore the contrast between things we do claim to be
certain about and things we attribute certainty to. In addition, I will consider
the difference between facts to which we explicitly attribute certainty and mat-

34WilliamAspray and Philip Kitcher, eds. History and Philosophy of Modern Mathematics. Min-
neapolis: University of Minnesota Press, 1988, p. 17.

35Reuben Hersh. ‘Some Proposals for Reviving the Philosophy of Mathematics’. In: New Direc-
tions in the Philosophy of Mathematics. Ed. by Thomas Tymoczko. 2nd ed. Princeton: Princeton
University Press, 1998, p. 17, emphasis in the original.
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ters the certainty of which is tacitly presupposed. The aim of this section is to
argue that certainty is not a homogenous concept that we use the same way in
all the situations in which it occurs. One has to be open to the possibility that
certainty, when used with regard to mathematics, is a different concept than in,
say, everyday empirical contexts.

To begin with, it is worth distinguishing between expressions such as ‘I’m
convinced that …’; ‘I’m certain of …’; ‘It’s certain that …’; and ‘… is certain’.
Spontaneously, one would say that there is a difference between being certain
of and attributing certainty to something. The phrase ‘… is certain’ seems to be a
stronger claim than merely saying that I am certain of something. Here is a way
of understanding the difference between the above expressions: the declaration
that one is certain of something or convinced of something seems to be a report
of a subjective state of conviction (which implies that there is a possibility of a
mistake), whereas the attribution of certainty to something seems not to involve
the person behind the utterance. Onewants to say that certainty somehow clings
to what is labelled certain (e.g. a mathematical proposition) and that this makes
the certainty in such a case into an objective fact.36 Consequently, it seems to
make sense to look for some quality of the thing labelled certain which explains
why it is certain. This understanding of the difference between the expressions
misses important aspects of ‘certainty’. A problem with this characterisation of
the difference lies in locating the source of the objectivity of ‘It’s certain’ in the
mathematical proposition. I would rather say that the certainty of it is indistin-
guishable from its use in mathematical activity, and indistinguishable from the
relation that mathematical activity bears to other activities.

Still, the expressions ‘I’m convinced’ and ‘It’s certain’ surely point to some,
arguably important, difference. In order to come to terms with this difference,
let me begin by considering Norman Malcolm’s contrasting view that there is
no logical difference between them. He notes that if someone utters any of the
above phrases, there is, naturally, someone behind the utterances, regardless of
how the claim is phrased. From this he concludes that ‘it is an individual who
asserts that something is certain. If I am certain about the truth of something it
is I who am certain.’37 Accordingly, saying that something is certain implies that
the speaker is certain thereof; hence, both ‘are “expressions” of the certainty of
the speaker’.38

Expressions of certainty are, of course, somebody’s expression, but the choice
of words signifies a difference in the speaker’s attitude to the certainty at hand.

36Interestingly, the distinction between certainty as a psychological state of a person and as a
quality of an object is also found in the Oxford Dictionary of English entry for ‘certainty’.

37Norman Malcolm. Nothing Is Hidden: Wittgenstein’s Criticism of his Early Thought. Oxford:
Blackwell, 1986, p. 234.

38Ibid., p. 206.
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One difference between ‘I’m certain…’ and ‘It’s certain that…’ has to dowith the
urgency of the will to silence the doubts of the other. The latter expression con-
stitutes a stronger claim. It is one wemay use in the face of persistent scepticism:
‘Don’t worry, it’s certain that …’ By contrast, the claim ‘I’m certain’ uttered as a
reaction to someone’s doubt is often a report of a conviction that one does not
necessarily expect the other to share: ‘Well, I am certain, you believe what you
please.’ The phrase ‘It’s certain’, by contrast, can be taken as a guarantee that it is
trustworthy; the person voicing the certainty takes on a responsibility for what is
being labelled certain: ‘You can trust me, this is certain.’ Saying ‘It’s certain’ thus
involves the further claim to be in a position where one can rightfully take that
responsibility.

As an illustration of this, one can consider the following two examples of
situations when expressions of certainty occur. If a friend and I have decided to
attend a lecture given by a visiting philosopher and we find that we are the only
persons waiting in the room at the announced time, my friend may ask me: ‘Are
you sure it’s supposed to be here?’ I might reply: ‘Yes, I’m certain, I checked the
venue just before I left.’My friendmight insist: ‘Was it really today? Could it have
been Thursday next week?’ Perhaps annoyed at this questioning (and perhaps I
checked the time and place carefully beforehand), I may reply: ‘It’s certain, it is
today. They’re probably just late.’ If, on the other hand, I realise that the doubts
will not be put to rest by anything short of showing the letter with the time and
the place, I may say ‘Well, I am certain that this is the right time.’

The other example is one where the professed certainty concerns a math-
ematical statement. Two builders are building a purlin roof on a small cottage.
They are about to put the rafters in place and one of them insists on using the
Pythagorean theorem to calculate the length of them. The one doing the cal-
culations says: ‘The ridge rises 1.2 metres above the wall plate and the distance
between the ridge and the walls is 2.5 metres. According to the calculation, the
distance between the wall plate and the ridge board is 2.8metres.The eaves over-
hang should be 40 centimetres. Let’s make the rafters 3.2 metres.’ The other one
asks: ‘Are you sure?’ – not too sure of his capacity to judge the calculations. ‘Yes,
I’m quite certain.’

The othermight be satisfied with this assurance and they go along, sawing off
the planks at 3.2 metres. Alternatively, the other builder may not be happy with
this assurance, because, say, a mistake was made in the calculations last time
and a rafter ended up too short. He then insists: ‘Are you really sure? I’d like to
get it right this time!’ The first one, proud of his calculating abilities, answers:
‘It’s perfectly certain that 3.2 metres is the correct length. I double-checked the
calculations, they’re just fine.’

In both of these examples, the choice of words ‘It’s certain’ signifies that the
person claiming to be in the know takes responsibility for what is claimed. It is
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implied that he has grounds for his claim. In a mathematical context, this can
mean that one has done the requisite calculations or produced a proof. In most
cases, this is what justifies certainty in mathematics. In the second example, the
one who has done the calculations is in a position where he can rightfully say
that it is certain that the length is correct. Thus, the upshot of this discussion is
that there are important differences between the choice of words that we use for
expressing certainty.

Malcolm’s reason for attributing a similar status to ‘It’s certain’ as to ‘I’m cer-
tain’ is probably the possibility of being mistaken. Regardless of how a person
expresses his certainty, it appears that there is always room for mistakes, and in
this sense there is a similarity between the two kinds expression.That there actu-
ally is a possibility of mistakes when somebody claims that ‘It’s certain’ becomes
clearer if one considers the difference between the first person and third person
perspectives. If one says: ‘He is certain’ or ‘He says that it’s certain’ it is perfectly
intelligible that one may later discover that he was mistakenly convinced.

Now, this possibility is unsettling and it is particularly unsettling in the case of
mathematics. If one follows traditional discussions on absolute certainty, it is as if
the possibility ofmistakes would have to be ruled out beforehand. Only then can
something be said to be absolutely certain.This can be seen in the wayDescartes
introduces his method.39 It is also the requirement Hume puts on knowledge.
Realising that the demands are too high, however, Hume opts for scepticism.
Are we forced to draw a sceptical conclusion too?

I will now discuss the rather puzzling distinction between subjective and ob-
jective certainty that Wittgenstein introduces in On Certainty:

With the word “certain” we express complete conviction, the total absence of
doubt, and therebywe seek to convince other people.That is subjective certainty.
But when is something objectively certain?When a mistake is not possible. But
what kind of possibility is that? Mustn’t a mistake be logically excluded?40

Could the difference between subjective and objective certainty allow for a way
of accommodating the possibility of making mistakes while at the same time
making room for something which is logically excluded from doubt? Malcolm
takes this distinction to signify a difference between, on the one hand, things
which I am certain of, but about which I could nevertheless imagine myself be-

39See e.g. Descartes’s first rule for ‘rightly conducting one’s reason’: ‘The first [rule] was never to
accept anything as true if I did not have evident knowledge of its truth: that is, carefully to avoid
precipitate conclusions and preconceptions, and to include nothing more in my judgements than
what presented itself to my mind so clearly and so distinctly that I had no occasion to doubt it.’
RenéDescartes. ‘Discourse on theMethod’. In:ThePhilosophicalWritings of Descartes. Ed. by John
Cottingham, Robert Stoothoff, and Dugald Murdoch. Vol. 1. Cambridge: Cambridge University
Press, 1985, p. 120.

40Cf. Ludwig Wittgenstein. On Certainty. Ed. by G. E. M. Anscombe and G. H. von Wright.
Oxford: Blackwell, 1969 (henceforth cited as OC), § 194, emphasis in the original.
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ing mistaken – and, on the other hand, things that I am certain of and about
which I could not even imagine myself being mistaken. Among subjective cer-
tainties Malcolm counts the kind of conviction the two friends waiting for the
lecture to start give voice to, while objective certainties are the onesWittgenstein
is struggling with in On Certainty. These include the truisms that G. E. Moore
claims to know in his articles ‘A Defence of Common Sense’ and ‘Proof of an Ex-
ternal World’: ‘There exists at present a living human body, which is my body’;
‘the earth had existed also for many years before my body was born’;41 ‘Here’s
one hand, and here’s another’ (while holding up one’s hands), etc.42 To these,
Wittgenstein adds other examples, but the common puzzling feature is that they
appear to be of an empirical nature but, nonetheless, exempt from doubt. Fur-
thermore, and importantly for this investigation, Malcolm also counts element-
ary mathematical facts which we do not need to prove – such as ‘2 + 2 = 4’ –
among the basic certainties.

Might this distinction be a key to absolute certainty? If one follows Malcolm,
it is not. Firstly, objective certainty is, when thinking of mathematics, restricted
to very basic operations which we know by heart. If I prove something more
complex, my certainty is of the subjective kind, since I could, after all, picture
myself having made a mistake in proving it. Secondly, this difference is, for Mal-
colm,merely one inmy apprehension of things. In the case of objective certainty,
I cannot imagine any kind of mistake, but that does not, in principle, eliminate
the possibility that I am mistaken. ‘Being perfectly certain (i.e. objectively cer-
tain) of something … is an attitude, a stance, that we take towards various mat-
ters; but this attitude does not necessarily carry truth in its wake.’43 On this view,
there would be no infallible attributions of certainty, if by absolute certainty one
understands the philosophical notion of something beyond every conceivable
doubt. Still, may there not be something more to saying that mathematics is cer-
tain, than (merely) professing my conviction about it?

Malcom is perhaps not doing justice to the above quoted passage from On
Certainty.44 CriticisingMalcolm’s discussion of thesematters, ElizabethWolgast
writes that when we claim to know something or to be certain of something –
regardless of how weak or strong this claim is – we are thereby drawing them
into ‘the certainty language-game’. She remarks: ‘When we say that something
is certain, we bring it forward into the certainty language-game, into the arena
which is also that of doubt, presentation of evidence, challenge of evidence and

41George Edward Moore. ‘A Defence of Common Sense’. In: Contemporary British Philosophy:
Personal Statements. (2nd series). Ed. by J. H. Muirhead. London: George Allen & Unwin, 1925.

42George Edward Moore. ‘Proof of an External World’. In: Proceedings of the British Academy
25 (1939), pp. 273–300.

43Malcolm, Nothing Is Hidden, p. 216.
44Lars Hertzberg has suggested that it may even be read as an ironical remark about how we

tend to view certainty (personal conversation).
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so on.’45 Thus, she comments on the example ‘2+2 = 4’ that what we want to say
when philosophising – that ‘2+2 = 4’ is absolutely certain – does notmake sense.
Claiming that something is certain brings the meaningfulness of questioning it
in its wake:

So long as a thing is asserted or said to be known or to be certain, its denial and
debate will necessarily be appropriate. This is a logical fact. For this is how ‘I
know’ normally functions. It is how ‘It’s certain’ functions too. And it is how
‘It is absolutely certain, certain beyond any question and certain in the highest
degree’ functions as well. … We cannot close debate with asseverations of cer-
tainty.46

According to the above discussion of the difference between ‘I’m certain’ and ‘It’s
certain’, however, the latter expression does often serve to close a debate. It does
by no means close a debate simply by being uttered, it carries no such force on
its own – but it constitutes an invitation to the other to leave her doubts aside
and trust what is being said. Wolgast’s conclusion thus seems too drastic. Still,
she leaves room for the certainty of such sentences as ‘2 + 2 = 4’ by saying that
the strongest candidates for certainty are those that we do not say that we know
or that they are certain. She writes: ‘The sentence “I know that 2 + 2 = 4” is an
exceedingly odd one to actually use.The oddness of it has to do with the fact that
no one questionswhether 2+2 = 4, and that reflects in turn its perfect certainty.’47
However, it is not difficult to imagine a situation when the sentence could be
used meaningfully: when talking about counting with a child, for instance. That
the sentence ‘I know that 2+ 2 = 4’ is an odd one to use would, accordingly, not
have to do with it becoming an object of doubt if one says that one knows it or
that it is certain, but with the fact that we do not in general state things that are
obvious.

Thus, it is perhaps not a supposed exclusion from use together with ‘I’m cer-
tain’ or ‘It’s certain’ that is the key to understanding the certainty of our basic
rules of arithmetic, but the fact that they are tacitly presupposed in virtually all
of our activities. Perhaps Wolgast’s point could be given a better formulation if
one focused on the word ‘revisable’ instead of on ‘certain’. Hilary Putnam makes
a remark which bears similarities to Wolgast’s line of thought:

[I]f we cannot describe circumstances under which a belief would be falsified,
circumstances under which we would be prepared to say that -B had been con-
firmed then we are not presently able to attach a clear sense to ‘B can be revised.’
In such a case we cannot, I grant, say that B is ‘unrevisable,’ but neither can we
intelligibly say ‘B can be revised.’48

45Elizabeth Wolgast. ‘Whether Certainty Is a Form of Life’. In: The Philosphical Quarterly 37
(1987), pp. 151–65, p. 156.

46ElizabethWolgast.Paradoxes of Knowledge. IthacaNY:CornellUniversity Press, 1977, pp. 198–
99.

47Ibid., p. 194.
48Hilary Putnam. ‘RethinkingMathematicalNecessity’. In:Words andLife. Ed. by JamesConant.
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I shall elaborate on this ‘tacitly presupposed’ a little further. In On Certainty,
Wittgenstein devotes attention to such propositions which – although one has
taken no particular measures to ascertain them – seem to be beyond reasonable
doubt, although they would traditionally be classified as empirical. It is puzzling
that we do not learn them explicitly, but they still seem to be taken for granted in
much that we do, and there does not normally arise any need to check whether
they are true or not. Still, claiming to know such truths does not seem to be
analogous to knowing ordinary empirical propositions, e.g. that birch wood is
harder than pine. In the context of this discussion, Wittgenstein also discusses
simple mathematical propositions like ‘2 + 2 = 4’. They, too, are beyond doubt,
but in contrast to the other certainties, they are mathematical and one learns
them explicitly.49 Moreover, they are not proved like other mathematical pro-
positions.50 The basic rules of arithmetic (e.g. ‘2+2 = 4’) are learnt as one learns
to count, add, subtract, etc. Once one has learnt these techniques, the simple
rules fall into the background. We use them frequently, sometimes consciously,
sometimes almost unconsciously.

ConcerningMoore’s statements (but I think it captures our relation to simple
rules of mathematics too), Wolgast writes: ‘These certainties characterize our
lives, and we learn them (if that term can be applied here at all) in the very pro-
cess of growing to adulthood.We acquire these truths aswe learn to act, learn the
procedures of science and history, learn to express ourselves.’51 This status, per-
haps one could call it their certainty, is seen in the fact that they are withdrawn
from the evaluation that other propositions undergo, and instead participate in
the background apparatus that is involved in judging the things people say to
each other. That they have this status is not something we ordinarily express in
words, but it shows in the way we act. They ‘have no expression in language;
they belong to behaviour. Actions, not words, are their expression.’52 In the case
of arithmetic, this is not entirely true since they are, obviously, often expressed.
However, they too have an impact on our lives in much the same way as the
Moorean certainties in the sense that they also belong to our behaviour and find
their expression in behaviour.

In order to illustrate this, I will explore the example with the builders a bit
further.The first time they try to determine the length of the rafters, they end up

Cambridge MA: Harvard University Press, 1994, pp. 253–54.
49This is a clear difference to the certainties that form themain theme ofOnCertainty. Cf. § 152:

‘I do not explicitly learn the propositions that stand fast for me.’
50Although it is possible to prove them within an axiomatic system such as set theory, this is

something that, on the whole, very few people are aware of; yet, they have the unshakeable status
for everyone who has learnt them. Onemight on these grounds argue that, although they in some
axiomatisations appear as derived propositions, they are in practice more fundamental than the
axioms.

51Wolgast, ‘Whether Certainty Is a Form of Life’, p. 152.
52Ibid., p. 153.
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too short.The Pythagorean theoremwill tell them how long tomake themwhen
they know the distance between the wall plate and the centre of the cottage, and
the height of the ridge compared with the wall plate. These two distances will
form the legs, while the rafters form the hypotenuse of a right triangle. Now,
imagine that they double-check the calculations but arrive at several differing
results.When they finally settle for what they think is the right answer, the rafter
is too short once more. When trying to fill out the details of their discussion as
they try to come to terms with this problem, several alternatives are conceivable.

At first, they will probably assume that some mistake was made in the calcu-
lations and go over them again. If no errors are found, they may wonder if they
measured wrongly, so they measure once more. If they still cannot explain why
the rafter did not fit, theymight suspect that the building is leaning unnoticeably
and that, therefore, they are not working with a right triangle. This would mean
that the formula is not suitable for the application, although the calculations as
such are correct. If there is no problem at this point either, they may wonder:
‘Isn’t this a suitable problem to apply the Pythagorean theorem to after all? But
this is a right triangle and that’s what the theorem is about.’ At some point they
will probably give up their attempts to solve the problem and look for another
way to determine the length of the rafters.

If they are very keen on finding out why their approach did not work, they
might at some point doubt their memory: ‘Did we not remember the measures
or did they perhaps change? Was the weather extreme in some way that could
have caused the planks to expand or bend?’ The last two alternatives are highly
unlikely, but one thing they will probably not question is the validity of the basic
rules of arithmetic. In trying to locate the error they may even use the calcula-
tions as a guide. That is, they will probably not try calculating with other rules
(unless they are aware of some completely different method which would also
serve the purpose). However, they would not try to calculate the square of the
lengths differently, whereas they might use another measuring tape. One does
revise one’s opinion of many things, but not of what the correct rules of adding
are. Importantly, the builders would not have to mention this in their search for
errors: it shows in the way they behave.

It was indicated above that the rules of elementary arithmetic were beyond
doubt, and this example shows one aspect of what it means for them to be in-
dubitable.When the builders noted a discrepancy between the calculated length
of the rafter and what was actually needed for the roof, they concluded that they
had made a mistake somewhere. In their attempts to locate the mistake, they
assess various steps where mistakes are likely to be made, but they do not con-
sider the elementary rules of arithmetic among these possible sources.53 Is this

53In a similar vein, Putnam states: ‘I cannot imagine finding out that [the law of the excluded
contradiction] is false.’ Putnam, ‘Rethinking Mathematical Necessity’, p. 250.
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a consequence of the impossibility of being mistaken concerning these rules? It
is important for the problem at hand that this absence of mistakes is correctly
understood.

As mentioned, Malcolm writes that the distinctive feature of what he calls
objective certainty is that the person being certain cannot imagine any kind of
mistake about the object of the certainty. According to Malcolm, however, this
provides no guarantee that other persons will not say that she made a mistake.
He thus concludes that the notion of objective certainty, although describing
our strongest convictions, does not lead us to the philosophical concept ofmeta-
physical certainty. There is, however, an important difference between my not
being able to conceive myself as being mistaken and our not being able to treat
something as a mistake.

I am suggesting that if someone seemed to calculate ‘2+ 2 = 5’ we would not
treat this as a false belief that ought simply to be corrected, but rather as a joke,
as a slip of the tongue, as a test of our attention, or, perhaps, as a sign that the
person in question has not learnt to count properly. One might ask: what would
amistake about ‘2+2 = 4’ be like?Would it be analogous to a mistake where one
believed that a flower was blue when in fact it was red (perhaps one turned one’s
head quickly to have a look and there was a bright blue object next to it)? One
possible mistake in the case of ‘2+ 2 = 4’ would be a slip of the pen that resulted
in ‘2 + 2 = 9’ (or a careless keystroke which resulted in ‘2 + 2 = 5’). However,
there seems to be no room for a false belief about elementary arithmetic – no
room for believing that ‘2+2 = 5’. If someone tries to calculate ‘2+2 = 5’, and we
notify her of this, imaginable answers include: ‘Oh, right, I meant “2 + 2 = 4’ of
course!’ and ‘You’re paying attention, that’s good!’ If she insists that she is correct
in calculating ‘2 + 2 = 5’, we may assume she is putting on a show. Perhaps we
play along if we find it amusing, or then we may try to make her stop. If she does
not show any signs of playing a role and grows irritated by our attempts to make
her stop pretending, we will not know what to make of it. We may conclude that
she had not been taught to calculate correctly (especially if we are talking to a
child) or that she is suffering from a mental illness,54 or we may try to make her
see the inconsistencies that follows from using her rule. Thus, we can imagine
mistakes in the case of basic arithmetic, but the mistakes that we are willing
to call mistakes, e.g. a slip of the pen, are not of the kind that introduces the
uncertainty that worries us.

In her study of Wittgenstein’s On Certainty, Danièle Moyal-Sharrock distin-
guishes mistakes from anomalies.55 The example with the person who insists

54Cf. OC, § 71: ‘I should not call this a mistake, but rather a mental disturbance, perhaps a
transient one.’ The mistake in question concerns a friend who believes he lives somewhere he
does not.

55Danièle Moyal-Sharrock. Understanding Wittgenstein’s On certainty. New York: Palgrave
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upon using ‘2 + 2 = 5’ would surely count as an anomaly, not as a proper mis-
take. For something to be a mistake, there has to be a certain intelligibility to
it, Moyal-Sharrock comments with reference to the following passage from On
Certainty: ‘Can we say: a mistake doesn’t only have a cause, it also has a ground?
I.e., roughly: when someone makes a mistake, this can be fitted into what he
knows aright.’56 When we perceive something as an anomaly, she remarks, ‘it
isn’t the truth-content of my statement that would be under investigation, but
my ability to understand the words I am using or, more sadly, my sanity – I
would be under investigation.’57 One can see this illustrated in the above ex-
ample, in the attempts to make sense of the mistake as a mistake (e.g. as a slip
of the tongue), or as an anomaly (as a joke, as a symptom of idiosyncrasy or in-
sanity). If we cannot make sense of it as a mistake, it seems that we cannot treat
it as a mistake. We would, for instance, be at a loss regarding how to correct it.
Importantly, we cannot make sense of it as a mistake qua false belief.

It seems tome that when discussing the certainty of mathematics, the kind of
mistakewhichwould have philosophical consequences is the possibility of being
mistaken about mathematical propositions in the sense of holding false beliefs.
At least in the case of the simple rules under consideration now, this is not a
possibility, not a move in the language-game at all. In this sense, one could say
that mistakes are logically excluded, to use a phrase from the quote from § 194
of On Certainty. I would be hesitant to call it objective certainty, though, since I
doubt that it would be meaningful (or even possible) to try to delineate such a
concept.

The discussion of mistakes has up till now assumed that the person we are
talking to has been someone to whom we attribute full understanding of the
counting and calculating procedures that the vast majority of people learn.With
children, the situation is different, naturally, and this shows something interest-
ing about the status of, for instance, ‘2 + 2 = 4’. Children learning to count often
leave out a number in the natural number series, put them in the wrong order, or
the like. When counting objects, they sometimes point to the same object twice
saying ‘4, 5’, thus counting it twice. In trying to mimic the counting of an adult,
it is, naturally, not easy to understand which features of the procedure that are
essential for counting. Adults demonstrating a counting procedure often count
rhythmically, and the child who has noticed the rhythmic features of the adult’s
counting will perhaps find it easier to maintain that rhythm by counting an ob-
ject twice if it is difficult to find the next one to be counted. Learning to count
involves, among other things, to see which features that are essential to the pro-
cedure (counting every object exactly once) and which that are merely practical

Macmillan, 2004, p. 73.
56OC, § 74.
57Moyal-Sharrock, Understanding Wittgenstein’s On certainty, p. 74.
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(maintaining a rhythm in order to facilitate following the number series). The
point is, when one is thinking of someone learning to count, add, and so forth,
the notion of mistake is a different one from that of adults. In the case of chil-
dren learning to count, it does not sound strange to talk about a mistake with
regard to the rules of arithmetic. In some cases, wemight want to call such amis-
take a false belief; in other cases, we might say instead that the child has not yet
learnt the rule correctly (which may be different from a false belief, since there
are perhaps no beliefs present about the rule yet). Anyhow, already the learn-
ing of elementary arithmetic involves a training process and in this training it is
possible to make mistakes. It is not self-evident for the learner what the correct
procedure is.

All this means that when somebody makes a slip of the pen in doing a cal-
culation and thereby accidentally applies the wrong rule, this does not make the
rules fallible, since the rules were not followed correctly – indeed the rules were
not followed (cf. p. 15). Furthermore, we only ascribe the ability to follow the rule
to someone who does not deviate from the correct procedure (or to be precise:
only to someone whose deviations can be made sense of as simple slips).

This section has, so far, focused on the simple rules of arithmetic, but there
does not seem to be any room for doubt about theorems that have been proved
either. How should we understand the certainty of conclusions of proofs? If one
has read a proof and settled that the proof is correct – i.e. that each step is valid
and it forms a sound argument – there is no room for any doubt about the the-
orem.

This stands in stark contrast to, for instance, the possibility of doubt con-
cerning the correctness of a sentence given in a trial. The court may have closed
a case and passed judgment in accordance with correct procedures, but there
may still be doubts about the correctness of the judgement. It seems to me that
the philosophical use of ‘is certain’ with regard tomathematics is pointing to this
absence of alternatives once correct procedures have been followed.This kind of
certainty, which is related to being convinced that one has done something ac-
curately, is in turn only possible against the background of a firmly established
practice. Otherwise, it would not be possible to distinguish correct from incor-
rect procedure.

This may be a way of making sense of the claim that mathematics gives us
certain knowledge, but one has of course not pointed to some quality of math-
ematical propositions or objects, only to how we relate to mathematics. Import-
antly, one has not given an explanation of why mathematics holds this place. In
a related discussion, Wittgenstein emphasises that he has ‘not said why math-
ematicians do not quarrel, but only that they do not’.58

58PI, part II, xi, p. 192.
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In closing this chapter, I shall introduce a theme that is found Wittgenstein’s
philosophy of mathematics and which can provide an interesting shift in per-
spective on mathematics. This is the comparison between mathematical pro-
positions and rules, and I will return to it in several discussions below.

The simple rules of arithmetic are learnt and used in everyday applications,
but also to calculate more complicated things. In this respect, they are properly
called rules, since they guide our activities. This, in turn, means that knowing
them is more closely related to using them correctly than to holding proper be-
liefs. Wittgenstein emphasises this analogy with rules, for instance when he re-
marks: ‘Mathematics and logic are part of the apparatus of language, not part of
the application of language.’59 As Diamond has pointed out, there are connec-
tions also with his remarks about mathematical propositions as paradigms: that
things proved in mathematics ‘are put in the archives’. This expression derives
from his comparison of rules and propositions proved to the standard metre
rod, which is kept in an archive.60 Simon Friederich argues for an understand-
ing of mathematics as being normative by pointing to the implicit definitions of
the kind of axiom system favoured by Hilbert. That an axiom system is taken to
implicitly define the concepts of a theory can also be seen as a laying down of
the norms that govern their use.61

Stuart Shanker takes this theme as a key to understanding mathematical cer-
tainty. Indeed, Wittgenstein writes: ‘What is unshakably certain about what is
proved? To accept a proposition as unshakably certain – I want to say – means
to use it as a grammatical rule: this removes uncertainty from it.’62 Shanker’s un-
derstanding of Wittgenstein is that the latter claims that mathematical proposi-
tions are rules of syntax, not merely that they can be fruitfully compared to rules.
Being rules of syntax, Shanker remarks, means that they do not express know-
ledge; they are not empirical propositions. Since doubt, according to Shanker,
is associated with empirical propositions, doubt is logically excluded from the
mathematical domain.63 While I am hesitant to Shanker’s equating mathem-
atical propositions and rules of syntax, I do think that the difference between

59Ludwig Wittgenstein. Wittgenstein’s Lectures on the Foundations of Mathematics, Cambridge
1939. Ed. by Cora Diamond. Ithaca NY: Cornell University Press, 1976 (henceforth cited as LFM),
p. 250.

60Cora Diamond. ‘How Long Is the Standard Meter in Paris?’ In: Wittgenstein in America. Ed.
by Timothy McCarthy and Sean C. Stidd. Oxford: Clarendon Press, 2001. Cf. also the Diamond
quote on p. 13.

61Simon Friederich. ‘Motivating Wittgenstein’s Perspective on Mathematical Sentences as
Norms’. In: Philosophia Mathematica 19 (2011), pp. 1–19.

62Ludwig Wittgenstein. Remarks on the Foundations of Mathematics. Ed. by G. E. M. Ansombe,
Rush Rhees, and G. H. von Wright. 3rd ed. Oxford: Blackwell, 1978 (henceforth cited as RFM),
III § 39.

63Stuart G. Shanker. Wittgenstein and the Turning-Point in the Philosophy of Mathematics. New
York: State Universtity of New York Press, 1987, p. 71.
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mathematical propositions and empirical ones is important for the understand-
ing of mathematical certainty. As Shanker writes, ‘the certainty which charac-
terises mathematical truth is categorically as opposed to quantitatively different
from that which applies to empirical knowledge, and mathematics is not the
“most certain” of the sciences but rather, certain in a completely different man-
ner.’64 The certainty of mathematics is not of the same kind as the certainty in
empirical disciplines. And the above discussion has been an attempt to highlight
preliminarily some important features of this certainty.

Lars Hertzberg discusses the uncertainty that one sometimes feels when try-
ing to figure out what another person is feeling or thinking. This uncertainty is
often invoked as an argument in favour of a scepticism about other minds. As
Hertzberg shows, however, this occasional uncertainty and the occasional mis-
take when judging other people’s emotions do not warrant scepticism. They do
not undermine our talk of emotions although they are part of it.

Here we see what room there is for the notion that uncertainty might belong
to the character of the language game. The uncertainty does not reside in a
relation between the language game and something external to it; it is not, as
it were, a comparative notion at all. It consists, rather, in the manner in which
discussions about the right and wrong application of words are carried on, in
the forms that disagreement and criticism may take.65

One could compare this uncertainty with the certainty of mathematics. In
this thesis, I will present a picture of mathematics where certainty is not ‘a com-
parative notion’, and where certainty ‘does not reside in a relation between the
language game and something external to it’. In the end I hope I can say: ‘Herewe
see what room there is for the notion that certaintymight belong to the character
of the language game.’

64Ibid., p. 287.
65Lars Hertzberg. ‘“The Kind of Certainty is the Kind of Language Game”’. In: Wittgenstein:

Attention to Particulars. Essays in Honour of Rush Rhees (1905–89). Ed. by Dewi Z. Phillips and
Peter Winch. London: Macmillan, 1989, p. 101.





3. Knowledge
Yet anybody who has the least acquaintance with geometry will not deny
that such a conception of the science [that it compels the soul to turn her
gaze towards that place, where is the full perfection of being] is in flat con-
tradiction to the ordinary language of geometricians. … They have in view
practice only, and are always speaking in a narrow and ridiculous manner,
of squaring and extending and applying and the like … whereas knowledge
is the real object of the whole science.

(Plato, The Republic)1

Of course, in one sense mathematics is a branch of knowledge, – but it is
also an activity.

(Ludwig Wittgenstein, Philosophical Investigations)2

In the previous chapter, the certainty of mathematics was portrayed as belong-
ing to the practice of mathematics rather than being a feature of mathematical
objects or propositions. This portrayal is not to be understood as an explanation
of why mathematics is certain, but rather as an alternative outlook on the issue.
The question ‘Why is mathematical knowledge certain?’ was rejected in favour
of an inquiry into the meaning of the notion ‘mathematical certainty’. However,
the phrase ‘mathematical knowledge’ was not subjected to scrutiny. That is the
aim of this chapter.

What kind of knowledge does mathematics give us? It seems that one answer
announces itself readily:mathematics gives us knowledge of numbers, functions,
sets, etc. YehudaRav even labels this the standard view: ‘Indeed the standard view
in philosophical writings seems to be that mathematical knowledge resides in a
body of theorems (propositions, sentences), whereas the function of proofs is to
derive theorems from first principles, true axioms, and thus confer truth on the
theorems.’3 According to this view, this knowledge is expressed in theorems and
other mathematical propositions and to have such knowledge is to be able to
form true propositions. A contemporary expression of this view is found in Mi-
chael D. Resnik who writes: ‘Taken literally and seriously, mathematics affirms
truths about numbers, functions, sets, spaces and other entities, which are as
real as rocks and yet inhabit neither space-time nor our minds.’4 A neat picture

1Plato, The Republic, p. 527a.
2PI, xi, p. 193.
3Yehuda Rav. ‘Why Do We Prove Theorems?’ In: Philosophia Mathematica 7 (1999), pp. 5–41,

p. 15.
4Michael D. Resnik. ‘Proof as a Source of Truth’. In: Proof and Knowledge in Mathematics. Ed.
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of mathematics and mathematical knowledge emerges: the discipline appears as
a collection of true propositions about numbers, functions, sets, algebras, etc.
I will refer to this as the ‘body of truths conception’. Interestingly, these truths
may be described in different ways: as being a priori, necessary, eternal, about
mathematical objects, etc. Accordingly, a wide range of philosophical positions
in the philosophy of mathematics seem to be reconcilable with this picture. Per-
haps one could go so far as to say that it has given rise to a large part of the
philosophy of mathematics from the Grundlagenstreit onward.

If one approaches this question by considering instead what a person who is
knowledgeable in mathematics knows, the above answer will probably still be a
good description. However, it will not be the whole truth. In addition, one will
find a host of other descriptions that fit the picture. It will also be correct to say
that she or he knows a set of calculating techniques and proof strategies, how
to apply certain techniques to solve practical problems, how to solve exercises,
how to formulate exercises, and how to judge what is beautiful mathematics. He
or she will also have some idea about what the major problems in contemporary
mathematics are and which the important books and journals are.

In philosophy, concise and general answers or theories are often favoured and
this preference may result in a temptation to view the items on this list as mere
practical consequences of the knowledge of numbers, functions, etc. The strong
normative flavour of Resnik’s choice of words ‘literally and seriously’ may serve
as an example of this attitude. It is implied that other approaches tomathematical
knowledge will be dismissed as not being serious about mathematics.

The point of discussing the body of truths picture is that I see it as an unar-
ticulated assumption in much philosophy of mathematics. It need not be prob-
lematic – after all, the impression that university level textbooks in mathematics
gives is one of a body of truths. However, if it guides one’s thinking on the notion
of certainty and of knowledge, it is potentially misleading. If knowledge is mani-
fested in propositions about abstract objects, answers to the question about the
nature of the peculiar certainty in mathematics will likely focus on such things
as the nature of its propositions (e.g. necessary propositions), on the nature of its
objects (objects that allow for infallible knowledge), on our relation to these ob-
jects (postulating a special faculty like intuition), and so on. Indeed, this is how
much of contemporary philosophy ofmathematics is done – one approaches the
problem through these openings, abstractly so to speak, while forgetting about
everyday aspects of learningmathematics, about solvingmathematical problems
and reaching results.

The present chapter will, firstly, discuss this picture of mathematical know-
ledge: its historical roots, and how it has come to shape the contemporary dis-

by Michael Detlefsen. London: Routledge, 1992, p. 7.
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cussion. Secondly, I will try to nuance the picture of knowledge in mathematics
by criticising two central features of the contemporary discussion: (1) the idea
that truth in mathematics is established through reference to mathematical en-
tities, and (2) the attempts to achieve a philosophical aim in the philosophy of
mathematics through mathematical means. In the end, there emerges a picture
of mathematics that will be more in line with the notion of certainty that the
ended the previous chapter.

3.1 From the Science of Quantity to a Body of Truths
I shall begin by sketching a historical background to the body of truths concep-
tion. The point of this sketch is to highlight some developments in mathematics
and in philosophy that make this picture a natural outlook. This will also serve
to indicate in what way philosophy of mathematics tends to look uponmathem-
atics as a body of truths.

Mathematics was labelled ‘the science of quantity’ by Aristotle, and this de-
scription seems to have been part of the discipline’s self-image until, roughly, the
nineteenth century. Moritz Epple summarises: ‘This science was understood to
consist of the geometric and algebraic study of numbers and continuous mag-
nitudes such as lengths and weights or their “abstract” counterparts’.5 Another
noteworthy feature of mathematics’ self-understanding during the centuries be-
fore the nineteenth is that it was seen as part of the general project of understand-
ing the physical world. During the nineteenth century, several lines of develop-
ment necessitated a re-evaluation of these two features. It seems natural that
mathematics of earlier centuries, understood as the science of quantity, would
be regarded as a body of truths. That the axiomatic structure of Euclidean geo-
metry was considered as an ideal for the discipline (and for science in general)
probably added to this impression. Be that as it may, what is important for the
present chapter is that while mathematics underwent major changes, the im-
age of the discipline as a body of truths did not. Only, it was not a body of truths
about quantities anymore, and this new absence of a natural subject matter must
only have spurred philosophical bewilderment.6 Russell, writing in his Introduc-
tion toMathematical Philosophy some decades after these changes, expresses this
philosophical unclarity clearly:

It used to be said that mathematics is the science of ‘quantity.’ ‘Quantity’ is a
vague word, but for the sake of argument we may replace it by the word ‘num-

5Moritz Epple. ‘The End of the Science of Quantity: Foundations of Analysis, 1860–1910’. In:
A History of Analysis. Ed. by Hans Niels Jahnke. Providence RI: American Mathematical Society
and London Mathematical Society, 2003, p. 291.

