
Turku Centre for Computer Science

TUCS Dissertations
No 197, June 2015

Espen Suenson

How Computer Programmers Work

Understanding Software Development in Practise

How Computer
Programmers Work

Understanding Software
Development in Practice

Espen Suenson

To be presented, with the permission of the Department of Information
Technologies at Åbo Akademi, for public criticism on 12th June 2015 at

12 noon in auditorium Armfelt, Arken, Fabriksgatan 2, Åbo.

Åbo Akademi
Finland
2015

Advisors
Iván Porres
Professor of Software Engineering
Åbo Akademi

Anna-Maria Åström
Professor of Nordic Ethnology
Åbo Akademi

Patrick Sibelius
Lecturer in Computer Science
Åbo Akademi

Reviewers and opponents
Pekka Abrahamsson
Professor of Software Engineering
Norges teknisk-naturvitenskapelige universitet

Robert Willim
Associate Professor of European Ethnology
Lunds universitet

ISBN 978-952-12-3226-8
ISSN 1239-1883

till ett fritt folk

vapaalle kansalle

4

Contents

Sammanfattning på svenska 9

Tiivistelmä suomeksi 11

Acknowledgements 13

1 Introduction 17
1.1 Motivation . 17
1.2 Definition of programming 20
1.3 Research focus . 22
1.4 Research problem and results 24
1.5 Scope of the dissertation 27
1.6 Audience of the dissertation 28
1.7 Overview of the dissertation 28

2 Related research 31
2.1 Programming research 31
2.2 Cultural research . 35

2.2.1 Ethnology . 36
2.2.2 Sociology, anthropology, and other 37

3 Theory 43
3.1 Choice of theory . 43
3.2 Mainstream programming theories 45

3.2.1 Software engineering 46

3.2.1.1 The origins of software engineering . 46

contents 5

3.2.1.2 Brooks 47
3.2.1.3 Process thinking 52
3.2.1.4 Systems thinking 55
3.2.1.5 Requirements engineering 60

3.2.2 Agile software development 62
3.2.2.1 The origins of the Agile movement . 62
3.2.2.2 The Agile manifesto 64
3.2.2.3 Scrum as an example 66
3.2.2.4 Programming practice 69
3.2.2.5 Work ethics 71
3.2.2.6 Relationship to software engineering 74

3.2.3 Computer science 79
3.2.3.1 Science, mathematics, formal systems 79
3.2.3.2 Algorithms and data structures . . . 81
3.2.3.3 Abstraction 83
3.2.3.4 Machine-orientation 86
3.2.3.5 Premises of argumentation 87
3.2.3.6 Work processes 89

3.2.4 Object-Oriented Programming 92
3.3 Hermeneutical theory 95

3.3.1 Introduction 95
3.3.2 What is hermeneutics 97
3.3.3 Prejudice and reason 98
3.3.4 Authority . 100
3.3.5 Understanding 101
3.3.6 Effective history 103
3.3.7 Horizons of understanding 105
3.3.8 Application 109

3.3.8.1 The application of history 112
3.3.9 Ethical and technical knowledge 114

3.4 Cultural form theory 117
3.5 Rhetorical theory . 121

4 Method 123

6 contents

4.1 Choice of cases . 124
4.2 Participant observation 125

4.2.1 Interdisciplinary concerns 126
4.3 Interviews . 126
4.4 Ethnological method 127
4.5 Analysis methods . 128

4.5.1 Mainstream analysis 128
4.5.2 Hermeneutical analysis 128
4.5.3 Cultural form analysis 129

4.5.3.1 Comparative analysis 129
4.5.3.2 Safety critical case studies 129

4.5.4 Rhetorical analysis 130
4.6 Theory of science . 130
4.7 Data . 131

4.7.1 Game programming 131
4.7.2 Safety critical programming 133

5 Game programming 139
5.1 Case study . 139

5.1.1 Tribeflame . 139
5.1.2 The development team 141
5.1.3 The rhythm of work 142
5.1.4 Playing and planning 148

5.2 Analysis . 151
5.2.1 Analysis with mainstream theories 151

5.2.1.1 Software engineering 152
5.2.1.2 Agile development 155
5.2.1.3 Computer science 159

5.2.2 Hermeneutical analysis 161
5.2.2.1 The work process 161
5.2.2.2 Horizons of understanding 164
5.2.2.3 Authority and tradition 165
5.2.2.4 To have fun 168
5.2.2.5 Summary 170

contents 7

6 Safety critical programming 173
6.1 Introduction to safety critical development 173
6.2 Case studies . 175

6.2.1 A large avionics company 175
6.2.2 A small farming systems company 180
6.2.3 The safety critical standard 183

6.3 Hermeneutical analysis 188

7 Cultural form analysis 201
7.1 Comparative analysis 201
7.2 Safety critical case studies and analysis 211

8 Rhetorical case study and analysis 227
8.1 Rhetorics and programming 227
8.2 Audience . 230
8.3 Programming conventions 232
8.4 Tone and purpose . 236
8.5 Rhetorical understanding 243

9 Conclusion 245
9.1 Results . 245
9.2 Discussion . 248

9.2.1 Ethnological significance 255
9.3 Validity and generalization 256

Bibliography 259

A Method and Fieldwork in a Hermeneutical Perspective 275

8

9

Sammanfattning

Hur programmerare arbetar
- Att förstå mjukvaruutveckling i praktiken

Hur arbetar en framgångsrik programmerare? Uppgifterna att pro-
grammera datorspel och att programmera industriella, säkerhetskri-
tiska system verkar tämligen olika. Genom en noggrann empirisk
undersökning jämför och kontrasterar avhandlingen dessa två former
av programmering och visar att programmering innefattar mer än
teknisk förmåga.

Med utgångspunkt i hermeneutisk och retorisk teori och med hjälp
av både kulturvetenskap och datavetenskap visar avhandlingen att
programmerarnas tradition och värderingar är grundläggande för de-
ras arbete, och att båda sorter av programmering kan uppfattas och
analyseras genom klassisk texttolkningstradition. Dessutom kan da-
torprogram betraktas och analyseras med hjälp av klassiska teorier
om talproduktion i praktiken - program ses då i detta sammanhang
som ett slags yttranden.

Allt som allt förespråkar avhandlingen en återkomst till veten-
skapens grunder, vilka innebär en ständig och oupphörlig cyklisk
rörelse mellan att erfara och att förstå. Detta står i kontrast till en
reduktionistisk syn på vetenskapen, som skiljer skarpt mellan subjek-
tivt och objektivt, och på så sätt utgår från möjligheten att uppnå
fullständigt vetande.

10 sammanfattning

Ofullständigt vetande är tolkandets och hermeneutikens domän.
Syftet med avhandlingen är att med hjälp av exempel demonstrera
programmeringens kulturella, hermeneutiska och retoriska natur.

11

Tiivistelmä

Kuinka tietokoneohjelmoijat työskentelevät
– ohjelmiston kehittämisen ymmärtäminen käytännössä

Kuinka menestyvä ohjelmoija työskentelee? On melko erilaista ohjel-
moida pelejä ja teollisia, turvallisuuskriittisiä systeemejä. Huolellisen
empiirisen tutkimuksen kautta tutkielma vertaa näitä kahta ohjel-
moinnin muotoa ja osoittaa, kuinka ohjelmointi riippuu muustakin
kuin teknisistä kyvyistä.

Käyttämällä hermeneuttisia ja retorisia teorioita ja hyödyntämällä
kulttuurintutkimusta sekä tietojenkäsittelyoppia tutkielma osoittaa, että
ohjelmoijien perinteet ja arvot ovat keskeisiä heidän työssään ja että
kummankin tyyppistä ohjelmointia voidaan tarkastella ja analysoida
samalla tavalla kuin klassisen tietämyksen mukaan tekstejä tulkitaan.
Lisäksi tietokoneohjelmia voidaan tarkastella ja analysoida samalla
tavoin kuin klassista teoriaa puheen muodostamisesta käytännössä –
tässä suhteessa ohjelmat nähdään puheen esimerkkeinä.

Yhteenvetona tutkielma kehottaa palaamaan tieteen ytimeen, joka
on jatkuvaa ja loppumatonta kehämäistä prosessia kokemisen ja ym-
märtämisen välillä. Tämä on vastakohtana reduktionistiselle näke-
mykselle tieteestä, joka erottaa tarkasti subjektiivisen ja objektiivisen
ja siten olettaa, että on mahdollista saavuttaa täydellinen tieto.

12 tiivistelmä

Epätäydellinen tieto on tulkinnan ja hermeneutiikan aluetta. Tutkiel-
man tavoitteena on esimerkin kautta osoittaa ohjelmoinnin kulttuuri-
nen, hermeneuttinen ja retorinen luonne.

13

Acknowledgements

This research has been made possible through the generous finan-
cial support of Svenska kulturfonden i Finland, Svenska litteratursäll-
skapet i Finland, Gustaf Packaléns mindefond, det Suensonske fami-
lielegat, and Turku Center for Computer Science.

I would like to thank my advisors from Åbo Akademi for their
help with, and their engagement and interest, in my research: Anna-
Maria Åström, professor in Nordic ethnology; Iván Porres, professor
in software engineering; and Patrick Sibelius, lecturer in computer
science.

I would like to thank my closest research collaborators – my par-
ents Susanne (public health, Københavns Universitet) and Thomas
Suenson (ethnology, Københavns Universitet) – who have been ac-
tively involved in the entire research process. The most important
things I know, I have learned from them.

Thanks to my mentor Hans Axel Kristensen who taught me to
figure out what I want to achieve. Thanks also to my friend and
colleague Ann-Helen Sund (ethnology, Åbo Akademi), who has been
a great help during the writing process, and to Jeanette Heidenberg
(software engineering, Åbo Akademi), with whom I had the pleasure
to collaborate during data collection.

Heartfelt thanks to the many people who have helped me and en-
couraged me along the way, especially in the difficult first stages of
my research. Among them are Jyrki Katajainen (computer science,

14 acknowledgements

Københavns Universitet), Fritz Henglein (computer science, Køben-
havns Universitet), Thomas Højrup (ethnology, Københavns Univer-
sitet), Jukka Teuhola (computer science, Turun Yliopisto), Eija Karsten
(management systems, Åbo Akademi), Markku Heikkilä (management
systems, Åbo Akademi), Katariina Heikkilä (ethnology, Turun Ylio-
pisto), Helena Ruotsala (ethnology, Turun Yliopisto), Thomas Geisnæs
(philosophy, Københavns Universitet), Gry Søbye (ethnology, Køben-
havns Universitet), and Jeppe Høst (ethnology, Københavns Univer-
sitet).

I would like also to express my gratitude to my friends from the
student organization NEFA (Nordisk Etnologisk Folkloristisk Arbejds-
gruppe). It was through their friendship that I came to find my way to
Finland. Particular thanks to Karoliina Autere (ethnology, Turun Yli-
opisto), Päivi Salonen (ethnology, Turun Yliopisto), and Mikko Helmi-
nen (archaeology, Turun Yliopisto) – and to Jenny Viitanen (folkloris-
tics, Turun Yliopisto), for helping me to find my home in Finland.

A very warm thanks to the owners and employees of Tribeflame,
who took my observation of their work and the disturbance it caused
in good spirit. Thanks to all the engineers and developers who al-
lowed me to interview them in connection with the RECOMP research
project. Thanks also to the programmers and IT professionals whose
interviews have not been used in this research, but which were a great
help nonetheless: Luka Milovanov, Henri Sara, Riku Mustila, and Olli
Salli.

Thanks to the researchers and staff from the institutions I have
been a part of at Åbo Akademi: The Department of Information
Technologies, especially the Software Engineering Laboratory, and
the Faculty of Arts, especially the Department of Nordic Ethnology.