6It may be worth mentioning that describing mathematics as a body of truths is potentially
misleading even when one is considering mathematics of the time before the label ‘science of
quantity’ fell into disrepute.
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ber.’ The statement that mathematics is the science of number would be untrue
in two different ways. On the one hand, there are recognised branches of math-
ematics which have nothing to do with number … On the other hand … it has
become possible to generalise much that used to be proved only in connection
with numbers. … It is a principle in all formal reasoning, to generalise to the
utmost, since we thereby secure that a given process of deduction shall have
more widely applicable results …

We are thus brought face to face with the question: What is this subject,
which may be called indifferently either mathematics or logic?7

I will review some of these changes and the way they affected the conception
of mathematics.

Accounts of the changes that took place in the nineteenth century commonly
mention the development of non-Euclidean geometry by Carl Friedrich Gauss,
János Bolyai, and Nicholai Lobachevsky. The fact that alternative geometries
could be formulated challenged the idea that mathematics dealt with the geo-
metric features of physical space. If there were different geometries that seemed
internally consistent but contradicted each other, what were the ones not de-
scribing physical space about? This contributed to the separation of mathem-
atics from the natural sciences, as at least geometry was concerned with more
than just physical space. A second prominent theme is the suspicion against geo-
metrical intuition that led mathematicians such as Bernhard Bolzano, Augustin
Louis Cauchy, and Karl Weierstrass to develop definitions of, for example, limit
and continuity.These definitions enabled a symbolic treatment of analysis which
previously had used such notions as infinitesimals and relied on a visual intuition
of the functions studied. A third theme is the change in the conception of the
real numbers sometimes referred to as the arithmetisation of analysis.8

The new definitions are often described as arising out of a need for a greater
degree of rigour. The focus on rigour would be interesting to investigate further,
but would lead too far astray. Jesper Lützen comments that one could also view
the work on the definitions as a natural continuation of the developments that
had taken place earlier.9 Mathematics evolved and the hitherto established tech-
niques did not give any clear-cut answers to the questions that it became possible
to ask, and, therefore, one had to extend the conceptual toolbox.

One example of these technical developments is Bolzano’s proof of the in-
termediate value theorem of 1817. John Stillwell emphasises this proof as an im-

7Bertrand Russell. Introduction to Mathematical Philosophy. London: George Allen & Unwin,
1919, pp. 195–96.

8Cf. Giaquinto, The Search for Certainty; John Stillwell. ‘Logic and the Philosophy of Math-
ematics in the Nineteenth Century’. In: Routledge History of Philosophy. Vol. 7: The Nineteenth
Centuty. Ed. by C. L. Ten. London: Routledge, 1994.

9Jesper Lützen. ‘The Foundation of Analysis in the 19th Century’. In: A History of Analysis. Ed.
by Hans Niels Jahnke. Providence RI: AmericanMathematical Society and LondonMathematical
Society, 2003, p. 155.



3. Knowledge 41

portant reason for the growing interest in the nature of the real numbers. He
remarks that, in his proof, Bolzano made use of the least upper bound prop-
erty.10 Bolzano’s reliance on this assumption made mathematicians aware of the
fact that there was more to the real numbers than was obvious in the notion of
continuous quantity, which, in turn, relied upon the geometric visual imagery
of a line segment. Was the least upper bound property something that needed
a proof? Geometrical intuition tells one that the least upper bound property is
self-evident. Lützen, for his part, emphasises that Fourier series spurred such in-
vestigations. He alsomentions that several of themathematicians involved in the
attempts to give new definitions of the real numbers, such as Cauchy, Richard
Dedekind, Charles Meray, and Weierstrass felt that teaching the foundations of
analysis was awkward when a technically satisfactory definition of the real num-
bers was lacking.11

Thedevelopment of mathematics thus forcedmathematicians to inquire into
the nature of the real numbers, for technical as well as for philosophical reasons.
Work on the real numbers further estranged mathematics from the science of
quantity view. Epple distinguishes three different kinds of attitude towards the
clarificatory work on the real numbers: some felt that the notion of quantity had
to be retained as a basis for the concept real number (e.g. Hermann Hankel),
while others tried to define the real numbers in terms of natural numbers and ra-
tional numbers (e.g. Dedekind, Georg Cantor, Weierstrass, in general the arith-
metisation of analysis). The third attitude, which Epple labels ‘formalistic’, lets
the properties of the real numbers emerge implicitly from a collection of axioms.
It is associated with JohannesThomae andHilbert.12 This third stance avoids the
problem by not taking a stand on the issue of the nature of the real numbers, and
it has become the standard way of introducing analysis in introductory courses.
This meant that the meaning of the notion of real number changed in a way that
was foreign to the view of mathematics as a science of quantity.

Through his work on the real numbers and functions in analysis, Georg Can-
tor was led to study sets of points or sets of real numbers. As he developed set
theory, mathematics had yet another kind of objects that did not suit the science
of quantity view.

In consequence, mathematics could no longer be thought of as the science
of quantity. In general, the nineteenth century was a period of growing self-

10Stillwell, ‘Logic and the Philosophy ofMathematics in theNineteenth Century’, p. 255. A set of
real numbers that has an upper bound also has a least upper bound. Inmodern courses in analysis,
this is sometimes taken as an axiom of the real numbers and sometimes proved as a theorem if
it is replaced by an axiom expressing the completeness of the real numbers in some other way,
e.g. through postulating the convergence of bounded sequences. Cf. Colin W. Clark. Elementary
Mathematical Analysis. 2nd ed. Pacific Grove CA: Brooks/Cole, 1982.

11Lützen, ‘The Foundation of Analysis in the 19th Century’, p. 155.
12Epple, ‘The End of the Science of Quantity’, pp. 301, 314.
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awareness among the sciences. It became important to be able to circumscribe
the objects and methods of investigation of one’s discipline. For mathematics,
in contrast, this coincides with a greater unclarity precisely with regard to these
matters. What are the objects of investigation for mathematics? This general un-
clarity with regard to the subject matter is reflected in other and more general
investigations into the nature of number too. Dedekind discussed the question
of the nature of the natural numbers in his Was sind und was sollen die Zahlen?,
and, in Grundlagen der Arithmetik, Gottlob Frege expressed his worry: ‘Yet, is
it not a scandal that our science should be so unclear about the first and fore-
most among its objects, and one which is apparently so simple?’13 In the 1930s,
Bernays comments on the situation:

The problematic, the difficulties, and the differences of opinion begin rather
at the point where one inquires not simply about the mathematical facts, but
rather about the grounds of knowledge and the delimitation of mathematics.
These questions of a philosophical nature have received a certain urgency since
the transformation of the methodological approach to mathematics experi-
enced at the end of the nineteenth century.14

Towards the end of the nineteenth century, there emerged several attempts
at axiomatising different parts of mathematics. Dedekind and Giuseppe Peano
presented axiomatic systems for arithmetic, Hilbert for Euclidean geometry and
analysis. In order to carry out his logicist programme, Frege provided an axiom
system for logic. The systems of Dedekind, Peano, and Hilbert were of the form-
alistic kind mentioned above, in that they did not try to define beforehand the
objects that the systems treated, but rather let the properties of the objects be
given through the axioms, implicitly. As this became something of a standard
view of mathematical theories, the worry about the objects of study could be
forgotten for a while. Mathematics dealt with whatever objects that satisfied the
axioms. Thomae expresses this clearly: ‘The formal standpoint relieves us of all
metaphysical difficulties, this is the benefit it offers to us.’15 Increasing attention
was given the systems as such, however. An expression of this is Hilbert’s at-
tempts to prove the consistency of axiomatic systems, and it also enabled a view
like the one expressed by Curry: ‘mathematics is the science of formal systems.’16

When viewing mathematics thus changed with a philosophical eye, it will,
even more than before the changes described above, appear as a structured sys-
tem of propositions, as a body of truths. This new self-image also appeals to

13Gottlob Frege.TheFoundations of Arithmetic: A Logico-Mathematical Enquiry into theConcept
of Number. 2nd ed. Oxford: Blackwell, 1953, p. ii.

14Paul Bernays. ‘The Philosophy of Mathematics and Hilbert’s Proof Theory’. In: From Brouwer
To Hilbert. The Debate on the Foundations of Mathematics in the 1920s. Ed. and trans. by Paolo
Mancosu. New York: Oxford University Press, 1998, p. 234.

15Thomae, quoted in: Epple, ‘The End of the Science of Quantity’, p. 301.
16Curry, ‘Remarks on the Definition and Nature of Mathematics’, p. 204.
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philosophicallymindedmathematicians whowant to retain the picture ofmath-
ematics as a science among others with its own objects and methods of invest-
igation. In this way, the body of truths picture allows for a continuity in the way
one regards mathematics, although so much about mathematics changed dur-
ing the nineteenth century.17 In addition, the foundational work of logicism (in
particular Russell’s and Whitehead’s Principia Mathematica) and axiomatic set
theory made it clear that mathematics could be reduced to an axiomatic system
that is based on relatively few concepts. These discoveries also strengthened the
view of the totality of mathematics as a unified structure.

It seems that the problems about the nature of the objects of investigation are
best described as having been postponed during the time of the foundational
programmes. These questions again attracted attention towards the middle of
the twentieth century. Perhaps it is fair to say that the newly discovered para-
doxes took most of the attention and that there was an anticipation to see what
would come out of the foundational programmes that channelled efforts into
technical work on the programmes. Had this reduction fulfilled all the philo-
sophical demands that were advanced at the turn of the twentieth century, it
is possible that much of the philosophical problems about the foundations of
mathematics would have ceased to worry philosophers. However, the reduc-
tion of mathematics to logic, although technically possible, had to make use of
axioms that could not be regarded as self-evidently true propositions of logic.
Moreover, as Gödel proved, there were propositions that were neither provable,
nor disprovable in the systems employed by logicists and formalists. Finally, it
was not possible to prove that the axiom systems employed in the reductionwere
consistent as Hilbert had requested.

The discussions of the decades following Gödel’s results were, in part, oc-
cupied with sorting out the heritage from the foundational programmes. Two
issues that are central to the dynamic of the body of truths picture are worth
highlighting: (1) the difference between the truth and the provability of a pro-
position and (2) the successful reduction of mathematics to set theory.

Before the formalist programme in the foundations of mathematics, there
were no reason to regard the concepts ‘provable’ and ‘true’ to be different. By
focusing on provability, the formalists were able to continue the formalistic ap-
proach to themathematical objects discussed above. However, the example sup-
plied by Gödel, and also by Alfred Tarski, opened a gap between the concepts. If

17The emphasis with which the term ‘classical mathematics’ is often uttered is telling. What is
labelled ‘classical’ is, as Stenlund remarks, the mathematics that resulted from the changes that
took place in the nineteenth century, and it is thus not classical in the sense that it is old. The
choice of adjective, however, signals a desire to connect with mathematics of earlier centuries.
Sören Stenlund. ‘Hilbert and the Problem of Clarifying the Infinite’. In: Logicism, Intuitionism
and Formalism: What Has Become of Them? Ed. by Sten Lindström et al. Dordrecht: Springer,
2009, pp. 495–96.
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there were propositions that could neither be proved nor disproved in a formal
system, and the principle of excluded middle entails that either the proposition
or its negation is true, then the two concepts do not coincide. Tarski mentions
this as an explicit reason for his devising an account of the concept ‘truth’.18

The new branch of model theory that emerged from Tarski’s investigations
added a new flavour to the body of truths picture that has proved to be very se-
ductive. Mathematics appears as a collection of formal axiomatic systems whose
propositions are true in various models. The theories are about these models.
Even if the formalistic view of mathematics in the beginning had the benefit of
eliminating abstract objects, it actually invited this problem in a new form by
stressing that the theories could be true about anything satisfying the axioms.

The reduction of mathematics to set theory also raises philosophical prob-
lems because the ontological status of sets was (and still is) unclear. Adding to
this puzzle, Gödel speaks of a special faculty, an intuition, by which we appre-
hend sets (see the quote on p. 15). Thus, he puts forward a possibility of gaining
knowledge in mathematics which is fundamentally different from the one im-
plicit in the formalist and logicist programmes, which emphasised proofs.

From these two issues, there emerges a picture of mathematics as a body (or
a collection of bodies) of structured propositions, and they are true about cer-
tain abstract things. This is a suggestive picture of mathematics, and it appears
almost self-evident from a contemporary perspective. Nevertheless, it tends to
leave other aspects of mathematics in the shadow. Questions of practice, skill,
and judgment are, if not forgotten, at least pushed aside to the category of non-
essential side-effects. Moreover, as philosophy tends to disregard complexities
arising out of the commonplace – perhaps claiming that such particularities are
not relevant for the general understanding that philosophers aspire to – there is
a strong incentive to continue this neglect.

I will end this section by giving two quotes from the 1950’s that express the
atmosphere that I am trying to describe. In the article ‘Remarks on the Defini-
tion and Nature of Mathematics’ from 1954, Curry makes the following remark:
‘[Mathematics] is a body of propositions dealing with a certain subject matter;
and these propositions are true insofar as they correspond with the facts.’19 Mor-
ris Kline gives the following characterisation in his Mathematics in Western Cul-
ture: ‘Mathematics is a body of knowledge. But it contains no truths.’20 The ad-
dition that it contains no truths is a consequence of the view that there are no
mathematical objects, and hence nothing that the propositions of mathematics

18Alfred Tarski. ‘The Concept of Truth in Formalized Languages’. In: Logic, Semantics,
Metamathematics. Papers from 1923 to 1938. Trans. by J. H. Woodger. Oxford: Clarendon Press,
1956, p. 186.

19Curry, ‘Remarks on the Definition and Nature of Mathematics’, p. 202.
20Morris Kline. Mathematics in Western Culture. Oxford: Oxford University Press, 1953, p. 9.
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could be true or false about.
In the body of truths picture as it has been sketched above, there are two

strands, one stressing the view of mathematics as a structure of propositions and
the other stressing mathematics as a collection of truths about abstract objects.
There is certainly something correct about both of these views; they draw our
attention to features that are central to mathematics. The body of truths concep-
tion becomes troublesome, however, when it is allowed to guide one’s thinking
as one is trying to come to terms with philosophical problems about mathemat-
ics and one thereby forgets other features that are equally central. It is due to the
presence of both of these two strands that realism as well as anti-realism are re-
concilable with the body of truths picture. Arguably, the debate between realism
and anti-realism can also be seen as consequence of this picture.

3.2 Benacerraf and the Contemporary Discussion
When it comes to shaping the contemporary discussion, two philosophers are
worth mentioning. In 1951, Quine’s ‘Two Dogmas of Empiricism’21 questioned
the division of truths into analytic and synthetic, and, as a consequence, the lo-
gical empiricist view that mathematical propositions were analytically true.22 In
1965, Paul Benacerraf ’s ‘What Numbers Could Not Be’ added to the philosoph-
ical worry concerning the reduction of mathematics to set theory. He argued
that since there are several different ways of defining the natural numbers as
sets, numbers must be something other than sets.23 Thus, Quine and Benacer-
raf both contributed to the renewed interest in the problems of the nature of
mathematical knowledge and mathematical entities.

Even more important, however, is Benacerraf ’s ‘Mathematical Truth’, pub-
lished in 1973. When trying to understand the reason for its impact on sub-
sequent philosophy of mathematics, the above mentioned shift of focus from
foundational to ontological and epistemological issues provides an important
clue. Benacerraf ’s article diagnoses a worry that runs through much of the dis-
cussion in the decades following Gödel’s incompleteness proofs and the relin-
quishment of the logical empiricist view of mathematics following Quine’s writ-
ings.

21Willard Van Orman Quine. ‘Two Dogmas of Empiricism’. In: Philosophical Review 60 (1951),
pp. 20–43.

22A clear expression of this view is found in Carl G. Hempel: ‘[T]he validity of mathematics
rests neither on its alleged self-evidential character nor on any empirical basis, but derives from
the stipulations which determine the meaning of the mathematical concepts, and that the pro-
positions of mathematics are therefore essentially “true by definition”.’ Carl G. Hempel. ‘On the
Nature of Mathematical Truth’. In: Philosophy of mathematics. Selected readings. Ed. by Paul Ben-
acerraf and Hilary Putnam. 2nd ed. Cambridge: Cambridge University Press, 1983, p. 380.

23Paul Benacerraf. ‘What Numbers Could Not Be’. In: Philosophical Review 74 (1965), pp. 47–73.
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Benacerraf argues that a satisfactory account of ‘truth’ in mathematics has
to meet two conditions: (1) It has to be consistent with the possibility of gain-
ing knowledge of such truths, and (2) it has to be an account of truth and not
something else. Most accounts give priority to one of these conditions at the ex-
pense of the other, he writes. The accounts that purport to explain how we can
have knowledge in mathematics usually equate truth with derivability in an ax-
iomatic system. On such an account, it is easy to see how one comes to know the
truths of mathematics – we can prove many things and thus we have knowledge
about them. Benacerraf considers it questionable, however, that we actually want
equate derivability in a system and truth.24

He thinks that ‘any satisfactory account of truth, reference, meaning, and
knowledge must embrace them all andmust be adequate for all the propositions
to which these concepts apply.’25 Benacerraf is thus requesting an account of
truth that at the same time explains what reference, meaning, and knowledge
is, not only in mathematics but in other contexts as well. He admits that there
is no such general account of truth for all of language. Still, he considers it a
minimum requirement that any account should explain truth in mathematics
in a way that is analogous to truth in other regions of language. The account
he prefers is Tarski’s. This is in essence a ‘referential semantics’ – according to
Benacerraf – in that it explains the truth of a proposition as a correspondence
betweenwhat is expressed by it and the domain of discourse aboutwhich it states
something.26

Whether the above description is a fair rendering of Tarski’s work on the
concept of truth is a question that I will return to in section 3.5. Still, in ‘The
Concept of Truth in Formalized Languages’, Tarski gives truth conditions for
any formula of the (first order) calculus of classes. He shows that this is possible
for predicate logic so long as the predicates are of finite order (the number of
variables of the predicates, however, may be infinitely many). Since it is com-
monly held that it is possible to express the logical structure of propositions of
various kinds of discourse in the language of predicate logic, there is a certain
plausibility to the idea that Tarski’s account could provide truth conditions for
all kinds of propositions.27 This seems to be Benacerraf ’s reason for preferring

24Benacerraf, ‘Mathematical Truth’, pp. 661, 666–67.
25Ibid., p. 662.
26Ibid., pp. 661, 667.The thought that a referential semantics putsmathematics on a par with the

sciences with regard to truth is clearly expressed by Benacerraf and Putnam in their introduction
to the collection Philosophy of mathematics: Selected readings: ‘A referential semantics exhibits the
propositions of physics as being “about” rigid bodies, fields, electrons; those of number theory as
about numbers; set theory about sets. They are true if and only if the relevant entities have the
properties ascribed to them’ (p. 22).

27Tarski, however, rejects this. See p. 164 of ‘The Concept of Truth in Formalized Languages’.
The impossibility of defining ‘truth’ for ordinary language (due to the liar-paradox) is the reason
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an account of mathematical truth in terms of reference and, furthermore, the
reason that he hopes for a unified semantics for all of language. That, however,
may not be a reasonable thing to wish for, but I shall not argue the issue here.

Still, an account that proceeds from a referential semantics finds difficulties
when it comes to explaining how it is possible to have knowledge about math-
ematical objects. We do not, after all, have any causal interaction with such ab-
stract objects that mathematics deals with. For Benacerraf, having knowledge is
a matter of the objects of knowledge somehow interacting with our sensory sys-
tem.28 This problematic is often referred to as ‘Benacerraf ’s dilemma’: accounts
that give priority to the possibility of having knowledge fail with regard to ‘truth’,
while accounts that live up to Benacerraf ’s requirements on accounts of truth fail
to explain how it is possible to know such truths.29

The impact of Benacerraf ’s 1973 article lies, not so much in that it convinced
philosophers to adopt some one particular position, but rather in how it has
shaped the subsequent discussion. After Benacerraf, manywriters on the subject
have felt it necessary to address his dilemma by arguing for one of its horns. The
view is then defended in such a manner as to overcome the dilemma.

This has put the focus of contemporary philosophy of mathematics on the
ontological status of mathematical objects. Since Benacerraf sides with realist
views (or standard as he calls them), the problem of gaining access to math-
ematical objects appears as the main problem. In contemporary philosophy of
mathematics we find positions such as Platonism, naturalism, structuralism, and
nominalism.

These are often identified and distinguished according to the answer they
give to the question about the nature of mathematical objects. Their respective
approaches to such problems have many similarities, and, taken together, they
constitute the mainstream in contemporary philosophy of mathematics.

he restricts his attention to the first order calculus of classes.
28‘I favor a causal account of knowledge on which for X to know that S is true requires some

causal relation to obtain between X and the referents of the names, predicates, and quantifiers of
S.’ Ibid., p. 671. Interestingly, the problem Benacerraf draws attention to does not depend on this
particular account of knowledge. Even if one has another idea of how one gains knowledge about
mathematical objects than the causal account favoured by Benacerraf, it may still be a problem to
account for the possibility of referring to mathematical objects. See Leon Horsten. ‘Philosophy of
Mathematics’. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Spring 2015.
url: http://plato.stanford.edu/archives/spr2015/entries/philosophy-mathematics/.

29Benacerraf labels the kinds of account ‘standard’ and ‘combinatorial’ views, respectively. An
example of a standard view would be Platonism or realism, whereas some kind of anti-realism
(formalism, constructivism or conventionalism) could pass for a combinatorial position. A pe-
culiarity of this labelling is that Benacerraf gives Quine as an example of a philosopher who holds
a combinatorial view because of his naturalist position on mathematics. However, Quine’s indis-
pensability argument (i.e. thatmathematical objects exist because they are indispensable to science
and science offers the best explanation of the world) is considered one of the strongest arguments
in favour of realism in mathematics.
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In Resnik’s article ‘Mathematics as a Science of Patterns: Ontology and Refer-
ence’, we find him introducing his argument for structuralismwith the following
passage:

I seek an account of mathematics in which the logical forms of mathematical
statements are taken at face value and their semantics is standardly referential,
say, in the manner of Tarski. This together with fairly uncontested assumptions
entails that mathematics is a science of abstract entities, that is, immaterial and
nonmental things which do not exist in space and time. So I am a platonist.30

Immediately following this passage, Resnik reviews the problem that Benacer-
raf ’s dilemma poses for a realist (and a fortiori for a Platonist).31 Then he goes
on to explain how his structuralism avoids the problems.

Stewart Shapiro, too, lets Benacerraf ’s two problems influence the present-
ation of his version of structuralism. The arguments that address the problems
have a prominent position in his Philosophy of Mathematics: Structure and On-
tology, and Shapiro asserts that his version of structuralism is a realist position.32

Mark Balaguer claims that Bencerraf ’s dilemma presents themost serious ar-
gument against Platonism. His argument for what he calls ‘full-blooded platon-
ism’ (i.e. the view that all mathematical objects that are possible actually exist)
in Platonism and Anti-Platonism in Mathematics is constructed around coun-
tering the problem of gaining knowledge of causally inert abstract objects. He
reviews earlier attempts to meet this challenge and concludes that they are not
successful, while full-blooded platonism is:

[K]nowledge of the consistency of amathematical theory – or any other kind of
theory, for that matter – does not require any sort of contact with, or access to,
the objects that the theory is about. Thus, the Benacerrafian objection has been
answered: we can acquire knowledge of abstract mathematical objects without
the aid of any sort of contact with such objects.33

30Michael D. Resnik. ‘Mathematics as a Science of Patterns: Ontology and Reference’. In: Noûs
15 (1981), pp. 529–50, p. 529.

31Theposition structuralism is also conceived as an attempted solution to the problem put forth
in Benacerraf ’s 1965 paper. A conclusion reached in this paper is that one cannot determine the
objects of mathematics any closer than up to isomorphism. The example Benacerraf gives is the
definition of the natural numbers in terms of sets using either Ernst Zermelo’s or John von Neu-
mann’s definition. Since the numbers that the definitions give rise to are isomorphic, there is no
way to tell which definition correctly captures the natural numbers (if ‘correct’ is even appropriate
in the context).

32Stewart Shapiro. Philosophy of Mathematics: Structure and Ontology. New York: Oxford Uni-
versity Press, 1997. Shapiro calls his position ante rem structuralism. In structuralism, mathemat-
ical objects are identified with positions in a structure, and the features that mathematical objects
have are due to the relations that they have to other positions in the structure. A question that
Shapiro discusses is whether structures exist as such even if no concrete objects instantiate the
structure or if a structure can be said to exist only if there exists a collection of objects form-
ing such a structure. The label ‘ante rem’ signifies the view that structures exist before concrete
instantiations.

33Mark Balaguer. Platonism and Anti-Platonism in Mathematics. New York: Oxford University
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Mary Leng discusses so called algebraic views of mathematics and contrasts
these with assertory views (the terms are borrowed from Geoffrey Hellman).
The label ‘algebraic’ applies to different kinds of positions in the debate about
the ontology ofmathematics; it signifies the view that the objects ofmathematics
and their qualities emerge implicitly from the axiom systems of the mathemat-
ical theories. This is a continuation of the formalistic approach to the natural
numbers mentioned above in connection with Hilbert and Thomae. Leng finds
examples of algebraic views within all the major positions: structuralism (e.g.
Shapiro’s ante rem structuralism), Platonism (e.g. Balaguer’s full-blooded ver-
sion), and nominalism (e.g. Hartry Field’s fictionalism), and she claims that the
motivating factor behind these views is the epistemic horn of Benacerraf ’s di-
lemma.34

That Benacerraf ’s article gained so much attention is, I think, a consequence
of the renewed interest in ontological and epistemological issues that followed
uponGödel’s,Wittgenstein’s, Quine’s, and Benacerraf ’s ownwritings on the sub-
ject. Many felt that the dilemma spoke to them with such an urgency that it was
allowed to shape a large part of the subsequent discussion.That the dilemmawas
regarded as such an important issue is, I would argue, a consequence of the fact
that the body of truths picture runs as a chorus through so much of twentieth
century philosophy of mathematics. In hindsight, it seems that Benacerraf only
cemented its grip.

3.3 Two Perspectives on Mathematics
The perspective that concluded chapter 2 – that certainty is not to be viewed as
something resulting from the properties of objects or propositions, but rather
as a feature of the way we relate to mathematical propositions, rules, and meth-
ods – suggests a break with the picture of mathematics as a collection of true
propositions. If the fact that learning mathematics also involves learning a tech-
nique, acquiring a certain proficiency is taken into consideration, the notion of
mathematical knowledge will be seen to include such notions as skill and ability.

We tend to think ofmathematics, on the one hand, as a body of truths and, on
the other hand, as a technique, a doing. I suspect that the first alternative would
be predominant among persons trained inmathematics or logic, while the other
probably is more common among persons with no formal education in math-
ematics. Both of these associations pick out important features of mathematics.

Press, 1998, chapter 2, quote on pp. 48–49.
34Mary Leng. ‘“Algebraic” Approaches to Mathematics’. In: New Waves in Philosophy of Math-

ematics. Ed. by Otávio Bueno and Øystein Linnebo. Houndmills, Basingstoke: Palgrave Macmil-
lan, 2009. Interestingly, many of the articles in the collection New Waves in Philosophy of Math-
ematics deal with the Benacerraf problem, and this shows that it is still considered an important
issue.
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The body of truths conception accords with the fact that this is how themajority
of books in mathematics are written: propositions are stated briefly, followed by
a, possibly elaborate, proof. In textbooks, these propositions are also arranged
hierarchically starting with the most basic ones, advancing to more and more
remote consequences of these as the text continues. This has been the standard
since Euclid’s Elements and is the language of the science mathematics.

Nevertheless, if this aspect of the discipline is allowed to dominate, the do-
ing of mathematics appears to happen alongside this body of truths, as a con-
stant relating or connecting to it. Calculating and inferring correctly becomes
the successful adhering to these truths. There is a risk that one, as Wittgenstein
expresses it, ‘nourishes one’s thinking with only one kind of example’.35 Math-
ematics is constantly thought of as a body of truths, and ‘a piece of mathematics’
is exemplified, not by, say, the concrete struggle with a difficult proof, but by the
theory of, say, Hilbert spaces.

When doingmathematics, on the other hand, there is no perceiving of math-
ematical truths but a constant assessing: ‘Is this in accordance with this rule?’,
‘Is this a possible strategy?’, ‘Is this a correct application of this theorem in this
case?’, ‘Is this analogous to that?’, ‘Can I do like this?’, etc. One makes decisions
to try certain techniques, to go along in a particular fashion, to accept certain
results; one realises that one has made mistakes and tries to correct them, etc.36

Anobjection to this description could be that, while it aptly portrays the prac-
tice of proving and calculating, it is not part ofmathematics proper butmerely of
the struggle to find the true propositions of mathematics. In analogy, it could be
argued that the carpentry that produced the shelf is not part of the shelf; indeed,
we can understandwhat a shelf is andmake use of it without bothering about the
toil behind its coming into being. Now, while it may be true that we can have
full benefit of the shelf without knowing anything about carpentry, this is not
true in the case of theorems. Understanding a mathematical theorem involves
knowing the work behind it, most importantly the proof of it.

We find Wittgenstein and G. H. Hardy agreeing on this point (although they
disagreed on many things in the philosophy of mathematics): ‘If you want to
know what is proved, look at the proof ’ writes Wittgenstein;37 and Hardy, with
an air of self-evidence, briefly remarks: ‘in the theorems, of course, I include the
proofs’.38 (I shall return to these aspects of mathematical proof in chapter 5.)
This understanding is furthered still if one knows what problems the theorem

35PI, § 593.
36These features of the practice of mathematics are illustrated by the dialogue in the first part

of Lakatos’s Proofs and Refutations.
37Ludwig Wittgenstein. Philosophical Grammar. Ed. by Rush Rhees. Oxford: Blackwell, 1974

(henceforth cited as PG), p. 369.
38G.H.Hardy.AMathematician’s Apology. Cambridge: CambridgeUniversity Press, 1967, p. 113.
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and the particular details of it have been devised to solve.39 Not only the proof,
but also the specific needs for a particular proof of a theorem show its place in
the mathematical theory and to what use it can be put. It may be added that
what possible future meaning and significance a theorem might have cannot be
settled now.

A look at the difficulties involved in understanding what propositions in
mathematics mean – in particular for the learner but also to some extent for
mathematicians – may illustrate what I am after. A greater sensitivity to the his-
torical development may also serve to cast doubt on the body of truths concep-
tion.

I shall consider a simple example like the equation ‘x2 + 1 = 0’. Seen from the
perspective of a pupil, it may be taken as an exercise. Possibly, it looks like other
tasks the pupil has performed, so she assumes that she understands it and that
she only needs to do some calculations to find its roots. If imaginary numbers
have not yet been introduced, she will have to revise her understanding of the
equation. Her teacher might have wanted to introduce the notion of equations
without solutions by allowing the pupils themselves to draw the conclusion that
some equations lack roots.

The students’ broadening of the concept of equation from something that has
a solution to something that may or may not have a solution has consequences
for the truth of claims about equations. It would be unfair to say that the pupils’
first belief, that equations have solutions, was false. Rather, they are widening the
meaning of ‘equation’. This widening of the concept can only be accomplished
when the first stage – equations have one or several roots – is passed. One of the
pupils may even object to the teacher’s new notion of equation: ‘That is not an
equation because the two sides will never be equal.’

Later, the teacher introduces imaginary numbers and shows the pupils how
this extension of the concept of number allows one to solve equations like ‘x2+1 =
0’. Again, they have to revise old truths about equations and roots, and, again,
I do not think it would do justice to the teaching of mathematics to say that
the pupils were wrong when, prior to their learning imaginary numbers, they
claimed that such equations lack a solution. The teacher may, of course, have
been careful and advised them to say that the equation does not have any real
roots.

A teacher may perhaps introduce a lesson about imaginary numbers by say-
ing: ‘What I taught you earlier about equations lacking a solution was wrong.’
Perhaps he wants to catch the attention of the pupils in this way. However, he
will not correct his earlier teaching – only introduce a new concept, a new way

39In Proofs and Refutations, app. 2.2, Lakatos discusses the introduction of certain definitions in
nineteenth centurymathematics. He shows that knowing the background of a definition, knowing
what issues the phrasing of it is supposed to address, furthers the understanding it.
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of calculating.This will have consequences for how they see their old knowledge
about equations. Even after this lesson, however, as long as one limits the dis-
cussion to real numbers only, nothing will have changed.

This development of the pupils’ knowledge of mathematics finds parallels in
the history of the subject too, e.g. in the discovery or invention of imaginary
numbers by Girolamo Cardano in the sixteenth century. He considers the pos-
sibility of ‘dividing’ 10 in two (e.g. 3 and 7) in such a way that these two numbers
multiplied produce 40. If one was interested in finding a division, such that the
product of the two numbers was a number less than 25, this would be a straight
forward problem. By deliberately choosing a number which is greater than any
possible product of two numbers whose sum is 10, a peculiar problem arises.The
problem has a contemporary counterpart in finding the roots to the polynomial
equation:

(10 − x)x = 40 or
x2 − 10x + 40 = 0.

Although Cardano states that it is impossible, he solves the problem in a way
analogous to the solution of a problem that is possible to solve.40 He divides 10
into equal parts, i.e. 5 and 5, whose product is 25. From this product he subtracts
the requested product, 40, leaving −15. The numbers into which 10 should be
divided are obtained by subtracting, and adding, respectively, the square root
of −15 from 5. In contemporary notation the roots are: 5 − i

√
15 and 5 + i

√
15.

The product (5− i
√

15)(5+ i
√

15) is of course 40 since the imaginary parts even
out.41

It would be absurd to say that Cardano’s predecessors were simply wrong in
supposing that certain problems did not have solutions. Even the word ‘suppose’
is inappropriate here: they did not suppose anything, they saw clearly that the
problem mentioned by Cardano could not have any solutions. If one considers
the graphical representation of the equation corresponding to the problem in
a Cartesian coordinate system, this is also clear. A parable which is completely
located above the x-axis, does not intersect it.

Cardano did not discover that earlier mathematicians had been wrong; he
extended the concept solution, and he did so by introducing a new technique,
not by discovering a new fact. The controversy that surrounded the introduc-
tion of complex numbers lasted, roughly, until the time of Gauß, that is, almost

40A problem that is possible to solve could be if the product sought is 21. If one divides 10 into
5 and 5 and subtracts 21 from the product of 5 and 5, i.e. from 25, one gets 4. The numbers into
which 10 should be divided are 5 −

√
4 = 3 and 5 +

√
4 = 7. The number 10 should therefore be

divided into 3 and 7.
41Girolamo Cardano. ‘Cardan’s Treatment of Imaginary Roots’. In: A Source Book in Mathem-

atics. Ed. by David Eugene Smith. New York: McGraw-Hill, 1929, pp. 201–02.
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three hundred years. This, I believe, is telling of the difficulties involved in de-
termining the meaning and place of mathematical concepts and propositions in
the surrounding theory.

It is easy to dismiss the example of the students learning about imaginary
numbers as not being a relevant criticism of the body of truths picture. It is
obvious that the development of the student’s understanding may have to go
through certain steps that, although not plain wrong, do not match the body of
true propositions about polynomial equations. It may be argued that their un-
derstanding is progressing slowly, but steadily towards the body of truths. The
historical development of the imaginary numbers, however, shows that the po-
sition of the mathematician making new discoveries can be similar to the one
of the students in many respects. Cardano, too, found that a new way of solving
polynomial equations was possible. This new technique put the old truths about
equations into a new perspective. It introduced new truths and at the same time
it altered old ones. I would not say it falsified old ones, and in this sense, I do
not see the example as an argument in favour of fallibilism, i.e. the idea that
mathematical truths may turn out to be false although proved. Lakatos takes the
development of the theory of polyhedrons to involve a series of proofs and re-
futations – old proofs being refuted and followed by new proofs. His dialogue
is a nice example of a conceptual development in the history of mathematics.42
However, I do not see proofs being refuted, only concepts being changed and
therefore requiring new proofs and techniques. The proofs supposedly refuted
are still valid proofs if the concept of polyhedron that the earlier proof worked
with is retained. It is another matter that a proof working with a certain concept
of polyhedron – or number for that matter – may make it obvious that there is
another way of viewing the concept, but it does not necessarily refute the old
proof (unless of course it became obvious that some mistake had been made in
the proof, but that is another matter).

One must also be aware of the false impressions created by reading a greater
continuity into the historical development than it displays. Bell warns: ‘Noth-
ing is easier … than to fit a deceptively smooth curve to the discontinuities of
mathematical invention.’43 Afterwards, it is easy to get the impression that past
mathematicians were dealing with the same concepts as we are and that they
viewed them in a similar manner. The example of imaginary numbers is es-
pecially striking since these were probably invented out of a will to unify the
treatment of polynomial equations. When considered from the perspective of
real numbers, such an equation has anything from zero to n roots if its degree
is n. Once imaginary numbers are introduced, one can state the fundamental

42Lakatos, Proofs and Refutations, ch. 1. In his dialogue the parallel situation of a student and a
research mathematician is also implicitly shown.

43Bell, The Development of Mathematics, p. viii.
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theorem of algebra: a (single-variable) polynomial equation of degree n has n
roots, imaginary or real, some possibly appearing more than once. Thus, the
concept of polynomial equation is radically changed as the imaginary numbers
are introduced.

3.4 Studying a Mathematical Object
From the perspective of Platonism, the above discussion may appear absurd.
Abstract entities existing independently of us do not admit of any changes in
concepts (unless the change is a result of correcting a mistake in one’s appre-
hension of them). Since Platonism and the body of truths picture go especially
well together, the present section will deal with the issue of studying a mathem-
atical object. If, as I have suggested in the previous section, the body of truths
picture is a misleading view of mathematics, what does the study of mathemat-
ical objects amount to?

If one is studying an ancient coin, there are many kinds of question one can
ask in relation to the coin. One kind is related to the physical aspects of it; for
example, the measurements of the coin and the material it is made from may
be of interest. Of another kind are questions that concern the coin’s place in the
monetary system. One could be interested in knowing whether people in gen-
eral used this kind of coin or if it was a privilege of higher classes, what kinds
of goods it could be used as payment for, etc. The answers to these questions do
not depend on the answers to the first kind of questions, and one could certainly
not find an answer to them by looking at the answers to the first ones. In math-
ematics, I would say, there is trade but no coins. The questions one asks about
mathematical objects havemore in commonwith the second category than with
the first.

Similarly, if one wants to investigate the features of a piece of chess that are of
relevance for the game, one is not interested in the physical aspects of the piece.
To be sure, it is of importance for the game that, for instance, the pawns are all of
identical shape and that they differ clearly from other pieces, but the shape does
not determine that they can move only one step at a time. If chess was played by
drawing or writing down the positions of the pieces, it would be a game without
physical pieces and the same questions about the features of the pieces could still
be asked.

As is shown by these two examples, one can distinguish two senses of ‘fea-
ture’ or ‘quality’. The first of these could be called ‘physical features’, whereas the
second relates to the role something plays in a specific context. In some cases,
as in a monetary system or chess, features can be attributed to the objects in
question in both of these senses. With mathematical objects, however, only the
second sense seems applicable: the only features that we discover about math-



3. Knowledge 55

ematical objects are of the kind that relates to the role that these objects have to
other mathematical objects. In conclusion, it seems that if there were some kind
of abstract mathematical objects existing independently of us, it is unclear what
importance they would have. From this perspective they fall out of the picture
as superfluous, and the ontological status of mathematical entities is seen to be
a pseudoproblem.

Does this lead to the conclusion that mathematics is in some sense unstable?
This fear of uncertainty is probably a reason for the postulation of abstract ob-
jects in the philosophy of mathematics.44 Still, a piece of chess is thoroughly
determined by the rules for its movement and its relations to the other pieces.
Furthermore, there seems to be no problem discussing possible moves and out-
comes in the game of chess. Yet, we do not feel the need to postulate abstract
chess pieces. Why would this not be possible in mathematics too?

To gain knowledge of a function, class of functions, theorem, or theory, one
must use it actively according to the established practice where it occurs – calcu-
late, compare, deduce, conjecture, etc. To study it is to spend time with it in this
way – there is no studying the function as such in isolation from this practice. To
learn something about, for example, the sine function, one could not simply read
a list of its features and thereby know it. If one is familiar with similar functions,
the list may well make sense, but if one is not, such a list would hardly be of any
use. Instead, one needs to see how it applies to right angled triangles and to the
unit circle; one needs to study its values, its periodicity, and how these aspects
of the sine function are related to each other. In practice, this is accomplished by
reading examples and doing exercises, by gaining an ability to use the function
in various situations.

That the function in question is periodic, for instance, means something only
when one realises that the function values must recur at a certain interval of
values of the argument, and that this is a consequence of how the function is
defined. A graphical representation of the unit circle or of the function graph
adds to the understanding of periodicity. Its meaning is also enriched if one tries
to determine the maximum (or minimum) of this function, perhaps as part of
an attempt to make use of it in application. As one realises that it has an in-

44 Jody Azzouni discusses what he calls ‘Morton’s challenge’: that mathematicians without the
guidance ofmathematical objects would lose their ability to discover new interesting results and to
distinguish interesting results from uninteresting ones. This challenge was pointed out by Adam
Morton as an answer to Azzouni’s thought experiment about what would happen if mathemat-
ical objects ceased to exist at a certain point in history. Azzouni’s guess was that nothing would
change, but the gist of his paper is still that mathematics needs something stable, something that
underlies mathematical practice to give it the stability needed for objectivity. His suggestion is
that there are derivations in some algorithmic system that underlie the proofs that usually ap-
pear in mathematics. Jody Azzouni. ‘The Derivation-Indicator View of Mathematical Practice’.
In: Philosophia Mathematica 12 (2004), pp. 81–105, pp. 81–83. I will discuss this idea in chapter 4.
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finite number of periodically recurring maxima, either one has to give up the
idea of determining a maximum or to restrict oneself to a certain interval of the
function’s domain. This would lead to a better understanding the sine and other
trigonometric functions.

The prominent role of solving exercises in mathematics education, from the
first grades in schools to university level courses, is a clear expression of the
fact that a central part of learning mathematics is acquiring an ability to use its
techniques and concepts in the practice of mathematics. The fact that assess-
ing mathematical knowledge is done with tests almost exclusively consisting of
problems that the student solves also shows that to know mathematics is to be
able to use it meaningfully. It is common to view exercises and examples as being
merely illustrations of theorems. As such, they are considered to be of second-
ary importance. According to this view, proofs occupy amiddle position – more
important than examples and exercises but not as important as theorems. How-
ever, from the perspective I am advancing, proofs occupy the, perhaps, most
central role. If one is speaking of textbooks, examples and exercises often have
as important a role as proofs. If the theory is presented without giving proofs,
the examples that accompany theoretical parts take over the role that proofs play:
they tell the reader what the theorem means and how it is to be understood (as
far as this is possible without giving the proofs). The major difference between
proofs and examples is that many different examples could do the job, whereas
there are limitations as to which proof will do. Rav captures this nicely:

There is a way out of the foundational difficulty, and it consists of realising that
proofs rather than the statement-form of theorems are the bearers of mathemat-
ical knowledge. Theorems are in a sense just tags, labels for proofs, summaries
of information, headlines of news, editorial devices.Thewhole arsenal ofmath-
ematical methodologies, concepts, strategies and techniques for solving prob-
lems, the establishment of interconnections between theories, the systematisa-
tion of results – the entire mathematical know-how is embedded in proofs.45

This quote brings out a clear contrast between the body of truths picture and
the perspective put forth here. Viewing mathematics as a corpus of truths and
viewingmathematical knowledge as being about these truths downplays the role
of proofs, whereas a perspective on knowledge that stresses the ability to use
the techniques and concepts involved will emphasise proofs. (I will discuss this
perspective of proofs in chapter 5.) In addition, Rav’s remark contains a clue as
to why the body of truths picture so easily announces itself as the proper way to
understand mathematics. In order to facilitate remembering the know-how in
mathematics it is structured into theorems and collections of theorems. At first
sight, the theorems will appear to take the centre stage, whereas they, on a closer
look, only serve to point towards the know-how involved.

45Rav, ‘Why Do We Prove Theorems?’, p. 20, emphasis in the original.
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Herbert Breger highlights a change of style in the writing of textbooks, a
change that strengthens the impression that propositions rather than techniques
are important.

The general expression is that the older books do not aim at a maximal formal
elegance on a higher level of abstraction, but rather try to stimulate a certain
know-how on a lower level of abstraction in themind of the reader, for example
the knowledge of how to deal with real numbers, variables, infinite sequences,
equations of the fifth degree and the like. The know-how necessary for the un-
derstanding of the modern textbook seems to be omitted on purpose, whereas
the older books try to draw one’s attention to the fact that there is a know-how.
This is most obvious in the different attitudes towards problems and methods.
Whereas the older books perform the act of solving, themodern books just give
an appendix of exercises at the end of each chapter.46

JeremyAvigad also stresses the importance of an ability to use in understand-
ingmathematical knowledge. He remarks that this way of thinking about under-
standing distances itself from ‘the traditional view ofmathematics as a collection
of definitions and theorems’, and that it ‘challenges us to view mathematics in
dynamic terms, not as a body of knowledge, but, rather, as a complex system
that guides our thoughts and actions.’47 As Avigad remarks, this take on math-
ematics is a step away from the body of truths picture. To avoid this picture is,
I believe, one of the most important parts of the philosophical work towards a
greater clarity in the philosophy of mathematics.

These comparisons between mathematical knowledge and knowledge of a
monetary system or chess have similarities with the structuralist position. In-
deed, structuralism treats mathematical objects as places in a structure and does
not necessarily bother about whether there is a collection of objects instantiat-
ing this structure or not. I am sympathetic towards the structuralist idea that the
features of mathematical objects are determined by their place in a larger pat-
tern or structure. However, as will be argued below, I do not see structuralism
as an answer to the main problems of this thesis.

3.5 Truth and Referential Semantics
I have tried to point to certain features of doing mathematics that show in what
way the body of truths conception can be misleading. These features also imply
that the referential semantics called for by Benacerraf is ill-suited for an under-
standing of mathematical truth. The causal theory of knowledge favoured by
Benacerraf with regard to physical objects as well as mathematical objects is no

46Herbert Breger. ‘Tacit Knowledge andMathematical Progress’. In:TheGrowth ofMathematical
Knowledge. Ed. by Emily Grosholz and Herbert Breger. Dordrecht: Kluwer, 2000, p. 225.

47Jeremy Avigad. ‘Understanding Proofs’. In: The Philosophy of Mathematical Practice. Ed. by
Paolo Mancosu. Oxford: Oxford University Press, 2008, p. 327.
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longer the dominating one. As was mentioned above, the dilemma presented
in that article still affects realist theories although they may depend on another
theory of knowledge. What seems to have survived in contemporary theories,
however, is the referential semantics that Benacerraf also proposed as a require-
ment for a theory that purports to explain truth in mathematics (and not dress
up something else as truth). In practice, referential semantics amounts to ex-
plaining truth via Tarski’s definitions of truth in formalised languages. Because
of the status that Tarski’s definition enjoys48 and because it is often interpreted as
explaining truth via reference to mathematical objects, it adds to the prima facie
plausibility of the body of truths picture.49 However, I shall argue that referential
semantics is inappropriate for understanding truth in mathematics. This will, in
turn, lessen the appeal of the body of truths picture.

What I am criticising is the idea that truth is to be understood in terms of
reference to a particular domain of objects that have certain features and that
truth in mathematics should be seen as a special case of this. I am not ques-
tioning Tarski’s theory qua mathematical theory. However, I see no necessary
connection betweenBenacerraf ’s referential semantics qua philosophical theory
of truth and Tarski’s mathematical theory, while Benacerraf equates them. Ben-
acerraf and the philosophers troubled by his dilemma are interested in a philo-
sophical understanding of mathematical knowledge and truth in mathematics.
Tarski’s definition of truth as it appears in ‘The Concept of Truth in Formalized
Languages’ is a mathematical device applicable to certain formalised languages.
Tait criticises Benacerraf for drawing illegitimate philosophical conclusions: ‘It
is difficult to understand howTarski’s “account” of truth can have any significant
bearing on any issue in the philosophy of mathematics. For it consists of a defin-
ition in mathematics of the concept of truth for a model in a formal language L,
where the concept both of a formal language and of its models are mathematical
notions.’50

Tarski’s theory becomes a philosophical theory of truth – for mathematics or
language in general – only together with a substantial philosophical interpreta-
tion. Whether Tarski himself supplied it with such an interpretation is, strictly
speaking, not relevant, but it seems that he did not intend to do that. ‘There will

48John Etchemendy has described its status in logic: ‘The highest compliment that can be paid
the author of a piece of conceptual analysis’, he writes, ‘comes when the suggested definition is no
longer seen as the result of conceptual analysis … and the definition is treated as common know-
ledge.’ John Etchemendy. The Concept of Logical Consequence. Cambridge MA: Harvard Univer-
sity Press, 1990, p. 1. Tarski’s definition of truth is indeed treated as common knowledge among
analytic philosophers.

49Shapiro notes: ‘Philosophical realism is well served by a bivalent, model-theoretic framework,
sometimes called “Tarskian”.’ He remarks that the preference for realism, as a by-product, prompts
a model-theoretic semantics. Shapiro, Structure and Ontology, pp. 46–48, quote on p. 46.

50Tait, ‘Truth and Proof ’, p. 347.
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be no question at all here of giving a single general definition of the term’, Tarski
writes.51 However, even though he aims not for a ‘thorough analysis of themean-
ing current in everyday life of the term “true”’, he is still interested in ‘grasping
the intentions which are contained in the so-called classical conception of truth
(“true – corresponding with reality”)’ – with regard to the formalised languages
which occupy him. Although he makes no claims to generality regarding the
predicate ‘true’, he still attempts to construct his definition on the model of cor-
respondence. His preference for this particular outlook on ‘truth’ thus makes
it intelligible that Benacerraf sees a referential semantics in Tarski’s work. This
preference of Tarski’s is, in turn, manifested in his Convention T, which, accord-
ing to Tarski, forms the touchstone for any ‘materially adequate’ definition of
truth.52

The path to a formal definition of ‘truth’ goes via the concept of satisfaction.
But neither Convention T nor a truth definition in terms of satisfaction need be
interpreted so as to imply realism (nor any causal interaction with mathemat-
ical objects). That it is taken to imply realism is, however, not surprising. When
truth is defined in terms of satisfaction of a formula by sequences of objects –
whether by all sequences or as relativised to the sequences of some particular
domain – the picture readily announces itself of formulas expressing facts about
a collection of objects, being true if these facts do indeed obtain, and otherwise
false. Accordingly, one has the theory which consists of a collection of formulae
(i.e. axioms and theorems) and what it describes (i.e. models) which is external
to the theory. The idea of a model easily takes the role of a Platonic realm (a
model in the sky, to use Tait’s phrase), although it is obvious that model, too,
is a mathematical concept (an ordered pair, i.e. a set), and not something that
mathematics refers to.

If the domain of a model is seen as something external to mathematics, it
seems that one must understand the relation between the formulas of a formal-
ised theory and the elements of this domain in terms of reference, and hence a
referential semantics seems to be the proper philosophical answer to the prob-
lem of truth. Still, the domain of a model is, of course, a set, a mathematical
object. Finally, satisfaction means the assignment of values to the variables of
a function.53 As Tait observes, this makes the term ‘reference’ misleading: ‘The
model assigns values to the constants of L [the language of the formalised the-
ory]; but this, like the notion of valuation, is expressed in terms of the notion

51Tarski, ‘The Concept of Truth in Formalized Languages’, p. 153.
52Ibid., pp. 187–88; Alfred Tarski. ‘The Semantic Conception of Truth: and the Foundations of

Semantics’. In: Philosophy and Phenomenological Research 4 (1944), pp. 341–76, § 4.
53Cf. Definition 22 (p. 193) of ‘The Concept of Truth in Formalized Languages’: ‘The sequence f

satisfies the sentential function x if and only if f is an infinite sequence of classes and x is a sentential
function and these satisfy one of the following four conditions …’
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of function, and the concept of reference does not enter in. … It is the more
misleading when Benacerraf goes on to advocate a causal theory of reference.’54

What would it be like if reference entered into the assignment of values to a
function? Would it not be rather awkward to say that a function referred to its
domain? Assigning values to variables can be thought of in twoways: (1) One has
a concrete function and substitutes for the variable (or variables) someparticular
value (or values) and then calculates the value of the function for that value of the
argument. (2) One states that a certain function takes its values from a certain
set (e.g. the function f(x) =

√
x defined for the positive real numbers or the

function f(n) = 2n defined for the natural numbers). Sometimes, it is defined
on a particular set because it is not meaningful to assign other values to the
variable (as in the case with the square root). Sometimes, one is interested in
studying the function for a limited domain (as in the case with the function from
natural numbers to even numbers). In all of these cases, calling the assignment
of values to a variable ‘referring’ is out of place. Regarding the function f(n) =
2n, the meaning of ‘refers’ would, if anything, be that the function refers to the
even numbers. Onemight, of course, give the expression ‘the function refers’ the
specialmeaning ‘picking out its domain’.Then, however, it is no longer analogous
to cases in ordinary speech such as answering the question ‘what do you mean
by “my precious”?’ by saying: ‘Oh, I was referring to my ring.’

Tarski devised his mathematical construction in order to capture the (as he
wrote) ordinary meaning of ‘true’, so naturally one thinks of it as a way of for-
mulating the concept true. However, one could treat it simply as a mathemat-
ical device, symbolically and forget about the philosophical motivations. It then
becomes obvious that it is indeed a mathematical concept and that its connec-
tion with the ordinary concept true is loosened. Thus, although it has been of
great importance as a piece of mathematics, this does not imply that it gives us
the solution to the general problem of truth in mathematics. The appeal that
Tarski’s definition has had depends to a large extent that it fits into the body of
truths conception so neatly, and as is the case with Benacerraf ’s article on math-
ematical truth, it has come to strengthen the hold that this picture has on the
philosophy of mathematics.

Anothermatter thatmay be added to the criticism concerns Benacerraf ’smo-
tivations for his preference for a referential semantics. A supposed merit of it
is that the referential picture gives hope of a unified account of meaning that
would incorporate all areas of human discourse (or at least ‘all the propositions
to which [truth] applies’). He describes his preference thus: ‘My bias for what I
call a Tarskian theory stems simply from the fact that he has given us the only
viable systematic general account we have of truth. So, one consequence of the

54Tait, ‘Truth and Proof ’, p. 347.
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economy attending the standard view is that logical relations are subject to uni-
form treatment: they are invariant with subject matter.’55

To be sure, we do speak of objects around us, especially if we are trying to
do something with an object, e.g. when making use of an ingredient in a stew,
painting the walls of a house, or analysing a blood sample. However, even if we
do refer to things, referring is not always the same activity. This can be seen if
one compares such examples as speaking of a house, a feeling, a piece of music,
or simply mentioning something with the word ‘this’. Moreover, if one thinks
of the discussions and exchanges we often have, a great deal of them cannot be
understood in terms of reference to things. The charm of the referential view
may thus be the result of a false appearance.

3.6 Structuralism
Above, the thought of abstract objects that have features in themselves inde-
pendently of their relations to other objects and independently of what we do
with them was rejected. The discussion of what it might mean to study a math-
ematical object, even in the absence of such abstract entities, suggested a simil-
arity between the perspective proposed here and structuralism. In this section, I
will indicate sympathies and differences with some contemporary views, struc-
turalism in particular.

All of the positions mentioned in section 3.2 succeed in accounting for some
part of mathematics as it is done in practice. None of themmanage to tell a story
that incorporates all features in a natural and intuitive way. Platonism or onto-
logical realism seems to be a good explanation of the general agreement about
results in mathematics and of the fact that the search for solutions to problems
or for proofs proceeds as if there is a clear, unambiguous solution. Maddy notes
yet another reason for the preference for realism among many mathematicians,
namely, that it corresponds to the experience of actual mathematical activity.56
Olle Häggström gives a clear expression of this experience: ‘To anyone who has
experienced the inescapable force and logical necessity of a mathematical proof,
the Platonic existence of numbers and their properties – independently of us
humans who think and argue about them – is obvious.’57

Thus, realism claims that there are mathematical entities independent of the
mathematician, and that explains the stability of the practice. Fictionalism sup-
plies an explanation of the freedom of the development of mathematics. Math-
ematics progresses in so many different directions, utilising so many different

55Benacerraf, ‘Mathematical Truth’, p. 670.
56Penelope Maddy. ‘Set Theoretic Naturalism’. In: The Journal of Symbolic Logic 61 (1996),

pp. 490–514, p. 492.
57Olle Häggström. ‘Objective Truth versus Human Understanding in Mathematics and in

Chess’. In: The Montana Mathematics Enthusiast 4 (2007), pp. 140–53, p. 140.
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concepts and techniques that the comparison to an author’s freedom in creating
fictional characters appears apposite. Structuralism, as was mentioned above,
manages to provide an account of the fact that the features of mathematical ob-
jects very often – perhaps always – emerge through their relations to othermath-
ematical objects, thus making their position in the structure the decisive issue
for learning about them.58

In the end, these positions turn out to be simplifications that proceed from
some observation that the proponents find particularly important to incorpor-
ate into the position. When it comes to features of mathematics that do not fit
the observations of preference, they are forced to incorporate these other fea-
tures in more or less awkward ways. The attempts to explain how it is possible
to make contact with abstract objects and thereby solve the problem that Ben-
acerraf raises for ontological realism may serve as an example of this.

While I think that structuralism’s focus on the relations between objects as
a way to overcome the worry about the ontological status of mathematical ob-
jects is promising, their accounts do not escape ontological qualms. This is evid-
ent in the debate within structuralism about the nature of structures themselves.
Structuralism viewsmathematical objects as places in a structure.59 With regard
to the status of structures, Shapiro distinguishes three stances. The first is that
a structure can be said to exist if there are objects that instantiate the structure.
That such a structure can be said to exist is clear if there is a finite collection of
objects instantiating the structure. However, arithmetic, analysis, and set theory
deal with an infinite number of objects, and, therefore, already the structure of
arithmetic requires for its existence an infinite number of objects that can be ar-
ranged according to the structure. This does not seem to place the structuralist
in any better position than the ordinary Platonist. An alternative to postulat-
ing a collection of objects that instantiate a structure (usually sets), would be to
claim that structuralism deals with possibly existing collections of objects. The
use of modal logic in formulating this view renders it the name modal struc-
turalism, and this view is often associated with Geoffrey Hellman. This is the
second stance that Shapiro mentions. Following Charles Parsons, he calls these
two alternatives eliminative structuralisms.60 The term ‘eliminative’ signifies that

58SaundersMac Lane writes in a similar vein: ‘All mathematics can indeed be built up within set
theory, but the description ofmanymathematical objects as structures is muchmore illuminating
then [sic] some explicit set-theoretic description.’ SaundersMac Lane. ‘Structure inMathematics’.
In: Philosophia Mathematica 4 (1996), pp. 174–83, p. 182.

59In Resnik’s words: ‘The objects of mathematics, that is, the entities which our mathematical
constants and quantifiers denote, are themselves atoms, structureless points, or positions in struc-
tures. And as such they have no identity or distinguishing features outside a structure.’ Michael D.
Resnik. Mathematics as a Science of Patterns. Oxford: Clarendon Press, 1997, p. 201

60Shapiro, Structure and Ontology; Charles Parsons. ‘The Structuralist View of Mathematical
Objects’. In: Synthese 84 (1990), pp. 303–46.
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structures existing as objects in their own right are eliminated from this view. To
overcome the difficulty with the existence of objects instantiating the structure,
Shapiro suggests that structures are objects in their own right and that these can
be studied regardless of whether they are instantiated by any objects. This forms
the third stance on structures, and he dubs this view ante rem structuralism in
analogy with the similar position in the debate about universals. Resnik’s ap-
proach is similar. This, in turn, begs the question about the ontological status of
structures.

Hellman lists four alternative structuralisms: (1) structures are models and,
through the standard definition of model, sets; (2) structures are categories; (3)
structures are a primitive kind of object not reducible to anything else; and (4)
modal structuralism.61

In each of these cases, some particular concept is taken as a starting point
which cannot be explained in terms of some other more fundamental concept.
In (1) this is sets. Taking sets as the primitive concept allows for a mathem-
atically attractive theory because one can use already established set theoretic
definitions of concepts such as model. If one has philosophical ambitions with
structuralism, it will be a major drawback that the structures that mathematics
supposedly studies are in the universe of sets. Unless one assumes that there is
one structure that is not a set, this means that set theory itself cannot be viewed
as a structure with sets as places in this structure. In (2) and (3), categories and
structures, respectively, are introduced as primitive concepts, and thus they al-
low for the possibility of viewing all of mathematics (set theory included) as the
study of structures. The status, however, of these new objects (at least in the case
of ante rem structures) is not clear, so whether or not anything is gained, from
an ontological perspective, remains uncertain. Hellman even suggests the label
‘hyperplatonism’ for the ante rem variant.62 In modal structuralism (4) it seems
necessary to take the modal concepts as primitive. Otherwise, a definition of
them through set theory lies close at hand, and, in that case, it would probably
be better to aim for set theory from the beginning. Even if one takes modal con-
cepts as primitive, it is not clear that much is gained. Shapiro notes that ‘It is
unfair to reject set theory, as our antirealists do, and then claim that we have a
pretheoretic grasp of modal notions that, when applied to mathematics, exactly
matches the results of the model-theoretic explication of them.’63

61Geoffrey Hellman. ‘Structuralism’. In:The Oxford Handbook of Philosophy of Mathematics and
Logic. Ed. by Stewart Shapiro. Oxford Handbooks in Philosophy. New York: Oxford University
Press, 2005. This list roughly coincides with the above that follows the exposition in Shapiro’s
Structure and Ontology. Shapiro, however, mentions the category alternative under the heading
of ante rem structuralism.

62Ibid., p. 542.
63Shapiro, Structure and Ontology, p. 17.
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In all of these alternatives, the status of the primitive concept is a cause for
concern. They may be able to solve the problem raised by Benacerraf ’s 1965 art-
icle, which was a major inspiration for structuralism, but the problem posed by
the 1973 article – about the possibility of gaining knowledge of abstract objects
– remains, even for the anti-realist option modal structuralism. This is because,
although reference to abstract objects is seemingly avoided, so much is moved
in under the modal concepts that a similar question arises: ‘How can we know
what is possible?’ To sum up, structuralism seemingly solves the problem of re-
ferring to the mathematical objects as they are places within a structure. Never-
theless, a similar problem appears anew in the case of the structures themselves.
It seems impossible to avoid this problem as long as one postulates new abstract
objects.64

In addition to these points of criticism that concern structuralism generally,
I shall consider some issues that apply to Resnik’s and Shapiro’s view. They both
have a promising way of solving the access problem that pertains to structures.
They both start with the fact that we encounter finite surveyable patterns in
everyday life. Through a process of abstraction, we learn about number series
that extend beyond what is immediately recognisable. The step in this picture
that both consider to be the most troublesome – the step to infinite structures
– is taken through implicit definition, through the axiomatic method. We learn
about infinite structures through the axioms that implicitly define them. Resnik
observes that learning mathematics may be thought of in analogy with learning
language and music; the comparison between learning mathematics and learn-
ing language is found in Shapiro’s structuralism too.65 I find these analogies apt,
but the analogies would do equally well if one was speaking, not of structures,
but directly of numbers or sets (and probably other mathematical concepts as
well). That is, although I find this rough picture correct in many ways, it does
not speak exclusively in favour of structuralism.

Ante rem structuralism has come under criticism in matters concerning the
individuation of places in structures. Shapiro seems to accept Leibniz’ principle
of the identity of indiscernibles.66 In structuralism, this means that if two objects

64Yet another form of criticism is voiced by Mac Lane. He remarks that, while many areas of
mathematics may be described as a study of structures, there are also areas that do not fit this
description. He mentions (among other) the study of partial differential equations, and number
theory. These areas cannot, he claims, be understood as the study of axiomatically defined struc-
tures.Mac Lane, ‘Structure in Mathematics’, p. 177. As long as one is thinking of group theory or
arithmetic as an axiomatic system, the structuralist view seems apt; however, if onewants tomain-
tain that mathematics is about studying structures, it seems that a substantial reinterpretation of
some areas of mathematics is required (if it is even possible).

65Resnik, Mathematics as a Science of Patterns, p. 202; Shapiro, Structure and Ontology, pp. 139–
40.

66Ibid., section 4.5.
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can occupy the same place in the structure without any changes in the structure,
they ought to be considered the same object. John P. Burgess and Jukka Ker-
änen have both pointed out that from a structural point of view, the imaginary
unit i and its additive inverse −i are indistinguishable, and therefore the same
object.67 This, however, seems absurd, since they are, from the point of view of
mathematical practice, different numbers.

The criticism of Burgess and Keränen has been met by Shapiro by modifying
the principle of identity of indiscernibles.68 I ammentioning these criticisms not
because they necessarily provide conclusive evidence that structuralism is false,
but rather because the situation is discouraging from a philosophical perspect-
ive. If one wants to understand the certainty of mathematical knowledge (or if
one wants to explain of the apriority and objectivity of mathematics as Shapiro
requests), what are small tweaks to a theory worth?

From my point of view, there are more serious objections to structuralism,
however. It is common to assume a second-order logic as the background theory
for structuralism.There are several ways of justifying this choice. Philosophically
interesting is Shapiro’s thought that second order logic is needed to do justice to
mathematical practice. The reasons he gives are of a technical nature and I will
not go into them here.69 More generally, he states: ‘I assume that formal lan-
guages more or less accurately render the languages and logical forms of math-
ematics.’70 Shapiro’s structuralism – which is a mathematical theory – depends
on this possibility of capturing mathematical practice in a formal language. Yet,
unless one thinks that logic is, somehow, on a different level than the rest of
mathematics, this seems too strong a claim. Moreover, Shapiro remarks that lo-
gic should be viewed as part of mathematics: ‘[T]here is no sharp distinction
between logic and mathematics. The study of correct inference, like almost any
other science, involves some mathematics and some mathematical presupposi-
tions.’71 Now, if logic is a form of mathematics, doing logic is a form of mathem-
atical practice, and, in conclusion, there seems to be a potentially vicious circle.

67John P. Burgess. ‘Review of Stewart Shapiro. Philosophy of Mathematics: Structure and Onto-
logy’. In: Notre Dame Journal of Formal Logic 40 (1999), pp. 283–91; Jukka Keränen. ‘The Identity
Problem for Realist Structuralism’. In: Philosophia Mathematica 9 (2001), pp. 308–30.

68Stewart Shapiro. ‘Identity, Indiscernibility, and ante rem Structuralism: The Tale of i and −i’.
In: Philosophia Mathematica 16 (2008), pp. 285–309. A related criticism is voiced by Tim Räz who
gives detailed examples of groups of symmetry that are isomorphic to each other. He remarks that
if it is accepted that isomorphic structures are identical, this entails that some structures that are
actually considered to be different would be identical. Tim Räz. ‘Say My Name: An Objection to
Ante Rem Structuralism’. In: Philosophia Mathematica 23 (2014), pp. 116–25.

69For details see Stewart Shapiro. ‘Second-Order Languages and Mathematical Practice’. In: The
Journal of Symbolic Logic 50 (1985), pp. 714–42; Resnik, Mathematics as a Science of Patterns,
chapter 10.4.

70Shapiro, Structure and Ontology, p. 48.
71Shapiro, ‘Second-Order Languages and Mathematical Practice’, p. 716.
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A similar circularity also occurs in the claim that mathematics studies struc-
tures. It is obvious that structure is a mathematical concept, at least in Shapiro’s
structuralism, so it seems that he is trying to understand mathematics in terms
of yet another mathematical concept.72 This is troublesome in the same way as
the definition of truth in mathematics via another mathematical concept, sat-
isfaction, as was pointed out in section 3.5. In short: if one wants to achieve a
greater philosophical understanding of mathematics, this cannot be done simply
by doing more mathematics.73

Can one not understand mathematics by doing mathematics? Probably the
best way to learn what mathematical thinking is, is by doing mathematics and
being attentive to what one is doing. Similarly, if one wants to understand phys-
ics, one must do physics. However, presumably any kind of mathematics would
do in that case, and the understanding thus gained is probably not the kind of
understanding that is sought if one sets out to construct a structuralist theory.
Such a theory may, of course, be a good mathematical theory; what I am critical
of is the idea that there are some special philosophical lessons that can be learnt
from it.

In a discussion about Carnap’s distinction between questions internal and
external to a linguistic framework, Shapiro gives as an example of an internal on-
tological question the following: ‘Is there a prime number greater than one mil-
lion?’ and of an external one: ‘Do numbers exist?’ However, Shapiro’s rephras-
ing of the external question shows that he considers the formalised theory to be,
in essence, the same as the unformalised one: ‘In present terms, the traditional
question is whether the envisioned natural-number framework accurately de-
scribes an intended domain of discourse.’74 Furthermore, he describes the philo-
sophical study ofmathematics as studying an object language in ametalanguage.
He devotes some effort to discussing whether this metalanguage that we employ
in studying mathematics should be formalised or not and also what its onto-
logical status is. In contrast, the possibility of equating the mathematics that we
try to understand (i.e. ordinarymathematics) and formal systems passeswithout
comment in Shapiro’s discussion. This possibility is seemingly taken for gran-

72At least withinmathematics, Shapiro, too, considers this troublesome: ‘From the present point
of view, the major shortcoming of ω-languages is that they assume or presuppose the natural
numbers. Therefore, such a language cannot be used to show, illustrate, or characterize how the
natural number structure is itself understood, grasped, or communicated.’ Shapiro, ‘Second-Order
Languages and Mathematical Practice’, p. 733.

73Resnik does not consider his theory to be mathematical. ‘I do not think of my view as a math-
ematical theory.’ Resnik, ‘Mathematics as a Science of Patterns: Ontology and Reference’, p. 542.
However, it is not mathematical only in the sense that it is not mathematical yet. This becomes
clear when he remarks that ‘the main motivation for developing [a mathematical theory of pat-
terns] would be to show that my informal theory of patterns can be made mathematically precise’.
Resnik, Mathematics as a Science of Patterns, p. 258.

74Shapiro, Structure and Ontology, p. 58.
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ted, as is indicated by Shapiro’s claim that ‘one major purpose of axiomatizing
a branch of mathematics is to codify the practice of that branch.’75 This silence
is unfortunate since the claim that mathematical practice can be captured in
formal systems involves a substantial philosophical interpretation, which is by
no means innocent. Among other things, it involves disregarding the issues of
skill and technique that I emphasised above. This disregard is, however, symp-
tomatic of much of contemporary philosophy of mathematics. I will return to
the relation between formal systems and ordinary mathematics in chapter 4.

Finally, if one considers structuralism from the perspective proposed above,
where ability and skill are seen as vital to an understanding of mathematical
knowledge, the structuralist theory itself, as much as any other mathematical
theory, stands in need of philosophical explanation. Sören Stenlund discusses
various attitudes to formal work in the philosophy of mathematics:

In the philosophy of mathematics, as elsewhere, conceptual clarification con-
ceived as reconstruction never gets at the real foundations. In its efforts to-
wards mathematical progress, it passes too quickly over the points where the
conceptual problems can be resolved absolutely. … [T]hey are not developed
in a vacuum but within the language of ordinary mathematics and on the basis
of the ‘trivial mathematics’ which is erroneously considered to be conceptually
unproblematic (on the grounds that it is mathematically trivial). Many of the
original conceptual puzzles whichmotivated the foundational studies therefore
still arise within the formalizations as much as in ordinary mathematics.76

Perhaps it is fair to say with Putnam: ‘[I]t seems clear that what is needed in
philosophy of mathematics is work that is philosophical and not primarily tech-
nical.’77 In this respect, the increased focus on practice in recent philosophy of
mathematics is laudable. The criticism voiced above is primarily directed at the
positions that develop structuralism as a foundational programme, e.g. Shapiro’s
structuralism with second order logic as the background theory. However, the
principal idea behind structuralism – that mathematical objects need not be
thought of as objects existing in their own right, but rather as places in a struc-
ture and defined through the relations that they have to other objects – is a sound
observation that is not touched by this criticism, and, furthermore, one that is
in accord with the perspective advanced here.

The present state of the debate between realism and anti-realism is unset-
tling. As was argued above, this debate is the outgrowth of the body of truths
picture and of the form that this picture took in Benacerraf ’s article onmathem-
atical truth. From the 1980’s onwards, one finds several arguments that, taken
together, point towards the insight that the different positions boil down to the

75Shapiro, ‘Second-Order Languages and Mathematical Practice’, p. 716.
76Stenlund, Language and Philosophical Problems, p. 136.
77Hilary Putnam. ‘Philosophy of Mathematics: Why Nothing Works’. In: Words and Life. Ed. by

James Conant. Cambridge MA: Harvard University Press, 1994, p. 510.



68 3. Knowledge

same thing. Resnik has argued that Hartry Field’s nominalism does not succeed
in eliminating abstract objects.78 Froma structuralist point of view, it is clear that
the space-time points Field invokes to nominalise analysis can be seen as places
in a mathematical structure even though they have a physical location. Thus,
they still have the character ofmathematical objects.79 His criticism is valid from
a perspective of mathematical practice too. Although it may be possible to find
physical counterparts of the numbers, it is still the use within mathematics that
makes them into mathematical objects.

Balaguer, for his part, argues that structuralism and Platonism are not that
different after all: ‘it’s not clear why positions shouldn’t be considered objects.
We can refer to them with singular terms, quantify over them in first-order lan-
guages, ascribe properties to them, and so on. What else is needed?’80 Con-
sidered from a point of view of practice, this seems right. Structuralism may
claim that no Platonic objects are needed, that they are places in a structure, but
from the view of mathematical practice there would be no difference.81 Have we
come full circle?

These observations suggest that there is no substantial difference between
these positions after all. Balaguer’s point is that there is ‘no fact of the matter’
which could settle the question in favour of either metaphysical realism or anti-
realism. In the choice between the different kinds of structuralism, Shapiro re-
marks in a similar fashion that they ‘are each, under certain (plausible) condi-
tions, definitionally equivalent to a standard, “realist” theory. Thus, the inten-
ded structure – and the ontology/ideology of each theory is the same as that of
the corresponding realist theory.’82 He continues by saying that which kind of
structuralism one chooses depends on how well it accords with mathematical
practice.

All in all, this indicates that this debate is not fruitful. To be sure, it may be
fruitful in the sense that there ismuch to be learnt while working on the different
positions, but they will not solve the philosophical problems that they discuss.
Penelope Maddy is writing in a similar spirit: ‘[I]f questions of ontology and
truth are red herrings … then I can at least hope to shift attention away from a
misplaced worry and to focus it instead on the challenge of understanding the
phenomenon that in fact drives the practice of pure mathematics.’83

78Michael D. Resnik. ‘How Nominalist Is Hartry Field’s Nominalism?’ In: Philosophical Studies
47 (1985), pp. 163–81.

79Shapiro voices similar criticism. Cf. Shapiro, Structure and Ontology, pp. 76–77.
80Balaguer, Platonism and Anti-Platonism, p. 9.
81Similar points are raised by KrzysztofWójtowicz. ‘Object Realism versusMathematical Struc-

turalism’. In: Semiotica 188 (2012), pp. 157–69.
82Shapiro, Structure and Ontology, p. 242.
83Maddy, Defending the Axioms, p. 117.
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Interestingly, this bears similarities to Hilary Putnam’s resigned criticism in
1967 of the foundational programmes of the earlier half of the twentieth cen-
tury. ‘The much touted problems in the philosophy of mathematics seem to me,
without exception, to be problems internal to the thought of various system
builders’, Putnam claims and continues, ‘the various systems of mathematical
philosophy, without exception, need not be taken seriously’.84 While I do think
that there are genuine and troubling problems in the philosophy of mathemat-
ics, it is questionable whether the debate between realism and anti-realism will
further our understanding of them.

3.7 Concluding Remarks
Mathematical knowledge is knowledge of theorems and axiomatic systems; it is
also the ability to prove things and make fruitful conjectures. It is, furthermore,
the ability to make use of mathematical techniques and calculi in order to make
predictions and solve problems in everyday life, in economics, in engineering,
and in science. Knowing things in mathematics is not reducible to a single thing
(e.g. justified true belief regarding what theorems say); it encompasses a range of
insights, memorised formulas, abilities to prove and apply, and generally to ‘see’
when a certain calculus, theorem, rule, etc. is applicable to a certain case. The
idea or, perhaps, the tacit assumption that one could understand mathematical
knowledge along the lines of a single formula is, as I hope to have shown, likely
to lead to philosophical problems.