Thanks to the participants in the ethnological research seminar at
Åbo Akademi: Anna-Maria Åström, Ann-Helen Sund, Niklas Huldén,
Anna-Liisa Kuczynski, Sanna Lillbroända-Annala, Katriina Siivonen,
Ole Rud Nielsen, Kasper Westerlund, Camilla Hautala, Sonja Hagel-
stam, Marcus Lepola, and Evaristo López Ruano (cultural anthropol-
ogy, Universitat de Barcelona).

acknowledgements 15

Thanks to the participants in the weekly software research dis-
cussion group SEMPRE at the Department of Information Technolo-
gies, among whom are: Jeanette Heidenberg, Marta Olszewska (com-
puter science, Åbo Akademi), Piia Hirkman (management systems,
Åbo Akademi), Max Weijola (software engineering, Åbo Akademi),
Tingting Lin (information systems, Turun Yliopisto), Henrik Nyman
(management systems, Åbo Akademi), Samuel Rönnquist (computer
science, Åbo Akademi), Johannes Eriksson (computer science, Åbo
Akademi), and Natalia Díaz Rodríguez (computer engineering, Åbo
Akademi).

Thanks to all of my programming colleagues and employers
through the years, especially Casper Gjerris and my development
team at NDS Denmark: Guus Oosterbaan, Nanna Glerup, Martin
Lorensen, Søren Thomsen, Anders Petersen, and Kristian Knak. My
practical experience with programming work has been crucial to my
research.

Thanks to the ScrumPLoP community for inspiration, especially
Dina Friis (computer science, Københavns Universitet) and Jim Coplien.

Thanks to all of my Finnish teachers, especially Jenni Laine and
Pirjo Vuoriluoto.

I am grateful for all the dear friends and acquaintances I have
made in Finland, each and every one of you. Thanks to Emilia Ko-
mulainen for showing me the kokko in Naantali at Juhannus. Thanks
to Johanna Vikman & Matti Toivio for being like a family to me.

Thanks to my family for the love that we share – it is what gives
my work meaning.

Above all, praise and thanks be to the Lord Almighty, God of our
fathers, the Trinity, One in essence and Undivided. For Thine is the
kingdom, and the power, and the glory, of the Father, and of the Son,
and of the Holy Spirit, now and ever, and unto ages of ages. Amen.

16

17

Chapter 1

Introduction

1.1 Motivation

The rationale for this dissertation is to be found in a paradox in
the scientific study of software and programming. The paradox is
the difference between the view held within science on the current
state of the art of software development, which tends to be a rather
dismal and pessimistic view, and the obvious success and importance
that software development enjoys in society. The dismal view is not
new. Indeed, it seems to have been with us since the first days of
programming research.

Carl H. Reynolds wrote in 1970 on the subject of computer pro-
gramming management:

“A common complaint among those who are charged with
the responsibility of planning and managing computer
program systems is that despite their best efforts the prod-
uct is completed behind schedule, over budget, and below
promised performance.” 1

1Reynolds 1970 p. 38.

18 chapter 1. introduction

Frederick P. Brooks, Jr. echoed these feelings in his 1975 book The
Mythical Man-Month, one of the most well-known and influential texts
on software engineering:

“No scene from prehistory is quite so vivid as that of the
mortal struggles of great beasts in the tar pits. ... Large-
system programming has over the past decade been such
a tar pit, and many great and powerful beasts have
thrashed violently in it. Most have emerged with running
systems – few have met goals, schedules, and budgets.” 2

Another influential book on software development, Peopleware, was
written by Tom DeMarco and Timothy Lister in 1987. These authors
generally have a more optimistic approach to the state of the art of
software development; yet, they open their book with a chapter head-
ing stating, “Somewhere today, a project is failing”. They explain:

“There are probably a dozen or more accounts receivable
projects underway as you read these words. And some-
where today, one of them is failing. Imagine that! A
project requiring no real innovation is going down the
tubes. Accounts receivable is a wheel that’s been rein-
vented so often that many veteran developers could stum-
ble through such projects with their eyes closed. Yet these
efforts sometimes still manage to fail.” 3

A textbook in software engineering from 2000 simply starts its intro-
duction with a list of “Software Engineering Failures”, under headings
such as “Interface misuse”, “Late and over budget” and “Unnecessary
complexity”.4 Søren Lauesen’s 2002 book about software require-
ments puts it bluntly:

“Most IT systems fail to meet expectations. They don’t
meet business goals and don’t support users efficiently.” 5

2Brooks 1975 [1995] chp. 1, p. 4.
3DeMarco & Lister 1987 [1999] chp. 1, p. 3.
4Bruegge & Detoit 2000 [2010] chp. 1.1, p. 38.
5Lauesen 2002 back cover.

1.1 motivation 19

According to Hans van Vliet, in a 2008 textbook on software engi-
neering, the “software crisis” first became apparent in the 1960s. But
it is not over yet, as we still need:

“Better methods and techniques for software development
[that] may result in large financial savings, in more effec-
tive methods for software development, in systems that
better fit user needs, in more reliable software systems,
and thus in a more reliable environment in which those
systems function.” 6

As we can see, the professions that study programming, and the soft-
ware engineering profession in particular, do seem to take a negative
view of software development, with a recurring chorus highlighting
failure to meet schedule, budget, and user goals. This would be no
cause for wonder if programming really were in a state of utter confu-
sion and chaos. But how, then, do we account for the huge success of
programming and computers more widely in society? After lamenting
the current state of programming, van Vliet hints at the other side of
the paradox:

“On the positive side, it is imperative to point to the enor-
mous progress that has been made since the 1960s. Soft-
ware is ubiquitous and scores of trustworthy systems have
been built. These range from small spreadsheet applica-
tions to typesetting systems, banking systems, Web brow-
sers and the Space Shuttle software.” 7

Numbers alone demonstrate the enormous progress that has been
made. For example, we can look at the development in the U.S.A.,
which is by most accounts the world leader in computer development.
According to the U.S. Department of Commerce, the computer sys-
tems design and related services industry increased in value from 5
billion dollars in 1977 to 184 billion in 2010. This is an increase in

6van Vliet 2008 chp. 1, p. 5.
7Ibid.

20 chapter 1. introduction

share of GDP of 550%, and it means that the industry is now larger
than the entire oil and gas industry.8

Our everyday experience chimes with the numbers in showing
the success of computers and programming. Our lives are full of
programmed devices, from the more obvious, such as mobile phones
and personal computers, to the perhaps less conspicuous, such as
washing machines, cars and airplanes. And these devices normally
work satisfactory, by and large. This, then, is the paradox of the
software crisis: even though computers and programming have been
so hugely successful and have become such an integral part of daily
life, the scientific study of programming talks about it in dire, almost
dystopian, terms.

Where might we find the cause of the paradox of the software
crisis? I believe that it has its roots in an insufficient understanding
of the essential characteristics of programming. For example, when
the IEEE Computer Society defines “Software Engineering” as “the
application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the
application of engineering to software”9 it expresses the hope that an
engineering approach to software will result in better, cheaper, and
faster development. But this dream has so far been elusive.

The obvious question then becomes: what kind of thinking should
be employed in order to broaden the scientific understanding of pro-
gramming? The answer offered here is cultural studies.

1.2 Definition of programming

The word program, or programme, comes from the Classical Greek
prógramma (πρόγραμμα) which means “a public proclamation”. It is
derived from the verb grápho (γράφω), which means “write”, and the

8U.S. Department of Commerce 2011: GDP by Industry.
9The Institute of Electrical and Electronics Engineers (IEEE) Standard Glossary of

Software Engineering Terminology 1990 p. 67.

1.2 definition of programming 21

prefix pró-, which means “before”, also in the sense of “forth” or “pub-
licly”. Thus, prográpho can mean either “write something before”, at
the head of a list, for example; or it can mean “give a public an-
nouncement”.10

In the ordinary use of the word, a program is a sequence of steps
that are carried out in order to achieve some purpose. An example is
a program for an evening concert, where different musical pieces are
performed by the musicians over the course of the evening. Another
example is a training program meant to increase prowess in some
sports disciplines, by specifying exercises that are to be carried out.

These examples are both of programs that are meant to be carried
out by people. Programs can also be carried out by machines, if the
machine is designed to be able to execute sequences of steps. We
speak then of automation.11 An example is the Jacquard attachment
to the drawloom, which was developed during the period from 1725
to 1801.12 Via a collection of punched cards, the machine could be
programmed to produce a given woven pattern when the loom was
operated; and the punched cards could be dismounted and saved for
later, if the weaver wished to reuse a certain pattern.

It is not always possible to distinguish clearly between the use
of a machine and the programming of said machine. In the case of
the drawloom, before the introduction of the Jacquard attachment a
so-called drawboy would perform the instructions contained on the
punched cards. The drawboy would then in effect be executing the
pattern program by operating the loom. The degree of automation
before the Jacquard attachment was of course lower, but even with the
Jacquard attachment the drawloom was not fully automated. Thus,
automation and programmability is a matter of degree rather than a
question of either/or.

This treatise is concerned with a certain type of machine – namely,
computing machines. In computers, the possibilities of computation
and those of automation are combined in a way that makes the use

10Liddell, Scott, and Jones’ lexicon.
11See Latour 1987 p. 130 f for a discussion of the concept of an automaton.
12Wilson 1979 [1982] p. 62 f.

22 chapter 1. introduction

of computers very flexible. It is of course possible to have computing
devices that are not automatons. The abacus and the slide rule are
examples of this. On the other hand, the Jacquard loom is an example
of an automaton that does not perform any computing.

In a computer the aspects of computation and automation en-
hance each other, although practical uses of computers will often be
inclined more towards one or the other aspect. A spreadsheet ap-
plication, for example, can be said to be a use of computers that is
dominated by the computational aspect, while a microcontroller for a
car brake can be said to be dominated by the automation aspect.

It can be difficult to distinguish between using the computer and
programming it. One example is given by spreadsheet applications,
where the normal use of the application, specifying computations
across rows and columns, can be viewed as essentially a limited form
of programming.

With these remarks on the meaning of the term “programming”,
we can define the concept in the sense that it will be used in this
treatise:

Programming is the act of instructing computing machines.

The term “coding” is often used to refer to the specific part of pro-
gramming that is the writing down of the instructions, and we use
the word in this sense here. The term “software development” can be
used to refer to programming as well as a wider range of activities
that are necessary to programming, for example sales. We use the
term in this sense here, to denote programming and the supporting
activities that are necessary to it.

1.3 Research focus

The approach of this dissertation is to apply cultural theory to the
study of programming. More specifically, the approach and methods

1.3 research focus 23

of the field of ethnology are adopted, and the theories employed are
hermeneutical theory, cultural form theory, and rhetorical theory.

The importance of human factors are recognized within software
engineering and other programming research today.13 There is not yet
a consensus on how best to study people within programming. Differ-
ent approaches coexist, such as sociology, psychology, anthropology,
and ethnography. Ethnology is a an approach that has been applied
only sparsely.

A principle of this dissertation is that studies of programming
must be founded on empirical research: theoretical development is
crucial but it must be based on empirical observation so as to remain
connected to the realities of programming.

A related principle is to focus on the practice of programming
– that is, to study the actions of programmers in connection with
the goals they are trying to achieve. The concept of practice will be
explained further in section 3.4 (Cultural form theory).

This dissertation focuses on programming as work. This is nat-
ural insofar as programming historically is a product of professional
development, and furthermore the work perspective on programming
is shared by most of the existing research on programming in the
technical fields.