Stenlund has suggested that the concept of knowledge as such leads us to
think in terms of knowledge about something and that, therefore, the phrase
‘mathematical knowledge’ can be misleading.85 I agree with him, although, in
this chapter, I have tried to see what sense one could make of the notion, rather
than avoid it.What emerges is a picture ofmathematical knowledgewheremath-
ematics as an activity plays a central role. Having knowledge in mathematics is
seen to include knowing how to use the concepts of mathematics, and it can-
not – as Stenlund remarks – be understood (exclusively) as a knowledge about
something.

Wittgenstein remarks that ‘mathematics as such is always measure, not thing
measured’,86 and this indicates a way of understanding Stenlund’s suggestion.
One can compare mathematics to a ruler, and if knowledge is the result of meas-
uring, then mathematics does not give us knowledge (at least not in the same
sense). Mathematics, then, acquires a different status, as it is involved in our

84Hilary Putnam. ‘Mathematics Without Foundations’. In: Philosophical Papers. Vol. 1: Math-
ematics, Matter, and Method. Cambridge: Cambridge University Press, 1975, p. 43.

85Personal correspondence.
86RFM, III § 75.
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tools for gaining knowledge about other things. From this perspective, work in
pure mathematics could be seen as a work on our tools for gaining knowledge,
as a work on our conceptual framework. If mathematics was ‘the thing meas-
ured’, then the propositions of mathematics would be thought of as being true or
false (analogous to descriptions of facts). Mathematical knowledge would take
the guise of knowing the content of the propositions that are true. Furthermore,
certainty will appear as certainty that the proposition is true.

If mathematics is instead compared to themeasures we have in language, one
could (taking the risk of pushing the analogy too far) say that knowledge be-
comes a skill in using these measures and in developing new ones. Its certainty
also takes another form, and it can be seen along the lines of the comparison to
norms sketched in chapter 2.What is judged on the scale of certainty and uncer-
tainty are the things measured, while the measure itself is exempt from it, being
involved as it is in making such judgments. Wittgenstein gives a description of
this status with regard to logical inferences, but the same goes, I would say, for
mathematical propositions too.

The steps which are not brought in question are logical inferences. But the
reason why they are not brought in question is not that they ‘certainly cor-
respond to the truth’ – or something of the sort, – no, it is just this that is called
‘thinking’, ‘speaking’, ‘inferring’, ‘arguing’. There is not any question at all here
of some correspondence between what is said and reality; rather is logic ante-
cedent to any such correspondence; in the same sense, that is, as that in which
the establishment of a method of measurement is antecedent to the correctness
or incorrectness of a statement of length.87

That the results of mathematics are regarded as perfectly certainty reflects
this status of being withdrawn from evaluation in terms of certainty and uncer-
tainty. As they are, instead, part of such evaluations of other propositions, their
relation to such propositions is normative. This is a kind of certainty, but it is
not of the same kind as the certainty of propositions describing matters of fact.
It can be said to be greater than the certainty of descriptive propositions, but
only because mathematical propositions are exempt from the evaluation that
such propositions undergo. Does this perspective imply that one cannot doubt
the truth of a mathematical proposition? This seems as an absurd consequence
because in many cases it seems possible to doubt a mathematical proposition,
especially if one is not that well acquainted with it. It is true that not all of math-
ematics can have this status for a particular person. There will always be many
mathematical results that one is not prepared to use in judging the plausibil-
ity of descriptive propositions. However, if one takes into account that having
knowledge of a mathematical result involves an ability to use it, it is seen that

87RFM, I § 156. The perspective brought up in this quote will be central to the discussion of
proofs in chapter 5.
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the results that one is certain of are precisely the ones that one is sufficiently
familiar with. The results that have this normative role, that for me are exempt
from evaluations in terms of certainty and uncertainty and that I am prepared
to make use of in important situations where I must not make a mistake, are the
ones that I am at ease with. Which results that are certain in this sense varies
greatly from person to person, since we do not, in general, ascribe certainty to
something that we have no relation to. The certainty of mathematics, if one by
this means mathematics in general and not merely my certainty, can be taken to
signify this possibility of ascertaining results by gaining a working knowledge of
them – in addition to the fact that a vast amount of techniques and results have
this status for any rational person, as was seen in chapter 2.

One could, with the risk of simplifying matters, capture the main point of
this chapter in the remark that knowledge in mathematics is more a question of
knowing how than knowing that – knowing how to prove a theorem, rather than
knowing that matters are as the theorem says. Fully understanding and knowing
a theorem amounts to knowing how to prove it, and that involves having an eye
for what works (or as one often says, ‘having an intuition for it’). ‘Having an eye
for what works’ is not an innate capacity to perceive facts, but a certain handiness
one gains through persistent practice, much like a carpenter having an eye for
wood.

Thus, the gist of this chapter is mainly negative. The problems that led to the
unfruitful debate between realism and anti-realism are all but unavoidable if one
approaches mathematics from the body of truths perspective. The historical de-
velopment has, furthermore, made this perspective appear self-evidently true to
such a degree that it is forgotten that it, in fact, involves a substantial philosoph-
ical construal of mathematics. This construal captures some of the character-
istics of mathematics, but it does not do justice to how mathematics is done in
practice – and, therefore, it becomes a misleading starting point for philosophy.
It is thus important to nuance the understanding of mathematical knowledge.
Since the body of truths picture also implies a particular take on certainty – i.e.
that mathematical certainty should be understood as a certainty that a mathem-
atical proposition correctly describes the mathematical objects – it is vital for
the aim of this thesis not to let this picture guide one’s thinking on mathematics.

An issue that has been repeatedly touched upon in this chapter but not been
discussed explicitly is the relation between formal systems and ordinary math-
ematics. It was mentioned that one guise of the body of truths conception was to
view mathematics as a collection of formal systems. In the discussion of struc-
turalism, Shapiro’s claim that ordinary mathematical reasoning is captured in
formal languages was criticised briefly. However, the idea that the object lan-
guages of metamathematics can be taken to represent ordinary mathematics
is a common assumption. Related to this assumption is also one that relates
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to certainty and rigour. It is commonly held that formal systems are superior
to informal mathematics in terms of their certainty, precisely because they are
formal and free from meaning. Therefore, chapter 4 will problematise the rela-
tion between formal and informal mathematics.



4. Formality

[A]ll of pure mathematics can be imbedded in formal systems.
(J. M. Henle, ‘The Happy Formalist’)1

There is a conflict between mathematical practice and the formalist doc-
trine.

(Georg Kreisel, ‘The Formalist-Positivist Doctrine of Mathematical Pre-
cision in the Light of Experience’)2

The discussion of knowledge in mathematics in the last chapter touched upon
the distinction between mathematics as it is done in practice and mathematics
seen as formal axiomatic systems. This distinction is the focus of the present
chapter and there are two reasons for this.

Firstly, there is the question that grows out of the previous chapter, namely,
‘Which part of the divide should be given conceptual priority when a philo-
sopher is trying to understand what mathematics is?’ Another question, not to
be conflatedwith the former, is: ‘Is it correct to say thatmathematics, deep down,
is nothing but formal systems?’ In chapter 3, the emphasis on mathematics as an
activity naturally suggests that the answer to this second question is that math-
ematics is more than just formal systems. It is also a natural consequence of that
discussion that ordinary mathematics ought to be the focus of a project aiming
for a greater philosophical understanding of mathematics and its certainty. This
is not, however, to say that the label ‘mathematics’ is better suited for one rather
than the other. Moreover, ‘mathematical practice’ has become something of a
buzz phrase lately, but simply taking account of the way mathematics is done
does not by itself solve philosophical problems. One has to consider carefully
what the problems at hand require.

Secondly, the distinction is central to the problem of certainty. A greater
formality is often associated with a greater degree of reliability, rigour, certainty,
etc. Hence, it is important for the present investigation to consider the role of
formality in the certainty of mathematics. Is the certainty of mathematics a con-
sequence of its status as a formal science? Is it the possibility of proving theor-
ems in formal axiomatic systems that warrants certainty? These questions also
makes it obvious that one needs to consider the relation between formal and

1JamesHenle. ‘TheHappy Formalist’. In:TheMathematics Intelligencer 13 (1991), pp. 12–18, p. 13.
2Georg Kreisel. ‘The Formalist-Positivist Doctrine of Mathematical Precision in the Light of

Experience’. In: L’Âge de la Science 3 (1969), pp. 17–46, p. 39.
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non-formal or intuitive mathematics mentioned above.3

The purpose of this chapter is to place certain ideas related to the divide
between the formal and the informal under scrutiny. In particular, I am sceptical
of the idea that there is a purely syntactic or formal modus, free from ambigu-
ity. Moreover, I also want to question the idea that intuitive mathematics would
be compromised by uncertainty simply due to its informal nature or due to the
fact that one takes into account themeanings of the symbols occurring in the ex-
pressions. Furthermore, I will argue that some formof intuitive understanding is
also present when dealing with purely formal mathematics and that there seem
to be no distinguishing features that allow for a sharp divide between formal
and informal mathematics – when it comes to certainty. The features of formal-
ity that allow for a greater certainty (I amnot denying that there are such) are not
foreign to informal mathematics either. An important conclusion of this is that
the certainty of mathematics cannot be explained by particular features found
exclusively in formal mathematics. Its relation to how we deal with symbolic ex-
pressions is, once more, found to be important. These ideas are of importance
for the investigation as such but they also prepare the ground for the discussion
of proofs in chapter 5.

4.1 The Formal and the Intuitive
In many ordinary discussions, the labels ‘formal’, ‘informal’, and ‘intuitive’ are
used as casual descriptions: ‘Ah, you’re using that textbook? I found it a bit too
formal’ or ‘I like the way she writes, very intuitive.’ It may refer to which style of
writing one prefers inmathematics. A book that is formal in this respect does not
necessarily contain any material on formal systems. However, in the philosophy
of mathematics the formal and the intuitive are made into something more than
casual descriptions. ‘Formal’ becomes the name of a realm where everything is
rigorous, neutral, andmechanically checkable; wheremeaning (and presumably
distracting associations) is completely absent and where the only source of error
is the wanting capacities of human beings to remember and overview the formal
strings of symbols.This formality is supposedly realised in formal axiomatic sys-
tems, where everything is explicitly specified – from what is to be considered a
formula to what is to be considered a permissible deduction.

If one considers the attitude towards the purpose of formal systems from an
epistemological point of view, one can distinguish several possible alternative
views.4 Firstly, one may think that formal systems provide an ideal that ordin-

3What is to be understood by ‘non-formal’, ‘informal’, or ‘intuitive’ is not clear and varies with
context, and what is to be regarded as the proper counter-part of formal systems is not clear.
Moreover, ‘formal’ is also often used ambiguously. The issue will be given some attention below.

4Within mathematics, formal systems have an established role as object theories in mathem-
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ary mathematical practice should strive towards in order to maximise its cer-
tainty and reliability. This attitude may be understood in (at least) two ways.
One may think that mathematical theories do not live up to proper standards of
certainty unless they are transformed into formal counterparts. Another, less
radical, stance would be that ordinary mathematics is good enough, but if a
greater confidence is desired, one can try to formalise, say, a proof and verify
it in a formal system. A contemporary expression of this attitude is found in an
interview with Alan Hajek: ‘[Formal methods] often provide a safeguard against
error: by meticulously following a set of rules prescribed by a given system, we
minimize the risk of making illicit inferences.’5

Secondly, Azzouni has argued that some kind of formal system underlies or-
dinary mathematical thinking although this is not obvious on the surface. Be-
cause of this underlying derivation, ordinary proofs are objectively valid. ‘[A]
mathematical proof of B from A indicates that there is a mechanically recogniz-
able derivation from (a proxy of) A to (a proxy of) B in an algorithmic system.’6

Thirdly, some maintain that formal systems have no epistemological role to
play, that they aremisleading.We find this attitude in Lakatos’s writings. Amore
recent scepticism towards the use of formal systems has been voiced by Carlo
Celluci.7

From a practical point of view, the benefits of increasing formality are obvi-
ous, especially if one thinks of the risks of making an error when making leaps
in an argumentation. Sometimes it is also of importance for the perspicuity of a
proof or a calculation to consider symbols merely as symbols and not take into
account what they refer to. It remains to be settled, however, whether or not
these advantages are tied exclusively to a neutral, basic level of formality, if one
can even speak meaningfully of such a basic level. Moreover, mistakes are not
necessarily eliminated through formality. Indeed, an increase in formality and
explicitness may be achieved at the expense of overview and comprehensibility.
Chains of reasoning are often kept informal to allow for a greater readability,
to allow the reader to form an overarching understanding of a proof. The risk
of losing sight of the working of the proof naturally grows with the number of
steps and details. Also, the risk of making a mistake increases with the number
of steps and calculations. That is, a greater degree of formality may, on the one

atical logic. Formalising ordinary mathematics in formal systems has also found an application
in automated proof checking with computers. These uses of formal systems need not be related
to any specific philosophical-epistemological aims.

5‘Interview with Alan Hajek’. In: Masses of Formal Philosophy. Ed. by Vincent F. Hendricks and
John Symons. Automatic Press / VIP, 2006.

6Jody Azzouni. Tracking Reason: Proof, Consequence, and Truth. New York: Oxford University
Press, 2006, p. 119.

7Carlo Cellucci. ‘Why Proof? What is a Proof?’ In: Deduction, Computation, Experiment: Ex-
ploring the Effectiveness of Proof. Ed. by G. Corsi and R. Lupacchini. Berlin: Springer, 2008.
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hand, allow us to avoid one kind of error, but, on the other hand, make us more
prone to another kind of error.

In philosophical discussions, the notion of formality is often used ambigu-
ously. Indeed, Jan Woleński highlights several dichotomies each pointing to a
possible contrast with regard to the concept complex ‘formal – informal’. He
stresses the importance of not conflating them:

Three contrasts applied to languages are relevant to our problem: (A) natural
– artificial; (B) informal – formal; (C) unformalized – formalized; (D) inter-
preted – uninterpreted. For the first look, it might seem that members of the
sequence ‘natural, informal, unformalized, interpreted’ express the same prop-
erty, which can be also pointed out as ‘ordinary, colloquial’, etc. Consequently,
the words ‘artificial’, ‘formal’, ‘formalized’, and ‘uninterpreted’ seem to refer to
the same feature. However, a closer inspection shows that these extensional
identifications are dubious.8

In particular, ‘formal’ is often associated with ‘formalised’. I will, in this chapter,
use the phrase ‘formal system’ to mean ‘formal axiomatic system’, but I will also
discuss the more loosely circumscribed ‘formal’ and ‘logical form’, which need
not imply ‘formalised’ (i.e. paraphrased into a particular symbolism). This sense
of ‘formal’ is tied to the structural properties of a proposition that emerge in the
use of it in accordance with the rules of the practice.

The counterpart of formal mathematics is referred to as ‘informal’, ‘conten-
tual’, and ‘intuitive’ mathematics. In many cases, these are only ways of referring
to mathematics as it is done in practice as opposed to formal systems. In some
cases, however, a normative attitude is involved in the use of ‘informal’; it may
carry the connotations ‘sloppy’ or ‘unreliable’, and a connection can be seen with
the first of the attitudes to formality mentioned above.

The concept ‘intuitive’ is a particularly complex one. It is used to denote
widely diverging phenomena, and what adds to the complexity and importance
of the intuitive is that the elusive notion of understanding in mathematics seems
to dwell somewhere among the meanings of the word. This is evident in the use
that, for example, Gödel has made of the term (see the quote on p. 15).

The concepts ‘intuition’ and ‘intuitive’ has traditionally been strongly associ-
ated with Kant’s theory of knowledge. For him, Anschauung, translated as ’intu-
ition’, is what allows the knowing subject to have mathematical knowledge and
alsometaphysical knowledge. Kant, thus, assigns an important role to intuition.9

The association with Kant’s philosophy finds a continuation in the use of ’in-
tuition’ to refer to visual imagery and the forming of pictures to illustrate math-

8Jan Woleński. ‘What is Formal in Formal Semantics?’ In: Essays on Logic and its Applications
in Philosophy. Frankfurt am Main: Peter Lang, 2011, p. 81.

9Kant’s view is that in mathematics we make synthetic judgements that provide us with know-
ledge a priori. What makes them synthetic is precisely that one needs intuition (Anschauung) to
apprehend them. This is contrasted with logical truths which are analytical.
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ematical facts. This kind of intuition is sometimes called geometric intuition al-
though itmay arguably occur also in other subdisciplines ofmathematics than in
geometry. This kind of intuition is frequently frowned upon as being unreliable,
and this suspicion has its roots in the development of mathematics during the
nineteenth century. This development is often portrayed as the abandonment
of geometrical intuition as a standard of correctness in favour of a reliance on
rigorous, formal definitions (see section 3.1).

A use of ‘intuition’ that has its roots in the Kantian tradition can be found
in L. E. J. Brouwer’s philosophy of mathematics. For Brouwer, intuition of time
provides the basic stuff that underlies all mathematical theorising.The influence
of Kant’s use of intuition is also evident in Hilbert’s thought. In his The Founda-
tions of Geometry, (for which he chose as a motto a quote on intuition from The
Critique of Pure Reason) he describes the task of geometry as ‘the logical analysis
of our intuition of space’.10

To these philosophically flavoured senses of ‘intuition’ one may add the use
common among mathematicians: to say that one has an intuition for a theory,
or starting go get an intuition for something. This usually means that one has
or is on the way towards a thorough understanding of it. William Thurston’s
comment about his work inmathematics illustrates this use: ‘I gradually built up
over a number of years a certain intuition for hyperbolic three-manifolds, with
a repertoire of constructions, examples and proofs.’11 In this respect, having an
intuition is synonymous to being knowledgeable about the theory.

In addition to the above mentioned senses, Solomon Feferman mentions
‘sudden flashes of insight’ where the solution to a problem is found, but also
‘hunches’: the vague feeling that this is the path to take in order to make pro-
gress in attempting to prove something.12 Of these two, hunches in particular,
may be considered part of the mathematician’s intuition in the sense mentioned
above, as being knowledgeable about a theory. Being versed in a theory mani-
fests itself in, among other things, having a hunch about what the next fruitful
step would be.

There is a large literature on the subject of intuition in mathematics, but it is
not my intention to dwell on the issue. For now, I want to showmerely that since
the counterpart of formality is so loosely circumscribed, our understanding of

10David Hilbert. The Foundations of Geometry. La Salle IL: Open Court, 1950, p. 1. Michael De-
tlefsen argues that the Kantian influence is important for the understanding of his formalism too.
Michael Detlefsen. ‘The Kantian Character of Hilbert’s Formalism’. In: Proceedings of the 15th In-
ternationalWittgenstein-Symposium. Vol. 1: Philosophy ofMathematics. Ed. by Johannes Czermak.
Wien: Hölder-Pichler-Tempsky, 1993.

11William P. Thurston. ‘On Proof and Progress in Mathematics’. In: Bulletin of The American
Mathematical Society 30 (1994), pp. 161–77, p. 174.

12Solomon Feferman. ‘Mathematical Intuition vs. Mathematical Monsters’. In: Synthese 125
(2000), pp. 317–32, pp. 317–18.
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formality may not be as straightforward as the definition of a formal systemmay
lead one to think. There is also a risk that these diverging senses of intuition are
conflated, and as a result that a philosophical confusion as to what intuition is
arises.This confusion is, in part, due to the unclarity of this notion, in part, due to
the power that it seems to have. Before passing on to a discussion of the concept
of formality, I shall sketch a brief background to the notions formal system and
logical form.

4.2 Historical Background to Formal Systems
From a historical perspective, it is clear that one purpose of increasing formal-
ity has been to gain a greater rigour in proofs and deductions. The development
of the algebraic notation in the sixteenth century by François Viète, Pierre Fer-
mat, and others opened a conceptual space for favouring the formal.The advant-
ages of a system of notation that allowed one to focus on the schematic relations
between what the symbols represented were enormous: it lessened the risk of
making mistakes, but it also facilitated new discoveries as it increased the sur-
veyability of expressions in comparison with mathematical expressions written
in prose.13

The discoveries of the late eighteenth and nineteenth centuries discussed in
chapter 3 also display a turn towards a more formal approach. This time, how-
ever, the contrast is found in visual thinking and not in prose. Inmany historical
overviews, the counterintuitive discoveries of non-Euclidean geometry and the
existence of continuous, but nowhere differentiable functions have been men-
tioned as points of conflict between the judgments of geometric intuition (i.e.
visual thinking) and the conclusions reached by a more formal, algebraic pro-
cedure.14 Due to the successful development of non-Euclidean geometries espe-
cially by Bernhard Riemann and the definitions of concepts central to analysis
by Weierstrass and others, the formal approach emerged as the more reliable
one. It is understandable that the intuitive aspects of mathematics were some-
times looked upon as a source of error and therefore something to be avoided. A
consequence was that the philosophical views of Kant were put to scrutiny, not-
ably by Frege. Thus, at the end of the nineteenth century, one finds several turns
towards a more formal approach (e.g. Ernst Schröder’s algebraic logic and the
axiomatisations by Frege, Peano, and Hilbert, mentioned in section 3.1). All of
these, in their ownway, influenced the emergence of themodern concept formal

13Stenlund stresses the importance of the development of the algebraic notation in the seven-
teenth century. Sören Stenlund. The Origin of Symbolic Mathematics and the End of the Science of
Quantity. Uppsala: Department of Philosophy, Uppsala University, 2014, Ch. 3.

14See e.g. Bell, The Development of Mathematics, ch. 13; Uta C. Merzbach and Carl B. Boyer. A
History of Mathematics. 3rd ed. Hoboken NJ: Wiley, 2011, pp. 533–37; or Stillwell, ‘Logic and the
Philosophy of Mathematics in the Nineteenth Century’, pp. 246–51.
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axiomatic system. It is also with thinkers like Frege and Hilbert that the idea of
formality as a neutral and infallible sphere becomes more common.

This idea, however, has an early proponent in G. W. F. Leibniz, who also
influenced the above mentioned thinkers. He writes about finding the accurate
number for each thing or concept. This will enable secure and fruitful reason-
ing about things. His intention was, however, to apply a mathematical method
to areas outside mathematics and thus make use of the certainty that he already
found inmathematics in other, less certain, spheres.The advantages he envisages
are compared to what a microscope or a telescope offer visual perception.15

The comparison to a microscope can be found in Frege’s preface to his 1879
Begriffsschrift too.16 In this book, Frege anticipated the discussion of logical form,
although he did not discuss logical form but rather conceptual content (begriff-
liche Inhalt) – hence the name Begriffsschrift (concept script). Frege’s reason for
inventing a concept script was that he wanted to find out if arithmetic could
do without references to facts of experience, that is, if the laws of logic – ‘those
laws upon which all knowledge rests’ – were sufficient as a basis for all of arith-
metic.17 In order to find an answer, he tried to see how far logical inferences
alone would take him in arithmetic. In attempting this deduction, he found or-
dinary language to be inappropriate, as it did not allow him to see clearly what
was presupposed in each step in the chain of inferences, and in particular if
something intuitive (Anschauliches) entered into the premisses.Thus, he devised
the concept script ‘to provide us with the most reliable test of the validity of a
chain of inferences and to point out every presupposition that tries to sneak in
unnoticed’. Ideally, the concept script should express nothing other than what is
of ‘significance for the inferential sequence’.18

Frege does notmention the intuitive as a source of error, but if he is to succeed
in his project of showing that mathematics fits the slot ’analytic a priori’ in Kant’s
framework, intuitive elements must not enter into the chain of inferences in the
deduction of arithmetic from the axioms of logic.

As mentioned in section 3.1, Hilbert’s axiomatisation of geometry in Grund-
15Leibniz vividly describes the benefits that hismethodwill bring: ‘Once the characteristic num-

bers of a majority of our concepts are determined, mankind will be in possession of a new in-
strument that will enhance the capacities of the soul far more than optical lenses improve the
visual acuity of the eyes, and that will surpass the microscope and telescope to the same extent
that reason is superior to visual perception.’ Gottfried Wilhelm Leibniz. Philosophische Schriften.
Vol. 4: Schriften zur Logik und zur philosophischen Grundlegung von Mathematik und Naturwis-
senschaft. Ed. by Herbert Herring. Darmstadt:Wissenschaftliche Buchgesellschaft, 1992, p. 53, my
translation from German.

16Gottlob Frege. ‘Begriffsschrift’. In: From Frege to Gödel. A Source Book in Mathematical Logic,
1879-1931. Ed. by Jean van Heijenoort. Cambridge MA: Harvard University Press, 1967, p. 6.

17Ibid., p. 5. In other words, Frege wanted to see into which slot of the Kantian metaphysical
framework arithmetic fit: synthetic or analytic a priori.

18Ibid., p. 6.
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lagen der Geometrie was formalistic in that it implicitly defined the objects of
geometry rather than put down their meaning in definitions. They did not pur-
port to express indubitable truths about objects known beforehand, as axioms in
the tradition of Aristotle were supposed to. Hermann Weyl testifies to the nov-
elty of Hilbert’s conception: ‘Before Hilbert constructed his proof theory every-
one thought of mathematics as a system of contentual [inhaltliche], meaningful
[sinnerfüllte], and evident [einsichtige] truths; this point of view was the com-
mon platform of all discussions.’19

In his reactions to Hilbert’s axiomatisation of geometry, Frege shows himself
to be very traditional. In a letter to Hilbert dated 27 December 1899, Frege ac-
cuses him of conflating definitions and axioms. Axioms should not contain any
words whose meaning has not yet been precisely defined. For Frege, an axiom
was still a self-evident truth.20 In his reply on 29 December, Hilbert gives the
following oft-quoted characterisation of his view:

It is self-evident that every theory is only a scaffolding (schema) of concepts
together with their necessary relations, and the basic elements of the theory
can be thought of in any way one likes. For example, instead of points, a sys-
tem: love, law, chimney sweep … for which all the axioms hold, then the Py-
thagorean theorem also holds for these. Every theory can always be applied to
infinitely many systems of basic elements. […] The aforementioned fact is thus
no shortcoming (rather a tremendous advantage) of a theory.21

With Hilbert’s proof theory, the association between meaning and lack of
certainty is established. With regard to his request for a proof of the consistency
of arithmetic, he explicitly mentions the contentual as a source of uncertainty:
‘if we use contentual axioms as starting points and foundations for the proofs,
then mathematics thereby loses the character of absolute certainty. With the ac-
ceptance of assumptions we enter the sphere of what is problematic.’22 What
is problematic is, in this context, the paradoxes of set theory. However, Hil-
bert’s aversion to the contentual only concerned proof theory. The point of the
consistency proof was, after all, to secure classical mathematics so that research
in mathematics could be continued as before. His verdict on the contentual is
telling, however.

This shows another contrast between Frege and Hilbert (and the metamath-
ematical tradition that can be seen as a continuation of Hilbert’s programme).

19Hermann Weyl. ‘Comments on Hilbert’s Second lecture on the Foundations of Mathemat-
ics’. In: From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931. Ed. by Jean van
Heijenoort. Cambridge MA: Harvard University Press, 1967, p. 482.

20Gottlob Frege. Nachgelassene Schriften und Wissenschaftlicher Briefwechsel. Ed. by Hans Her-
mer, Friedrich Kambartel, and Friedrich Kaulbach. Vol. 2. Hamburg: Felix Meiner, 1976, pp. 62–
63.

21Ibid., p. 69, my translation from German.
22Hilbert, ‘Problems of the Grounding of Mathematics’, p. 228.
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The idea behind Frege’s concept script was not to provide ameans for investigat-
ing meaningless symbolic expressions. On the contrary it was important that the
symbolic formulas expressed truths and falsities. Formalisation was, for him,
an attempt to clarify thoughts, and thoughts are not meaningless. The Hilbert
school, by contrast, disregards the meaning of particular sentences and signs
and devotes itself to the structure that emerges through the implicit definitions
that the axioms constitute.23 The advantage that Hilbert mentions in the quote
above is that the structure, the theory, emergesmore clearlywhen one does not at
the same time think about possible applications. Interestingly, the applications
of mathematics – within mathematics as well as to practical problems – now fall
into the background. In the metamathematical tradition, a possible application
of a theory is seen as an interpretation of the formal theory.

To sumup, wemay in the development of themodern notion of formality see
two different strands: (1) the emphasis on freedom from meaning, and (2) the
emphasis on symbolism. As the concept logical form is taking shape in the early
twentieth century, there is also a growing awareness of the fact that this concept
is not sufficiently understood.

Frege does not, in his Begriffsschrift, explicitly define ‘conceptual content’. It
is simply ‘that which influences [the judgement’s] possible consequences.’Thus, in
the concept script ‘[e]verything necessary for a correct inference is expressed in
full, but what is not necessary is generally not indicated; nothing is left to guess-
work.’24 This, according to Frege excludes features of ordinary language such as
how a proposition is uttered, whether passive or active form is used, etc.

Russell shares Frege’s suspicion of ordinary language: ‘Because language is
misleading, as well as because it is diffuse and inexact when applied to logic (for
which it was never intended), logical symbolism is absolutely necessary to any
exact or thorough treatment of our subject.’25

He also states – in a manner of giving a definition – what he takes logical
form to be, namely: ‘that, in it, that remains unchanged when every constituent
of the proposition is replaced by another.’26 The logical constants are what re-
mains unchanged and these are equated with logical form; ‘in fact, they are in
essence the same thing.’27 This focus on the logical constants when searching for
the form of expressions becomes commonplace in the first half of the twentieth
century; in combination with the distrust of everyday language, it cements the
tight association between logical form and freedom from meaning, on the one
hand, and between logical form and symbolic expression, on the other hand.

23I am grateful to Martin Gustafsson who helped me to spell out this difference.
24Frege, ‘Begriffsschrift’, p. 12.
25Russell, Introduction to Mathematical Philosophy, p. 205.
26Ibid., p. 199.
27Ibid., p. 201.



82 4. Formality

Thediscussions concerning the nature of logical form seem tohave faded into
the background in the 1930s. First order logic seems to have acquired a status of
’the received view’ of logical form. This is, to a large extent, a consequence of
Gödel’s proof of the completeness of first order predicate calculus in 1930 and
his of incompleteness proofs of 1931. Together, these proofs pointed towards a
divide between first order predicate calculus and other formal axiomatic sys-
tems. A consensus emerged to the effect that what is expressible in first order
predicate logic is regarded as the basic level of formality. A formal system where
the underlying machinery is first order logic comes to be regarded as the basic
kind of formal system.

The philosophical bewilderment did not thereby disappear as can be seen
in von Wrights inaugural lecture for the Cambridge chair in 1949. He describes
logical form in much the same way as Russell: ‘We shall say that the variables
give to the syllogism its content, and that the [logical] constants give to it its
form.’28 He then shows that the form of a proposition from the perspective of
propositional logic will not be enough to recognise what is, from the perspect-
ive of predicate logic, a formal truth. Consequently, concentrating on the logical
constants will not give us any definite answer as to what form is. ‘The distinction
between form and content … is far from clear’.29 His assessment is echoed in the
Encyclopedia of Philosophy article on ‘Logic, Modern’: ‘there is still no satisfact-
ory account of logical form’.30

I shall now proceed to discuss these three issues regarding formality: the em-
phasis on freedom from meaning, the emphasis on symbolism, and the unclar-
ity that affects the notion of logical form. It will emerge that formal mathematics
(just as much as any other kind of mathematics) is grounded in a practice that
involves the ability to use the signs according to established rules, and that no
philosophically significant line can be drawn between formal and non-formal
mathematics.

4.3 Meaningless Signs
To do mathematics formally is often described as a dealing with meaningless
signs. A striking example is found in Hilbert’s claim that ‘the objects of number
theory are … the signs themselves, whose shape can be generally and certainly
recognized by us’. He continues: ‘These number-signs … are themselves the ob-

28Georg Henrik von Wright. Form and Content in Logic: An Inaugural Lecture. Cambridge:
Cambridge University Press, 1949, p. 6.

29Ibid., p. 13.
30Albert E. Blumberg. ‘Logic, Modern’. In: Encyclopedia of Philosophy. Ed. by Paul Edwards.

Vol. 5. New York: Macmillan, 1967, p. 13.
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ject of our consideration, but otherwise they have no meaning of any sort.’31
The idea that we deal with meaningless signs that we furthermore clearly see

on a paper is an important feature ofmany characterisations of formality. A clear
example is found in Rudolph Carnap’s The Logical Syntax of Language:

A theory, a rule, a definition, or the like is to be called formal when no reference
is made in it either to the meaning of the symbols (for example, the words) or
to the sense of the expressions (e.g. the sentences), but simply and solely to the
kinds and order of the symbols from which the expressions are constructed.32

Sometimes the formal, symbolic expressions are referred to as concrete ob-
jects, as in Hilbert’s assertion that ‘a formalized proof, like a numeral [Zahlzei-
chen], is a concrete and surveyable object [überblickbarer Gegenstand].’33

But what does ‘meaningless’ mean here? Already in 1923, AloysMüller voices
the objection against the formalists that if theywere really dealingwithmeaning-
less signs, then the particular form of the signs would have no significance – not
the form of individual signs nor the form of series of signs.34 WhatMüller seems
to be saying is that meaningless signs would not be enough to found a math-
ematical theory on. Bernays’s reply to Müller is, roughly, that number theory
disregards the meaning of the individual signs but not the meaning that arises
through relations that hold between the signs: ‘[S]enseless figures are equally
capable of such meaning, because of the external properties that are found in
them and of the external relationships that can be observed between them.’35

What seems to be overlooked in this discussion is that there are two differ-
ent senses of ‘meaningless’ in play (and, in consequence, two different senses of
‘meaning’, but I shall return to that below). In order to spell out this difference, I
shall make use of the distinction between sign and symbol which is found inWit-
tgenstein’s Tractatus Logico-Philosophicus.36 A sign is a physical mark whereas a
symbol is ‘determined by its place and use in the symbolic system’, to use Sten-
lund’s formulation.37

31Hilbert, ‘The New Grounding of Mathematics: First Report’, pp. 202–03.
32Rudolf Carnap. Logical Syntax of Language. New York: Humanities Press, 1951, p. 1.
33Hilbert, ‘On the Infinite’, p. 383. Cf. also the textbook Joseph R. Schoenfield. Mathematical

Logic. Reading MA: Addison-Wesley, 1967, p. 2: ‘A sentence … is a concrete object, we approach
the abstract through the concrete.’

34Aloys Müller. ‘Über Zahlen als Zeichen’. In: Mathematische Annalen 90 (1923), pp. 153–58.
35Paul Bernays. ‘Reply to the Note by Mr. Aloys Müller, “On Numbers as Signs”’. In: From

Brouwer To Hilbert. The Debate on the Foundations of Mathematics in the 1920s. Ed. by Paolo
Mancosu. New York: Oxford University Press, 1998, p. 225.

36Ludwig Wittgenstein. Tractatus Logico-Philosophicus. London: Routledge & Kegan Paul, 1922
(henceforth cited as TLP), § 3.32.

37Sören Stenlund. ‘Different Senses of Finitude: An Inquiry into Hilbert’s Finitism’. In: Synthese
185 (2012), pp. 335–63, p. 352. Cf. also the following description of ‘symbol’: ‘It is the operational
aspect of a symbol, its function in the calculus, its role in the manipulation and transformation of
expressions, which constitutes it as a symbol.’ Stenlund, The Origin of Symbolic Mathematics and
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Stenlund claims that these two notions (signs and symbols) are conflated in
the tradition of metamathematics.38 A consequence of this conflation is a very
suggestive picture of formal work: themeaninglessness of the signs of the formal
system makes them into something pre-mathematical. Dealing with such signs
is, therefore, taken to be immune to the distortions andmisunderstandings asso-
ciated with human understanding. This meaninglessness would, supposedly, set
such a practice apart from informal mathematics with regard to rigour, reliab-
ility, and certainty. It may, therefore, contribute to the wide acclaim that formal
work won in the twentieth century and still enjoys. However, this appearance
depends on taking ‘meaningless’ to mean signs that are isolated from a practice,
isolated from their place and use in a symbolic system.

The discussion of the meaninglessness, naturally, evokes questions about the
concept ‘meaning’ too. As in the case of ‘intuitive’, what should be understood
by ‘the meaning of an expression’ is also unclear. I shall not go into a discussion
of this problem, but I will mention three different ways in which meaning can
enter into the context of the present discussion. One may think of the meaning
of a symbol in terms of its reference, e.g. the symbol π can be taken to refer to
a particular number. This is also related to the sense in which a formal system
can be applied to a particular model. The model is then the interpretation of the
system. Another sense of ‘meaning’ can be seen in the possible practical applica-
tions of amathematical theory (not necessarily a formal system). A third and for
this discussion central sense of ‘meaning’ is the one associated with understand-
ing the use of an expression. This sense can be regarded as the same as Frege’s
‘conceptual content’ or, perhaps, ‘logical form’.

In what sense, then, can a symbol be meaningless? In what sense does this
differ from signs? One can think of a symbol as meaningless if one disregards
whatever reference it has, if one does not pay attention towhat the symbol stands
for. The symbol π may refer to a particular number, but one can bracket this for
the moment and treat it formally, as a meaningless symbol. This does not mean,
however, that no understanding is involved in our grasping the symbols or in
our using them. We do need a mastery of a technique to be able to use them in
accordance with the rules of the system or theory, and even to see them as the
symbols they are. Without this understanding, could we even distinguish the
signs from, say, accidental marks? The understanding required is, thus, not an
understanding of what the symbols may be used to refer to, but of their use in
the system, of their meaning in the sense ‘logical form’. In order to achieve this
skill, a good deal of successful training is of the essence. Moreover, a logical pre-
requisite for the learning of such a skill is the existence of an established practice

the End of the Science of Quantity, p. 22, emphasis in the original.
38Stenlund, ‘Different Senses of Finitude’, p. 352.
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of working with the symbols, a system of rules recognised by the participants of
that practice.

In the criticismmentioned above,Müller seems to be talking of ‘meaningless’
in the sense that a sign, a physical mark, is meaningless. His criticism is correct,
I think, to the extent that one cannot ground a mathematical theory in such
signs alone. However, what Bernays refers to by ‘meaningless’ is the meaning-
lessness that one can connect with symbols, i.e. they are indeed mathematical
symbols but one does not at the moment pay attention to what they refer to,
or may be applied to. Nevertheless, although treating symbols as meaningless in
this way does inmany cases have enormous benefits, I do not think that this kind
of meaninglessness sets formal systems apart from non-formal mathematics in
a way that would indicate a qualitative difference in rigour between them.

Within the context of formal systems, this sense of meaningless has a tech-
nical, intra-mathematical sense. It means that we have not (yet) provided an in-
terpretation, a semantics. We have not yet specified an interpretation function.
However, as noted above, we still understand them as mathematical symbols,
otherwise there would be no talk of providing a semantics in the first place. This
is aptly formulated by Stenlund: ‘To give an interpretation of a sign is to intro-
duce and employ other signs, so there has to be an understanding of signs that
is not given by an interpretation. To possess that understanding is to be able to
master a certain use of the signs.’39

The previous discussion comes to the following: Formality cannot be under-
stood to arise from dealing with meaningless signs if this is the meaninglessness
of physical marks, because what we deal with are indeed symbols. However, this
kind of symbolic work is not unique to formal mathematics but something that
is characteristic of all of mathematics. This means that in so far as rigour and re-
liability are actually present to a greater degree in formal mathematics than oth-
erwise, this cannot be due to its dealing with pre-mathematical physical marks
that are passively taken in by the mind.

I shall elaborate on this by discussing Azzouni’s comparison between dia-
grammatic proofs and what he calls ‘language proofs’: ‘We tacitly use our visu-
alization faculties to appreciate the proof-theoretic elements in diagrammatic
proofs. What goes unremarked is that we use exactly the same visualization fac-
ulties (tacitly) to appreciate the proof-theoretic elements in language proofs as
well. What, therefore, makes us persist in seeing diagrammatic proofs as some-
how “more intuitive” than language ones?’40

Azzouni’s rhetorical question is, as I understand it, an expression of the fact

39Ibid., p. 355.
40Jody Azzouni. ‘That We See That Some Diagrammatic Proofs Are Perfectly Rigorous’. In:

Philosophia Mathematica 21 (2013), pp. 323–38, p. 333.
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that understanding is needed in order to deal with symbols. That we need an
understanding to grasp the gist of a diagram is evident (and they have precisely
therefore often been regarded with suspicion), but the same goes for proofs ex-
pressed in symbols too.41 Now, Azzouni describes this as a matter of visual re-
cognition. ‘Mechanical recognizability … is rooted in our visual powers.’ This,
together with the term ‘mechanical’, suggests that Azzouni regards this recog-
nition as something passive. In this respect, there is a similarity between, on
the other hand, Azzouni and, on the other, Hilbert and Bernays regarding the
attitude towards this recognition. However, the following passage complicates
matters: ‘the properties of the language-entities I’m describing our recognizing
are conventionalized ones: they’re not the actual physical properties of those en-
tities, or not entirely those properties anyway.’42

Obviously, the conventionalised properties that we see are features which
may be ascribed to a symbol, not to a sign, if one uses the above distinction.
This seeing is not a passive perceiving of physical marks. The term ‘mechanical’
still suggests that this seeing is free from the openness that we associate with in-
terpretation, although what we are recognising are conventionalised properties.
These properties are, I believe, their use in the symbolic system.43 What makes
the seeing of this kind of properties ‘mechanical’ is the background of an es-
tablished practice. Being fluent in this practice manifests itself in, among other
things, the fact that there is one way of dealing with the symbols which is the
correct way according to the rules of the practice. FelixMühlhölzermakes a sim-
ilar observation: ‘[E]vidently, pictures and signs (considered as visual shapes) as
such do not contain their own rules of use – something must be additionally
present, so to speak. What is this something? According to Wittgenstein, it is
the use itself in form of a certain established practice.’44

The use of the word ‘see’ is common in ordinary discussions about mathem-
atics, and perceptual metaphors abound. If what ‘seeing’ refers to is a possible
use of the symbols rather than physical features of the signs, a possible reaction
might be that ‘seeing’ is an inappropriate term. While restricting the use of per-
ceptual vocabulary would be an overreaction, I think that this is an indication

41One might put this differently: diagrams too are symbols in this respect – a similar kind of
understanding is needed in order to benefit from them in a proof, as is needed in order to be able
to use a symbol in accordance with the rules of the system it occurs in. That is, one must be able
to use the elements of the diagram in accordance with the practice of drawing such diagrams.

42Azzouni, ‘That We See That Some Diagrammatic Proofs Are Perfectly Rigorous’, p. 330, em-
phasis added.

43I would, however, be hesitant to call them ‘conventionalised’, since this term gives the impres-
sion that there is room for making changes at will.

44Felix Mühlhölzer. ‘Mathematical Intuition and Natural Numbers: A Critical Discussion. Re-
view of Charles Parsons’ Mathematical Thought and Its Objects’. In: Erkenntnis 73 (2010), pp. 265–
92, pp. 283–84.
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of the fact that seeing (in mathematics and, arguably, also otherwise) is indistin-
guishable from understanding, especially in the sense of ‘being able to use’.

The following example is intended to show the connection between seeing
and a particular usage:

2 & 4 make 6 (4.1)

3 & 6 make 9 (4.2)

2 & 4 make 6 qr 8 (4.3)

1 & 2 make 3 qr 4 ip 5 (4.4)

If one considers the expressions (4.1) and (4.2) only, the pattern ‘a + 2a = 3a’
will perhaps strike one as the form they share, i.e. one will see them as addi-
tions. When (4.3) and (4.4) are added to the array, however, one may get the
impression that the two latter expressions are nonsensical. Indeed, they are non-
sensical, given the use of (4.1) and (4.2) that first announced itself. A closer study
of all four expressions taken together shows another meaningful way of seeing
them. They could be the first elements of three different arithmetic progressions
which in ordinary notation could be written: ‘1, 2, 3, . . . ’ (4.4); ‘2,4,6, . . . ’ (4.1)
and (4.3); and ‘3,6, 9, . . . ’ (4.2).

This example is presented to make plausible the connection between seeing
(a logical form) and an ability to use the symbols in a certain way. It shows that
what form one sees in a proposition is not determined by the physical signs as
such but by my understanding of them, by the way I see myself using them. The
example can thus be seen as an illustration ofWittgenstein’s claim that ‘[i]n order
to recognize the symbol in the signwemust consider the significant use.The sign
determines a logical form only together with its logical syntactic application.’45 It
also shows that it is not possible to build a mathematical theory on meaningless
signs.

The example shows that there may be several different meaningful uses of
the same signs: we may see different symbols in the signs. How they should be
treated is a matter of an established practice. Without this practice it is not even
clear that we should read the signs from left to right. Stenlund comments on this:
‘Even if we follow explicit, formal rules, this rule-following is rooted in some-
thing which is not an explicit rule at all, but a practice of calculation.’46

An objection which might be raised against this emphasis on practice is that
one could do away with practice if only everything was explicitly stated. The

45TLP, §§ 3.326–3.327.
46Sören Stenlund. ‘The Limits of Formalization’. In: Logic and Philosophy of Science in Uppsala:

Papers from the 9th International Congress of Logic, Methodology and Philosophy of Science. Ed. by
Dag Prawitz and Dag Westerståhl. Dordrecht: Kluwer, 1994, p. 370.



88 4. Formality

rules of the practice could perhaps be set down in a further set of explicit rules
and one could thereby free the symbolism from the particularities of mastering
a certain technique. A passage in Azzouni’s article can be read in this way: ‘In
both cases [diagrammatic and language proofs] substantial mathematical con-
tent lurks in the proof-theoretic presuppositions that can become explicit when
the proof procedure itself is fully characterized.’47

However, I do not see this as a possible way of freeing the formal system
from its context-dependence. For these new rules would in turn require a similar
understanding as the one we just tried to set down in explicit rules. We would
arrive at a situation where – to speak with Lewis Carroll – the tortoise could
continue to ask for further explications of every new rule that we gave.48

Saul Kripke, in his discussion of Wittgenstein’s remarks on rule following,
argued that Wittgenstein had invented a new kind of scepticism. A scepticism
to the effect that since we can never hope to spell out everything involved in
the following of a particular rule, there is always room for disagreement con-
cerning what counts as the correct application of a rule.49 I do not agree with
the conclusion Kripke draws. Wittgenstein’s remarks could, instead, be under-
stood as showing that the demand for absolute explicitness is misconceived. Ju-
liet Floyd discusses rule following through the example of continuing a number
series such as ‘2,4,6, . . . ’. Wittgenstein remarks that if there is a philosophical
problem concerning our ability to continue that series, then the same problem
must also apply to the series ‘2, 2, 2, . . . ’.50 This could be interpreted in accord-
ance with Kripke’s reading. Floyd, however, argues that Wittgenstein wanted to
point to the absurdity in the need for further explanations of how we can fol-
low simple rules. Since there is no problem of understanding how to continue
‘2, 2, 2, . . . ’, there need not be any in the case of ‘2,4,6, . . . ’ either.51 Far from
resulting in an instability with regard to rule-following, the impossibility of ex-
plicitly stating everything involved points towards the fact that some things will
always depend on the existence of an established practice of following rules.52
Furthermore, I do think that such a practice is compatible with the complete cer-
tainty that we associate with mathematics. The idea that there could be a form

47Azzouni, ‘That We See That Some Diagrammatic Proofs Are Perfectly Rigorous’, p. 332.
48Lewis Carroll. ‘What the Tortoise Said to Achilles’. In: Mind 4 (1895), pp. 278–80.
49Saul A. Kripke. Wittgenstein on Rules and Private Language: An Elementary Exposition. Ox-

ford: Blackwell, 1982.
50RFM, I § 2.
51Juliet Floyd. ‘Wittgenstein on 2, 2, 2 . . .:TheOpening of Remarks on the Foundations of Math-

ematics’. In: Synthese 87 (1991), pp. 143–80.
52Miriam Lipschütz-Yevick comments on the need for a context in the dealing with formal

systems: ‘Contrary to the claims of the formalists, the formal system is no more formal and context-
free than are the systems that are to be imbedded in it.’MiriamLipschütz-Yevick. ‘TheHappy (Non-
formalist) Mathematician’. In: The Mathematics Intelligencer 14 (1992), pp. 4–6, p. 4.
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of mathematics which deals with purely physical signs and where certainty is
guaranteed by the ‘sterile’ character of the objects of study would not even get
off the ground.

4.4 Advantages of Symbolism
The above discussion concerned the idea that formal mathematics is qualitat-
ively different from informal mathematics. This idea stems from the thought
that the former deals with meaningless signs while the latter takes account of
their meaning. The point was to show that the difference between formal and
informal mathematics is not a difference of kind but rather of degree – at least
from an epistemological perspective. In mathematical logic, by contrast, the no-
tion ‘formal system’ is clearly circumscribed through such definitions as that of
well-formed formula and of proof. Thereby, ‘formal’ and ‘meaningless’ acquire
a clear, albeit technical, meaning. The difference between formal systems and
other axiomatic systems is one within mathematics, but it is not a difference that
can act as a foundation for the certainty of mathematics.

Why does it seem plausible to turn to formal mathematics for an increase
in reliability and rigour? I believe that it is important for a greater clarity with
regard to the concept of certainty that one addresses this, as it were, natural re-
action. One reason is, surely, the one mentioned by Frege: to make proofs more
transparent. Stenlund argues for such an understanding: ‘The method of disreg-
arding the traditional content of signs was an efficient tool for making explicit
properties that were tacitly used, but not explicitly stated, in contentual reason-
ing. Hilbert is here using the same feature of the axiomatic method that he had
already employed successfully for making explicit “hidden assumptions” in his
axiomatization of Euclidian geometry.’53

It is also possible to understand the quote from Hajek in a similar spirit. In
light of the above discussion, however, this advantage is not exclusive to formal
mathematics. It may, perhaps, be said that in formal systems this surveyability
is, in one sense, refined. In different sense, however, it is not, as the length of the
formal expressions and proofs quickly cancels out the advantage gained through
explicitness.54 Detlefsen also discusses this tension in the concept of rigour and
suggests a way of understanding it that is similar to Stenlund’s:

53Stenlund, ‘Different Senses of Finitude’, p. 357.
54Kreisel also mentions the risk of mistakes in long formal proofs: ‘Hilbert sometimes speaks

of the reliability (Sicherheit) of finitist reasoning. As Bernays has pointed out …, realistically
speaking, almost the opposite is true, the chance of an oversight in long finitist arguments of
metamathematics being particularly great.’ Georg Kreisel. ‘Hilbert’s Programme’. In: Philosophy of
mathematics. Selected readings. Ed. by Paul Benacerraf and Hilary Putnam. 2nd ed. Cambridge:
Cambridge University Press, 1983, p. 211.
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[I]t seems at least possible to think of rigor as linked to explanatory transpar-
ency – an inference being rigorous to the extent that its premises can be seen
to explain its conclusion. The greater such explanatory transparency, the more
confident we can be that unrecognized information has not been used to con-
nect a conclusion to premises in ways that matter. To the extent, then, that
formalization decreases explanatory transparency, it also decreases rigor.55

The advantage that Stenlund identifies in Hilbert’s approach was not new
nor exclusive to the formal systems that Hilbert started developing in the 1920’s.
Stenlund observes that Hilbert already utilised the method of making assump-
tions explicit in his axiomatisation of Euclidean geometry. His Grundlagen der
Geometrie was published in 1899, and while it is an axiomatic treatment of geo-
metry, it did not develop Euclidean geometry as a formal axiomatic system. It
may, however, be described as being more formal than Euclid’s Elements. Thus,
this way of increasing rigour – i.e. making explicit such properties that are other-
wise tacitly assumed by disregarding the meaning of the signs – is not exclusive
to formal systems. It is a common strategy inmodernmathematics when unclar-
ity arises. While it is mainly associated with formal systems and more generally
with post nineteenth century mathematics, the possibility of increasing trans-
parency by disregarding the meaning of the signs employed has – I would say –
been present at least since the development of the algebraic style of notation in
the sixteenth century, by Viète, Fermat, and Descartes.

Mühlhölzer discusses another perspective on the apparent rigour of a formal
system such as Hilbert’s. It is possible that the system in itself does not allow
for any greater rigour, but that the rigour that we are used to in ordinary arith-
metic (but not aware of because it is always before our eyes) is projected onto the
formal symbols. The rigour that we already are in possession of then strikes us
as something new. Mühlhölzer remarks that:

we understand what natural numbers are, and how to deal with them, and we
accept the sort of precision and sharpness that reigns in the domain of natural
numbers, long before we get acquainted with the Hilbertian ‘visual numbers’ |,
||, |||, …. And when we then meet this domain of visual numbers, we automat-
ically project our antecedent understanding of numbers into it and measure
what is happening in it against what we know from the numbers we are famil-
iar with. In this way we unconsciously also project the latter’s sharpness into
it.56

The two quotes from Stenlund and Mühlhölzer seemingly contradict each
other – one speaking of the success of formality and one pointing to the illusory
character of this success. But the conflict is only on the surface. One can see

55Michael Detlefsen. ‘Proof: Its Nature and Significance’. In: Proof and Other Dilemmas: Math-
ematics and Philosophy. Ed. by Bonnie Gold and Roger A. Simons. Spectrum. Washington DC:
Mathematical Association of America, 2008, p. 19.

56Mühlhölzer, ‘Mathematical Intuition and Natural Numbers’, p. 283.
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both of these observations as consequences of the same observation, namely
that the sharpness and rigour that is commonly associatedwith formal systems is
present already in ordinarymathematics and that this is indeed a prerequisite for
recognising rigour in formal systems. This, again, means that there is no sharp
division between rigorous and not quite rigorous mathematics. The success of
Hilbert’s axiomatisation of Euclidean geometry shows a genuine possibility of
increasing reliability but this possibility is not exclusive to formal systems.57

The discussion in this chapter has so far been concerned with refuting one,
as it seems, common way of understanding formality, and the notion of rigour
associated with it. I shall now draw attention to certain features of logical form
that provide a different perspective. One may identify a meaning of ‘formal’ and
‘logical form’ which is not tied exclusively to formal systems, and with this un-
derstanding of logical form in mind, one may account for the rigour of formal-
ity without involving notions such as meaningless signs or formal systems. I am
thinking of form as it emerges in the following example where the expressions
can be said to share a common form.

2 + 1 = 3 (4.5)
● ● & ● make ● ● ● (4.6)

Another example is the form, different from the above, shared by the following
pair of expressions:

2 + 1 = 3 (4.7)
{∅,{∅}} ∪ {{∅,{∅}}} = {∅,{∅},{∅,{∅}}} (4.8)

That these expressions share logical forms is, however, evident only to persons
who know the use of them in the relevant context – the examples (4.5) and (4.6)
to anyone who has learnt to count and perform simple additions, (4.7) and (4.8)
to people who are familiar with the successor function in formal arithmetic and
how this function is used to define the natural numbers in set theory.58 Logical
form, in this respect, is aptly described by Frege’s ‘that which influences the pos-
sible consequences’ (see the quote on p. 81), although this is not particularly
specific. I would say that logical form in this respect is what can be seen in the
expressions qua symbols, and this cannot be separated from an understanding

57Philip Kitcher has argued that demands for rigour must be understood in the light of ad-
vances in mathematical knowledge. What is considered fully rigorous, he claims, is something
that changes with the development of new concepts and techniques. Philip Kitcher. ‘Mathemat-
ical Rigor – Who needs it?’ In: Noûs 15 (1981), pp. 469–93.

58The ordinal ‘2’, for instance, can be defined as the set {0, 1}. Generally, for any ordinal α, its
successor α+1 can be defined as α∪{α}.This is von Neumann’s definition of the ordinal numbers
in set theory. If 0 is defined as the empty set ∅, the successor of 0, i.e. 1, is {∅}, and the successor
of 1 is {∅,{∅}}. The expression (4.8) then follows and forms a counterpart of (4.7).
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of their use within the system. Wittgenstein writes: ‘It characterizes the logical
form of two expressions, that they can be substituted for one another.’59 Form is
an essential part of realising when something is interchangeable, equivalent. In
this respect, logical form is an essential notion inmathematics. Furthermore – to
tie this discussion to the previous chapter – this understanding is aptly described
as a skill, a ‘knowing how’.

It is worth emphasising that form in this respect is not tied to a particular
symbolism. One of the ideas of formal symbolisms was, originally, that logical
form and logical symbolism should correspond. This is seen in the following
remark by Russell:

Assuming – as I think we may – that the forms of propositions can be rep-
resented by the forms of the propositions in which they are expressed without
any special word for forms, we should arrive at a language in which everything
formal belonged to syntax and not to vocabulary. In such a language we could
express all the propositions of mathematics even if we did not know a single
word of the language. The language of mathematical logic, if it were perfected,
would be such a language.60

The attitude that Russell expresses gives reason for high expectations on form-
alisation. When formalising in a proper symbolism, ideally, one isolates the fea-
tures relevant for deduction and expresses them fully and unambiguously. This
idea becomes troublesome if one envisages the construction of a symbolic lan-
guage which is in some sense immune tomisunderstandings, a perfect language.
The idea that it is possible to express logical form completely in a formula com-
bines easily with the idea that formality is about meaningless signs. One would
thereby arrive at a neat picture of the benefits of formality: it is possible to isol-
ate what is essential to a mathematical theory – logical form – and to express
this form in mere physical signs. However, as was seen in the above discussion,
even if we had a privileged mode of notation which lends itself to expressing
logical form better than others, one would still not avoid the need for an ability
to use these signs in order to realise what form they express. This applies to any
notational system.

Stenlund calls the notion of form exemplified by Russell the mechanical no-
tion of form, and he distinguishes this from logical form. The idea behind the
mechanical notion is summarised thus: ‘It is supposed to be possible to give (at
least in principle) a specification of all the external features of the expressions of
a language that are relevant to their meaning without referring to or presuppos-
ing the meaning or the use of the expressions in this specification.’61 In contrast,
logical form is not something that one can isolate from the expressions that show

59TLP, § 6.23.
60Russell, Introduction to Mathematical Philosophy, pp. 200–01.
61Stenlund, Language and Philosophical Problems, p. 4.



4. Formality 93

this form and point to in separation from these expressions. Realising that an ar-
ray of expressions share a common form is about identifying a common use of
the expressions, and this means that all one can point to is examples of expres-
sions sharing this form. ‘There is no non-circular way of defining it. The form
“itself ”, so to speak, is determined as an existing form of use of [the] symbols’, as
Stenlund comments.62

There are further critical points worth raising with regard to the conception
of form under discussion here. In an article with the same title, Etchemendy
questions what he calls ‘the doctrine of logic as form’. He summarises this doc-
trine as follows: ‘Two sentences cannot differ logically if they do not also differ
formally or structurally.’63 Etchemendy mentions examples and arguments that
speak in favour of the doctrine but he questions the general validity of the idea
that logical form and syntactical form coincide.

In addition,Quine’s idea of the indeterminacy of translationhas consequences
for the notion of formalisation. In Word and Object, he writes that there are no
reasons for assuming that formalising a proposition captures the form of the ori-
ginal one.64 This does not, of course, rule out possible benefits of formalisation
if the formalised expression comes reasonably close to the original proposition.
The virtue of the symbolic expression is, however, not that it is synonymous with
the first one, and what is ‘reasonably close to the original proposition’ is related
to the needs that prompted the formalisation in the first place.

I will now return to the question about the possible benefits of formalisa-
tion, or increasing formality in mathematics. The first kind of benefit is tied to
the insights that can be gained in trying to express something in another (more
formal) notation. In struggling with the ‘translation’, questions about how one
should understand a proposition are likely to arise. These benefits, then, result
from a conceptual clarification of the concepts involved, but they are not neces-
sarily gained from the end product (the formal expression), but from the process
of formulating it. The second kind of benefit is of a more pragmatic nature. This
kind has to do with what one is trying to achieve by expressing something more

62Ibid., p. 160. Max Black, who otherwise follows Russell, distances himself from what seems
to be a consequence of Russell’s view on logical form, namely that logical form is equated with
a variable propositional function. He quotes Russell, who in the paper ‘Philosophy of Logical
Atomism’, claims: ‘I mean by the form of a proposition that which you get when for every single
one of its constituents you substitute a variable.’ Black then gives the following alternative which
is more in line with the one portrayed above: ‘the correct view is that the form is what the pro-
position has in common with the variable propositional functions derived from it by changing all
its constituents into variables.’ Max Black. The Nature of Mathematics: A Critical Survey. London:
Kegan Paul, Trench, Trubner, 1933, p. 49.

63John Etchemendy. ‘The Doctrine of Logic as Form’. In: Linguistics and Philosophy 6 (1983),
pp. 319–34, p. 320.

64Willard Van Orman Quine. Word and Object. Cambridge MA: The MIT Press, 1960, § 33.
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formally (be it in a formal system or otherwise). Formalisation (or increasing
formality in general) usually involves: (1) disregarding traditional content, (2)
fixing the use of the symbols employed, and (3) creating surveyable expressions
(in the literal sense of surveyable).

All these features can be found in traditionalmathematics as well as in formal
systems. The increase in rigour that they allow for is genuine, I believe, but it is
not of an absolute kind, rather of a pragmatic kind. It is often easier to work with
expressions that are formal in the sense of (1)–(3). The first of these was already
touched upon above, but it is aptly described by Yehuda Rav as ‘squeez[ing] out
the sap of meanings in order not to blur focusing only on the logico-structural
properties of proofs.’65 The second – fixing the use of a particular symbol – is
similar: one does not have to think about what the symbols refer to. Moreover,
when the use of the symbols is fixed, the use of them becomes effortless. In par-
ticular, such problems are eliminated aswhen one is reading a proof and is struck
by the question: ‘Is this a the same symbol as the a there?’ The third point, nat-
urally, connects with the possibility of surveying expressions and lessening the
risk for making mistakes.

However, there seems to be yet another important kind of benefit of formal
expressions compared with writing ordinary sentences. When one substitutes
symbols for words one advantage lies in a shift from reading to perceiving. When
reading and writing words, the written letters are of secondary importance to
the meaning which is expressed. One’s attention is turned to what is expressed,
away from the letter signs. When looking at formulas, by contrast, the signs – or
rather the symbols – come to the fore. It becomes possible to treat the letter and
operator symbols in a way that is reminiscent of diagrams in geometry. They are
viewed in a manner similar to pictures or diagrams, and the constants and vari-
ables become mere placeholders.66 This idea will also be discussed in chapter 5
in the context of the surveyability of proofs.

Interestingly, the point in the history of mathematics where the greatest in-
crease in formality occurred seems to have been the introduction of the algeb-
raic notation by Viète in the sixteenth century – not the introduction of modern
formal axiomatic systems.67

65Rav, ‘Why Do We Prove Theorems?’, p. 12.
66However, the surveyability of diagrams in geometry are of a different kind from that of algebra,

and the risk of making mistakes in judging a diagram is obvious. The kinds of mistake are also
different from those common in algebra, and they may be described as a difficulty of deciding
whether a property seen in a diagram is essential to any object of the kind pictured or if it is
restricted to the particular instance drawn. Cf. Erik Stenius. ‘Anschauung and Formal Proof: A
Comment on Tractatus 6.233’. In: Critical Essays. Ed. by Ingmar Pörn. Vol. 2. Helsinki: Societas
Philosophica Fennica, 1989.

67Cf. the discussion in Stenlund, The Origin of Symbolic Mathematics and the End of the Science
of Quantity, Ch. 1 and 3.
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4.5 Where is Genuine Mathematics?
The concept ‘formal axiomatic system’ makes it possible to distinguish between
the system and the reasoning about the system – the object language and the
metalanguage. Mathematical systems are treated mathematically, but the math-
ematics that is done on the systems belongs to the informal side. Interestingly,
what is taken to represent real mathematics – the object languages – is not where
mathematical activity goes on. This distinction also makes the truth definition
of Tarski possible and at the same time indispensable. Tarski’s definition and
the discipline of model theory also cement this distinction. For many research
mathematicians in, say, analysis this distinction does not play any important role
and research is fruitfully carried out in a fashion that is not formal in the sense
of formal axiomatic systems, but still rigorous in light of the established practice
of the field.

If one thinks of the informal part of mathematics, it is much easier to become
aware of the alternative perspective advanced in chapter 3. If one concentrates
mainly on object languages, however, there is no room for the practical matters
of mathematical activity. From that perspective, these matters become extra-
mathematical, something that we humans with limited capacities struggle with
when trying to reachmathematics proper – the axiomatic systems. On this view,
then, the insights that can be gained from a study of this struggle become un-
important for the understanding of genuine mathematics; they take the form of
psychological and anthropological peculiarities.

To make the thought that mathematics can be reduced to formal systems
more plausible, its proponents argue that the different kinds of reasoning that
one actually finds in mathematics are nothing but long leaps in the chain of in-
ferences. We find this line of argument already in Frege: ‘In proofs as we know
them, progress is made by jumps, which is why the variety of types of inference
in mathematics appears to be so excessively rich; for the bigger the jump, the
more diverse are the combinations it can represent of simple inferences with
axioms derived from intuition.’68

These different kinds of reasoning are often referred to by opponents of form-
alism as irreducible and therefore as falsifying the formalist thesis (if one by
formalism means the idea that all of mathematics can be reduced to formal sys-
tems).69 The question of whether or not it is possible to reduce every proof tech-
nique and method to basic steps in a formal deduction is a complex one. If it
is indeed impossible to capture all different kinds of mathematical reasoning in
formal deductions, the formalist thesis seems wrong. That some kind of formal
counterpart to ordinary mathematical reasoning is available seems uncontro-

68Frege, The Foundations of Arithmetic, § 90.
69See Rav, ‘Why Do We Prove Theorems?’, pp. 14–15 and p. 21 for an example.
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versial, but, even though some kind of translation is possible, it is not clear that
it is enough to justify the claim that all mathematics is, deep down, formalmath-
ematics. Moreover, even if ordinary mathematics and formal mathematics actu-
ally do coincide extensionally, it is not clear what philosophical conclusions that
can be drawn from this. That there exists a formal counterpart of some mode of
reasoning does not mean that one, for example, could manage with the formal
counterpart only.

One may question the conceptual priority that formalists claim these formal
counterparts would have over the more complex leaps in reasoning. A certain
proof strategy has its point within a proof because it advances the proof in a cer-
tain way. (Often, it also makes use of the meanings of the concepts involved, as
Rav notes.) If a proof depends on the application of a certain proof technique
(which may depend on the meanings of the concepts involved), is it then pos-
sible to understand the proof simply by following the logical steps in the formal
version of it? That is, would it be possible to understand it, without understand-
ing it as the formal counterpart of a proof employing a certain mode of reason-
ing? Nicholas Bourbaki makes an important point about the understanding of
proofs:

Indeed every mathematician knows that a proof has not really been ‘under-
stood’ if one has done nothing more than verifying step by step the correctness
of the deductions of which it is composed, and has not tried to gain a clear in-
sight into the ideas which have led to the construction of this particular chain
of deductions in preference to every other one.70

Moreover, would it be possible to learn a certain proof strategy merely by learn-
ing its formal counterpart? I would rather say that it becomes possible to see
something as a formal counterpart only when one has mastered the proof tech-
nique or strategy in informal mathematics, i.e. when one knows how to use it
and understands its working in proofs.

These aspects of informal mathematics are, I take it, an essential part of our
mathematics and show that a reduction of mathematics to formal systems is not
possible. Mathematics may be reducible to formal systems in the sense that it is
possible to find a formal counterpart or translation of every theorem (although
this will probably not happen in practice), but this does not necessarily carry
any philosophical consequences for our understanding of mathematics.

Azzouni, for instance, sees underlying derivations as a guarantee for the ob-
jectivity ofmathematics.He claims that it is not possible to explain the important
fact thatmathematicians tend not to disagree about whether a proof is correct or
not unless one assumes the existence of an underlying, mechanically checkable

70Nicholas Bourbaki. ‘Architecture of Mathematics’. In: The American Mathematical Monthly
57 (1950), pp. 221–32, p. 223. I will discuss the significance of the difference between verifying a
proof step by step and grasping the overall working of a proof in chapter 5.
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derivation.71 Now, if it was true that the mathematics that we do is the implicit
– although not obvious – working with formal systems (or algorithmic systems
as preferred by Azzouni) it would seem natural that we would be able to under-
stand theories and proofs by studying formal systems directly. As it is now, we
do not.We have to take the ‘detour’ via our common informal mathematical un-
derstanding. That this is the case is obvious to anyone who has learnt (or taught)
formal systems.

Moreover, formal deductions very quickly grow out of hand as one tries to
formalise more complex (and interesting) theorems. Bearing in mind one of the
original goals of formalisation – the desire for a greater rigour – the increased
risk for errors is troublesome. It is even more so since increasingly complex
deductions are almost impossible to overview and check for accuracy. This is
a problematic fact, if one, like Azzouni, claims that underlying derivations are
the source of the unanimity of mathematicians. What epistemological gains can
these derivations have when it comes to judging the correctness of a proof if the
informal proof is generally easier to judge than the supposed underlying deriv-
ation?

In a discussion about the relation between ordinary arithmetic and Russell’s
and Whitehead’s Principia Mathematica, Wittgenstein makes a comment which
captures the above point: ‘If I give you a calculation to do, you say that you will
do it by Principia. But what if I do it in the ordinary way and get a different
result? How do we decide which calculation is correct?’72 Thus, even if every
proof actually had a formal counterpart, what role the formal derivation could
play with regard to the objectivity (or certainty) of mathematics is unclear if it is
the ordinary counterpart that establishes the result.

I have so far discussed Azzouni’s derivations as if those who perform proofs
are, in some sense, aware of the derivations that underlie their proofs. Azzouni,
however, denies that mathematicians need to be aware of them, at least if this
is understood as conscious awareness. Still, in what sense ordinary proofs and
derivations correlate does not seem to be properly accounted for. What is clear
is that he denies that the derivations are performed on some neurological level.
He also explicitly denies that the derivations are abbreviations of proofs, that
they capture the logical form of ordinary proofs, and that ordinary proofs are
reducible to derivations.73 Fenner Tanswell remarks that an ordinary proof of-
ten has several formal counterparts, e.g. in automated proof checking by com-
puters. Tanswell argues that if the relation between proof and derivation is agent-
independent, as Azzouni seems to suggest, then the fact that a proof has several

71Azzouni, ‘The Derivation-Indicator View of Mathematical Practice’, p. 83.
72LFM, p. 261.
73Azzouni, Tracking Reason, pp. 169–173.
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formal counterparts makes the link between proof and derivation questionable.
Which of the possible derivations is indicated by the informal proof?74

These considerations indicate the implausibility of formalism as a theory in
the philosophy ofmathematics.Moreover, our ordinary practice ofmathematics
is what philosophy should take as its starting point. In this respect I agree with
Shapiro who remarks: ‘It is at least prima facie plausible that the language and
techniques active in mathematical understanding and explanation are good in-
dicators of the nature ofmathematics itself. Indeed, how a given subjectmatter is
grasped should have something to do with what it ultimately is.’75 This criticism
of formalism can also be seen as extending the criticism of the body of truths
picture, in particular if mathematics is seen as a collection of formal systems.

The point of this chapter is, again, partly negative. The common view that
formal systems are superior to ordinary mathematics because they work with
meaningless signs is found to be problematic. In all of mathematics, an under-
standing which amounts to an ability to use the symbols employed is essential.
Thus, the difference between formal and informal mathematics cannot be ex-
plained by claiming that one deals with meaningless signs while the other takes
their meaning into account. In conclusion, the certainty of mathematics cannot
be restricted to formal mathematics. This is important because locating the cer-
tainty of mathematics in formal mathematics would remove it from the practice
of mathematics.

4.6 Formal and Informal Proofs
I shall end this chapter with a discussion of the relation between formal proofs
and ordinary proofs. This will, again, emphasise the necessity of focusing on
ordinary, informal proofs in the philosophy of mathematics. If one wants to un-
derstand the certainty of mathematics and in what sense proofs contribute to
the certainty of theorems, the starting point should be our practice of proving.

The contemporary understanding of proof is to a great extent influenced by
the notion of formal derivation or formal proof. This concept is associated with
formal systems and is usually given a strict definition in relation to such a system,
as in Stephen Cole Kleene’s classic textbook Introduction to Metamathematics:

A (formal) proof is a finite sequence of one or more (occurrences of) formulas
such that each formula of the sequence is either an axiom or an immediate
consequence of preceding formulas of the sequence. A proof is said to be a

74Fenner Tanswell. ‘A Problem with the Dependence of Informal Proofs on Formal Proofs’. In:
Philosophia Mathematica 23 (2015), pp. 295–310.

75Shapiro, Structure and Ontology, p. 186. As was seen in chapter 3, however, Shapiro holds that
second-order logic captures mathematical practice in the way I am criticising here.
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proof of its last formula, and this formula is said to be (formally) provable or to
be a (formal) theorem.76

If there was an awareness of the difference betweenmore and less strictly reg-
ulated proofs before the modern notion of formal systems, there is now a sharp
divide between formal and informal proofs. Since proofs of these two kinds of-
ten differ considerably from each other, there arises a question of the relation
between the two. This has been the subject of controversy for the last fifty years.
We can distinguish a range of possible answers to this question.

1. Informal proofs are the genuine kind of proof, but we can sometimes paraphrase
an informal proof as a formal one, and this may be useful in proof theory.

2. Formal proofs are the genuine kind of proof, whereas informal ones only gesture
towards or abbreviate their formal counterparts. Informal proofs, it is conceded,
are easier to read and understand, but these advantages are gained at the expense
of rigour. Furthermore, an informal proof can be accepted as a proof only insofar
as it can be transformed into a formal one.

3. There are formal proofs and informal proofs, but these are used for different pur-
poses and neither is given priority over the other. Furthermore, informal proofs
often, but not necessarily, translate into formal counterparts.

These positions roughly coincide with the view on the question of where to
find genuine mathematics that was discussed above. It is interesting that explicit
proponents of the second attitude are not too easy to find in the contemporary
literature. This is slightly odd since (2) is often alluded to as the traditional con-
ception, suggesting that it is a common view.77 It is often taken as self-evident
by many philosophers. The concept ‘formal proof ’ was first put forward by the
formalist school in the debate about the foundations of mathematics in the early
twentieth century. For Hilbert, the purpose does not seem to have been to ex-
tract the essence of the concept of proof, but rather to allow for a consistency
proof of classical mathematics.78 It seems, however, that the notion of formal
proof gradually came to be seen as a correct analysis of proof. Tarski does not

76Stephen Cole Kleene. Introduction to Metamathematics. New York: D. van Nostrand, 1952,
p. 83.

77Indeed, Detlefsen labels it ‘the common view’. Detlefsen, ‘Proof: Its Nature and Significance’,
p. 17. Resnik calls it ‘a popular view’. Resnik, ‘Proof as a Source of Truth’, p. 12. Hannes Leitgeb
comments that this is the way the ‘prevailing tradition’ treats proof. Hannes Leitgeb. ‘On Formal
and Informal Provability’. In: New Waves in Philosophy of Mathematics. Ed. by Otávio Bueno and
Øystein Linnebo. Houndmills, Basingstoke: Palgrave Macmillan, 2009, p. 263.

78The view (2) is, however, referred to as the ‘Hilbert thesis’ in Rav, ‘Why Do We Prove The-
orems?’; and as the ‘Hilbert-Gentzen thesis’ in Cellucci, ‘Why Proof? What is a Proof?’ It is not
clear, however, that (2) was Hilbert’s view, although he is the main influence behind the notion
of formal proof. Sometimes (2) is called the ‘formalist’ view, and this may be correct if one by
formalism means the idea that mathematics is like a game with meaningless signs, but this was,
arguably, not Hilbert’s view. See e.g. Detlefsen, ‘The Kantian Character of Hilbert’s Formalism’.
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prevaricate in his description of the success of the formalists: ‘they had … suc-
ceeded in reproducing in the shape of formalized proofs all the exact reasonings
which had ever been carried out inmathematics.’79 Adecade later hewrote: ‘Due
to the development of modern logic, the notion of mathematical proof has un-
dergone a far-reaching simplification.’80 A contemporary example of (2) could
be Jörgen Sjögren who maintains that the notion of formal proof is an explica-
tion (in Carnap’s sense) of the informal counterpart.81 Another view close to (2)
is Azzouni’s that was discussed in the previous section.