The approach taken in this treatise is to apply more general the-
ories in order to understand the more specific phenomenon of pro-
gramming. The most general theory employed is an Aristotelian the-
ory of culture, mainly inspired by the Danish ethnologist Thomas
Højrup.14

To examine more specifically the work practices of programming,
the theories of hermeneutics and rhetorics are employed. Herme-
neutics is a general theory of how understanding takes place, while
rhetorics is a general theory of expression; that is, of utterances. Clas-
sically, hermeneutics and rhetorics were confined to the more narrow
phenomena of text and speech, but I use them in their modern ver-
sions, in which the theories are formulated so as to apply generally to

13See e.g. Glass 2002 p. 11.
14See section 3.4 (Cultural form theory).

24 chapter 1. introduction

any cultural phenomenon. In this I follow the philosophical herme-
neutics of Hans-Georg Gadamer, and the “new rhetorics” of Chaïm
Perelman and Lucie Olbrechts-Tyteca.15

In short, this treatise is a comparative empirical study of work
practices that has philosophical hermeneutics as its epistemological
and ontological point of departure. I am studying not only the cultural
forms of programming, but the way these forms perceive themselves
and how these perceptions are manifested in practice. My claim is
that hermeneutical theory in particular allows the scholar to perceive
the phenomenon of programming more clearly.

1.4 Research problem and results

The aeronautics engineer Walter Vincenti, in his 1990 book What
Engineers Know and How They Know It: Analytical Studies from Aero-
nautical History, provides an historical exposition of episodes in U.S.
aeronautical engineering. Vincenti analyzes how engineering knowl-
edge is created and used, and points to the central role of the design
process in engineering. His analysis shows the necessity of learning
about the subjective, human element of a problem before everyday en-
gineering and design tasks can commence. In engineering terms, this
kind of problem can be posed as the need to examine an ill-defined
problem in order to identify needs and translate them into specifiable
criteria.16 The needs and criteria cannot be specified beforehand, they
must follow in the course of the research. This is the kind of research
problem that is dealt with here.

The overarching research problem is this:

How can the practice of computer programming best be understood?

15For hermeneutics, see section 3.3 (Hermeneutical theory); for rhetorics, see section
3.5 (Rhetorical theory).

16Vincenti 1990 [1993] p. 51.

1.4 research problem and results 25

This means to examine the different forms the practice of computer
programming can take and to research how the empirical forms of
programming can best be understood theoretically. In order to ac-
complish this the dissertation contains the following major parts:

• Case studies that present empirically different forms of software
development: game development and safety critical develop-
ment.

• A presentation of mainstream programming theory (software
engineering, Agile thinking, and computer science) and an ap-
plication of the mainstream theory to the case study of game
programming that demonstrates that mainstream theory has
some shortcomings in analysis of empirical processes.

• A presentation of cultural theory: hermeneutical theory, cul-
tural form theory, and to a lesser degree rhetorical theory. The
theory is applied to the case studies in a series of analyses.

• In the conclusion the results of the cultural theory analyses are
summarized and the consequences for programming practice
are discussed.

The overarching research problem is answered with the help of three
more concrete and specific research goals:

1. To explain the software development process with the help of
hermeneutical analysis, and to a lesser degree rhetorical analy-
sis.

2. To compare different software development practices with the
help of cultural form theory.

3. To explore the practical implications of a hermeneutical and
rhetorical understanding of software development.

The results of the dissertation are as follows: regarding the first re-
search goal, it is demonstrated how the mainstream programming

26 chapter 1. introduction

theories fall short in explaining the case study. The hermeneutical
analysis reveals a circular epistomological structure in the process
(the hermeneutical circle) that makes it significantly easier to under-
stand. Safety critical development is also analyzed hermeneutically,
and it is revealed how important bureaucratic structures are to the
development process. The essential concepts are identified in ana-
lyzing game programming (“‘fun”) and safety critical programming
(“safety”). The rhetorical analysis of game programming shows how
the hermeneutical-rhetorical approach can be used to analyze not
only work processes, but also work artifacts (i.e. source code).

Regarding the second research goal, a comparative form analysis
of game programming and safety critical programming shows that
form analysis can identify the constraints that programming practices
are subject to. This analysis also demonstrates that programming
practice can not be understood properly without taking into account
the context it is carried out in. A second comparative analysis looks
at variations within the safety critical industry and finds that these
variations can be explained by cultural form theory partly as different
strategies for adapting to the same circumstances, partly as reactions
to variations in the constraints that limit the practices.

The third research goal is addressed through a discussion of the
results of the first and second goals. One important finding is the
necessity of context in the study of software development. Another
is the relationship between scientific theory and practice; it turns out
that theory must always be based in practice. The most important
point made in the dissertation is an argument against reductionism:
not everything can be controlled, indeed, not everything can be mea-
sured; however, hermeneutics can be used to find order in that which
may seem chaotic.

1.5 scope of the dissertation 27

1.5 Scope of the dissertation

In order to make any research project manageable, it is important to
define what will not be included. This treatise studies programming
as work. There are of course other reasons to program: for example
as a hobby, as art, for the sake of education, or for fun. Though these
reasons may be important, we will not consider them here.

Furthermore, only professional programmers are studied in this
treatise. This excludes professionals in other areas that are program-
ming as a part of their work, but who themselves set the task for
the programming. Professional programmers are thus considered to
be those programmers whose programs are not meant to be used
by themselves: that is, their task is set by another party, directly or
indirectly.

There are a number of aspects of programming that will only
be considered to the extent that they have an influence on the work
aspect, even though they would be interesting to study in their own
right. The most important of these aspects are: what kind of people
programmers are, and how they live their lives;17 the management of
programming, the economic and business aspects of programming;
and the programmers’ identification with their job. These aspects
will be considered in this treatise, but they will be subordinate to the
central theme of work.

To be truly complete, the section on mainstream programming
theories (section 3.2) should also present ideas from the field of in-
formation systems science, which consists of literature with a largely
sociological, economical, and managerial emphasis. It is with regret
that I have omitted a treatment of information systems science – the
justification is that it has arguably had less influence on the everyday
practice of programmers than the fields of software engineering, com-
puter science, and Agile methods, as it is more concerned with the
site-wide implementation of information technology systems in large
organizations than with programming practice.

17In ethnology this is sometimes referred to as life modes. See Christensen 1987.

28 chapter 1. introduction

The above mentioned research approaches and theoretical per-
spectives have not been left out of the thesis because they are irrele-
vant to the subject. The choice of topics to include has been made in
order to be able to present clear and focused research results that are
not mired down in too many issues that are interesting but tangential.

1.6 Audience of the dissertation

This dissertation is intended for a general academic audience. The
ideal reader is interested in the subject of programming and familiar
with the general principles of research and scholarship, but expertise
in either ethnology or programming research is not a requirement to
understand the arguments of the thesis. Naturally, some parts of the
the thesis will be easier to understand for the reader with expertise
in programming, and some parts will be easier to understand for
the reader with expertise in ethnology, but care has been taken to
explain the concepts used so that the argument can be followed also
by readers without expertise, while at the same time making sure that
the factual content of the thesis lives up to the expectations of experts
in the fields.

1.7 Overview of the dissertation

The rest of the dissertation is organized as follows: Chapter 2 presents
the current state of the art within research on programming as work.
Section 2.1 concerns research coming from the programming fields
while section 2.2 concerns research from the various fields of cultural
studies.

Sections 3.2.1 (Software engineering), 3.2.2 (Agile software deve-
lopment), 3.2.3 (Computer science), and 3.2.4 (Object-Oriented Pro-

1.7 overview of the dissertation 29

gramming) present an overview of the mainsteam theories of pro-
gramming that have predominantly shaped contemporary program-
ming practice. Sections 3.3 (Hermeneutical theory), 3.4 (Cultural form
theory), and 3.5 (Rhetorical theory) present the cultural theories that
are applied to programming practice in this dissertation.

Sections 4.2 (Participant observation) and 4.3 (Interviews) describe
the data collecting methods used in the dissertation. Section 4.5
present the different methods of analysis that the data are subjected to.
Section 4.6 gives a brief account of the science theoretical foundation
of the dissertation. Section 4.7 lists all the empirical data collected for
this study; when it was collected and in which form.

Chapter 5 presents the case study in computer game program-
ming. Section 5.1 is a description of the case. In section 5.2.1 the case
study is analyzed with the use of mainstream theories of program-
ming. In section 5.2.2 the case study is anlalyzed with hermeneutical
theory.

Chapter 6 presents two case studies in safety critical program-
ming. The case studies are described in sections 6.2.1 (A large avion-
ics company) and 6.2.2 (A small farming systems company). Section
6.3 presents a hermeneutical analysis of the cases.

Chapter 7 presents cultural form analyses of the empirical mate-
rial. In section 7.1 the case studies of chapter 5 and 6 are subjected to
a comparative form analysis. In section 7.2 a number of smaller case
studies in safety critical programming are presented and analyzed.
The presentation and analysis in this section is done concurrently.

Chapter 8 presents a rhetorical analysis of source code from the
case study of chapter 5 (Game programming). Again, the presentation
and analysis is done concurrently.

Chapter 9 concludes the dissertation. In section 9.1 the results
of the dissertation are presented. In section 9.2 the implications of
the results for the practice of programming and for programming
research are discussed. Section 9.3 addresses the validity and possible
generalizations of the study.

30

31

Chapter 2

Related research

2.1 Programming research

Cultural approaches to programming are not unheard of, though they
are scarce within academia. Outside of academia, the popular blogger
Joel Spolsky, for example, has described the difference between Win-
dows programming and UNIX programming as a difference between
two programming cultures.1

Spolsky argues that UNIX programming evolved in a time and in
an environment where most people who used computers were pro-
grammers, and very few were users without programming knowledge.
Therefore the UNIX programming culture assumes that a user is also
a programmer and knows how to modify the program to his lik-
ing. In contrast, the Windows programming culture developed among
progammers who were making programs for users who are not pro-
grammers themselves. Therefore a typical Windows program is easier
to use for a non-programmer, but a programmer will find it harder to
modify for his own purposes.

1Spolsky 2004 chp. 18.

32 chapter 2. related research

It seems that while there is a recognition within academia that
it is important to study actual work processes, there is a lack of re-
search on the subject, cf. Singer et al. 2008: “Software engineering
is an intensely people-oriented activity, yet little is known about how
software engineers perform their work.” 2

The cultural approach has been employed on occasion within the
existing research literature on programming. For example, Carolyn
Seaman, in an anthology about empirical software engineering re-
search, describes participant observation as one of several data collec-
tion methods researchers can use.3 Seaman also describes a method
of data analysis known as the “constant comparison method”, or
“sense making”, which essentially amounts to looking very carefully
at the data, trying to make sense of it, and striving to find support for
preliminary hypotheses in the data.4

This so-called ethnographic research method has been employed
by several software researchers, for example Hugh Robinson and He-
len Sharp5, who have collected data by participant observation in a
number of software companies with a focus on organisational culture
and a certain way of working with software called “Extreme Program-
ming”.6 Other researchers have employed ethnographic methods in
studies of companies such as Microsoft and Siemens.7

The use of hermeneutics in the study of programming is a largely
unexplored area. Hermeneutics has previously been applied to artifi-
cial intelligence, but without much insight or success.8 Cole and Avi-

2Singer et al. 2008 in Shull et al. p. 9.
3Seaman 2008 in Shull et al. chp. 2.1, p. 37.
4Ibid. chp. 3.1.1, p. 49.
5Robinson & Sharp 2003: “XP Culture.” Robinson & Sharp 2005 (I): “The Social

Side of Technical Practices.” Robinson & Sharp 2005 (II): “Organisational Culture and
XP.”

6Extreme Programming (XP) is a so-called Agile methodology, see section 3.2.2
(Agile software development).

7Begel & Simon 2008: “Struggles of New College Graduates in Their First Software
Development Job.” Herbsleb et al. 2005: “Global Software Development at Siemens.”
Ko et al. 2007: “Information Needs in Collocated Software Development Teams.”