During the last forty years or so, the attitude (1) has gained much popularity
among philosophers who emphasise the practice of mathematics. The idea that
formal derivations correctly capture the notion of proof has, accordingly, re-
ceived much criticism. This movement partly coincides with quasi-empiricism,
and it finds an important source of inspiration is Lakatos’s work on proof. As was
seen in section 2.6, a noteworthy standpoint of quasi-empiricism is that proofs
do not prove conclusively. The title of Lakatos’s Proofs and Refutations refers to
Lakatos’s idea that proofs are fallible, but constantly improved through what he
calls ‘the logic of proofs and refutations’. This idea, however, is not shared by all
who emphasise the need for paying attention to mathematical practice. Before
Lakatos’s work in the 60’s and 70’s, not many spoke explicitly in favour of (1) –
Wittgenstein being a noteworthy exception.This is odd because informal proofs
have always been the kind of proof found in the mathematics literature – also
after the concept of formal proof became generally known. This is true of the
metamathematical literature too.

Formal proofs are a rare species, and occurrences are almost exclusively illus-
trations of the feasibility of deriving something in a particular system. In other
words, these proofs are not used to establish theorems but to show that a the-
orem that has been established informally is derivable in the system in ques-
tion. Now, this would seemingly indicate that (1) has always been the common
view of proofs. One can say that the discrepancy between practice and the, so
called, prevailing view was what led to the increased interest in (1). This has led
to the contemporary situation where it seems that most philosophers recognise
the importance of informal proofs for the philosophical understanding of math-
ematics. This attitude ranges from Shapiro’s moderate acknowledging that ‘with
respect to practice formalization is unnatural’,82 to Celluci’s dismissing of formal
proofs, but also of axiomatic proofs in general. Instead, Celluci favours what he

79Alfred Tarski. ‘On the Concept of Logical Consequence’. In: Logic, Semantics, Metamathem-
atics. Papers from 1923 to 1938. Trans. by J. H. Woodger. Oxford: Clarendon Press, 1956, p. 410.

80Tarski, ‘The Semantic Conception of Truth’, p. 372, n. 17.
81Jörgen Sjögren. ‘A Note on the Relation Between Formal and Informal Proof ’. In: Acta Ana-

lytica 25 (2010), pp. 447–58.
82Shapiro, Structure and Ontology, p. 185.
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calls ‘analytic proofs’: ‘Axiomatic proof is no viable alternative to analytic proof
since it is inadequate.’83 The reason for the inadequacy of axiomatic proofs, he
argues, is that there is no way of ascertaining the axioms, nor any ‘non-circular
way of proving that deduction from primitive premisses is truth-preserving’.84
Celluci stresses that advances inmathematics seldom have the form of deducing
new consequences from axioms and previously established theorems, and this
is valuable criticism. However, his conception of axiomatic proofs seems to be
too simplistic, and his criticism therefore misses its mark.

In order to understand the notion of proof and its connection to certainty
better, one must start with ordinary, informal proofs. However, I would not give
priority to any one of these kinds of proof in terms of ‘being a genuine proof ’,
or ‘providing certainty’. Whether or not a proof shows its conclusion with cer-
tainty is not a matter of its being of a particular kind but a characteristic that is
inseparable from its being a proof. Still, in one sense, informal proofs are prior
to formal ones: the point of a formal proof can be seen only when the idea of
proof in general (i.e. of informal proofs) is grasped. As became clear in the dis-
cussion above, one should not put too much weight on the difference between
formal and informal mathematics. This means that a formal proof will be re-
cognised to be formal, and possibly more rigorous, only when contrasted with
an informal one. From a mathematical point of view, there is a difference to be
sure, but the philosophical idea of a purely formal endeavour where no intuitive
meaning enters is a chimera. The idea of a greater rigour associated with formal
proofs (correctly or not) is only meaningful in contrast with informal proofs,
in which steps are often deliberately left out. While this may lead to a mistake,
suchmistakes are probably exceptions.That steps are left out does not entail that
mistakes arise, not even that mistakes are more probable. As noted above, mis-
takes are not excluded by the formal approach either. That is, whether the gaps
need to be filled in, is a matter of what one wants to accomplish with the proof.
This turns the attention to the point of proving things in mathematics. A philo-
sophical understanding of proofs must focus on informal proofs, but whereas
there is a strong consensus as to the nature of formal proof, this is not the case
with informal proofs. As Sjögren notes, informal proof can be seen as a family
resemblance concept.85 A discussion of this more general concept of proof will
therefore be the topic of the next chapter.

83Cellucci, ‘Why Proof? What is a Proof?’, p. 12.
84Ibid., p. 12.
85Sjögren, ‘A Note on the Relation Between Formal and Informal Proof ’, p. 449. He, however,

sees this as an indication that it needs to be made exact through explication.
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Proofs make claims about mathematical objects.

(Michael D. Resnik, ‘Proof as a Source of Truth’)1

We may make meaning, thought, inference, proof into mysterious achieve-
ments that indeed call for philosophical explanation. Seeing them as they
are in our life and giving up the desire for such explanations go together.

(Cora Diamond, The Realistic Spirit)2

The practice of proving propositions deductively is often cited as evidence of
the superior certainty of mathematics. In this spirit, the mathematician Hyman
Bass writes: ‘The characteristic that distinguishes mathematics from all other
sciences is the nature of mathematical knowledge and its certification by means
of mathematical proof … it is the only science that thus pretends to claims of
absolute certainty.’3 This feature of mathematics is indeed interesting, not only
because it is limited to mathematics and related disciplines, but also because
proofs are philosophically intriguing in their own right. How is it possible to
prove something conclusively? What is the relation between understanding and
conviction with regard to proofs? What is the relation between truth and prov-
ability in mathematics? Thus, ‘proof ’ is a concept that occupies a central place in
the problem field of the present investigation. At least prima facie, proofs grant
to mathematics ‘the peculiar certainty’ that puzzled, among others, Mill (cf. the
quote on p. 7). The role of proof in the mathematical enterprise is also of great
importance for the understanding of mathematical knowledge as the discussion
in chapter 3 indicated.

The discussion of proofs will begin by focusing on our need for proofs. What
are the reasons to ask for a proof? The need for proof is often associated with a
need for conviction and thus a need for certainty. Another central reason to ask
for a proof is the need for an explanation of why a theorem holds. As will be seen
below, the need for conviction is given too strong an emphasis by some writers.
In this chapter, I shall, firstly, discuss the tension between the convincing and
the explaining roles of proofs.

1Resnik, ‘Proof as a Source of Truth’, p. 16.
2Cora Diamond. The Realistic Spirit: Wittgenstein, Philosophy and the Mind. Cambridge MA:

The MIT Press, 1991, p. 13.
3Hyman Bass, quoted in: Joseph Auslander. ‘On the Roles of Proofs in Mathematics’. In: Proof

and Other Dilemmas: Mathematics and Philosophy. Ed. by Bonnie Gold and Roger A. Simons.
Spectrum. Washington DC: Mathematical Association of America, 2008, p. 64.
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The discussion of proofs would not be complete, however, without consider-
ing the perspective that was already indicated in theWittgenstein quote on p. 50.
This is the idea that a proof is what allows one to understand the proposition,
that the proposition regarded in isolation from its proof does not suffice for a
genuine understanding of what it says. This idea will be elaborated in the latter
part of this chapter.

When this idea is taken into account, we can discern two different concep-
tions of proof. According to the first of these, a proof is a verification of the truth
of a proposition which is understood independently of the proof, as it were, be-
forehand.The role of proofs thus becomes to showwhy the proposition is true or
to convince that it is true.With this conception of proofs in the background, it is
easy to stress the ability of proofs to convince one of the truth of a proposition.
This take on proofs, thus, goes hand in hand with the body of truths conception
of mathematics.

The other conception sees proofs as integral to the meaning of the proposi-
tion. What the theorem says becomes clear only when we grasp how it is proved
and what axioms, other theorems, and techniques are employed in the proof.
We may have an understanding of the proposition prior to having a proof of it,
but this is often a shallow understanding. The proper understanding of the the-
orem that allows one to use it, for instance in proving other theorems, cannot (in
most cases) be achieved without studying a proof.The emphasis on proofs in the
teaching of mathematics is an also an expression of this fact. These remarks are
a natural continuation of the perspective on mathematical knowledge that was
presented in chapter 3. Understanding a theorem is intimately connected to an
ability to make use of it, and this ability is furthered by (and often presupposes)
understanding a proof, which, in turn, involves a familiarity with the techniques
employed.

5.1 The Role of Conviction
As mentioned in section 4.5, the idea that the true kind of proof is captured
by the notion of formal derivation has been criticised extensively. Contempor-
ary criticism often gains momentum from questions concerning the roles that
proofs play in mathematical practice. Formal proofs are found not to live up
to these roles, and, therefore, it is claimed that formal proofs cannot constitute
the essence of proofs. One of these roles is that proofs ought to be convincing. I
will mention some philosophers who emphasise this function of proofs before
discussing the question of whether or not this function should be given such a
central role.

In one of the articles in the debate that followed upon Rav’s article ‘Why Do
We Prove Theorems?’, John W. Dawson Jr. states that ‘we shall take a proof to
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be an informal argument whose purpose is to convince those who endeavor to
follow it that a certain mathematical statement is true (and, ideally, to explain
why it is true)’, and he continues, ‘despite their rigor [formal derivations] are
often unconvincing’.4 Dawson’s conception of proofs is echoed by Andrzej Pelc
in another contribution to that debate: ‘we prove theorems to convince ourselves
and others that they are true’.5

The focus on conviction that is associated with a critique of formal deriv-
ations goes back at least to the dialogue ‘The Ideal Mathematician’ in Philip
J. Davis’s and Reuben Hersh’s The Mathematical Experience. When asked for a
definition of proof the Ideal Mathematician, unable to give a satisfactory answer,
in the end claims that ‘it’s an argument that convinces someone who knows the
subject’.6

All of the quoted philosophers acknowledge that proofs have other roles in
addition to being convincing. Dawson explicitly relates the importance of con-
viction to proofs’ ability to convey understanding of why a proposition is true.
Hersh also contends that, in research mathematics, the task of proofs is to con-
vince fellow experts, while, in teaching, the point is to explain why theorems are
true.7

Resnik also emphasises conviction, although his emphasis stems from a dif-
ferent line of thought. Resnik’s realist position involves viewing mathematical
propositions as being true if they correspond to mathematical reality. As was
remarked in chapter 3, the realist position involves the possibility that the ex-
tensions of the concepts ‘provable’ and ‘true’ do not coincide. This opens a con-
ceptual gap between proved propositions and true propositions, and it becomes
unclear how proofs can establish the truth of propositions. He describes the role
of proofs thus: ‘proving p establishes, shows, or demonstrates p only in the epi-
stemic sense of providing us with good reasons for believing p.’8 Resnik’s idea,
however, begs the question of how it is possible for a proof to accomplish this.
He frames the problematic in two different questions: ‘[W]hy does proving p in-
duce us to believe p?’ and ‘Why are the reasons a proof provides good reasons?’9

Regardless of the route leading up to the emphasis on conviction, it highlights
a philosophical problem: ‘What is it about a valid proof that allows it to convince

4John W. Dawson, Jr. ‘Why Do Mathematicians Re-prove Theorems?’ In: Philosophia Math-
ematica 14 (2006), pp. 269–86, pp. 270–71.

5Andrzej Pelc. ‘WhyDoWeBelieveTheorems?’ In: PhilosophiaMathematica 17 (2009), pp. 84–
94, p. 84.

6Philip J. Davis and Reuben Hersh. The Mathematical Experience. Boston: Birkhäuser, 1981,
p. 40.

7ReubenHersh. ‘Proving IsConvincing andExplaining’. In:Educational Studies inMathematics
24 (1993), pp. 389–99.

8Resnik, ‘Proof as a Source of Truth’, p. 10.
9Ibid., p. 11.
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somebody who has understood it that a proposition is true?’ This problem is of
particular interest for the present investigation, due to the natural association
between being convinced and being certain. Do we in mathematics find a par-
ticular form of conviction that is due to proofs and that differs from conviction
in other contexts?

From the perspective of formal proofs, there seems to be a straight forward
answer to the question about the convincing ability of proofs: ‘In a valid proof
each step is a sound deduction according to the rules of the system, and its
premisses are true.’This does not solve the problem, however, since it remains to
be answered how the deductions manage to convince in each step. In addition,
the problem still remains for informal proofs. The problem must therefore be
handled in some other way.10

It should be noted that none of the above mentioned philosophers thinks
that proof reduces to mere persuasion. This is seen in their additions to the re-
marks about the convincing nature of proofs: it should convince by explaining
why (Dawson), convince experts (Hersh), or provide good reasons (Resnik). An
interesting expression of this is found in Keith Devlin’s remark that ‘being a
proof means having the capacity to completely convince any sufficiently edu-
cated, intelligent, rational person’.11

Thedemonstration that a proof provides is important because it gives insights
into why the proposition is true and into why the conviction is justified. Even
though those who stress the role of conviction do not claim that proof is merely
about conviction, there seems to be a tacit idea that the main task of proofs is to
produce conviction and that they accomplish this task by explaining why. It is as
if the role of proofs is merely to put one in a certain position – epistemologically
speaking – to the proposition proved. However, the convincing power of proofs
become something of a mystery through this approach.

In the didactics of mathematics, there has been a discussion about the role
that proofs may play in mathematics. This discussion was motivated by the dif-
ficulty of teaching proofs. It is often only a few pupils in each class that manage
to understand proofs and the point of proving things. This speaks in favour of

10Resnik is also critical of the idea that formal derivations grant a greater degree of certainty to
the theorems than ordinary, informal proofs, which he calls ‘working proofs’. Shapiro, although
noting the unnaturalness of formal derivations with regard to mathematical practice (see the
quote on p. 100), seems to hold a different view. He sees formal derivations as ‘the ultimate stand-
ard of justification’ and one can sense that he regards them as superior in terms of convincing
power: ‘Were one interested in establishing a theorem beyond the doubts of all but the most ob-
stinate skeptic, one would present it as the result of a deduction from (agreed on) axioms or previ-
ously established theorems.’ Informal proofs, by contrast, are associated with understanding and
explanation. Shapiro, Structure and Ontology, p. 186.

11Keith Devlin. Mathematics: The Science of Patterns: The Search for Order in Life, Mind, and the
Universe. New York: Scientific American Library, 1994, p. 38.
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omitting proofs and spending time on things that benefit a greater share of the
pupils. Still, it seems vital to achieve some kind of familiarity with the practice
of proving, since this is an essential part of mathematics. This problematic has
probably troubled mathematics teachers a long time due to the presence of Eu-
clid’s Elements on the curriculum, and it probably grew more acute due to the
so-called New Math in the United States and similar movements in other coun-
tries with their emphasis on proof and othermore abstract parts ofmathematics.

In response, didactics researchers have discussed the functions of proofs in
order to gain insight into how and why proofs should be taught. If one assumes
that proof is about convincing someone of the truth of a proposition, the point of
teaching proofs become somewhat obscure.This is due to the fact that the proofs
that are simple enough to be accessible for school children often concernmatters
that are more or less obvious, and this, in turn, makes the point of proving them
unclear for the pupils.This is problematic especially in a classroom setting, since
it is usually the case that pupils accept things simply because it is their teacher
who says them. Acceptance is in most cases based on authority and only partly
on critical assessment.

Another reason for the fact that conviction seems out of place when discuss-
ing the teaching of proofs is that the pupils are learning to follow amathematical
argument and to understand how one step leads to the next. They are learning
which inferences that are possible. They are not (in general) trying to determ-
ine if what is inferred actually follows, as one would if reading a proof with a
critical eye. This speaks in favour of Hersh’s claim that proofs in the classroom
are explaining (while conviction is reserved for proofs in researchmathematics).
However, what the term ‘explaining’ involves is not clear. There is a genuine ex-
plaining role for proofs to perform at any level of mathematical activity as will
be clear shortly. Nevertheless, when proofs are studied in school for the sake of
learning mathematical reasoning and presented as examples of such reasoning,
their role is not explaining in the same sense as it is for someone who wants to
understand why a theorem holds. Another important aspect of learning proofs
and learning to prove is that one has to learn to bracket the things that appear
as evident at first glance. To the extent that learning proofs actually is concerned
with convincing students, it is about learning them a new way of becoming con-
vinced. This learning of a new conception of evidence is vital for the successful
entering into the practice of proving.

In one of the first articles in the discussion of proofs from a didactical per-
spective, A. W. Bell writes:

Some teachers have said that proof, for a pupil, is what brings him conviction.
Although this is a valuable remark, in that it directs attention to the need for
classroom explanations to have meaning for the pupil rather than be formal
rituals, it is perhaps dangerous in that it avoids consideration of the real nature
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of proof. Conviction is normally reached by quite other means than that of
following a logical proof.12

One can see in Bell’s text the same kind of criticism of formal proofs that was
seen in Dawson’s article. Formal proofs do not live up to the demands of prac-
tical situations. Unlike Dawson and Pelc, however, Bell does not see the function
to convince as the primary demand of such practical situations. In order to open
up the consideration of the nature of proof, he distinguishes three different func-
tions of proofs: verification or justification, illumination, and systematisation.13
Michael de Villiers adds to these the function of facilitating new discoveries and
communication.14

This kind of differentiation of the roles of proofs is a valuable reminder that
undermines the idea that the primary role of proofs is to convince the reader
of the truth of a proposition. I fear that this idea may be a major obstacle to a
sound understanding of proofs and their role in the problem complex surround-
ing mathematical certainty. I will now turn to a criticism of this idea. It will be
seen that different motives may lie behind a request for a proof and that some
of them do not necessarily stem from a need to be convinced of the truth of a
theorem. Furthermore, proofs are found to perform different tasks and cannot
be understood exclusively in terms of conviction.

The situations in which we request proofs vary greatly. Sometimes a proof is
needed to reassure oneself that a method one has found is correct, sometimes it
is needed to prove a conjecture, sometimes to silence the doubts of others, and
sometimes it is needed in order to learn a theorem during amathematics course.

The need to convince oneself of a proposition is surely a common reason for
a mathematician searching for a proof. A mathematician may be working on
a proof and realises that the proof could be simplified by referring to a certain
lemma. In order to make certain that the main proof is still correct if the lemma
is used, she must convince herself that the lemma is valid, and thus she tries to
prove it. However, one can distinguish between (1) being convinced that some-
thing gives correct results when applied, (2) being convinced that a theorem is
correct or true, (3) being convinced that it is possible to prove something, and
(4) being convinced that a proof is correct. In light of the distinction between

12A. W. Bell. ‘A Study of Pupils’ Proof-explanations in Mathematical Situations’. In: Educational
Studies in Mathematics 7 (1976), pp. 23–40, p. 24.

13Ibid., p. 24.
14Michael deVilliers. ‘TheRole and Function of Proof inMathematics’. In: Pythagoras 24 (1990),

pp. 17–24. For other similar differentiations of the roles of proofs, see Gila Hanna. ‘Proof, Explan-
ation and Exploration: An Overview’. In: Educational Studies in Mathematics 44 (2000), pp. 5–23,
p. 8; Nicolas Balacheff. ‘Bridging Knowing and Proving in Mathematics: A Didactical Perspect-
ive’. In: Explanation and Proof in Mathematics: Philosophical and Educational Perspectives. Ed. by
Gila Hanna, Hans Niels Jahnke, and Helmut Pulte. New York: Springer, 2010, p. 130.
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‘provable’ and ‘true’, one could perhaps add: (5) being convinced that what is
proved is true.

In the first case, the conviction may consist in a readiness to use the formula
or technique for solving problems, e.g. building a bridge that has to bear the
weight of the vehicles that will cross it or giving the correct amount of change
to customers. In the second case, it could be about not expecting any contradic-
tions in mathematics if one makes use of the proposition one is convinced of.
The third case might concern one’s readiness to embark on proving something,
or that one is expecting to find a proof in the literature. One is convinced that
it will be possible to accommodate the method or proposition within existing
mathematics. In this case, the conviction cannot be understood as a result of
having read a proof. The fourth case can be an expression of one’s confidence in
one’s ability to judge the correctness of the proof, but it may also be a conviction
that the proof follows good mathematical practice: that valid methods of proof
have been used, that they are used in the correct way, that the conclusions ac-
tually follow, etc. The fifth case is probably limited to controversial cases where
there actually is a possibility that one understands the argument of a proof but
still is sceptical of what is proved. If one does not accept a divide between ‘prov-
able’ and ‘true’, the fifth case does not seem to be a genuine possibility. However,
perhaps one could see a possibility for this in new branches of mathematics that
are still searching for a common practice regarding the accepted methods of
proof. An example that might illustrate this tension is Cantor’s response to his
proof that the set consisting of ordered pairs of real numbers have the same car-
dinality as the real numbers, or as this is often expressed, that the number of
points in a plane is the same as the number of points on a line. In a letter to
Richard Dedekind he wrote: ‘I see it, but I don’t believe it.’15

Conviction may thus play many different roles in mathematics, and only in
the second case does one find the kind of conviction that a proof brings about.
Even in this case, I would be hesitant to look for a uniform convincing ability of
proofs. It is also important that one does not too often say that a mathematical
proposition is true, nor that one is convinced of its truth. Instead, common ex-
pressions include that something is proved, valid, gives the right result, and that
it is correct. Using an umbrella expression like ‘the proposition is true’ makes
our dealings with mathematical propositions appear more uniform than it ac-
tually is and, moreover, encourages the view of a uniform function of proofs.
I claim that the conviction about the correctness of propositions, methods, or
calculi must be understood according to the specific context.

To these considerations one can add the observation that the need to be con-
vinced can be fulfilled by something other than amathematical proof. In certain

15Cantor, quoted in: Giaquinto, The Search for Certainty, pp. 26–27.
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cases, it may suffice that a more experienced colleague tells one that it is correct.
This may be the case when one is applying simple methods for practical pur-
poses but perhaps also in more advanced mathematics if one knows that the
person one is asking has devoted much time and effort to studying something.
In teaching situations, this is probably the most common form of accepting a
new piece of mathematics, as was mentioned above. In high school mathemat-
ics, techniques and theorems are commonly taught without proof. It may, how-
ever, be misleading to speak of conviction when discussing teaching situations
because in an ordinary teaching situation conviction or doubt usually do not
come into question. The pupils simply try to understand and memorise what
their teacher tells them. When doubt arises, the teacher has two options: either
the teacher gives a mathematical justification (a full proof or a sketch) for ac-
cepting the result or he may simply ask the pupils to take his word for it. Which
option he chooses is a matter of the difficulty of the proof and the pupils’ ability.
In these cases of trusting another, more knowledgeable colleague or teacher, this
other person is taking over the responsibility for the proposition or method. In
becoming convinced one is so to speak putting one’s trust in the other person’s
ability to prove it.

One may feel that it is only a superficial kind of certainty if somebody is con-
vinced by a colleague’s or a teacher’s authority. It cannot be the rigid kind of
certainty that results from having understood a mathematical proof. It seems to
me that such an objection conflates conviction and understanding. It is true that
the one who knows a proof of a method knows something else, knows more,
than the one who only uses it because, say, a colleague has assured her or him
that it works. I believe it is a mistake to assume that the degree of conviction in-
creases with knowledge. The feeling of conviction, the degree of certainty, need
not be different in the person who has read and understood a proof from the
one who only trusts the teacher. Even one who is wrongly convinced may be as
convinced as the onewho has read a proof.Wittgenstein comments on the status
of conviction: ‘The proof convinces us of something – though what interests us
is, not the mental state of conviction, but the applications attaching to this con-
viction.’16 It is not the feeling of conviction that is decisive for whether someone
can use a method or proposition correctly. Being convinced is not the same as
having knowledge or knowing how. It seems, however, that this difference easily
falls into the background when one is interested in certain knowledge and thinks
of this as knowledge where one’s feeling of conviction is at its peak. This is an-
other indication that – as was argued in chapter 2 – the certainty of mathematics
is not a comparative notion. It is not the kind of certainty that is increased by
the piling up evidence. This reaction (that there has to be a difference between

16RFM, III § 25.
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the conviction that proofs bring about and other kinds of conviction) shows that
conviction cannot be the central task that proofs perform. Proofs provide some-
thing other than a senior colleague’s assurance but it is not a greater degree of
conviction. That ought to be the moral, otherwise a kind of psychologismwould
enter into our description of proofs.

The main reason for rejecting the idea that the primary task of proofs is to
convince one of the truth of the proposition, however, has to do with the fact
that it presupposes the view on proofs that was mentioned in the beginning of
the present chapter: that the theorem has a clear meaning as such and we can
understandwhat it would be like if it was truewithout having read the proof of it.
On this view, the proof only lets us understand that it is indeed true and possibly
also why it is true, but it does not affect the meaning or our ability to understand
themeaning of the proposition. As will be seen later in this chapter, however, not
even in the case when a proof is required primarily for the purpose of verifying a
theorem can this function be understood as solely convincing somebody of the
truth of a theorem the meaning of which is known in advance. I shall return to
and elaborate on this idea shortly, but, in order to situate that discussion, I will
briefly consider another reasons to ask for a proof or study an already existing
proof.

5.2 The Role of Understanding
An important reason to ask for a proof is the need to place a (new) method
or proposition in its proper mathematical context and to understand its place
in the mathematical theory. It is, arguably, a common reason among mathem-
aticians. When facing a new theorem, especially if one wants to build on it and
develop the theory further, it may become important to ponder such questions
as: ‘What kind of proof has been used to prove the theorem?’, ‘Are there other
similar problems that could be solved by an analogous proof?’, and ‘Can the the-
orem be utilised to simplify other known proofs?’ This reason to ask for a proof
does not necessarily arise from a need to ascertain whether a proposition is cor-
rect or not. When it became known that Andrew Wiles had proved Fermat’s last
theorem in the 1990’s, a common reaction among mathematicians was probably
a wish to read the proof – not out of a need to convince themselves that the
equation xn + yn = zn had no roots for n > 2 – but to find out in which parts of
mathematics the theorem should be located.

It is also possible to view the re-proving of theorems in this light. If a certain
theorem is established by the existence of a proof, it is still considered valuable
to find another proof of the same theorem. One of the values of re-proving the-
orems lies, I would say, in that it opens up a new perspective on the theorem
and the concepts involved by placing it in a new context, by establishing new
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connections to other concepts. This is particularly striking if the proof utilises
methods from a different theory than the first. One can, for example, think about
the elucidation that different proofs of the Pythagorean theorem gives. Another
example is non-standard analysis, where a new understanding of the concept
infinitesimal is enabled through its embedment in set theory. Furthermore, an
aspect of the arithmetisation of analysis and the definitions of such concepts as
continuity and convergence in the nineteenth century is that it situates them in
one neat theory. It is not only about increasing the rigour with which they are
treated (by ruling out talk of infinitesimals) but also about clarifying themeaning
of ‘real number’ and ‘continuous function’. In examples like these, the systemat-
ising role of proofs is highlighted (see the list by Bell on p. 108).

If one considers an open problem, such as Goldbach’s conjecture, it is obvi-
ous that one can be convinced of its correctness even though there is no proof
to study. This is evident already in the correspondence between Christian Gold-
bach and Leonhard Euler in which the conjecture first occurred. Goldbach had
presented his conjecture in a letter of 7 June 1742. In his reply on 30 June, Euler
states that he considers it a completely certain theorem that every number is the
sum of two prime numbers (‘eine summa duorumprimorum’), although he can-
not prove it.17 In a case like this the conviction can be expressed in a willingness
to search for a proof.

The fact that the mathematical community is not satisfied with the extens-
ive computer testing that indicate the correctness of the conjecture shows that
a proof is expected to add something more.18 This is often expressed thus: the
proof eliminates every possible doubt (whereas some doubt may linger as to
whether there is some very large even number for which the conjecture does not
hold).19 There is truth to this claim, but there is unclarity too. In the case of Gold-
bach’s conjecture, it is unclear whether there is, in practice, any possible doubt.
More importantly, however, the exclusion of doubt is a consequence of the un-
derstanding of the theorem that proofs often add. It is this want to understand
why a theorem holds and how one should understand it that often necessitates
finding or taking part of a proof.

17P. H. Fuss, ed. Correspondance mathématique et physique de quelques célèbres géomètres du
XVIIIéme siècle. Vol. 1. St.-Pétersbourg: L’Académie impériale des sciences de St.-Pétersbourg,
1843, p. 135.

18In the 1930’s, the Åbo Akademi University mathematician Nils Pipping verified this conjec-
ture for numbers n ≤ 105, without the aid of digital computers. Nils Pipping. ‘Die Goldbachsche
Vermutung und der Goldbach-Vinogradovsche Satz’. In: Acta Academiae Aboensis. Ser. B, Math-
ematica et physica 11 (1938), pp. 4–25. By 2013, the conjecture was verified for numbers n ≤ 4 ⋅ 1018.
Tomás Oliveira e Silva, Siegfried Herzog, and Silvio Pardi. ‘Empirical Verification of the Even
Goldbach Conjecture and Computation of Prime Gaps up to 4 ⋅ 1018’. In: Mathematics of Compu-
tation 83 (2014), pp. 2033–60.

19Cf. the quote from Shapiro on p. 20.
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The proof of the four colour map theorem by Kenneth Appel and Wolfgang
Haken in 1976 instigatedmuch debate because it relied on computer calculations
that were so extensive that no human being could check if they were in order. If
the only thing that mattered was conviction that the theorem is true, this could
have been a minor problem. However, the very understanding of what a proof
is seemed to be threatened if the Appel–Haken solution was accepted. An es-
sential feature of proofs was felt to be lacking. Thurston remarks: ‘I interpret the
controversy as having little to do with doubt people had as to the veracity of the
theorem or the correctness of the proof. Rather, it reflected a continuing desire
for human understanding of a proof, in addition to knowledge that the theorem
is true.’20 The proof allows one to understand why the theorem holds. As this is
taken to be something over and above knowledge that the theorem is true, one
can see thatThurston is requesting the illumination that a proof can provide (see
Bell’s list).

A perhaps even more important reason to ask for a proof is that the proof
allows for an understanding of what the theorem says. Rav notes: ‘Proofs are the
mathematician’s way to display the mathematical machinery for solving prob-
lems and to justify that a proposed solution to a problem is indeed a solution.’21
Understanding which mathematical machinery that is involved in a theorem is
vital to the understanding of the theorem. We may know that it is possible to
write every even number greater than two as the sum of two primes but this in
itself is perhaps not that interesting. A proof might, by contrast, connect it to
certain techniques and concepts and thereby open up new possibilities that the
formulation of the conjecture as such does not. It can be difficult to know what
to do with a theorem if it is not given a meaningful context. This brings me to
the most important theme of this chapter, the connection between proofs and
the meaning of theorems.

The discussion in the present chapter has so far been an attempt to show
that the importance of proof derives, not from a supposed uniform convin-
cing power, but from its diverse positions in mathematics: as providing con-
viction and understanding, as a means of communication, etc. If one realises
that a proof may play many different parts in the dealings with propositions and
calculations in mathematics, a question as ‘How does a proof prove?’ will have
to be countered with another: ‘Do you mean “How does a proof convince?” or
perhaps “How does a proof further my understanding?”?’ I am, furthermore,
not convinced that these questions have any general answers that encompass
everything we call a proof inmathematics. I also think one should be careful not
to see proofs as having a power, or somehow having an effect.That makes proofs
appear as self-standing objects, whereas it is important that proving things is

20Thurston, ‘On Proof and Progress in Mathematics’, p. 162.
21Rav, ‘Why Do We Prove Theorems?’, p. 13.
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something we do. This activity is not simply manufacturing a proof that has a
certain effect on us, but a work on our understanding of the concepts involved in
a particular mathematical problem. This applies to someone who is taking part
of an already known proof too.

Many of the writers who have emphasised the different roles of proofs do so
out of a quasi-empirical perspective. They stress that there is no sharp boundary
between mathematics and empirical sciences and that this is because proofs do
not carry any absolute verifying power. They draw on Lakatos’s idea that proofs
are fallible and open to refutation, as are investigations in the empirical sciences.
Instead, they often stress that proofs can have the role of furthering understand-
ing. As I, too, want to emphasise this role of proofs, I will indicate where the
differences between my view and the quasi-empiricist view lie. I do not think
the quasi-empiricist thesis that there is no line to be drawn between mathemat-
ical and empirical knowledge is correct. As I see it, there are differences between
mathematics and empirical sciences that are important for the philosophical
problems about mathematics. These will be illuminated by the discussion on
proofs and experiments. As discussed in chapter 2, it is easy to view the differ-
ent areas of knowledge as a spectrum ranging from less to more certain – with
mathematics at the far end achieving full certainty. At least traditionally, math-
ematics is considered to achieve the highest degree of certainty – where it is the
same concept (the same measure) certainty that the disciplines are weighed on.
It appears to me that quasi-empiricism retains this image of a spectrum, merely
placing mathematics a few notches from the top.

5.3 Proof and Concept-formation
As was mentioned at the outset of the present chapter, the possibility of proving
propositions in mathematics seems to grant to them a peculiar certainty and to
set mathematics apart from other disciplines. Now, although the importance of
proof was seen not to be connected to a uniform convincing power, but rather to
several different roles that proofs can play, onemay still feel a philosophical need
to understand what it means to be convinced after having proved something or
having read a proof. I will, therefore, continue to a discussion of the connection
between the understanding and the conviction that a mathematical proof may
give. This undertaking will be aided by a trio of ideas from Wittgenstein’s philo-
sophy of mathematics. He emphasises three aspects of proofs: (1) that proofs
contribute to the meaning of the concepts involved in theorems, (2) that there is
a fundamental difference between proofs and experiments, and (3) that proofs
must be surveyable. The first aspect was mentioned already, but Wittgenstein
sees it as inseparable from the other two.
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The following will involve some exegetical remarks, but that is not the main
purpose of discussing the three aspects. What is important is rather that the
perspective provided by these aspects allows for an outlook on proofs that differs
from the one criticised above – an outlook that, furthermore, is more in line
with the emphasis on skill and ability to use that has been a main theme of the
previous chapters.

I shall now proceed to a discussion of Wittgenstein’s idea that proofs con-
tribute to the meaning of theorems and that proofs form concepts.

He often remarks that accepting a proof means accepting a new criterion for
something or a new paradigm for the evaluation of something. He alsomentions
that it involves adopting a new rule of expression, a new rule of grammar, or a
new concept of something. Wittgenstein’s writings on the philosophy of math-
ematics are replete with this kind of remark; here are two typical examples:

Theproof doesn’t explore the essence of the two figures, but it does express what
I am going to count as belonging to the essence of the figures from now on. – I
deposit what belongs to the essence among the paradigms of language.22

The proof is now our model of correctly counting 200 apples and 200 apples
together: that is to say, it defines a new concept: ‘the counting of 200 and 200
objects together’. Or as we could also say: “a new criterion for nothing’s having
been lost or added”.

The proof defines ‘correctly counting together’.23

A similar example is the discussion in one of his lectures of correlating the
fingers of a hand and the points of a pentagram. ‘We accept this figure as a proof
that the hand and the pentagram have the same number’, and he comments on
the concept-forming role that this acceptance plays: ‘I have now changed the
meaning of the phrase “having the same number” – because I now accept an
entirely new criterion for it.’24

The claim that one upon inspection of a pentagram and a hand accepts a
new criterion for ‘having the same number’, and in particular the claim ‘entirely
new criterion’ sounds unwarrantedly strong. This particular formulation comes
from published lecture notes, but elsewhere in written manuscripts these for-
mulations are nuanced (a common difference between lecture notes and Wit-
tgenstein’s written manuscripts):

In what sense can a proposition of arithmetic be said to give us a concept? Well
let us interpret it … as a … connexion of concepts. … “To give a new concept”
can only mean to introduce a new employment of a concept, a new practice.25

22RFM, I § 32.
23RFM, III § 24.
24LFM, p. 73.
25RFM, VII § 70.
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Mathematics teaches us to operate with concepts in a new way. And hence it
can be said to change the way we work with concepts.26

When these remarks are taken into account, the pentagram discussion can be
said to illustrate how a proof may bring about a new connection between two
hitherto unrelated concepts – in this case a geometrical figure and the technique
of determining the cardinality of a set. It also shows how connecting these con-
cepts could involve the establishment of a new practice.

I shall now examine three example proofs that illuminate this issue further.
The first is taken from a problem that a waitress working in a bar encountered.
Her problem was to calculate the correct change to give customers, who often
paid with ten-euro or twenty-euro notes. The job was often busy and tiring, and
this increased the risk of giving too much or too little change. A method to sim-
plify and speed up this process was therefore valuable. If the order was for €13.20
and the customer gave a twenty-euro note, she had to give €6.80 in return. She
formulated a rule for herself: ‘The one-euro digit counts up to 9 and the ten-cent
digit to 10.’ If the order was for €13.20 and she was given €20, she calculated: ‘3
is 6 short to 9 and 2 is 8 short to 10’ and gave the customer €6.80. At first, she
had merely noticed that the sum of the order and the change displayed this kind
of regularity. Upon formulating the rule, she wondered if the rule actually held
true. By devising the following proof, she concluded that it did:The one-euro di-
git adds up to 9 because the ten-cent digit that adds up to 10 provides themissing
euro in the one-euro place. Visually this idea can be demonstrated:

1€
↶

XX.XX
↓

X0.00

This is not a proof in the sense that one becomes accustomed to in university
level studies in mathematics, but its status as proof of the method is clear. That
she accepted this as a proof of her method meant that she was now prepared
to use the rule in her work in the bar where it was important that the correct
change was given.

Finding the proof to be adequate can be described as adopting a new rule for
the calculation of the change or a new criterion for the correctness of the change.
In this example the phrase ‘adopting a new concept’ is perhaps far-fetched, but
the proof is essential to a proper understanding of the meaning of this rule. That
the one-euro digit should add up to 9 may at first sound strange, but it makes
sense when one hears the proof. The proof allows one to understand what the

26RFM, VII § 45.
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rule says. The understanding of this proof is also facilitated by a familiarity with
the algorithm for adding numbers. The proof ’s wording about the missing euro
that is supplied by the cents’ adding up to a whole euro is easily understood by
someone who has learnt the addition algorithm and the technique of writing
a carry number if the addition in a particular column exceeds nine. The proof
thus merges the new rule with a familiar technique and in this way extends the
familiar. In a lecture,Wittgenstein remarks concerning a proof ’s ability to extend
the familiar: ‘A mathematical proof persuades us by making certain connexions.
It puts [a proposition] in the middle of a huge system – it gives it a place.’27

I will now consider the Bolzano-Weierstrass theorem from analysis – a more
typical example of a proof – and it will be seen that Wittgenstein’s perspective
is illuminating in cases taken from higher mathematics as well. There are differ-
ent formulations of the theorem, some involving the concept of an accumula-
tion (or cluster or limit) point, some involving sequences and subsequences. The
following version is from Colin W. Clark’s textbook Elementary Mathematical
Analysis. An accumulation point can be defined thus:

Definition. Let S be a subset of R. A point x0 ∈ R is an accumulation point of S
if in every deleted neighbourhood of x0, there exists a point x ∈ S, i.e. that

∀ε > 0 ∃x ∈ S ∶ x ∈ (x0 − ε, x0 + ε).