8Mallery et al. 1987: “Hermeneutics: From Textual Explication to Computer Under-
standing?” Massachusetts Institute of Technology Artificial Intelligence Laboratory.

2.1 programming research 33

son have employed hermeneutics in the field of information systems,
though their work does not address programming. They raise the
point that hermeneutics “is neither well accepted nor much practiced
in IS [Information Systems] research”, which perhaps helps explain
that it is even less practiced in programming research.9

The concept of understanding has a close connection to herme-
neutics. Jorge Aranda’s doctoral dissertation from 2010 applies the
perspective of understanding to programming, in what Aranda calls
“a theory of shared understanding”. According to this approach, soft-
ware development is not a simple transfer of data but a gradual pro-
cess of mutual understanding. The software team has to discover all
relevant aspects of the problem it intends to solve, and this requires
interpretation.10 Aranda emphasises that shared understanding de-
velops slowly from practice, that it is dependent on context, and that
it takes effort and practice to gain knowledge of the context of under-
standing.11

Aranda’s conclusions are very consistent with those that follow
from a hermeneutical perspective on programming. The main differ-
ence between Aranda’s work and the approach taken in this treatise is
that Aranda bases his theory on cognitive psychology rather than her-
meneutics. In cognitive psychology, understanding consists of internal
mental models;12 whereas hermeneutical theory views understanding
as an existential question of what truth is.13

With its basis in cognitive psychology, Aranda’s work can be seen
as representative of the research field called "psychology of program-
ming". While the theme of psychology of programming could be
construed to be relevant to this dissertation, the literature, apart from
Aranda’s work, does however seem to focus primarily on themes other
than programming and work. Curtis and Walz wrote in 1990 that:

9Cole & Avison 2007 p. 820.
10Aranda 2010 p. 3, p. 89.
11Ibid. p. 111, p. 95.
12Ibid. p. 42 f.
13See sections 3.3.5 (Understanding) and 3.3.9 (Ethical and technical knowledge).

34 chapter 2. related research

“Programming in the large is, in part, a learning, negotia-
tion, and communication process. These processes have
only rarely been the focus of psychological research on
programming. The fact that this field is usually referred to
as the ‘psychology of programming’ rather than the ‘psy-
chology of software development’ reflects its primary ori-
entation to the coding phenomena that constitute rarely
more than 15% (Jones, 1986) of a large project’s effort.
As a result, less empirical data has been collected on
the team and organizational aspects of software devel-
opment.” 14

More recent research seems to confirm Curtis and Walz’s statement.
For example, a paper from 2000 focuses more narrowly on program-
ming language design,15 while a paper from 2004 focuses on students
and education.16 A 2011 paper does address an aspect of software
engineering as work, in that it investigates software engineer’s mo-
tivation to do their work.17 While the theme is relevant to this dis-
sertation, the analysis in the mentioned paper is limited to a report
of frequencies of questionnaire answers. As such, the work lacks a
conceptual framework or theoretical foundations that could make it
fruitful to engange in a discussion of its relevance to this dissertation.

Informatics professor Antony Bryant has argued for using the per-
spective of understanding in software engineering. In a formulation
that is similar to Aranda’s, Bryant writes that:

“The process [of requirements engineering] is not one of
passing or capturing information; the aim is for all those
involved to work together to achieve a coherent and con-
sistent view of the system context, an objective that is
inherently difficult and requires collaborative input from
all participants.” 18

14Curtis & Walz 1990 p. 267.
15Pane & Myers 2000.
16Mancy & Reid 2004.
17Sach, Sharp, and Petre 2011.
18Bryant 2000 p. 84.

2.2 cultural research 35

As we shall see, this viewpoint is in harmony with a hermeneutical
understanding of programming.

See also section 3.2 (Mainstream programming theories) for fur-
ther academic research in programming that is relevant to the topic
of this dissertation.

2.2 Cultural research

This purpose of this section is to outline the approaches taken by
other cultural researchers to studies of work, programming, and new
technology in general. For my purpose, the more relevant research is
that which has been done by ethnologists, since ethnology is my pri-
mary research perspective and inspiration. For the sake of complete-
ness, research done by other cultural researchers, such as sociologists
and anthropologists, is also presented.

Not surprisingly, information technology and other new technol-
ogy has been met with a great deal of interest by cultural and social
researchers. The major part of this interest has been directed toward
the users of technology and its influence on their lives. An example
is Tina Peterson’s ethnographic study of the role played by microwave
ovens in people’s daily lives, and their feelings toward the technol-
ogy.19

A smaller amount of interest has been directed at the work as-
pects of new technology; that is, cultural studies of how technology is
made. An illustrative example of this is Daniel Miller and Don Slater’s
ethnographic study of internet use in Trinidad. Although most of their
study concerns internet use from a user perspective and the role of
the internet in Trinidadian national consciousness, Miller and Slater
include a chapter on doing web design as work, which focuses on the
business aspects of the work.20

19Peterson 2009.
20Miller & Slater 2000 chp. 6.

36 chapter 2. related research

2.2.1 Ethnology

Looking specifically at ethnological research, Robert Willim has writ-
ten a book about a Swedish “new economy” software company, Fram-
fab (“Future Factory”).21 Willim investigates the work practices, the
company culture, and the business aspects of Framfab, showing how
many of the company’s practices can be seen as expressions of a more
general wave of ideas in society about “the new economy” and “fast
companies”. He also shows how, in the end, Framfab was forced to
conform more to traditional business practices than it originally de-
sired.22

Willim’s work, and the work presented in this treatise, fall within
a long ethnological tradition of work studies. In recent years, many
ethnological studies have taken a turn away from detailed research
in work practices toward an interest in more general cultural aspects
of the work, where the concrete work practices are discussed as a
backdrop for social commentary. An example is Marianne Larsson’s
study of postal workers in Sweden between 1904-17, which focuses on
the postmen’s uniforms as a symbol of hierarchical power.23 Another
is Leena Paaskoski’s study of Finnish forest workers in the second half
of the 20th century, which focuses on gender issues.24

Earlier ethnological research, from the late 1970s and early 1980s,
devoted more attention to work practices, although the research was
often focused on the totality of the work situation. An example is
Billy Ehn’s study of factory workers in Stockholm in 1977-8, which
includes detailed descriptions of work practices and their influence
on the workers’ existence.25 Another example is Gudrun Gormsen’s
study of the diary of a Danish heath farmer from 1829 to 1857.26

21Willim 2002. Willim 2003 in Garsten & Wulff.
22Willim 2002 p. 139 ff.
23Larsson 2008 in Ethnologia Scandinavica.
24Paaskoski 2008 in Ethnologia Scandinavica.
25Ehn 1981.
26Gormsen 1982 in Folk og Kultur.

2.2 cultural research 37

The research presented in this treatise can be said to fall within an
even older tradition of classical ethnology that has work practices as
its primary focus, although the totality of the work situation is always
kept in mind. An example of this kind of research is Ole Højrup’s
1967 book, The Rural Dwelling Woman.27 Højrup studied a type of
work – domestic female farm work – that was in decline, whereas the
research presented here is concerned with a type of work that is on
the rise. This results in a slight difference in the aims of the research,
and in the methodological challenges, but the underlying ethnological
perspective is essentially the same.

2.2.2 Sociology, anthropology, and other

Fields other than ethnology have engaged with work studies of new
technology. Sociologists have been researching programming work
since at least the 1970s. Sociological work studies were at this time
dominated by Marxist theory and, consequently, the research focused
on providing arguments in support of Marxist ideology. Philip Kraft’s
1979 article about computer programmers is an example of this kind
of research.28 Later research challenged the Marxist studies. Sarah
Kuhn’s 1989 study of commercial bank programmers concludes that
programming work is creative, one-of-a-kind intellectual work that
cannot easily be understood using theories of assembly line factory
work.29

In more recent sociological research, Karolyn Henderson in 1998
wrote about how engineers’ use of diagrams affects their work prac-
tices.30 Henderson uses the sociologist Susan Leigh Star’s concept

27Højrup 1967: Landbokvinden.
28Kraft 1979: “The Industrialization of Computer Programming: From Programming

to ‘Software Production’.”
29S. Kuhn 1989: “The Limits to Industrialization.”
30Henderson 1998 chp. 3.

38 chapter 2. related research

boundary object to analyze engineering diagrams.31 The boundary
object functions as a physical artefact that can communicate with dif-
ferent groups on different levels, and bring together people that need
to cooperate despite holding differing understandings.

Star has herself studied the development of a large administrative
software system.32 Falling within the sociological tradition of informa-
tions systems research, the study focuses on organisational changes.
Yet another example of sociological research is Seán Ó Riain’s studies
of Irish software companies. These studies focus primarily on day-to-
day social interaction in the office,33 and on the business aspects of
the software industry.34

Leslie Perlow has produced an interesting study about software
engineers, their use of time, and their working conditions.35 We will
return to Perlow in chapter 9 (Conclusion). Donald Schön has written
about the work of creative intellectuals and how they gain knowledge,
a process that is closely connected with hermeneutics theory.36 Schön
is discussed in more detail in section 5.2.2.1 (The work process).

Anthropological research has also produced a number of studies
of new technology and programming work. In many such studies,
anthropology is applied to management research, with a theoretical
anchor in Edgar Schein’s 1985 book Organizational Culture and Lead-
ership. Two characteristics of Schein’s thinking are worth noting. First,
the organisational culture of a company is viewed as an entity that can
be studied more or less separately. Secondly, an instrumental view of
culture is presented, through the idea that organisational culture can
and should be formed for specific purposes.

Susanne Ekman provides an example of anthropology applied to
management research.37 Her study focuses on journalists’ perception
of their work, and how this is connected with their identity and am-

31See e.g. Star & Griesemer 1989.
32Star & Ruhleder 1996.
33Ó Riain 2000.
34Ó Riain 1997.
35Perlow 1997.
36Schön 1983.
37Ekman 2010.

2.2 cultural research 39

bitions. Another example is provided by Gideon Kunda’s study of
an anonymous high-tech engineering company.38 Kunda focuses on
the internal power-play and positioning that takes place within the
company, and how the company’s self-perception of its culture is ex-
pressed. Kunda views many of the activities of daily work life as ritual
enforcements of the collective identity.

The phenomenon of free and open source software has received
some attention from anthropologists. Magnus Bergquist has focused
on the economic aspects of open source software development, and
applied Marcel Mauss’s classic anthropological theory of gift giving
to this.39 Gabriella Coleman has studied open source software “hack-
ers”.40 She interprets the movement as both an extension of, and an
opposition to, a liberal or neo-liberal political system; hence her fo-
cus is primarily on the ideological, political, and identity aspects of
software development.

A number of anthropologists have conducted research associated
with the Palo Alto Research Center of the well-known company Xe-
rox. A common theme for these researchers has been an investigation
of the interface between people and the machines they use in their
work.41 These include photocopy machines, but also, for example,
color management on personal computers, and intelligent signs. Lucy
Suchman, one of the more influential researchers, states: “Human-
machine configurations matter not only for their central place in con-
temporary imaginaries [i.e. imagination] but also because cultural
conceptions have material effects.” 42 Notably, Suchman argues that
people’s use of machines is characterised less by pre-made plans than
by so-called situated actions – actions that depend on situation and
context and that can only be presented in a rational logical form with
difficulty.

A crucial contribution from anthropology is the work of Bruno
Latour, which investigates the internal workings of science and engi-

38Kunda 1992.
39Bergquist 2003 in Garsten & Wulff.
40Coleman 2005.
41Szymanski & Whalen (eds.) 2011.
42Suchman 1987 [2007] p. 1.

40 chapter 2. related research

neering (what Latour calls “technoscience”) and their relationship to
society at large.43 Latour’s work provides some theoretical points that
are important to this treatise; these are briefly mentioned in sections
3.5 (Rhetorical theory) and 9.2 (Discussion).