Utilising this definition, and borrowing the elegant formulation of Clark, one
has:

Theorem (Bolzano-Weierstrass). A bounded, infinite set of real numbers has at
least one accumulation point.28

When the theorem is formulated using the notion of accumulation points the
proof is clear and uncomplicated.

Proof. Let S ⊂ R be bounded and infinite. Since S is bounded there is an interval
I1 = [a1, b1], such that S ⊂ I1. If the interval I1 is halved there are two intervals

[a1, c1] and [c1, b1], where c1 =
1
2
(a1 + b1).

Since S is infinite, (at least) one of these intervals contains infinitely many points
of S. Choose the one that contains infinitely many points of S and call it I2 =
[a2, b2]. The interval I2 can, in turn, be halved, and the process of halving the
intervals can be continued indefinitely because the interval that contains infin-
itely many points is chosen in each halving. Two sequences {an} and {bn} are

27LFM, p. 134.
28Clark, Elementary Mathematical Analysis, p. 115.
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thereby formed, the sequence {an} being increasing and {bn} decreasing. This
is due to the construction of the intervals where

an ≥ an−1 and bn ≤ bn−1 for every n.

These two sequences converge because they are bounded and increasing (de-
creasing).29 Furthermore, the length of each of the intervals will be half of the
previous one:

bn − an = (
1
2
)n−1(b1 − a1).

Therefore, the sequences an and bn both converge to the same number, call it c,
since

lim
n→∞
( 1
2
)n−1(b1 − a1) = 0.

That the sequence {an} converges to cmeans that there is anN such that if n > N
then an ∈ (c − ε, c + ε) for any ε > 0. Moreover, every interval [an, bn] contains
infinitely many points of S, and, in consequence, every deleted neighbourhood
of c contains at least one point of S (indeed, infinitely many points of S). The
convergence point c is therefore the required accumulation point of S.

As a corollary to this theorem one can prove that every bounded sequence
has a convergent subsequence. This corollary is in many presentations of analysis
taken to be the Bolzano-Weierstrass theorem. There are many different proofs
of the corollary (or theorem), but the main idea is to show a way of constructing
a monotonous subsequence from a bounded sequence and then use the property
that bounded, monotonous sequences converge (or show that the subsequence
is a Cauchy sequence) in order to show that the subsequence converges.

This theorem is a good example of when a proof shapes the meaning of the
concepts involved.What it means for a bounded, infinite set to have an accumu-
lation point is not clear from the proposition as such. One may of course form
a visual image of a line with a dense cluster of points somewhere, but this kind
of image is not, as such, a mathematical understanding of the theorem. It needs
support from mathematical work, otherwise it risks being misleading.

The notion of accumulation point, as it is defined above, is not obviously
connected to the convergence of sequences. If one compares the definition of
accumulation point with the definition of convergence, the connection is clear.
However, this clarity depends on a familiarity with the technique of showing
convergence for sequences using the ε-notation. The proof shows the meaning
of the concept ‘accumulation point’ by showing that, and how, such a point is a

29That a bounded and monotonous (increasing/decreasing) sequence converges is either taken
as an axiom of analysis or proved as a theorem if another axiom such as the least upper bound
property replaces it.
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convergence point of a sequence. The proof is, arguably, more important for the
concept of accumulation point than the definition.

Taking the corollary into account, one can see that the concept of sequence
is also illuminated. A sequence is not necessarily convergent merely by the fact
that it is bounded, but boundedness is enough for a subsequence to converge.
Additionally, a consequence of having read the proof is that collections of infin-
itely many points located on some particular limited portion of the continuum
can be handled by viewing the points as elements of a sequence.

On a larger scale, this theorem, together with other theorems and definitions
concerning convergence and continuity, establishes a connection between con-
verging sequences and the notion of continuity. In short, it illuminates the con-
tinuum, and it does this by establishing techniques that enable problem solving
and the proving of further theorems.

The third example proof also illustrates the issue of concept-change. It is
sometimes referred to as the ‘horn of Gabriel’ and sometimes as ‘Torricelli’s
trumpet’. It is often presented as a surprising and counter-intuitive result, and
it gave rise to considerable debate among mathematicians, as well as philosoph-
ers, when Evangelista Torricelli showed the features of the horn in 1641. Among
other things it spurred questions about the infinite but also about the ontolo-
gical nature of mathematical objects. The following is a modern variant of Tor-
ricelli’s theorem. Torricelli calculated the area and volume of a similar solid us-
ing the technique of indivisibles that his teacher Bonaventura Cavalieri had de-
veloped.30

Theorem. If the hyperbola y = 1
x rotates around one of its asymptotes, e.g. the x-

axis, and the values of the abscissa are limited to x ≥ 1, an infinitely long trumpet-
shaped solid is formed. The area of this solid is infinite, whereas its volume is a
finite number.

Proof. The area can be determined by calculating the following improper Rie-
mann integral:

lim
a→∞∫

a

1
2π 1

x
dx = lim

a→∞
2π[ln x]

a

1
=∞.

30For details, see Paolo Mancosu. Philosophy of Mathematics and Mathematical Practice in the
Seventeenth Century. Oxford: Oxford University Press, 1996, ch. 5.
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The area is thus infinite. The volume is calculated analogously but is finite and
equal to π:

lim
a→∞∫

a

1
π( 1

x
)2dx = lim

a→∞
π[ − 1

x
]
a

1
= π.

The reaction when hearing that the length and the area are infinite but the
volume, nevertheless, finite is perhaps that onewants to see a proof. It is a natural
reaction of disbelief that one wants to hear the arguments in favour of what one
questions, but it also signals that the proper understanding of the proposition
will be derived from understanding the proof. This example also shows how the
acceptance of the proof involves a change in concepts. Furthermore, in this case
the change takes place on two levels. In a discussion of Torricelli’s trumpet, Kajsa
Bråting andAnders Öberg draw attention to a shift in the concept of volume that
occurs and that this shift ‘was codified through the methods that were used for
the calculations.’31 They remark that the concept of volume underwent a shift
due to the new possibility of calculating volumes, i.e. the method of indivisibles.
On this level, the shift concerned the concept of volume in general: it extended
what one was prepared to count as a volume. However, not all of Torricelli’s con-
temporaries were prepared to accept the method of indivisibles because of the
consequences of its application on the infinitely long solid. For those who did,
volume was now something one could ascribe to infinitely long objects, and this
is clearly an addition to the ordinary concept of volume.

The strangeness of this proof can at least partly be explained by this shift in
concepts. What one expects of the concept of volume as it is used in everyday
applications is not applicable to the trumpet. If one thinks of a plugged funnel,
infinitely long and made out of an infinitely large tinplate, with an opening dia-
meter of 20 centimetres, the idea that one could fill it up to the brim by pouring
about 3.14 litres of water into it sounds paradoxical. A reminder that the concept
‘volume’ is altered here and that what we call volume with regard to the trum-
pet is a different although related concept of volume can temper the feeling of
paradox.

On another level, there is a more local change of concepts. When reading
and accepting the proof, one accepts the values of the integrals as the values of
the area and volume of the solid. That one understands the proof means that
one grasps how the values of these integrals can be the area and the volume,
respectively, of this solid. Again, grasping this depends on a prior grasp of the
techniques utilised in the proof.

31Kajsa Bråting and Anders Öberg. ‘Om matematiska begrepp – en filosofisk undersökning
med tillämpningar’. In: Filosofisk tidskrift 26.4 (2005), pp. 11–17, my translation from Swedish.
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Another historical example where a concept is changed as a consequence of
a proof is Cardano’s proof that an equation can have an imaginary solution (see
p. 52).This case shows that it is evenmisleading to say that concepts are changed
due to an understanding of the proof, because seeing it as a proof of a proposition
cannot be separated from experiencing a change in one’s conception of, in the
Cardano example, root.

Thus, the issue of concept-formation cannot be described thus: we have a
problem which we understand, we obtain a proof, and now our concepts change
because of the proof. Wittgenstein’s formulations sometimes suggest such an
understanding. This understanding of the concept-forming role of proofs bears
similarities to the view of proofs having a convincing effect on the reader, only,
now the proof has a concept-forming effect. I would rather say that understand-
ing manifests itself in a shift in the concepts.

That proofs contribute to the meaning of concepts can also be connected to
the comparison between mathematical propositions and rules. That our under-
standing of the concepts involved is changed as we grasp a proof will influence
what we consider to be the correct use of these concepts. Consequently, the the-
orem will play a normative role. The other two aspects of proof discussed below
will elucidate this remark.

5.4 Proof and Experiment
The second of the ideas of Wittgenstein under scrutiny here is present through-
out his philosophy. He repeatedly emphasises the difference between amathem-
atical proof and an experiment by calling the former a picture of an experiment.
‘I might say: the proof does not serve as an experiment; but it does serve as the
picture of an experiment.’32 This comparison is also found with respect to calcu-
lations and experiments: ‘It is enlightening to look on a calculation as a picture
of an experiment.’33

If a mathematical proposition is seen as a true description about something,
as it would from the body of truths perspective, it may seem as if one could con-
vince oneself of its truth either bymaking experiments or by proving it – and the
difference in certainty would only be one of degree. If one thinks of an example

32RFM, I § 36. In a lecture, a similar remark is found: ‘One might say that this figure is not an
experiment but the picture of an experiment. A picture or film of an ordinary experiment is not
the same as an experiment.’ Wittgenstein’s Lectures on the Foundations of Mathematics, Cambridge
1939, p. 72. Throughout Remarks on the Foundations of Mathematics, proofs are also often viewed
as models, paradigms, and patterns. In Philosophical Grammar, Wittgenstein gives this difference
a strong emphasis: ‘Nothing is more fatal to philosophical understanding than the notion of proof
and experience as two different but comparable methods of verification.’ PG, II, V, 22, p. 361.

33LFM, p. 98. In this form, the remark is found already in Tractatus Logico-Philosophicus: ‘Cal-
culation is not an experiment.’ TLP, § 6.2331.
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such as Goldbach’s conjecture, the difference might lie only in the generality of
the proposition: whereas a proof will show exactly for which cases the proposi-
tion holds (perhaps for all cases), experiments will not tell one where the range
of applicability goes. The point of both procedures would be to convince one that
something is the case.34

There are features of proofs and calculations that indicate an essential differ-
ence between experiments and proofs. Wittgenstein draws attention to the fact
thatwhile a picture of a proof is still a proof, a picture of an experimentwould not
be an experiment.35 This remark, in all its seeming simplicity, points to a funda-
mental difference. A proof is not tied to any particular physical circumstances,
whereas an experiment is something located in time and space. Hertzberg has
suggested an example which also serves to illuminate this. Suppose that I find
a drawing consisting of a series of pictures of somebody performing certain ac-
tions; if I can see a proof in these pictures, it does not matter who has drawn
the pictures, whether this person is reliable or not, it will still be a proof. On the
other hand, if I in the pictures see a report of an experiment, the value of this
report is affected by the reliability of the author.36

Another noteworthy difference is that if we conduct an experiment we await
the outcome, take note of it, and, in a sense, we have to accept the result whatever
it is.When performing calculations and especially when proving something, one
does not await the result. In calculation, we might make sense of ‘taking note
of the result’, but the acceptance of the result is always dependent on having
calculated correctly, and this introduces another dimension into the activity of
proving and calculating.

It may be objected that there are also wrong and right outcomes of an ex-

34Arthur Jaffe and Frank Quinn claim that ‘the role of rigorous proof in mathematics is func-
tionally analogous to experiments in the natural sciences.’ Their claim seems, at first glance, to
run counter to the difference emphasised here. However, a look at the similarities they point to
reveals that the disagreement is only on the surface. The subject of their discussion is the status of
speculative or conjectural mathematics. They note that proofs, as well as experiments, function
as a rein on the more speculative parts of the respective sciences. That proofs and experiments
both function as the final arbiters of truth does not mean that they play this role in the same way.
Frank and Quinn make no claims about the logical similarities or differences between proofs and
experiments. Arthur Jaffe and FrankQuinn. ‘“TheoreticalMathematics”: Towards a Cultural Syn-
thesis of Mathematics and Theoretical Physics’. In: Bulletin of The American Mathematical Society
29 (1993), pp. 1–13, quote on p. 2.

35Ludwig Wittgenstein. Wittgenstein’s Nachlass: The Bergen Electronic Edition. Oxford; Bergen:
OxfordUniversity Press &WittgensteinArchives at theUniversity of Bergen, 2000,MS 127, p. 169.
MS 127, together with MS 126, are the sources for part V of Remarks on the Foundations of Math-
ematics. This remark has been left out by the editors. In a lecture, he makes a similar remark:
‘The description of the proof is the proof itself, whereas to find the thing at the North Pole [it is
not enough to describe it]. You must make the expedition.’ Ludwig Wittgenstein. Wittgenstein’s
Lectures, Cambridge 1932–1935. Ed. by Alice Ambrose. Oxford: Blackwell, 1979, p. 7.

36Personal discussion. Cf. also Wolgast, Paradoxes of Knowledge, pp. 107–08.
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periment. This is true thus far: if there is an unexpected outcome one will prob-
ably conclude that something is interfering with the experiment. For example,
the scales were not calibrated or the containers were contaminated. However,
if the circumstances of the experiment are controlled, the outcome is as good
as any. A deviation in the outcome of an experiment is as interesting as the ex-
pected one (arguably more interesting). In the case of a surprising outcome, it is
surprising because one cannot fully overview the causal processes of an experi-
ment. The task is then to give an explanation as to why this outcome is possible
– to incorporate it into the scientific theory. The point of a scientific theory can
be described as a way of coming to terms with this inability of ours to see the
processes of nature, and experiments are a means for gaining insight into these
processes. Von Wright identifies two attitudes to causal relations: an active and
a passive one, and he observes that experiments exploit both. ‘The active com-
ponent is the putting inmotion of systems through producing their initial states.
The passive component consists in observing what happens inside the systems
– as far as possible without disturbing them.’37

A related remark is made by Mühlhölzer, who notes that the identity of ex-
periments and proofs, respectively, is determined in different ways. In order to
repeat the same experiment, one has to set it up in the same way, under the same
conditions as the experiment one wishes to repeat. The identity of a proof, by
contrast, requires that the result is repeated.38 Calculation and proof are not ex-
amples of passive observation. If one did not overview the exact path to the result
of a calculation, it would not be a calculation at all.There cannot be any interest-
ing deviations in the results of a calculation – a deviation is a mistake. Likewise,
there cannot be any interference that causes a calculation to give out another
result. If something interferes with the person who is calculating or drawing a
conclusion, it is not the calculation that gives a different result, it is the calculator
who was brought out of concentration and made a mistake.39

Yet another objection could be that one has to accept the result of a calcu-
lation just as much as that of an experiment. One cannot decide that it is right
or wrong. This is kind of criticism is commonly brought up against ideas that
put realism into question (cf. p. 55). It is true that one will have to accept the
result of a calculation too, and calculating is often described as an activity where

37GeorgHenrik vonWright.Explanation andUnderstanding. London: Routledge&Kegan Paul,
1971, p. 82.

38Felix Mühlhölzer. ‘“A Mathematical Proof Must Be Surveyable”: What Wittgenstein Meant by
This and What It Implies’. In: Grazer Philosophische Studien 71 (2005), pp. 57–86, p. 60.

39This is also the reason for Wittgenstein’s controversial claim that surprise with regard to a
result in mathematics is a sign that something is not understood. See RFM, App. II. For an inter-
esting discussion of surprises in mathematics, see Felix Mühlhölzer. ‘Wittgenstein and Surprises
in Mathematics’. In: Wittgenstein and the Future of Philosophy. A Reassessment after 50 years. Pro-
ceedings of the 24th International Wittgenstein-Symposium, 12th to 18th August 2001 Kirchberg am
Wechsel. Ed. by R. Haller and K. Puhl. Wien: öbv & hpt, 2002.
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one proceeds according to the rules and sees where they take one. There are two
important things to notice in regard to this observation, however.

Firstly, just as one has to judge whether the outcome of an experiment is
plausible or not in order to know if one should accept it or look for possible
disturbances, one has to judge whether the result of a calculation is correct or
not too. Since it is possible to be mistaken in calculation or inference, there is
a need for checking the outcome, but this is a different kind of checking. To
evaluate an experiment is to judge whether or not the set-up is correct in order
for the causal process to take place unhindered. To check a calculation is to judge
whether the rules have been followed correctly in each step. One is not checking
the surroundings of the calculation but the process itself. The result that one has
to accept is completely determined by the correct application of the rules. As will
be discussed below, what the correct result is must be completely perspicuous in
the calculation. In an experiment, one has to work out a theory to explain the
outcome.

Secondly, the objection invites the comparison between oneself and a com-
puting machine, which, when given a certain input, gives out a definite output.
Is it not possible to give oneself a task to calculate something, perform the calcu-
lation under favourable circumstances according to the rules, and then observe
the result? Could this not be called an experiment? Furthermore, would the pos-
sibility of calling it an experiment imply that the difference between calculation
and experiment is not so fundamental after all? If one did this but entered the
task into a calculating machine or a computer instead of doing it by hand, this
could be described as an experiment.The result of the experiment would then be
the answer the machine gives out. One could also perform a similar experiment
withmanymachines; the experiment could be to test whether all of themachines
give out the same answer or not. The result of such an experiment would not be
the numbers that appear on the screens, but either ‘yes (they give out the same
number)’ or ‘no’. One could make a similar experiment with humans, testing if
a group of people come to the same result when given a certain calculating task.
Again, the result of the experiment would not be the result of their calculations,
and the value of the result of the experiment would not suffer if the results in
the calculations are wrong. Could I then make an experiment by giving myself
a task and test what comes out? Wittgenstein writes: ‘It is the use that is made
of something that turns it into an experiment.’40 Could one view the situation of
self-testing as an experiment? This may be a genuine possibility, but my attitude
to the result of the calculation and thus to the experiment would be different
from the case where I simply do the calculations to find out the correct result.
The following comment by Wittgenstein sheds light on the difference: ‘If a proof

40RFM, I § 161.
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is conceived as an experiment, at any rate the result of the experiment is not what
is called the result of the proof. The result of the calculation is the proposition
with which it concludes; the result of the experiment is that from these propos-
itions, by means of these rules, I was led to this proposition.’41 It is important
to notice that, from the experiment-perspective sketched in the quote, there is
room for a further evaluation: ‘Is it correct?’ When I make this evaluation and
the answer is ‘yes’ – this turns it into a proof. The realisation that it is correct is
a realisation that this had to be the result. This observation relates to the com-
parison between mathematical propositions and rules, and the connection will
become clearer still when the surveyability of proofs is taken into consideration.

A recurring theme in Wittgenstein’s writings on rule-following is the picture
of a mechanism and his remarks that following a rule is not like the working
of a rigid mechanism. This distinction is parallel to the one between proof or
calculation and experiment.42 The idea in critical focus is the following: rules
– if we follow them correctly – compel us to behave exactly as they prescribe,
as rigidly as the causal laws of nature determine how a physical mechanism be-
haves. Wittgenstein writes that one easily pictures a kind of mechanism behind
our calculation that determines, as it were, the movements of our calculations
and inferences. In Philosophical Investigations, he mentions that this picture is a
false analogy. One forgets that machines break and malfunction. It would there-
fore be necessary to picture calculation as a super rigidmechanism.43 When one
makes a mistake in calculation – is that a result of the machinery malfunction-
ing? How does one in this case know when it does its job as it should and when
it does not – i.e. malfunctions? The distinction between malfunction and mis-
take cannot be drawn when one is calculating. The picture one has of oneself as
a calculating machine that follows simple mechanical rules is not an innocent
one. That it still seems to capture something central to our calculating practices
is a consequence of what a rule is. As Wittgenstein writes: that one feels com-
pletely compelled to do what the rule demands is simply a feature of having
understood the rule.44 This does not require a causal determination. ‘“Mech-
anical” – that means without thinking. But entirely without thinking? Without
reflecting.’45 The discussion of mechanisms and rule-following can thus be seen
to show yet another aspect of the difference between proof and experiment as
methods of showing the truth of something.

The risk of conflating experiments and proofs may seem somewhat remote,
and one may wonder why so much attention is devoted to the distinction. One

41RFM, I § 162.
42In part VII of Remarks on the Foundations of Mathematics, they even merge. See § 73.
43PI, § 193.
44PI, § 231.
45RFM, VII § 60.
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reason is that it sheds light on the nature of mathematical propositions as dis-
cussed above. Another reason is found in Wittgenstein’s treatment of the ques-
tion of how rules determine one to follow them in a particular way. I shall not
go into this problem here, but I mention it due to its connection with the main
theme of this thesis. The certainty of mathematics is sometimes thought of as
arising from the force of logical inferences, from the idea that the laws of lo-
gic force us to infer in the only possible way. This idea is analogous to the view
of proof and calculation as being on a par with experiments. The laws of logic
appear compelling in the same way as the laws of nature – only even more com-
pelling. Since Frege appears to have held such a conception of the laws of logic,
dealing with this view is important to Wittgenstein.46 From this perspective,
there is an inclination to view calculation and inference as something that hap-
pens beyond one’s control. The one who infers is, as it were, compelled much
like one is compelled by causal processes.47 Thus Wittgenstein writes: ‘Do not
look on the proof as a procedure that compels you, but as one that guides you. –
And what it guides is your conception of a (particular) situation.’48 As discussed
above, the proof is involved in determining the meaning of concepts, but not in
the sense that the proof has an effect on the reader. For something to guide my
conception, in contrast to compel me, it must be possible for me to follow the
guidance, it must be possible to overview it. This brings me to the third ingredi-
ent in Wittgenstein’s discussion of proofs.

5.5 Proof and Surveyability
The third aspect that Wittgenstein emphasises is that proofs have to be sur-
veyable.49 This aspect is not separable from the two previously discussed: the

46Gottlob Frege. ‘The Thought: A Logical Inquiry’. In: Mind 65 (1956), pp. 289–311, pp. 289–
90. Cf. also LFM, p. 214. Frege’s view on the laws of logic (laws of thought) has attracted much
discussion, but I will not go into the issue here. It is unclear whether he viewed these laws as
constitutive of thought in the manner of Kant, or whether he saw them as merely prescribing how
thought should look if it is to be proper thought. It seems that he either wavered between the two
views or simply changed views at some point. Cf. James Conant’s introduction to Hilary Putnam.
Words and Life. Ed. by James Conant. Cambridge MA: Harvard University Press, 1994.

47It is also in this context that the remarks on rigid mechanisms appear.
48RFM, III § 30.
49Regarding terminology, it is worth mentioning that Wittgenstein uses the words ‘übersicht-

lich’, ‘übersehbar’, and ‘überblickbar’. In the English translation, these are translated as ‘perspicu-
ous’, ‘surveyable’, and ‘possible to take in’. Mühlhölzer comments that Elizabeth Anscombe’s
choice of English counterparts is problematic because ‘perspicuous’ and ‘take in’ imply that an
understanding of the proof is involved. Moreover, the requirement that a proof be perspicuous
carries connotations to ‘ease of understanding’. The German words do not, according to Mühl-
hölzer, presuppose understanding, and as Wittgenstein uses them interchangeably he suggests
using ‘surveyable’ as the translation for all of them. Mühlhölzer, ‘“A Mathematical Proof Must
Be Surveyable”’, pp. 58–59. I will, therefore, use ‘surveyable’ when discussing this aspect, but the
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concept-forming nature of proofs and the difference between proof and experi-
mental verification. It must be possible to see from the proof how the concepts
involved are connected.The affinity is explicitlymentioned: ‘“Proofmust be cap-
able of being taken in [surveyable]” really means nothing but: a proof is not an
experiment.’50

In the above discussion, it was emphasised that in a proof or calculation, one
overviews the path to the result. Experiments, by contrast, are conducted in order
to study a causal process that one does not overview. ‘When I wrote “proof must
be perspicuous” that meant: causality plays no part in the proof.’51

These are still negative characterisations of surveyability, but there are pos-
itive ones especially in part III of Remarks on the Foundations of Mathematics.
Mühlhölzer mentions several different ways that Wittgenstein describes survey-
ability, but these can, in essence, be summarised in two. Firstly, a proof should
be reproducible: ‘Only a structure whose reproduction is an easy task is called
a “proof ”. It must be possible to decide with certainty whether we really have
the same proof twice over, or not. … [W]e must be sure we can exactly repro-
duce what is essential to the proof.’52 Secondly, a proof should be plain to view
or intuitive. In this second characterisation, the visual element in surveyability
is conveyed: ‘Proof must be a procedure plain to view.’53

There are two perplexing issues in these two characterisations. The first con-
cerns that which is essential to proofs and that one should be able to reproduce.
The second concerns the role of the visual element in ‘plain to view’ or ‘intuitive’.

Beginning with the first of these issues, it is clear that the reproduction of
proof does not hang on, for instance, typographical features. Some variations
in different presentations of a proof can be tolerated. However, as Mühlhölzer
asks, how far does this toleration extend?What is essential to a particular proof?
Is the essential of a particular proof reproduced if the purported reproduction
relies on another proof idea than the first? Mühlhölzer claims that, according
to Wittgenstein, that would not be a reproduction. Drawing on material from
part III of Remarks on the Foundations of Mathematics, Mühlhölzer compares
Wittgenstein’s notion of surveyability to the one found in Hilbert’s descriptions

quotes from Remarks on the Foundations of Mathematics are not modified.
50RFM, III § 39.
51RFM, IV § 41.
52RFM, III § 1.
53RFM, III § 42.Mühlhölzermentions that ‘plain to view’ is Anscombe’s translation of ‘anschau-

lich’, and he draws attention to several other passages in the manuscript MS 122 (which forms the
source of two thirds of part III of Remarks on the Foundations of Mathematics) where proofs are
said to be anschaulich and that Anschauung is required. He remarks that ‘intuitive’ and ‘intuition’
would be a more neutral choice of translation, but stresses that it is the everyday meaning ‘plain
to view’ that Wittgenstein had in mind – Kantian connotations notwithstanding. Mühlhölzer, ‘“A
Mathematical Proof Must Be Surveyable”’, pp. 69–70.
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of his proof theory.54 The surveyability that is associated with the reproduction
of proofs should thus allow one to see that it is exactly the same proof. This
includes that no step is left out and that no signs have switched places accident-
ally. This kind of surveyability is not present in the causal processes studied in
an experiment. Moreover, it is not the kind of surveyability that could come
into question if the proof and the supposed reproduction utilised different proof
ideas. In the proof of the Bolzano-Weierstrass theorem, two different proof ideas
could be seen in the different formulations of the theorem and the differences in
the proofs that these formulations necessitate (i.e. making use of accumulation
points or the convergence of subsequences). Another example of diverging proof
ideas could be a different kind of construction of themonotonous sequence. Yet,
even if proof ideas may differ, there is still a sense in which two such proofs can
be essentially the same. This is, arguably, an important, albeit different, sense
of ‘essentially the same’ that is not covered by the surveyability that is related
to the reproduction of proofs. I will shortly return to the kind of surveyability
that allows one to see that two slightly different proofs are essentially the same.
Most importantly, however, the kind of surveyability that is in focus here is one
that is tied to the use of a notation that allows for the kind of diagrammatic per-
ceiving mentioned on p. 94. In his discussions of the foundational programmes,
Wittgenstein is critical of (among other things) the employment of a signs that
‘cannot be recognized by its shape.’55

The second issue, i.e. what it means for a proof to be intuitive and plain to
view, can be understood along the lines of the above remark about the essen-
tial features of a proof. What is essential to the proof should be possible to see,
it should not be hidden in some way. The contrast where things are hidden is,
again, causal processes that one is trying to understand with the help of an ex-
periment. Mühlhölzer summarises this: ‘All our reasons to accept the correct-
ness and conclusiveness of a proof only refer to things which we can see in the
proof.’56 The two positive characterisations of ‘surveyable’ are, thus, intimately
linked.

As Muhlhölzer, but also Mathieu Marion, mention, much of Wittgenstein’s
writings on the surveyability of proofs is directed at Russell’s andWhitehead’s lo-
gicist project although his remarks are relevant for a broader discussion of proofs

54Mühlhölzer, ‘“A Mathematical Proof Must Be Surveyable”’, p. 62. See the Hilbert quote on
p. 83.

55RFM, III § 10.
56Mühlhölzer, ‘“A Mathematical Proof Must Be Surveyable”’, p. 70. In this passage, Mühlhölzer

echoes Hilbert’s assertion (which he also quotes): ‘If logical inference is to be certain, then these
objects must be capable of being completely surveyed in all their parts, and their presentation,
their difference, their succession (like the objects themselves) must exist for us immediately, in-
tuitively, as something that cannot be reduced to something else.’ Hilbert, ‘The New Grounding
of Mathematics: First Report’, p. 202.



5. Proof 129

too.57 The first thing to notice in this criticism is that proofs written in Russell’s
and Whitehead’s system (or in any formal system) will not, in general, be sur-
veyable, simply because they are too long for anybody to overview or reproduce.
In conclusion, they can be called proofs only in a figurative sense. Marion men-
tions that the surveyability remarks have been taken to imply a strict finitism
on Wittgenstein’s part. The reason for this interpretation is that surveyability is
interpreted as setting a limit to the length of proofs.58 As bothMarion andMühl-
hölzer remark, it is not primarily the length of the proofs that make the proofs
of Principia Mathematica unsurveyable. It is the notational systems which focus
on a minimum of symbols that quickly lose their surveyability as the formulas
grow longer. The criticism of the deduction of arithmetic from logic, thus, takes
the following form: the signs employed to represent numbers make even small
numbers impossible to distinguish from each other, if one does not count the
number of brackets.59 This makes the reproduction of such a proof problematic,
since the notation makes it impossible to see if a string of signs representing,
for instance, a number has been reproduced or not. The proofs of Principia thus
lack surveyability in the sense of reproducibility.

Since the point of reducing arithmetic to logic was to benefit from the (sup-
posed) greater certainty of logic, this dependence on counting is problematic.
The proofs that should rely on nothing but logic need the techniques of arith-
metic to work as proofs, and this vindicates the philosophical part of the project.
As Marion remarks, due to this lack of surveyability there arises a circularity in
the logicist programme. Mühlhölzer also draws attention to this circularity and
summarises it clearly: ‘[I]n a foundational system, the concepts, sentences and
proofs on the higher levels should be constituted by the concepts, sentences and
proofs on the foundational level. But if the identity of the foundational sentences
and proofs are dependent on what happens on the higher levels, this idea of a
“constitution” is compromised.’60

Onemay object to this particular vindication of logicism that what is import-
ant to logicism is to show that such a deduction is possible – never mind that
the signs on the foundational level are impossible to work with in practice.61

57Mathieu Marion. ‘Wittgenstein on Surveyability of Proofs’. In: The Oxford Handbook of Wit-
tgenstein. Ed. by Oskari Kuusela and Marie McGinn. Oxford: Oxford University Press, 2011.

58There has been some discussion about whether or not Wittgenstein intends to limit what is
acceptable as a proof or if he simply intends to describe what we take to be a proof. E.g., Shanker
argues for the latter option. Shanker,Wittgenstein and the Turning-Point in the Philosophy ofMath-
ematics, p. 129. I will briefly discuss the issue of the length of proofs below.

59This phenomenon can be seen already in a very simple formula such as the set theoretic ex-
ample 4.8 on p. 91.

60Mühlhölzer, ‘“A Mathematical Proof Must Be Surveyable”’, p. 80.
61Mühlhölzer calls this the ‘theoreticity rejoinder’ since the formal proofs are thought to exist

only as theoretically postulated entities. Ibid., p. 75.



130 5. Proof

That this deduction is possible is indisputable, but it does not imply anything
more for the certainty of mathematics than any other mathematical result. D.
S. Shwayder’s remark is to the point when he writes that ‘what is proven rather,
and proven perspicuously, is a general correspondence between two systems’.62

It is important, however, that Wittgenstein’s dismissal of logicism does not
amount to a wholesale dismissal of formal proofs, but merely of the philosoph-
ical thought behind the use of formal proofs in logicism: ‘We incline to the belief
that logical proof has a peculiar, absolute cogency, deriving from the uncon-
ditional certainty in logic of the fundamental laws and the laws of inference.
Whereas propositions proved in this way can after all not be more certain than
is the correctness of the way those laws of inference are applied.’63 Wittgenstein
introduces the concept geometrical cogency and writes that ‘the cogency of lo-
gical proof stands and falls with its geometrical cogency’. He then brings this to
bear on Russell’s system: ‘[L]ogical proof, e.g. of the Russellian kind, is cogent
only so long as it also possesses geometrical cogency. And an abbreviation of
such a logical proof may have this cogency and so be a proof when the Russel-
lian construction, completely carried out is not.’64

Formal proofs may, with the help of suitable abbreviations of the syntax, be
perfectly surveyable proofs, but one has, at the same time, lost contact with the
level of simplicity which was supposed to guarantee a greater certainty.Wittgen-
stein remarks that ‘[a] shortened procedure tellsmewhat ought to come out with
the unshortened one. (Instead of the other way round.)’65 He also writes that
abbreviating a formal proof by means of suitable definitions will introduce new
concepts and a new system. Any philosophical particularities of the unabbrevi-
ated system are not necessarily passed on to the new system.66 As I understand it,
the conclusion of this should not be that no mathematics will live up to the cer-
tainty that we find in logic, but, on the contrary, that this certainty can be found
in all parts of mathematics, in mathematical logic and in other sub-disciplines.

I shall now return to the question concerning the kind of surveyability that
allows one to see that two slightly different proofs are essentially the same. A re-
lated problem is what it means for two proofs to be essentially the same although
they differ with regard to proof idea or method of proof (e.g. indirect proof, in-
duction), but I will not go into it here.67 For the present discussion, however, it

62D. S. Shwayder. ‘Wittgenstein on Mathematics’. In: Studies in the Philosophy of Wittgestein.
Ed. by Peter Winch. London: Routledge & Kegan Paul, 1969, p. 87.

63RFM, III § 43.
64RFM, III § 43.
65RFM, III § 18.
66RFM, III §§ 45–46.
67In a blog entry on October 4, 2007, Tim Gowers discusses where to draw the line between

‘essentially the same’ and ‘genuinely different’.That we do identify some proofs as being essentially
the same is clear, but it is not settled whether it is possible to make a sharp distinction or not. Tim
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is interesting to note that we need to be able to survey the line of argument of the
proof in order to compare it with another. Importantly, we also need to survey
the argument already in order to understand the proof. This sense of surveyable
is crucial for the philosophical understanding of the concept of proof, but it is
a different sense than the one discussed above, which concerned the forms of
notation that allow for a clear and distinct view of the proof.

This other sense is connected to my understanding of a proof. Within this
sense of ‘surveyability’, one can, following O. Bradley Bassler, distinguish local
from global surveyability: ‘local surveyability requires the surveying of each of
the individual steps in a proof in some order, while global surveyability requires
the surveying of the entire proof as a comprehensible whole’.68

Local surveyability, naturally, places some conditions on proof in that the
proof has to be such that it is possible to verify each step. What comes easily to
mind is a proof that is built up of a series of simpler deductions which taken to-
gether form a longer argument. However, even a diagram in a proof in geometry
may possess this local surveyability if it is evident what the essential features of
the construction are.

Global surveyability does not admit of any precise description, but it involves
that it must be possible to form an overarching understanding of the working
of the proof. This, however, seems to be no more specific a description than
the minimal requirement that the proof be logical. Even so, to form a thorough
overarching understanding of a proof demands much of the reader. This relates
to the fact that one often has to work on the proof in order to achieve an over-
view in this sense. This kind of surveyability is even more than the local kind
dependent on a prior understanding of the reader.

Tying this to the problem of how it is possible to recognise the similarity
between two slightly different proofs, one can see that this depends on global
surveyability. This can be illustrated by the Bolzano-Weierstrass theorem and
the alternative formulations mentioned above. It does not matter which of the
many possible proofs one settles on; as long as the proof centres around the con-
struction of a monotonous (sub)sequence the essential is reproduced.

Importantly, it is the achievement of the understanding related both to the
local surveyability and, in particular, to the global surveyability that allows one
to see that a proof actually establishes a theorem. As Bassler remarks, this is an
understanding that goes beyond the recognition that each of the steps is valid:
‘the collective force of the proof steps requires a further conceptual acknowledg-

Gowers. ‘When are two proofs essentially the same?’ In: Gower’s Weblog: Mathematics Related
Discussions (4/10/2007). url: https://gowers.wordpress.com/2007/10/04/when-are-two-proofs-
essentially-the-same/ (Accessed 09/05/2016).

68O. Bradley Bassler. ‘The Surveyability of Mathematical Proof: A Historical Perspective’. In:
Synthese 148 (2006), pp. 99–133, p. 100.
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ment. … Such a conceptual acknowledgement, that the proof steps fit together
in such a way that they establish the claim, is a minimal requirement for global
surveyability.’69 The quote from Bourbaki in chapter 4 (p. 96) can be interpreted
as stressing the importance of the understanding facilitated by global surveyab-
ility.

At this point, it is easy to jump to the unwarranted conclusion that math-
ematical certainty is explained by the presence of surveyability in proofs, espe-
cially if one is sympathetic to the above line of thought. That ‘surveyability’ is
not a concept that can play such a role is seen from the fact that it cannot be
given a precise definition, and it is not possible to say, independently of a reader,
whether a proof has this quality or not.

Instead, finding a proof to be surveyable depends on having achieved a prac-
tical familiarity, a skill in using the symbols and concepts involved. Importantly,
this holds for all three senses of surveyable.This, in turn, shows why takingmat-
ters of ‘skill’ and ‘ability to use’ into account is vital for the project at hand.This is
evident in the case of global surveyability.Thurston comments that in the case of
some of his proofs, he had to put considerable effort into conveying the ‘math-
ematical infrastructure’ that allowed people to understand them.70 Thurston’s
example is, of course, one that is accessible to comparatively few persons, but
the same phenomenon occurs early on when learning mathematics. It is diffi-
cult to appreciate the certainty of proofs in elementary analysis – e.g. of the proof
of the Bolzano-Weierstrass theorem – if one has not previously achieved some
(working) familiarity with concepts such as convergence and continuity.

It may be tempting to draw a line between local and global surveyability and
claim, with Edwin Coleman, that local surveyability ‘is an objective property of
the written proof itself.’71 This is a mistake, however. That the individual steps of
a given proof are such that they are possible to verify is not separable from the
ability of the person going through them.What is surveyable in the local sense is
dependent on one’s prior knowledge. Reviewing, surveying, the steps where the
volume or area is calculated for the infinitely long solid above is possible only
to somebody who knows how to compute the integrals. This is the case even in
formal deductions as will be seen below.

Even the visual or formal surveyability emphasised by Mühlhölzer cannot be
distinguished from the ability to use the signs that are visually surveyed. As was
argued in chapter 4, the idea of something purely formal or purely visual arises
from a conceptual confusion.

As a summary of the discussion of these three different kinds of surveyability,
69Bassler, ‘The Surveyability of Mathematical Proof ’, p. 102.
70Thurston, ‘On Proof and Progress in Mathematics’, p. 175.
71Edwin Coleman. ‘The Surveyability of Long Proofs’. In: Foundations of Science 14 (2009),

pp. 27–43, p. 40.
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one can say that they are all aspects of our practice of working with proofs. Now,
what is essential is only obvious to someone who has a thorough understand-
ing of the techniques involved. Surveyability is something that characterises the
things we call proofs. It will not serve to explain why proofs establish results,
but it will arguably be part of a picture of mathematics where there is room for
certainty. The following portrayal of the concept by Coleman is sympathetic:
‘Surveyability is the requirement that the proof be capable of supporting the con-
struction of a perspicuous representation of the proof-idea.’72 If one searches for
a clear definition, this does, naturally, not suffice. Here one approaches an im-
portant point concerning the surveyability of proofs, namely that to identify a
proof as surveyable is not to say much more than that it is a proof.

Lately, the question of how the existence of very long proofs affect the future
of proof has receivedmuch attention. I will comment briefly on this since it poses
a problem for the surveyability of proofs. It is important to see clearly in what
sense surveyability is threatened.

The fact that the length of formal proofs quickly grows out of hand has been
discussed since the introduction of formal proofs. Since ordinary mathemat-
ics does not depend on proving things formally, the length of such proofs has
not been alarming. However, there have been proofs that are long for other and
perhaps more serious reasons. The proof of the four colour map theorem by Ap-
pel and Haken was already mentioned, and another is the classification of finite
simple groups, the proof of which is said to be several thousand pages in length.
The length of the four colour theorem is due to its dependence on extensive com-
puter calculations that no human being could possibly verify. The classification
of finite simple groups is, by contrast, a result of a collective effort stretching
over more than a hundred years, and it encompasses about 15,000 pages. The
individual publications may, taken in isolation, be fully satisfactory and survey-
able, but it has been argued that probably no one can overview all of this mass
of research.73 If a mathematician makes use of the theorem, there is thus an ele-
ment of trusting other mathematicians. Interestingly, Coleman argues that the
four colour theorem is surveyable in the global sense. It is possible to overview
the working of the proof even though it is lacking in local surveyability, due to
the sheer amount of steps performed by the computer.74 In this case, one could
say that the mathematician who makes use of the four colour theorem puts her
trust in the accuracy of the computers that were employed in the proof.

These examples are often brought up because they raise questions concern-
ing the status of proof. Coleman argues that length is not, in general, a problem

72Ibid., pp. 40–41.
73Daniel Gorenstein. ‘The Enormous Theorem’. In: Scientific American 253.6 (1985), pp. 104–15.
74Coleman, ‘The Surveyability of Long Proofs’, p. 40.
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for the concept of proof since long proofs are abundant in mathematics. The ex-
amples under discussion are, of course, extreme cases, but achieving an overview
is in general no easy task. Coleman interprets the passage where Wittgenstein
states that ‘surveyability’ means that the reproduction of a proof should be an
‘easy task’ as putting too strict a requirement on the concept of proof. According
to Mühlhölzer, the remark does not mean that it must be easy to understand or
memorise the proof.75 With the three different senses of surveyable at hand it is
possible to see that this remark of Wittgenstein’s refers to the minimum require-
ment that the symbols used in a proof must be such that they can be surveyed in
the formal or visual sense mentioned in connection with the criticism of Prin-
cipiaMathematica. He sets no limits on the difficulty of achieving an overview in
the global sense (which Coleman clearly thinks he does) – even if this, of course,
must be possible. Perhaps one cannot even set any limit to the surveyability that
a proofmust possess in this sense, becausewhat will be surveyable will vary from
person to person.

These three aspects on proofs – concept-formation, the difference between
proofs and experiments, and surveyability – can now be seen to contribute to a
sketch of the concept of proof that is different from the idea that a proof con-
vinces me of the truth of a proposition that can be understood in isolation from
the proof. Understanding and accepting a proof has more in common with un-
derstanding and accepting that certain concepts can be used in a certain way –
indeed must be used in a certain way – rather than becoming convinced that
something is the case (which might be the case when performing experiments).
The conviction that a proof may bring about cannot therefore be separated from
a conviction that the concepts can be used in a certain way. As Wittgenstein
writes: ‘In producing a new concept [the proof] convinces me of something.’76
The issue of surveyability is thus seen to be indistinguishable from the issue of
concept-formation. If the understanding of a proof is to be such that it changes
one’s comprehension of the concepts involved, it has to provide an overview that
allows one to see how the concepts must be used. In the example with the in-
finitely long horn, it is possible to form an overarching understanding of how
the integrals relate to the geometrical object in that the values of the integrand
function coincide with the radii of the horn. The computation of the, perhaps
startling, values is also surveyable. It is thus possible to survey in what way one
may ascribe an area and a volume to the horn despite its infinite length and,
furthermore, that they have the values they have.

With regard to the discussion of the role played by conviction in the first
part of this chapter, it is important to notice that we distance ourselves from the
problem ‘How does a proof convinceme?’ once we see that a proof is compelling

75Mühlhölzer, ‘“A Mathematical Proof Must Be Surveyable”’, p. 61.
76RFM, VII § 72.
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only to someone who knows the requisite techniques and takes the time to work
through it. A proofmust be such that it shows the connections, but taking part of
a proof does not by necessity compel me to accept it.Working through the proof
can be easy if one is familiar with the kind of reasoning and with the concepts
involved. Itmay, however, sometimes require that the reader learns the use of the
concepts at the same time as she understands the proof. In this sense the work
of the reader bears similarities to the work that is undertaken by the one who
devised the proof in the first place. Thus, taking part of a proof should not be
viewed as receiving a message (that convinces one), but as a process of working
on one’s understanding of the concepts involved.

Furthermore, the request for an explanation of how a proof proves could
be answered only in relation to a specific proof. For example, the proof of the
Bolzano-Weierstrass theorem proves because it shows that there will be infin-
itely many points in a neighbourhood of at least one point of a bounded interval
containing infinitely many points since there is at least one point on a bounded
interval which is a convergence point of a sequence. Of course, this explanation
does not satisfy someone asking the philosophical question ‘How can a proof
manage to establish a theorem with certainty?’ It will not produce a general ac-
count of what happens. It may be tempting to search for such a general account
by searching for some kind of logical structure on a deeper level that will explain
how proofs in general prove. Logicism can, arguably, be seen as such a project.
Azzouni’s ‘derivation-indicator’ view is also an example. It is, nevertheless, un-
clear what status such an explanation would have, or even what value it would
have. Would it further my understanding of mathematics more than attending
to the mathematics that we do?

The idea of viewing mathematical propositions on a par with rules or norms
is closely related to the above discussion of the three aspects on proof that Wit-
tgenstein emphasises. One point of contact lies in his remark that an empirical
proposition can be hardened into a rule and after that serve as a ground onwhich
to evaluate other empirical propositions. To be specific, this remark is echoed
when it comes to experiments and proofs: ‘So up to now the testing was, so to
speak, experimental. Now it is taken as a proof. And the proof is the picture of
a test.’77 In the example of the pentagram discussed above, the placing of the
fingers on the points of a pentagram can be an experiment. Are there enough
fingers to cover the points? When we see that they even out, we may accept this
sight (picture) as proof that they are equal in number, and this correlation may
then become a new criterion for, say, judging whether a figure is a pentagram or
not. Furthermore, this picture allows one to overview the possible outcomes of
a future experiment where one tries to correlate one’s fingers with the points of

77RFM, VI § 2.
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a pentagram. Another point of contact lies in the observation that proofs form
concepts. In forming concepts, proofs shape one’s understanding of how one
ought to use them within mathematics, but also in applications to matters ex-
ternal to mathematics.

In this sense, my understanding of a proof changes my conception of, for
instance, giving change to customers, so that I am certain that I give the correct
change to the customers if I follow the rule for calculating the change. Imay be in
doubt about whether or not I calculated correctly and whether or not I received
a twenty-euro or a ten-euro note, but the rule itself is removed from the possible
sources of error once I have grasped the proof.The normativity of the rule is thus
established by the proof. In this sense, the certainty of themethod for calculating
change is given a different role than, for example, the certainty that one actually
received a twenty-euro note and not ten-euro note.

In conclusion, it can be said that the role of proofs in the certainty of math-
ematics lies in that we formourselves norms for howwe think about other things
by proving theorems. The certainty of mathematics is not, however, explained
by saying that proofs form concepts or that they are surveyable. This would im-
ply that ‘concept-formation’ and ‘surveyability’ could be understood as such and
then be brought in to explain how proofs establish theorems and give them a
normative character. Rather, these are features of our practice of proving, and
what it means for a proof to form concepts or to be surveyable can only be un-
derstood by looking at examples of proofs. By drawing attention to these features
of our practice, we can see in what sense it can be said that our mathematics is
certain.

5.6 Simple Deductions
At this point, I shall briefly discuss the role of formal deductions with regard to
the certainty of mathematics. The attraction that formal systems have enjoyed
can be seen in the special status assigned to formal deductions. As was men-
tioned in chapter 2, it is often pointed out that mathematics is a deductive sci-
ence and that this distinguishes it from other sciences, in particular with regard
to the reliability of its results. For the present investigation, it becomes interest-
ing to consider the question ‘Inwhatway doesmathematics’ status as a deductive
science contribute to its certainty (if it does)?’ It seems to me that part of what
makes it attractive to account for the certainty of mathematics by alluding to its
deductive character is that one pictures mathematical reasoning to be a chain of
simple and completely surveyable steps of deductive inferences. Moreover, if we
are dealing with formal deductions, the conclusions are said to be reached solely
on the basis of the form of the premisses. Furthermore, the conclusions follow
necessarily.
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In order to facilitate the discussion, it may be helpful to have an example at
hand. The following is a proof in natural deduction of the law of contraposition:
‘(A→ B)→ (¬B→ ¬A)’.

1. A→ B

2. ¬B

3. A

4. B →Elim: 1, 3
5. � � Intro: 2, 4

6. ¬A ¬ Intro: 3–5
7. ¬B→ ¬A → Intro: 2–6

8. (A→ B)→ (¬B→ ¬A) → Intro: 1–7

In chapter 4, it was argued that the form one sees in a proposition is tied to
one’s ability to make meaningful use of it in the practice where it belongs. The
idea that the conclusion in a deduction is drawn solely on the basis of the form of
the propositions must, therefore, not be thought of as something isolated from
the ability to use them.On the view that was questioned in chapter 4, the form of
the expression – being an objective part of it – determines what can be inferred.
Since logical form, according to this view, is a feature of the expression, what
follows is, in principle, determined even though no one actually infers anything.
Still, even as this idea of form is rejected, one may wonder how the rules of in-
ference license, for example, the step where ‘¬B→ ¬A’ is inferred from lines 2–6
in the deduction above.

If recognising logical form is connected to using the expression in a certain
way –what does using a formal expression involve? Is it not, among other things,
inferring? This means that the logical form of a proposition is internally con-
nected to that which one infers from the proposition. The idea that logical form
determines what can be inferred – i.e. the idea that one could first discern the
logical form of a proposition and once that is established, work out what fol-
lows – is therefore being questioned. More specifically, a view that is affected by
this criticism is representationalism, i.e. the view that the meaning of a formal
expression is determined by the meaning of the constitutive signs.

A contrast to representationalism can be seen in the following remark ofWit-
tgenstein’s: ‘We can conceive the rules of inference – I want to say – as giving the
signs their meaning, because they are rules for the use of these signs. So that
the rules of inference are involved in the determination of the meaning of the
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signs.’78 This passage has provided reasons for labelling (the later) Wittgenstein
an inferentialist with regard to the meaning of signs. I will argue that passages
like this should be read in a different way, a way that illuminates the philosoph-
ical problems pertaining to proof and deduction.

In one of the first passages of Remarks on the Foundations of Mathematics,
another remark that could be read as an expression of inferentialism is found:

‘But doesn’t e.g. ‘fa’ have to follow from ‘(x).fx’ if ‘(x).fx’ is meant in the way
we mean it?’ – And how does the way we mean it come out? Doesn’t it come
out in the constant practice of its use? – But it is as if there were also something
attached to the word “all”, when we say it; something with which a different use
could not be combined; namely, the meaning. …

One learns the meaning of “all” by learning that ‘fa’ follows from ‘(x).fx’. –
The exercises which drill us in the use of this word, which teach its meaning,
always make it natural to rule out any exception.79

This theme can be seen as a continuation of the idea that proofs contribute to
the meaning of concepts. Only, in the case of inference rules, they contribute
to the meaning of the signs involved although nothing is (yet) proved. Here the
common feature lies in the use one is prepared to make of the symbols or con-
cepts involved. A proof can be said to shape concepts since it shows, in a sur-
veyable manner, a possible use of them. Inference rules will perhaps not as such
determine the meaning of the signs, but in entering into the practice of dedu-
cing according to the rules and in becoming proficient in the use of them, their
meanings open up. For example, one would not say that someone has grasped
the meaning of the modus ponens rule if the person in question does not also
realise that B on line 4 follows from lines 1 and 3 in the above proof. A simil-
arity to this entering into the practice of deducing can be seen in how children
learn to count and perform basic arithmetical operations, i.e. how they learn
the meaning of the symbols ‘+’, ‘−’, etc. The usual procedure is to count objects
of manageable size, rather than to study the symbols of arithmetic in isolation
from the applications. Especially the first operations, adding and subtracting,
are learnt by adding objects to or removing them from a group of objects.

The point of this discussion will become clearer if the perspective described
is contrasted with inferentialism. The idea that rules of inference determine the
meaning of the signs that are used in propositions is susceptible to such criticism
as was voiced by A. N. Prior.80 If inferentialism is correct, he suggests that one
could introduce a connective ‘tonk’ which has the following inference rules:

A
A tonk B

A tonk B
B

78RFM, VII § 30.
79RFM, I § 10.
80A. N. Prior. ‘The Runaway Inference-Ticket’. In: Analysis 21 (1960), pp. 38–39.
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If, as inferentialism claims, there is no meaning that the connective has prior
to these inference rules, it seems that it could be satisfactorily introduced this
way.With such introduction and elimination rules, however, it becomes possible
to prove anything, and the whole point of deduction collapses. Prior’s criticism
can be seen to affect such forms of inferentialism that sees the inference rules as
giving a meaning to the signs which are as such without meaning. This is a form
of inferentialism which tries to explain the meaning in terms of their inference
rules.

A solution to this problem (besides abandoning inferentialism) is, according
to Nuel D. Belnap, to demand that any new connectives introduced must form
a conservative extension of the notion of deducibility. This rules out the intro-
duction of ‘tonk’. It requires, however, a previously settled notion of deducibility
which such a connective as ‘tonk’ will contradict.81 This seems unsatisfactory,
however, since having a previously settled notion of deducibility requires that
an established practice is already in place. If so, the connectives already have
an established use, and this means that the meaning of the signs is not given
exclusively by the inference rules.

However, as was suggested above,Wittgenstein’s remarks are not to be read as
advancing a view like inferentialism.Therefore, the perspective on proof presen-
ted here – which draws on such remarks of Wittgenstein and in which the prac-
tice of proving and of deducing come to the fore – is not affected by this cri-
ticism. Martin Gustafsson discusses Prior’s challenge to inferentialism and he
argues that Wittgenstein’s view is not open to Prior’s ‘tonk’-argument.

The introduction rule and elimination rule for ‘tonk’ can seem to determine a
unified pattern of use only if it is taken for granted that ‘p’ and ‘q’ can be iden-
tified extra-logically, in merely orthographic terms, as sign-designs, concaten-
ations of letters, or whatever – and, hence, that the so-called use determined by
such rules is externally imposed on an already given raw material of logically
inarticulate sounds and shapes.82

Inferentialism is a semantic theory which attempts to explain how meaning-
less signs acquire meaning. Robert Brandom’s inferentialism is a good example.
He describes his project: ‘The major explanatory challenge for inferentialists is
rather to explain the representational dimension of semantic content – to con-
strue referential relations in terms of inferential ones.’83 As I argued in chapter 4,
however, the idea of meaningless signs that can be identified as mathematical
units prior to a practice of using them is a mistake. When Wittgenstein writes

81Nuel D. Belnap. ‘Tonk, Plonk, and Plink’. In: Analysis 22 (1962), pp. 130–134.
82Martin Gustafsson. ‘Wittgenstein and “Tonk”: Inference and Representation in the Tractatus

(and Beyond)’. In: Philosophical Topics 42.2 (2014), pp. 75–99, p. 82.
83Robert B. Brandom.Making it Explicit. CambridgeMA:HarvardUniversity Press, 1994, p. xvi.

Brandom counters Prior’s ‘tonk’-argument by invoking the limitation on new connectives sugges-
ted by Belnap. Ibid., p. 125.
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that the rules of inference are ‘involved in the determination of the meaning of
the signs’, the idea is not to present a theory about howmeaningless signs acquire
a meaning (although the formulation taken out of context may seem to imply
that). As is seen in the second quote above, the emphasis is on the practice of
using, for example, the universal quantifier and on the process of learning it.
The meaning of the universal quantifier as a mathematical symbol is not given
only through the rules of inference, but learning its rules of inference is a part
of the successful entering into the practice of its use. One could, employing the
distinction between sign and symbol, say that Wittgenstein is describing how a
symbol is established as a symbol.84

Interestingly, Brandom also notes this dependence of the rules of inference
on an established practice: ‘Norms that are explicit in the form of rules presup-
pose norms implicit in practices.’85 The kind of inferentialism that wants to ex-
plain the meaning of a connective by pointing to its introduction and elimina-
tion rules is treating the connective as a sign which does not yet have a meaning
but becomes a fully fledged mathematical symbol with a proper use when the
rules of inference are given. This is evident since it distances itself from the rep-
resentationalist idea that a connective has a meaning that is established before
it is put to use in inferences. This idea, too, is according to the perspective I am
proposing misguided.

The focus on the ability to use the symbols of mathematical expressions and
proofsmay seem to introduce a certain arbitrariness into the practice of working
with such expressions. Is there, for example, not a circularity in the idea that we
identify the symbols as the symbols they are through the rules of inference – yet
the rules are formulated using employing those symbols? Still worse, it seems
that we cannot identify the symbols as the symbols they are without being part
of a practice where they are used. How can one become part of such a practice
of using the symbols which that practice is said to allow us to identify?

The answer to this question lies in attending to the way we learn and become
members of these practices. We learn them gradually, first by concentrating on
the simplest examples and through them learning elementary uses of the sym-
bols. In the beginning, it may be difficult even to write the proper signs on a
paper. As one becomes more secure in the use of the symbols, the writing of
the signs comes more and more automatically. When learning connectives, they
are often introduced through truth-tables. Becoming skilled at using them in
truth-tables opens up the understanding of them– at least to some extent.When
learning the inference rules this understanding is widened, complemented. Re-
gardless of which of these techniques one learns first, the learning of the second

84See also the quote from Stenlund on p. 85.
85Brandom, Making it Explicit, p. 20.
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one will add to the meaning that they have for the learner.There is thus a certain
circularity to this learning process.

What I have said so far about logical form being connected with use within a
practice may at first sight seem to put the objectivity of mathematical truths into
question. If the logical form of a proposition is dependent on its use, this may
give the impression that a certain arbitrariness is introduced into the notion of
inferring, while the whole point of inferring is to establish what follows logically,
that is, regardless of such things as how it is used in a particular situation. What
becomes of inferring then?

This objection, however, presupposes that the physical signs are there and
that what logical form one sees in them is somehow open and that, therefore,
what follows from this particular string of signs would be arbitrary. This seems
to introduce arbitrariness into every step of a chain of inferences, since how one
should interpret the outcome of the previous step would seem equally open.86
One may, on the other hand, dispute the claim that something is being inter-
preted. When I am faced with a proposition, it is not the case that I also realise
that it happens to have a certain logical form – but what logical form I see is
internally connected to what proposition I see. Understanding that by ‘a ∨ b’, I
mean a disjunction cannot be separated from my seeing that logical form. That
is, I could not understand the expression as a disjunction and still vacillate about
what form it has. Which symbol (e.g. the symbol for addition) one sees on the
paper is internally connected to what form one sees (e.g. addition). If a word is
scribbled on a paper and it is not clear which word it is – or even if it is to be
seen as a word at all and not mere doodles – one is, naturally, interpreting it, but
this is an exception when reading. Once one sees a word it is almost impossible
to change back to the attitude where one did not see a word. This is especially
striking when one is starting to discern the spoken words of a language that one
is learning or when learning to decipher old handwriting.

Thus, the message of chapter 4 naturally applies to the case of simple deduc-
tions. The need for a skill, an ability to use the symbols involved in accordance
with an established practice is vital for inferring. When it is said that the conclu-
sion follows solely on the basis of the form of the premisses, the notion of form
that is involved is the one discussed as ‘logical form’ in chapter 4 and that was
tied to a possible use of the symbols. Simple deductions are thereby not distinct
from ordinary proofs in any absolute sense. Their surveyability is just as much
dependent on the skill of the one reading them. If one searches among simple
formal deductions, it is possible to find particularly clear examples of proofs,

86This is, in essence,Michael Dummett’s interpretation ofWittgenstein’sRemarks on the Found-
ations of Mathematics in his review of the book. Michael Dummett. ‘Wittgenstein’s Philosophy of
Mathematics’. In: The Philosophical Review 68 (1959), pp. 324–48.
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where the surveyability is evident and it is easy to achieve an overview of the
proof in both the local and the global sense. However, such examples can be
found also outside of the domain of formal deductions. One can thus conclude
that for the understanding of mathematical certainty, simple formal deductions
are not set apart from other kinds of mathematics.

5.7 Concluding Remarks
In this chapter, I have contrasted two perspectives on proof. The first perspect-
ive is one where proofs convince me of the truth of a proposition the meaning
of which can be known beforehand even without a proof. This perspective was
seen to go well together with the body of truths conception of mathematics. It,
furthermore, makes the convincing or establishing power of a proof into some-
thing puzzling. How can a proof accomplish such a thing? It has been emphas-
ised throughout this thesis that the body of truths conception of mathematics is
likely to be misleading if it is allowed to guide one’s philosophical thinking on
mathematics, and this is shown in the case of proofs too.

The other perspective departs from the observation that proofs are often
needed in order to show us the meaning of what is being proved. This accords
with the emphasis on the view of mathematical knowledge as an ability. The
three aspects of proofs introduced by Wittgenstein – that proofs form concepts,
that proofs and experiments are fundamentally different, and that proofs must
be surveyably – served to highlight in what sense a proof can be said to contrib-
ute to the meaning of a theorem. That a proof shapes our understanding of the
concepts involved in the proof, and that it does so by showing in a surveyable
manner the use of the concepts, means that the proof (and thus the theorem)
has a normative role in our understanding of mathematics, but also with re-
gard to matters that the theorem may be applied to outside of mathematics. This
normative role of the results of mathematics sets it apart from other activities in
terms of certainty. This is a way of portraying the compelling quality of proofs
and their ability to extend the ‘measures of language’ – and, thus, of proofs’ role
in the certainty of mathematics. Mühlhölzer summarises this: ‘To Wittgenstein,
[the inexorability of mathematics] does not lie in the mathematical entities and
facts, to which the mathematical signs and sentences refer, but in the way we
use the mathematical signs and sentences, and particularly in the way we use
mathematical proofs.’87

87Mühlhölzer, ‘“A Mathematical Proof Must Be Surveyable”’, p. 60.
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In this thesis, the aim has been to sketch a view of mathematics where there is
room for certainty. This is a concept that was discussed frequently in the begin-
ning of the twentieth century in relation to the foundational crisis. The possib-
ility of speaking of certainty was tied to the success of the programmes and as
the programmes were halted due to Gödel’s incompleteness proofs, the concept
attracted less attention. It has been my aim to bring back this concept into the
contemporary discussion by loosening its ties to foundations and showing in-
stead how certainty is a part of our practice ofmathematics.That is, the certainty
of mathematics does not require a philosophical justification, it does not need
a foundation. Rather, I have pointed to features of our practice that indicate in
which way certainty is part of it.

My sketch started with the role that simple arithmetical rules have in every-
day situations. It continued with examples of how we learn about and study
mathematical objects. The role of symbolism and formality was discussed and,
finally, our practice of proof was put to scrutiny.

In order to delineate this view, I have contrasted it with another view which
I have called the body of truths conception. This conception is not portrayed
as a position in the contemporary discussion; rather, it functions as a tacit as-
sumption that tends to guide our thinking. As such, it influences our thinking in
ways that are not obvious, and in the philosophy of mathematics, it is potentially
misleading.

A picture of mathematics emerges where knowledge is to be understood
primarily as skill in using the techniques of mathematics. I do not wish to rule
out the possibility of describing this as a knowledge of the mathematical ob-
jects, but if the connection to the ability to use them is forgotten, it will invite
questions such as ‘How can we know anything about such objects?’ or ‘What
is the ontological status of such objects?’ This picture is also one where proofs
can be thought of as extending this ability to use the concepts of mathematics,
and where mathematical propositions function like norms that guide our use of
these concepts. Thus, the peculiar certainty of mathematics is not dependent on
the connection to special abstract objects but part and parcel of their status as
norms.

I shall conclude by briefly considering a feeling of misgiving that has some-
times been voiced against the perspective proposed here. Does it not lead to re-
lativism? Resnik, following his presentation of the philosophical problems that
pertain to proofs (see p. 105), expresses his qualms:
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For many of us a glib answer to both questions may apply. This is the response
that in our mathematics courses we are trained to accept proofs as giving good
reasons, and we have been conditioned to believe things which we think we
have good reasons to believe. Some, influenced perhaps byWittgenstein, would
interject that the glib answer applies to all of us – practicing mathematicians
and uninspired mathematics students alike. Mathematics, on their view, is not
a science, and there are no mathematical facts. There is nothing but a certain
social practice in which proving plays a major role. Thus, they would continue,
the question we should ask is: how did our practice of proving mathematical
statements evolve?1

There ismuch in this quote that is problematic.The suggestion that the perspect-
ive advanced in this thesis involves the claim that mathematics is not a science
and that there are no mathematical facts seems absurd. To counter such misgiv-
ings, it is important to notice the outlook on mathematics and philosophy that
can be sensed in this accusation and especially in the formulation: ‘nothing but a
social practice’. This formulation seems to be a consequence of the thought that
mathematical certainty – or rather objectivity – stands in need of a philosoph-
ical justification. Accordingly, if no justification is given, if, say, nomathematical
objects that could stand as a guarantee for the objectivity are identified, it fol-
lows that the objectivity (and hence certainty) is threatened.This line of thought
is exemplified by Azzouni who argues that there must be something underlying
our mathematical practices that explain the agreement among mathematicians
(see pp. 55 and 96).

Even the conventionalist idea – that some kind of communal decision lies be-
hind the agreement that mathematicians display in their work – is only a variant
of this picture. Conventionalism merely replaces the idea of an external found-
ation with one arising from the community of people involved in mathematics.

The perspective advanced in this thesis is not that there is nothing but a social
practice, although I have frequently emphasised the role of mathematical prac-
tice for the philosophical understanding of mathematics. Instead, attending to
practice is a way of maintaining a ‘realistic spirit’, to use Diamond’s phrase.

As was mentioned in section 2.6, doubts about the fruitfulness of founda-
tionalism, paired with an attentiveness to practice, have led some philosoph-
ers to question the certainty of mathematics. Quasi-empiricism provides a good
example. I shall briefly indicate why I do not draw this conclusion. The quasi-
empiricism of Lakatos is a valuable approach in its focus on mathematical prac-
tice and in its attentiveness to the historical development of mathematics. I do
not, however, agree with the claim advanced by quasi-empiricists to the effect
that mathematical truths are revisable, or that the certainty of mathematics is
an illusion. It may be granted that proofs are refined and changed due to criti-

1Resnik, ‘Proof as a Source of Truth’, pp. 10–11.
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cism as Lakatos describes in Proofs and Refutations. It may also be granted that
the standards of proof are changing throughout the history of mathematics, as
E. T. Bell remarks. However, the idea that there is no metaphysical foundation
underlying our mathematical practice does not necessarily lead to uncertainty.
The phenomena pointed out in section 2.6may indicate that the idea of a found-
ation thatmathematics rests on is a prejudice.Theymay also go some distance in
showing that there is uncertainty concerning some results inmathematics.There
may be details that need revision in a theorem that has recently been proved
and not yet been digested by the mathematical community. Moreover, it is not
improbable that some published results contain errors. Still, these phenomena
seem to me to move on the fringes of mathematics and cannot be taken to show
that mathematics is uncertain, wholesale. That a proof is refined or changed due
to criticismmay be part of the research process inmathematics, but that need not
put well established theorems on the same footing as newly discovered proofs,
let alone elementary arithmetic. It may simply be an indication of the difficulty
involved in finding a proof.

The conclusion drawn by the quasi-empiricists, i.e. that there is no certainty
in mathematics, seems to be the result of retaining the idea that mathematical
certainty or objectivity would need a justification. When they successfully criti-
cise the existence of such a justification, they conclude that uncertainty follows.
This applies to the criticism of Resnik too.

The charges of relativism, that the perspective proposed here makes the cer-
tainty and truth of mathematics relative to our practice, are genuinely worrying.
It seems that certainty is a concept that demands that what is properly so called
must not be relative to anything. This worry would require a more thorough dis-
cussion, and I shall only indicate how I think it could be answered.

In ‘Rethinking Mathematical Necessity’, Putnam sketches a view that bears a
similarity to the one presented here. He poses the question whether something
that is found to be true is genuinely necessary or merely ‘quasi-necessary relat-
ive to our present conceptual scheme’. He remarks that answering this question
necessitates an ability to judge our thinking, as it were, sub specie aeternitatis.
That would indeed be a substantial assumption. Putnam remarks: ‘The illusion
that there is in all cases a fact of the matter as to whether a statement is “neces-
sary or only quasi-necessary” is the illusion that there is a God’s-Eye View from
which all possible epistemic situations can be surveyed and judged; and that is
indeed an illusion.’2 A philosophical project that wishes to pass judgement on
mathematics – whether this involves the verdict that mathematics gives us cer-
tain knowledge or that it does not – is seen to involve such assumptions. Thus,
Putnam comments: ‘To insist that these statements must be falsifiable, or that all

2Putnam, ‘Rethinking Mathematical Necessity’, p. 258.
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statements must be falsifiable – is to make falsifiability a third (or is it fourth by
now?) dogma of empiricism.’3

What we in philosophy want to say about mathematics – that it is absolutely
certain – requires taking aGod’s-EyeView on ourmathematics. However,math-
ematics and logic are part of how we make judgments, and to pass judgment on
mathematics would seem to require that we transgress our own understand-
ing of it. The charges of relativity thus demand of philosophy something that
it could not possibly fulfil. Mühlhölzer gives an interesting turn to this: ‘God’s
omnisciencemay be able to achieve a lot, but whenGod deals with our mathem-
atics he must take into account the limitations which are characteristic of it, and
when he goes beyond them, he deals with something else and no longer with
our mathematics.’4

In this thesis, I have wanted to understand our mathematics. A major idea
has been that we should not look for a justification for mathematics outside of
what can be seen in mathematical practice. Thus, the themes discussed should
not be taken as a justification of the certainty of mathematics. This was poin-
ted out in the case of the surveyability of proofs. It is tempting to take this idea
as an explanation of why proofs confer certainty on theorems. Likewise, when
the normative status of mathematics is pointed out it is easy to interpret this as a
presumptive explanation of the certainty ofmathematics. Taken as explanations,
they seem rather weak. However, the features of our dealings with mathemat-
ics that I have discussed should not be thought of as providing an alternative
foundation for mathematics. They are features of doing mathematics that any-
body who has learnt mathematics should be able to recognise. I have tried to
resist the impulse to look for something underlying this practice that would ex-
plain its certainty. My proposal is then that these features show what it means
for mathematics to be certain.

3Putnam, ‘Rethinking Mathematical Necessity’, p. 258.
4Sebastien Grève and Felix Mühlhölzer. ‘Wittgenstein’s Philosophy of Mathematics: Felix

Mühlhölzer in Conversation with Sebastian Grève’. In: Nordic Wittgenstein Review 3.2 (2014),
pp. 151–78, p. 168.



Svensk sammanfattning – Swedish summary

Denna avhandling är en undersökning av matematikens speciella status bland
våra kunskapsformer. Matematisk kunskap har ofta givits en särställning ef-
tersom den förefaller vara sann med en visshet som annan kunskap inte kan
uppnå. Avhandlingens syfte är att förstå vad som avses med matematikens sä-
kerhet. Avsikten är inte att, som hos grundvalsprogrammen i början av 1900-
talet, försöka bevisa att matematiken ger oss visshet, utan att förutsättningslöst
fråga sig hur vi ska förstå detta begrepp. Säkerheten hos matematiken antas allt-
så inte vara knuten till, till exempel, möjligheten att bevisa dess motsägelsefri-
het. Den begreppsanalys som företas i avhandlingen utgår från hur vår praktiska
användning av matematiken gestaltar sig. En grundidé är att den säkerhet ma-
tematiken ger oss framträder i vår matematiska praxis. Tanken är alltså inte att
försöka berättiga den säkerhet matematiken uppvisar (och ifall detta misslyckas
att frånkänna matematiken säkerhet). Frågan är alltså inte huruvida matemati-
ken är säker eller inte, utan att utgå ifrån den säkerhet matematiken uppvisar
och förstå denna bättre.

Den moderna matematikfilosofiska diskussionen domineras av positioner
såsom platonism, strukturalism och nominalism. Begreppet säkerhet har fallit
ur denna diskussion som istället fokuserar på matematikens objektiva giltighet
och de matematiska objektens ontologiska natur. Inlagorna i denna debatt ut-
går i stor utsträckning från en särskild bild av matematiken. Matematiken ses
som en samling av sanningar om abstrakta objekt. Att denna bild utgör en ut-
gångspunkt förblir dock outtalat och den tillåts därför styra diskussionen utan
närmare granskning. I avhandlingen befinns bilden vara missvisande som ut-
gångspunkt för filosofiskt tänkande. Mot den ställs en annan bild där den prak-
tiska skickligheten i användningen av de matematiska begreppen får en fram-
trädande roll. Matematikens satser får, genom att de styr denna verksamhet, en
normativ status; det visar sig att de hellre ska jämföras med regler för hur denna
verksamhet ska bedrivas än med satser som beskriver matematiska objekt.

Två för den matematiska verksamheten centrala företeelser – arbetet med
formella uttryck och att bevisa satser – granskas utgående från den bild där den
praktiska skickligheten betonas. Möjligheten i matematiken att arbeta med rent
formella uttryck framställs ofta som en garant för säkerhet. Då uppfattas den
rena formen som något som kommer före förståelsen av uttrycken och därmed
som något som är befriat från de problem som tolkning och förståelse är be-
häftade med, t.ex. missförstånd och tvetydighet. En närmare granskning visar
däremot att även de uttryck som ur ett matematiskt perspektiv kan kallas rent
formella ändå kräver att den som använder dem har tillägnat sig en typ av för-
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ståelse, nämligen hur de ska användas enligt de regler som kalkylen föreskriver.
Säkerheten som förknippasmed det formella angreppssättetmåste därför förstås
på ett annat sätt än som att den har sitt ursprung i något rent formellt.

Bevisbegreppet belyses ur tre för Wittgenstein typiska idéer: att bevis formar
våra begrepp, att bevis och experiment är väsensskilda och att bevis måste ha
en överskådlighet för att kunna vara bevis. I många fall uppfattas bevisets roll
vara att övertyga läsaren om att en sats är sann och dessutom uppfattas satsen
som något man kan begripa även utan ett bevis. Denna föreställning om bevis
harmonierar med uppfattningen om matematiken som en samling sanna satser
(som kan förstås som sådana även utan bevis). Hur beviset då lyckas övertyga
med säkerhet förefaller kräva en förklaring. Om man däremot beaktar att be-
viset ofta är det som överhuvudtaget möjliggör en förståelse av satsen och att
beviset gör detta genom att på ett överskådligt sätt framställa användningen av
de ingående begreppen så kommer bevisets förmåga inte att framstå som nå-
got mystiskt. Hur bevisandet sker måste däremot granskas från fall till fall, en
allmängiltig förklaring av hur det sker är inte möjlig.

Ifall man utgår från bilden av matematiken som en samling sanna satser om
matematiska objekt, så kommermatematikens säkerhet att kopplas till dessa sat-
sers pålitlighet och våra möjligheter att avgöra om de beskriver de matematiska
objekten korrekt. Den bild av matematikens säkerhet som framträder i ljuset av
de olika övervägandena i avhandlingen är en annan. Ifall vi jämför matematis-
ka satser med regler för användningen av matematiska begrepp så kommer den
som lärt sig matematik inte att tvivla på de matematiska satserna. De matema-
tiska satserna är en del av de strukturer med vars hjälp vi avgör om andra satser
är sanna eller falska, och kommer därför inte att vara föremål för samma typ av
värdering som vi utsätter andra satser för. De kommer att ha rollen av självklar-
heter som inte kan ifrågasättas. Den säkerhet sommatematiken uppvisar hänger
ihop med att vi i arbetet med bevis inser hur begreppen måste användas. De be-
visade satserna får därmed karaktären av regler för hur vi ska handskas med de
begrepp som ingår i beviset – både inommatematikenmen också i tillämpning-
ar på fenomen utanför matematiken.
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