Sherry Turkle has written an excellent book about people’s per-
sonal relationship to computers, which examines many of the non-
professional aspects of programming that are left out in this disser-
tation. Although Turkle is a psychologist, her research is as much a
North American cultural study as it is psychological. One of the cen-
tral themes of her book is how people imbue computers with meaning.
She writes:

“When people repair their bicycles, radios, or cars, they
are doing more than saving money. They are surrounding
themselves with things they have put together, things they
have made transparent to themselves.” 44

Turkle shows in her book that this is as true of computers as it is of
bicycles and radios. She also examines programming styles in differ-
ent situations and identifies three generalised types of programmers:
“hard style” programmers are objective and abstract; “soft style” pro-
grammers are artistic and immediate; and “hacker style” programmers
are primarily concerned with “winning”, and exclude themselves from
non-programmers. We will not be using these categories in this trea-
tise but they illustrate one way in which research can take an approach
to programming that is not focused on work.

The research discussed above has in common that it is all con-
cerned with actual practice, and based on empirical observation. A
number of authors have taken a more speculative approach. Don
Ihde has written a philosophy of technology that is critical of other
philosophical writers, notably Heidegger.45 Using a similar approach,
Richard Coyne has written a philosophy called Designing Information
Technology in the Postmoderne Age, containing speculation upon, and

43Latour 1987. Latour & Woolgar 1979.
44Turkle 1984 [2005] p. 176.
45Ihde 1979: Technics and Praxis.

2.2 cultural research 41

critique of, many philosophical writers, including Heidegger and Der-
rida.46

Jay Bolter and Richard Grusin have written a philosophy of what
they call remediation, a strategy of representing media within other
media, which they claim is characteristic of new digital media.47 In
addition to a philosophical critique, they base their arguments largely
on references to artworks, pictures, and websites; thus their approach
comes to resemble literary critique or art history.

Authors such as Lev Manovich48 and Friedrich Kittler49 have writ-
ten philosophies that come closer to essays in their style, and which
explore the meaning of concepts such as software and media. A com-
mon trait for all the speculative writing mentioned here is that it has
little to do with how programming work is carried out in practice.

This is also the case for the writings of Donna Haraway, which
have attracted a large amount of attention within cultural studies of
new technology. Haraway’s work is, in her own words, ironic and
blasphemous, which literally means that it is deliberately untrue.50

Its stated goal is to advance socialist-feminist ideology. That this
is a worthwhile goal is a matter of belief, and Haraway does not
provide a justification as to why socialist-feminist ideology would be
useful to technology workers or contribute to a better understanding
of technology. As such, Haraway’s work resembles the ideological
Marxist sociology of the 1970s mentioned above.

46Coyne 1995.
47Bolter & Grusin 1998 [2000] p. 45.
48Manovich 2013.
49Kittler 2009.
50“This chapter is an effort to build an ironic political myth faithful to feminism,

socialism, and materialism. Perhaps more faithful as blasphemy is faithful, than as
reverent worship and identification. . . . At the centre of my ironic faith, my blasphemy,
is the image of the cyborg.” Haraway 1991 chp. 8: “A Cyborg Manifesto: Science,
Technology, and Socialist-Feminism in the Late Twentieth Century”, p. 149

42

43

Chapter 3

Theory

3.1 Choice of theory

The approach is to use cultural theory, specifically ethnological the-
ory, to build a theory of programming that encompasses the relevant
human factors. Ethnology as defined in this dissertation is a cul-
tural science of peoples’ daily life. As such, is has a rich tradition
of studying peoples’ work practices and workplaces. This is an ad-
vantage when we want to study the phenomen of programming as a
work practice, which is the first step toward a cultural understanding
of programming.

There are many different approaches to cultural theory within the
field of ethnology. The approach used in this dissertation is cultural
form theory, which is best known from the variant life-mode theory,1 a
theory that originated in Copenhagen in the 1970’s and since then has
been developed by a number of ethnologists. The special advantages
of this theory is that it is well suited to examine the relationship
between a given cultural practice and the factors that are external to

1Højrup 1995.

44 chapter 3. theory

it.2 In this case, the cultural practice is software development, and
the external factors are things such as higher management, market
demands, corporate politics, et cetera.

On a practical level, a theory is needed to analyze programming as
a cultural phenomenon in order to be able to relate source code, pro-
gram design, archtitectural descriptions, and the like to the culture in
which they are produced. Before the empirical investigations started,
the intention was to use the body of theory called “new rhetorics”,
a revival of classical rhetorics that has been brought up to date as
a modern theory of argumentation.3 Viewing programming as com-
prised by arguments allows for analyzing the meaning of individual
programming constructs, an important subgoal in a cultural descrip-
tion and an approach which is demonstrated in chapter 8 (Rhetorical
case study and analysis).

As it turns out, the creation of work products and source code,
though important, is not the paramount factor when investigating how
software development practices are formed. As the case studies and
the hermeneutical analyses of them amply demonstrate, programming
practice is to a large extent shaped by how the programming prob-
lems are understood by software developers. Understanding is the
domain of hermeneutics, and for this reason it is not suprising that
the theory works well in describing the kind of intellectual, creative
work that programming is an example of. In this respect, hermeneu-
tics is chosen as an analytical theory because it suits the data well;
in another respect, it is chosen because it negotiates the theoretical
distance between the reflective approach of cultural form theory and
the practical approach of rhetorics.

The fields of cultural studies offer many choices of theory other
than cultural form theory and hermeneutics that could have been used
in this dissertation. Some of these, briefly mentioned in section 2.2,
have so far not produced research insights that explain programming
work practice, and for this reason seem poor choices for this disser-
tation. Others might conceivably produce better results, however, to

2Højrup 2002, chp. 5.
3Perelman & Olbrechts-Tyteca 1958.

3.2 mainstream programming theories 45

accurately assess whether such cultural theories actually offer a bet-
ter alternative requires to do a full study using the theories, and this
is a laborious task. The best argument for not considering other
theoretical approaches in this dissertation is that the present choice
of theories produced new insights, and the theories did not produce
contradictory explanations of empirical phenomena or leave impor-
tant phenomena unexplained.

3.2 Mainstream programming theories

This section discusses the schools of thought that arise from the pro-
gramming communities themselves. Its purpose is to explain how the
different programming traditions perceive programming: what they
think programming is, and what kind of things they consider impor-
tant to focus on when studying programming. These traditions largely
make up the existing research on how to carry out programming, and
it is these that are taught to would-be programmers at universities.
The different schools have a large influence on the way programming
is practised, and it is consequently important to understand these tra-
ditions of thought in order to be able to understand programming
practice.

The most important schools of thought are computer science, soft-
ware engineering, and Agile thinking. These are not exclusive schools
of thought; for example, computer science has had a considerable in-
fluence on both software engineering and Agile thinking. It is not my
intention to present a complete description of the fields, and there are
many subfields and work carried out by individual researchers that
will not be covered by the material here. Rather, my intention is to
identify the most important and well-known ideas. For this reason,
the scholars cited here are people whose views are respected within
their fields. Some have had large influence on their fields, others are
less well known but represent mainstream, and uncontroversial ideas.

46 chapter 3. theory

For the sake of completeness, Object-Oriented Programming and
Design is also presented, since it has had a large influence on the
practice of programming. Its influence on work processes, however,
has not been as significant as those of the above mentioned schools
of thought.

3.2.1 Software engineering

3.2.1.1 The origins of software engineering

Software engineering is, as the name implies, a school of thought
within programming that arose from engineering communities and
is predominant among those software scholars and professionals who
are inclined towards engineering. The first electronic computers con-
structed in the 1940s during the Second World War were built mainly
by electrical engineers. In those early days there was not a great deal
of distinction between the hardware engineers who built the machines,
and those who programmed them. While computers slowly gained im-
portance during the 1950s and 1960s, the engineers who had the task
of programming them began to see themselves as a distinct group:
software engineers.

The first electronic computers were developed for military use.
Like other branches of engineering, for example aeronautical engi-
neering, software engineering has since the beginning had strong ties
to the military and consequently to the government. The origin of the
term “software engineering” is attributed to two conferences spon-
sored by the NATO Science Committee, one in 1968 on “Software En-
gineering” and one in 1969 on “Software Engineering Techniques”.4

These conferences did not address the definition of the discipline, or
its aim and purposes. The things that were discussed were the var-
ious problems and techniques involved in creating software systems,
for example in connection with the design, management, staffing, and

4Naur & Randell 1969. Buxton & Randell 1970.

3.2 mainstream programming theories 47

evaluation of systems, as well as for example quality assurance and
portability.5

The connection with military engineering means that many promi-
nent software engineers have worked for the military. The well-known
researcher Barry Boehm, for example, worked on the Semi-Automated
Ground Environment radar system for the U.S. and Canadian air de-
fence in the beginning of his career in the 1950s.6 Of the 12 repre-
sented in George F. Weinwurm’s 1970 anthology On the Management
of Computer Programming, at least half have had military careers.

However, after the war, computers soon found uses outside of
the military. From the 1950s throughout the 1970s, these uses were
primarily within the administration of other branches of government
and in “big business”. The big business sector was mostly served by
large corporations such as IBM – the well-known software engineer
Frederick P. Brooks, Jr. worked for IBM, and also later served the
military as a member of the U.S. Defense Science Board.7 The authors
in Weinwurm’s anthology without military careers have all had careers
with either IBM or other large corporations, such as banks.

3.2.1.2 Brooks

In 1964-65 Frederick P. Brooks, Jr. was the manager of the develop-
ment of the operating system of the IBM 360 computer, a technically
innovative machine.8 In 1975 he published the book The Mythical
Man-Month: Essays on Software Engineering about his experiences of
the project. This book has since become perhaps the most well-known
book in the field of software engineering, as well as being known out-
side the field.

5Portability concerns the technical relationship between programs and the machines
on which they run. If a program can easily be made to run on several different makes
of machines, it is said to be portable.

6Boehm 2006.
7See for example the 1987 Report of the Defense Science Board Task Force on Military

Software.
8Brooks 1975 [1995] preface. Patterson & Hennessy 1997 pp. 525–527.

48 chapter 3. theory

In Brooks’ approach to software engineering, the main concerns of
development are management and organization. The technical part
of development is also discussed, but falls outside of the main focus of
the book. Brooks’ thinking on management stresses the importance
of estimation and the use of formal documents. The undisputed top
priority of management is to be on time. Brooks poses the famous
question “How does a project get to be a year late?” and gives the
laconic answer “ . . . One day at a time.”9

In order to avoid slipping schedules, Brooks emphasizes the im-
portance of good estimates of how long programming tasks will take.
He also acknowledges that this is very difficult to achieve: nonethe-
less, managers must do their best, because without good estimates
the project will end in catastrophe. Because of the difficulties inher-
ent in estimation, Brooks advocates looking at data for time use in
other large projects, to try to discover some general rules of how long
programming takes depending on various factors, such as which pro-
gramming language is used and the amount of interaction between
programmers.

Good documentation is important to a successful project, for two
reasons. When the manager writes down his decisions he is forced to
be clear about the details, and when they are written down they can
be communicated to others on the team. Producing a small number of
formal documents is critical to the job of the manager. According to
Brooks, the purpose of management is to answer five questions about
the project: what?, when?, how much?, where?, and who? For each of
the questions there is a corresponding document that answers it, and
these formal documents form the core basis for all of the manager’s
decision making:10

9Brooks 1975 [1995] p. 153.
10“The technology, the surrounding organization, and the traditions of the craft

conspire to define certain items of paperwork . . . [the manager] comes to realize that a
certain small set of these documents embodies and expresses much of his managerial
work. The preparation of each one serves as a major occasion for focusing thought
and crystallizing discussions that otherwise would wander endlessly. Its maintenance
becomes his surveillance and warning mechanism. The document itself serves as a

3.2 mainstream programming theories 49

what? is answered by objectives
when? " schedule
how much? " budget
where? " space allocation
who? " organization chart

Besides estimation and documentation, a third important aspect of
management is planning. Brooks’ advice to managers is to use the
Program Evaluation and Review Technique (PERT) developed by the
U.S. Navy in the 1950s, which consists of providing estimates and start
dates for all tasks, as well as listing which tasks depend on other tasks.
The total duration of the project can then be calculated, as well as the
critical tasks, which are those tasks that must not be delayed if the
project is to finish on time. Figure 3.1 shows an example of a PERT
chart given by Brooks.

The second major concern of Brooks’ book is organization. In this
he favors a strong hierarchy. The recommended team organization is
what is known as a chief programmer team, though Brooks calls it
the “surgical team”. In this, the team consists of a chief programmer
and his subordinate right hand, who together do all the actual pro-
gramming on the project. They are supported by up to eight other
people who do various technical and administrative tasks. Accord-
ing to Brooks, it is only possible to develop a coherent system if the
number of people that contribute to the design is limited. The central
idea of the chief programmer team is thus that it is an organization
that allows a lot of people to work on the project in supporting roles
while making sure that only the chief programmer contributes to the
design.

Brooks also discusses how to organize the highest layer of project
management. He maintains that it is extremely important to sepa-
rate technical and administrative executive functions. He likens the
technical manager to the director of a movie, and the administrative
manager to the producer. Various possibilities for dividing the power
between the two are considered, and Brooks finds that it is best if

check list, a status control, and a data base for his reporting.” Brooks 1975 [1995]
p. 108.

50 chapter 3. theory

Figure 3.1: PERT chart from Brooks’ work on the IBM 360 in 1965. From
Brooks 1979 [1995].

3.2 mainstream programming theories 51

priority is given to the technical role, so that the technical manager is
placed over the administrative manager, at least in projects of limited
size. This arrangement mirrors the recommended organization of the
chief programmer team, where a programmer is similarly placed in
charge of administrative personnel.

In relation to technical issues, Brooks devotes some space to rec-
ommendations for trading off computation time for machine memory
space, so that one has programs that are slower but also takes up
less space. This was a sensible decision at the time. Nowadays, the
decision it not so simple, but the choice between having either fast
programs or small programs is ever relevant. Other than this, Brooks
recommends that the machines and programs that are used during
development are of the highest quality, and he lists some categories of
programs that are useful in the programming work.

Regarding development methods, Brooks advocates top-down de-
sign, structured programming and component testing, as methods
to avoid mistakes in the programming. Top-down design amounts
to making a detailed plan for the system as a whole before begin-
ning to design the individual components. Structured programming
means enforcing a certain discipline in the programming in order to
avoid common programmer mistakes and to make it easier to under-
stand the programs. Component testing means testing each piece of
the program separately before trying to see if the system as a whole
works.

An interesting aspect of Brooks’ work is that he appeals to Chris-
tian ontology to justify some of his fundamental assumptions. It
is quite important in Brooks’ argumentation to emphasize that pro-
gramming is creative work, and the inherent creativity of humans is
explained as a consequence of man being created in God’s image.11

He views communication problems as the root cause of problems in
programming projects, and the problems are explained as analogous
to the Biblical story of the Tower of Babel,12 which he calls “the first
engineering fiasco.” And we receive a hint of a justification for the

11Brooks 1975 [1995] p. 7.
12Ibid. p. 74, p. 83.

52 chapter 3. theory

central idea of the of the chief programmer team as he states, “A team
of two, with one leader, is often the best use of minds. [Note God’s
plan for marriage].” 13 (Square brackets in the original.)

The interesting thing about these appeals to Biblical authority is
that they connect Brooks’ thinking to the mainstream Christian in-
tellectual tradition of the Western world. This is in contrast to most
contemporary literature in software engineering, where the fundamen-
tal ideas about humanity are instead taken from areas like psychology
and sociology, which have a distinctly modernistic approach to ontol-
ogy.

3.2.1.3 Process thinking

A prominent characteristic of the way in which software engineers
think about development processes is that the process is divided into
a number of distinct phases that follow each other. The exact number
of phases varies between authors, though they usually follow a general
trend. At the beginning of development is a phase where the problem
is specified, followed by a phase of high level design, often called
architecture. Then follows more detailed design, then coding, and
finally testing, and actual use of the program.

The phases that have to do with specification, program architec-
ture, and design clearly correspond to the design process in ordinary
engineering. According to Vincenti, the historian of aeronautics en-
gineering, the ordinary engineering design process consists of:14

1. Project definition.

2. Overall design.

3. Major-component design.

4. Subdivision of areas of component design.

5. Further division of categories into highly specific problems.

13Ibid. p. 232.
14Vincenti 1990 [1993] p. 9.

3.2 mainstream programming theories 53

Figure 3.2: The waterfall model: “Implementation steps to develop a large
computer program for delivery to a customer.” From Royce 1970.

This process mirrors the software development phases, in which the
activities also start with specification and definition, after which they
progress to design phases that are at first very general, and further on
continue with phases of more and more detailed design.

The idea of a distinct testing phase that follows the design and
coding phases also corresponds to an ordinary engineering notion of
testing. In ordinary engineering, the testing phase naturally follows
after design and building phases; it is impossible to test something
that has not yet been built. This leaves the coding phase as the only
phase that is distinct to software engineering. It is often likened to a
construction or building phase in ordinary engineering.

Process thinking in software engineering can be considered to re-
volve around two fundamental concepts: phases, and how to get from
one phase to the next. Boehm writes: “The primary functions of
a software process model are to determine the order of the stages in-

54 chapter 3. theory

volved in software development and evolution and to establish the
transition criteria for progressing from one stage to the next.” 15

The transition criteria to which Boehm refers are what are vari-
ously called “documents”, “work products”, or “artefacts”. These are
more often than not documents in the usual sense of the word, i.e.
the sense in which Brooks speaks of documents; but they can also be
other kinds of work material in written form, for example source code
or test result listings.

The best known model of software development by far is the so-
called “waterfall” model, in which the phases of software development
are arranged in a strict sequence such that one phase is completely
finished before the next begins. In 1970 Winston W. Royce published
an article describing this model, based on his experience of develop-
ing software for spacecraft missions. Royce’s version of the waterfall
model can be seen in Figure 3.2. The model has gained its name
from the way the boxes and arrows in the picture resembles the flow
of water in a waterfall.

It should be noted that Royce neither intended the model to be
descriptive of how software development actually happens, nor did
he find it realistic to have such a simplistic model as the goal for how
development should be done. However, the model does reflect a con-
ception of how programming would be “in an ideal world”, if it were
not hampered by the imperfections of people. Thus, many software
models that are more complicated, and meant to be more realistic, are
essentially embellishments upon the waterfall model. Note also that
Royce did not think the model necessary at all for small programs –
it is only intended for large projects.

The “V-model” is closely related to the waterfall model, but places
much more emphasis on the testing of the program. Instead of hav-
ing a single test phase, as in the waterfall model, the test phase is
separated into a number of test phases, each corresponding to one
of the design phases of the waterfall model. The V-model gained its
name because of its shape: a version can be seen in Figure 3.3. This

15Boehm 1988 p. 61.

3.2 mainstream programming theories 55

Figure 3.3: The V-model. From van Vliet 2008.

model plays an important role in safety critical programming; we shall
therefore return to it in chapter 6 (Safety critical programming).

3.2.1.4 Systems thinking

Software engineering thinking is often preoccupied with the admin-
istrative aspects of management; that is, with planning, documenting
and evaluating. The general interest of software engineering is in
large, complex projects that need to be managed intensively.

An example is the “spiral model” of software development, pub-
lished by Boehm in 1988 while he was working for the TRW Defense
Systems Group. The model came about after Boehm’s attempts to ap-
ply the waterfall model to large government projects, when he realized
that projects do not proceed from start to finish, as in the waterfall
model, but rather in a number of iterations of the project phases.16

The spiral model is shown in Figure 3.4. The waterfall model is
embedded in the lower right quadrant of the spiral model, where we
find all the phases of the waterfall model: specification (here called

16Boehm 1988 p. 64.

56 chapter 3. theory

Figure 3.4: The spiral model. From Boehm 1988.

“requirements”), design, coding, testing, and operating (here called
“implementation”). The prototype, simulation and benchmark phases
in the model are somewhat optional.17 Apart from the lower right
quadrant, the largest part of the model is therefore concerned with ad-
ministrative management: activities that concern documentation and
planning (requirements planning, development planning, integration
planning, commitment review, determining objectives, risk analysis
and evaluation).

Robert Grady of the Hewlett-Packard Company has taken the em-
phasis on administrative management even further. In a 1997 book
about software process improvement, he presents a model that is es-
sentially a copy of Boehm’s spiral model. Grady’s model, shown in

17Boehm 1988 p. 65.

3.2 mainstream programming theories 57

Figure 3.5: “Spiral model for process-improvement adoption.” From Grady
1997.

Figure 3.5, is entirely removed from programming practice. It is
oriented instead towards company organization and the bureaucracy
needed to maintain a sizeable organization – meaning chiefly docu-
mentation, training, standardizing, and gaining company-wide sup-
port.

The Rational Unified Process is a process model currently pro-
moted by IBM. It was originally created by Grady together with Ivar
Jacobson of the telecommunications company Ericsson, and with James
Rumbaugh of General Electric. The so-called “process structure” of
the model can be seen in Figure 3.6. We recognize the usual phases
of the waterfall model: requirements, design, implementation (cod-

58 chapter 3. theory

Figure 3.6: Process structure of the Rational Unified Process. From van
Vliet 2008.

ing), test and deployment – except now they are termed “workflows”,
and supplemented with a few more, such as business modelling and
project management. The workflows are now executed concurrently
in four phases, and each phase consists of a number of iterations.
The irregular shapes in the diagram show the approximate intensity
of each workflow in each of the iterations.

As is apparent, the diagram in Figure 3.6 is not of great practical
use alone. It has to be supplemented by a wealth of other diagrams,
and the Rational Unified Process is arguably not meant to be used
without a large number of computer programs that support work-
ing with it, developed by IBM. It is a complicated model, meant for
projects with complex administration.

We can now begin to see why software engineering thinking is so
preoccupied with documents. A process model, in Boehm’s words,
consists of a number of stages arranged in order, along with transi-
tion criteria for moving from one stage to the next. Documents are

3.2 mainstream programming theories 59

important because they serve as transition criteria. When a document
has been produced and approved, the process can move to the next
stage and development can progress.

An extension of this way of thinking is to regard documents as
input and output to the stages. The documents said to be input to a
stage are those that need to be approved before the stage begins. The
output are the documents that have been produced when the stage is
declared to have ended.

As mentioned before, documents are often called work products
or artefacts, and they are not restricted to be documents in the usual
sense, but can also, for example, be the source code for programs.
The most important aspect of a document in this sense is that it
serves as a transition criterion that is tangible and can be checked.
Thus the purpose of an individual document is not regarded as its
most significant trait – executable code, structure diagrams and bud-
get plans are all work products, regardless of their widely differing
purposes.

If we turn our attention to the planning side of software engineer-
ing, we find that the documents that serve as criteria have a temporal
counterpart, namely milestones. Milestones are the dates that sepa-
rate phases from each other. When the documents that are associated
with a given milestone have been approved, the milestone has been
cleared and the project can progress.

The dominant trend of project management within software engi-
neering is thus concerned with meeting the appropriate milestones by
completing the required phases to produce the associated documents.
This is ensured by allocating sufficient resources to each phase. Re-
sources can be material things, such as machines, but they are first
and foremost qualified personnel. A common way of administrating
milestones, phases and resources is by way of the so-called Gantt
chart, shown in Figure 3.7, which is a variant of the PERT method
espoused by Brooks (a PERT chart is shown in figure 3.1).

The Gantt chart shows the various tasks belonging to a project
phase and how the tasks are connected to each other. By estimating
how long each task will take and how many resources it requires, the

60 chapter 3. theory

Figure 3.7: Gantt chart. From Bruegge & Dutoit 2000 [2010].

Gantt chart allows the engineers to compute the completion date of
each milestone and hence the time when the project documents will
be finished. If a task is delayed, it will push back all subsequent tasks
that depend on it, with the result that the whole project is delayed.
When the final milestone is has been met, the project is finished.

3.2.1.5 Requirements engineering

The requirements, or specification, of a software project tell program-
mers and managers what the users, or buyers, want the software to do.
The requirements are thus of singular importance to a project; how
could it be possible to make a program if one were not aware of what
it is supposed to do? Important as they are, specifying the require-
ments brings about a host of problems, for, in Brooks’ words, “the
hardest single part of building a software system is deciding precisely
what to build.” 18

Consequently, requirements engineering is a subfield of software
engineering concerned with requirements. The most obvious ap-
proach to deciding what to build is simply to ask the intended users
what they want. However, this is rarely sufficient in practice says
Brooks, “for the truth is, the clients do not know what they want.” 19

A common approach when the users have stated what they think they

18Brooks 1986 [1995] p. 199.
19Ibid.

3.2 mainstream programming theories 61

want is to try to separate the “what” into two questions: “why” they
want it, which is then their business goals, and on the other hand
“how” it can be achieved, which is then a technical problem left for
the engineers to solve.20

If we look at the software engineering process models, we see
that requirements are generally relegated to a separate phase in the
beginning of the process (with the exception of the Rational Unified
Process, in which requirements are a separate workflow). The ideal is
that, first, the requirements are discovered out and carefully written
down in a requirements specification, after which the development
can proceed unhindered by doubts about what the system is really
supposed to do.

However, this ideal of separating the requirements specification
from the rest of the development process is just that – an ideal –
and it is seldom met in practice. C.A.R. Hoare, in his 1980 Turing
Award Lecture, stated that “the design of a program and the design
of its specification must be undertaken in parallel by the same person,
and they [the designs] must interact with each other.” 21 In the orig-
inal article describing the waterfall process, Royce states that: “For
some reason what a software design is going to do is subject to wide
interpretation even after previous agreement.” 22

When writing a requirements specification, it is of fundamental
importance that the software engineer has sufficient understanding of
what the user is trying to do. Otherwise, the requirements will ex-
press what the user literally says, but not what the user wants. This
kind of knowledge of the user situation is commonly called “domain
knowledge”.23 It is often contrasted with software engineering knowl-
edge, or programming knowledge, which is knowledge about how to
make the programs that is implicitly supposed to be independent of
the domain in which the program is to work.24

20Lauesen 2002 p. 29.
21Hoare 1980 [1981] p. 79.
22Royce 1970 p. 335.
23Lauesen 2002 p. 20.
24Ibid. p. 26.

62 chapter 3. theory

In accordance with the general software engineering focus on
documents, the literature on requirements engineering devotes much
attention to notation systems and formats for writing things down.
Søren Lauesen’s 2002 textbook on requirements engineering, for ex-
ample, describes writing down requirements in the form of state di-
agrams, state-transition matrices, activity diagrams, class diagrams,
collaboration diagrams, and sequence diagrams. Not surprisingly,
most of these forms of diagrams are originally made for program
design and thus meant to describe computer programs.

3.2.2 Agile software development

3.2.2.1 The origins of the Agile movement

The concept of Agile software development refers to a very diverse set
of approaches, whose underlying philosophies loosely share common
themes. The software engineering approaches, as described in section
3.2.1 (Software engineering), are to a large degree institutionalised in
university departments, professional associations, well-defined pro-
cesses and standards, and so on. In contrast, the Agile movement
is less organized, making it difficult to specify exactly what is Agile
and what is not. Approaches that are “outside” the movement are
also sometimes considered Agile so long as they share the same basic
attitude to development.

The basic characteristics of Agile methods is that they focus on
rapid change and “lightweight” processes. This contrasts with the tra-
ditional software engineering focus on “heavyweight” processes and
“plan-driven” development. The Agile movement emerged among
programmers who were familiar with software engineering thinking,
and thus Agile development is both derived from software engineer-
ing and formed in opposition to it. Understanding this tension within
Agile thinking is important for understanding the underlying philos-
ophy.

3.2 mainstream programming theories 63

The Agile movement started well before it gained its current
name. For example, the influential book Peopleware from 198725

brought to light a focus on the importance of teamwork that is central
to many Agile methodologies, and during the 1990s well-known Agile
methodologies, such as Dynamic Systems Development Methodology
and Extreme Programming, were developed. The movement gained
its name in 2001, when a group of influential software professionals
collaborated on the Agile manifesto, in which they agreed on some
core principles of their very different methodologies.

Before the publication of the Agile manifesto, the movement re-
ceived little attention and was, in general, not taken seriously within
academia and software engineering.26 Although the movement gained
more acceptance and interest from 2001, it continued for some years
to hold academic conferences separately from mainstream software
engineering.27 However, by 2014 Agile development has become suc-
cessful, as large companies such as the telecommunications firm Er-
icsson are seeking to become more agile.28 As with all successful
movements, claiming to be “agile” has now become fashionable.29

25DeMarco & Lister 1987.
26E.g.: “ . . . academic research on the subject is still scarce, as most of existing

publications are written by practitioners or consultants.” Abrahamsson et al. 2002
p. 9.

27“In a short time, agile development has attracted huge interest from the software
industry. . . . In just six years the Agile conference has grown to attract a larger
attendance than most conferences in software engineering.” Dybå & Dingsøyr 2008
p. 5.

28Auvinen et al. 2006: “Software Process Improvement with Agile Practices in a
Large Telecom Company.”

29“Even if the Extreme Programming philosophy advocates a complete development
methodology that seems to make sense, in practice it’s often just used as an excuse by
programmers to avoid designing features before they implement them.” Spolsky 2004
p. 243.

64 chapter 3. theory

3.2.2.2 The Agile manifesto

The Agile manifesto30 is shown in Figure 3.8. It consists of four pairs
of values, where each pair has a preferred value. After that follows 12
principles that give some methodological consequences of the values.
It is clear that the values and principles as they are written are open
to different interpretations – the creators intended it that way. This
means that the manifesto alone is not enough to understand Agile
practices.

For example, the phrase “we value individuals and interactions
over processes and tools” can be interpreted in a number of ways.
However, this does not mean that tools can be ignored; some method-
ologies place great emphasis on tools. In Extreme Programming, for
example, tools for automated testing and version control are impor-
tant. Rather, the sentence says something about the way tools should
be used.

By referring to themselves as anarchists (“Seventeen anarchists
agree . . . ”), the creators of the manifesto show that they are con-
scious of a break with mainstream software engineering traditions. At
the same time they are hinting that the Agile movement is a diverse
and non-dogmatic movement.31

The break with tradition is also seen in the way in which the core
Agile values – individuals and interactions, working software, cus-
tomer collaboration, responding to change – are contrasted with what
can be considered the foundational values of software engineering:
processes and tools, comprehensive documentation, contract nego-
tiation and following a plan. However, the creators do not dismiss
the traditional software engineering values: on the contrary, they ac-
knowledge their worth (“ . . . while we value the items on the right

30The manifesto was published on the Agile Alliance’s website in 2001. Dr. Dobb’s
Journal also published it online in August 2001 with comments by Martin Fowler and
Jim Highsmith. An edited version with comments is published as an appendix in
Cockburn 2001.

31The story about being diverse and non-dogmatic is repeated in the comments to
the manifesto, in which the creators stress that they are “fascinated” that they could
agree on anything. Fowler & Highsmith 2001. Also that they “hoped against hope” that
they could agree on something. Cockburn 2001 p. 177.

3.2 mainstream programming theories 65

The Manifesto for Agile Software Development
Seventeen anarchists agree:

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.

That is, while we value the items on the right, we value the items on the
left more.

We follow the following principles:

• Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

• Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advan-
tage.

• Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

• Business people and developers work together daily throughout the
project.

• Build projects around motivated individuals. Give them the en-
vironment and support they need, and trust them to get the job
done.

• The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

• Working software is the primary measure of progress.

Figure 3.8: The Agile manifesto. This is the version published in Dr.
Dobb’s Journal, August 2001. (Continued on the next page.)

66 chapter 3. theory

• Agile processes promote sustainable development. The sponsors,
developers and users should be able to maintain a constant pace
indefinitely.

• Continuous attention to technical excellence and good design en-
hances agility.

• Simplicity–the art of maximizing the amount of work not done–is
essential.

• The best architectures, requirements and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

—Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning,

Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,

Jeff Sutherland, Dave Thomas
www.agileAlliance.org

Figure 3.8: The Agile manifesto. (Continued from the preceding page.)

. . . ”). Thus, they are not only conscious of a break with tradition, but
also of having thir roots within that tradition and of being indebted
to it.

3.2.2.3 Scrum as an example

It is easier to understand the reasoning behind Agile through a con-
crete example than through discussing the Agile values in the ab-
stract. We will therefore take a look at the Scrum methodology, a
well-known Agile methodology that was developed principally by Ken
Schwaber and Jeff Sutherland during the 1990s.32 The word “Scrum”

32The presentation in this section is based mainly on Ken Schwaber’s 2003 book:
Agile Project Management with Scrum.

3.2 mainstream programming theories 67

itself comes from rugby football; it means that all players huddle to-
gether around the ball to restart play following an interruption.

There are three roles in a Scrum project, and anyone that is not
in one of these three roles is regarded as a spectator or an interested
party without direct authority. The roles are: Product Owner, Scrum-
Master, and Team.

The Product Owner is the representative of the customers or the
users of the software. It is his responsibility to provide the Team
with a list of features to implement, to take business decisions, and
to prioritise the features for the Team so that they know what they
should work on first.

The ScrumMaster is responsible for ensuring that the Scrum pro-
cess is being followed. The ScrumMaster is the representative of the
Team and acts in the Team’s interest to make sure that it has the
necessary conditions needed for doing the work. The ScrumMaster
is also responsible for teaching the Product Owner how to use the
Scrum process to get the maximum business value from the Team’s
work. The ScrumMaster role can be filled by anyone except the per-
son acting as Product Owner.

The Team comprises the people doing the work. The optimal
Team size is around seven persons. If the Team is many fewer than
seven, Scrum is not needed; if there are many more , it is best to
organize them in several Teams working together on a project. The
Team must be composed of competent individuals and there is no
hierarchy of authority within it. The Team manages its work itself
with the help of the input it gets from the Product Owner, and no one
outside the Team can dictate its work – not even the ScrumMaster.

The team works in periods of 30 days, called Sprints. Before each
Sprint, the Team meets with the Product Owner, who presents the
work he would like to be done and prioritizes it. The Team then
selects an amount of work that it thinks it can handle within one
Sprint and commits to doing it. After the Sprint the team again meets
with the Product Owner and other interested parties and presents all
the work it has completed during the last Sprint. The Team and the

68 chapter 3. theory

Product Owner plan the following Sprint based on what the Product
Owner now thinks are the most important features.

Before starting a new Sprint, the Team also holds a meeting in
which it reviews the last Sprint and assesses whether the working
process has any problems and whether it can be improved. This
Sprint review meeting is the main mechanism for continuous process
improvement in Scrum.

During each Sprint, the Team holds a 15-minute meeting every
day, called the Scrum meeting. Each member of the Team answers
three questions during the meeting: What have you worked on since
last meeting? What will you work on until next meeting? Are there
any hindrances to your work? Only the Team members and the
ScrumMaster are allowed to talk during the Scrum meeting.33 Other
people can observe, but they must remain silent.

These are the basic rules of working with Scrum. The complete
set of rules runs to a mere seven pages.34 Thus, the rules necessarily
leave many practical questions unanswered. Scrum does not provide
detailed rules for how the Team should work; rather, it provides a
basic frame of rules around which the Team itself has to figure out
how to work.

This means that in order to apply the Scrum rules correctly, one
has to know the motivation for why the rules are there. Scrum is built
on three core principles: transparency, inspection, and adaption. All
of the rules and practices of Scrum are designed to facilitate one or
more of these three principles; if a rule is used in a way that goes
against the principles, the Scrum process does not work as intended.

For example, Schwaber describes a Team that was following the
letter of the Scrum rules, but it was “hiding” behind task descriptions
that were so abstract that it was not possible to tell how much work

33And in principle also the Product Owner.
34Schwaber 2003, Appendix A. For comparison, the software engineering DOD-

STD-2167 Military Standard for Defense System Software Development is 90 pages long
– U.S. Department of Defense 1985. The software requirements for the safety critical
engineering process IEC 61508-3 are 112 pages long – International Electrotechnical
Commission 2009.

3.2 mainstream programming theories 69

was actually required to complete the tasks.35 Thus, the Team violated
the principle of transparency, which dictates that all relevant informa-
tion must be clear and accessible to everyone involved. In turn, the
violation of the transparency principle meant that the team lost the
ability to follow the other principles, inspection and adaption. Thus,
while the letter of the rules is not always important in Scrum, even a
small deviation from the core principles can have a detrimental effect
on the project.

My own interpretation of Scrum is that the methodology is, on
one hand, oriented towards the practical day-to-day tasks of develop-
ment. On the other hand, it rests on a subtle but coherent philosoph-
ical system that means that the details of the methodology must be
understood and cannot be changed haphazardly. The philosophical
system in turn rests on a certain work ethic. Scrum demands that the
Team members have an attitude to their work that is consistent with
the underlying values and principles of the methodology.

3.2.2.4 Programming practice

As discussed above, the Agile movement consists of a host of different
approaches. Some of the approaches considered to be Agile are Ex-
treme Programming, Adaptive Software Development, Feature-driven
Development, Dynamic System Development Methodology, Lean De-
velopment, Adaptive Software Development, Scrum, and the Crystal
methodologies.36 There are also approaches that, even though they
are not part of the Agile movement as such, can be considered Agile
in their spirit, either because they have influenced the Agile movement
or because they are similar in their practices to Agile methodologies.

The 1987 book Peopleware is not a development methodology,
but the authors wrote about the importance of teamwork and self-
organization in software development, themes that are central to Agile
methodology, and their ideas have influenced later Agile approaches.37

35Schwaber 2003 p. 96 ff.
36See Fowler & Highsmith 2001; Highsmith 2002; and Cockburn 2001.
37DeMarco & Lister 1987. For Peopleware’s influence on Agile methods, see for

example Cockburn 2001 p. 56, p. 80.

70 chapter 3. theory

The popular weblog writer Joel Spolsky has developed a “Joel Test”
of 12 easily checked, practical working conditions, which can be said
to embody many of the same values as Agile development.38 Andrew
Hunt and David Thomas are both co-creators of the Agile manifesto,
though they “have no affiliation to any one method.” 39 Their influ-
ence is through the book The Pragmatic Programmer which, as the title
suggests, contains practical advice on a fairly concrete level.40

Thus, there is a large diversity within the Agile movement. The
same ideas are often found in methodologies that otherwise differ
quite much, and the sources of inspiration for the Agile methodolo-
gies are varied, even eclectic. These aspects of the Agile movement
are all due to the fact that Agile is very much grounded in program-
ming practice. Programming practice develops with its own local
particularities and quirks, and this is reflected in the Agile movement.

To an extent, Agile is based on common sense, on what the pro-
grammer would do in any case – at least, this is how the Agile move-
ment sees itself. In the words of the Agile practitioner Jim Coplien:
“Everyone will like Scrum; it is what we already do when our back is
against the wall.” 41 Schwaber relates a story about a product manager
that applies Scrum, not in the form of the usual rules, but in the form
of simple common sense.42

The emphasis on practicality and common sense has some conse-
quences in practice that distinguishes the Agile movement from soft-
ware engineering. For example, as we saw in section 3.2.1.2 (Brooks),
Brooks took the documentation for a project to be the starting point
for thinking about how the project should be managed, stating that
five formal documents is the basis for all management decisions.

In contrast to this, Alistair Cockburn repeatedly stresses that doc-
umentation merely has to be good enough for its purpose, and that
how good this is always depends on the situation.43 In many situ-

38Spolsky 2004 chp. 3. First published online August 2000.
39Cockburn 2001 p. 177.
40Hunt & Thomas 1999.
41Schwaber & Sutherland 2010 p. 2.
42Schwaber 2003 p. 60.
43Cockburn 2001 p. 18, p. 63, p. 147 f.

3.2 mainstream programming theories 71

ations the important information is best conveyed in person, and a
formal document would be superfluous and even undesirable. This is
of course a pragmatic approach that in each particular situation takes
into account what the purpose of the documentation is.

As we saw with Scrum in section 3.2.2.3 (Scrum as an example),
Agile methodologies rest partly on an underlying philosophical sys-
tem and partly on principles that derive from concrete programming
practice. Each Agile methodology contains a particular mix of phi-
losophy and development practice. Scrum is quite explicit about its
core values, without becoming a treaty on philosophy. On the other
hand, Extreme Programming is very much based on concrete prac-
tices, and demands that programmers always work together in pairs,
that all program code is tested every day, and that everyone is sitting
in the same room or building – things that the slightly more abstract
rules of Scrum leave up to the developers themselves.

In general, Scrum instructs people how they should work, not what
they should do in their work. What they concretely have to do is some-
thing they have to know already – it is something that stems from
their previous experience, their tacit knowledge, and their culture.44

This necessary pre-existing experience and ability is treated differ-
ently by the different Agile methodologies. Extreme Programming,
for example, is more particular about “engineering excellence” than
is Scrum.45

In a nutshell, Scrum can be summed up as a project management
philosophy that is based primarily on programming practice instead
of on software engineering theory. To some extent, this is true of all
Agile methodologies.

3.2.2.5 Work ethics

Just as the philosophical foundation of Scrum rests on a certain work
ethics, so doother Agile methodologies. Agile methodologies require

44Cockburn in particular points to the importance of the developers’ culture. Cock-
burn 2001 p. 30, p. 55, p. 92. Bear in mind that their knowledge of programming is
part of their culture, among other things.

45Schwaber 2003 p. 107.

72 chapter 3. theory

that participants care about their work, and that they care about it in
a certain way. Doing a good job is its own reward, and to be able to
help other people out is the highest purpose of a job well done.

Ken Schwaber writes of a company that he helped to implement
Scrum: “When I last visited Service1st, it was a good place to visit. I
could watch people striving to improve the organization, the teams,
themselves, and their profession. I was proud to be associated with
them. . . . What more can you ask from life?” 46 The quote ex-
presses the sentiment that the work ethic – striving to improve – is the
most important part of the changes brought about by Scrum, and that
merely being associated with these working people is reward enough
for Schwaber.

The opening sentence of Jim Highsmith’s explanation of Agile
development is a quote from a project manager: “Never do anything
that is a waste of time – and be prepared to wage long, tedious wars
over this principle.” 47 This stresses that Agile methodologies are not
for people who do not care for their work, or who take the path of least
resistance; and it indicates that to uphold certain work ethics comes
with a cost. Agile practices can be difficult to implement because the
benefits do not come without hard choices.

Alistair Cockburn writes of the kind of people that make projects
successful, who Agile methodologies try to encourage: “Often, their
only reward is knowing that they did a good deed, and yet I con-
tinually encounter people for whom this is sufficient.” 48 He relates
a story of the teamwork in a hugely successful project: “To be able
to get one’s own work done and help another became a sought-after
privilege.” 49

In The Pragmatic Programmer a similar attitude to caring about
one’s work is displayed:

46Schwaber 2003 p. 118.
47Highsmith 2002 p. 4.
48Cockburn 2001 p. 63.
49Dee Hock, 1999, on the first VISA clearing program. Quoted in Cockburn 2001

p. 64.

3.2 mainstream programming theories 73

“Care about your craft. We feel that there is no point in
developing software unless you care about doing it well.
. . . In order to be a Pragmatic Programmer we’re chal-
lenging you to think about what you’re doing while you’re
doing it. . . . If this sounds like hard work to you, then
you’re exhibiting the realistic characteristic. . . . The re-
ward is a more active involvement with a job you love,
. . . ” 50

The Agile movement is of course not alone in having an ethical foun-
dation. Software engineering, for example, is founded on a profes-
sional ethic, in contrast to the work ethic of Agile. The software
engineering professional ethic is directed less toward the work being
its own reward, than it is toward upholding a professional community.
The core values of the software engineering ethic are: to be rigorous,
to be scientific, and to do good engineering.

In Scrum, the value of working in a certain way is only justified by
the value of the outcome. To work according to scientific principles,
for example, is only valued if the situation calls for it. The rules of
Scrum are really an insistence on the absence of unnecessary rules.
Ideally there would be no rules – only competent, cooperating indi-
viduals with common sense. However, since rules cannot be avoided
altogether, the rule set at least has to be minimal, such that if some-
one tries to impose new rules, one can reasonably balk, by objecting,
“that’s not Agile!”

The consequence of the Scrum rule set is of course to give ex-
ecutive power to the programmers. They determine how to do their
job, and it is the ScrumMaster’s task to ensure that no one interferes
with them. Fittingly, Schwaber likens the ScrumMaster to a sheep-
dog, so the ScrumMaster should not really be seen as a master who
commands, but more as one who serves and protects his flock.51

The Agile insistence on giving the programmers executive power
parallels Brooks’ advocacy for giving programmers executive power

50Hunt & Thomas 1999 p. xix f.
51Schwaber 2003 p. 16.

74 chapter 3. theory

by placing them at the top of the decision making hierarchy – see
section 3.2.1.2 (Brooks). However, while Brooks’ model has never really
caught on, Scrum has enjoyed widespread success. The main reason
is probably that unlike in the hierarchical model, with Scrum the
programmers’ power is strictly delimited. They reign absolutely, but
only over their own work process. The Product Owner has a clear
right and mechanisms to decide what they should work on, and he
has frequent inspection meetings to see that his wishes are carried
out.

In Scrum, along with the power to decide over their own work, the
programmers also receive the full responsibility of organizing them-
selves, alongside the demand that they are mature enough to do this.
For this reason, the organization of a team of peers without formal
hierarchy is an important part of Scrum. In Agile thinking this is
called self-organization, and it is a central concept.

Agile methodologies are advertized as being more effective and
deliver more value. However, in Agile thinking the effectiveness is
a consequence of the ethics: it is not that the most effective system
was found, with an ethical part added as an afterthought. Non-Agile
methodologies can be effective, but if their ethics are very different,
the results of their effectivity will be different as well.

3.2.2.6 Relationship to software engineering

As discussed above, the Agile methodologies are both derived from
software engineering and developed in opposition to it. Proponents
of Agile methodologies sometimes downplay this opposition in order
to make their methodologies more palatable to traditional software
engineers.

For example, Kent Beck, one of the creators of Extreme Program-
ming, pictures a continuous evolution that proceeds as a matter of
course from the earliest software engineering model, the waterfall
model (see Figure 3.2), over iterative development, and ending in Ex-
treme Programming.52 Beck’s illustration of this evolution is depicted

52Beck 1999.

3.2 mainstream programming theories 75

Figure 3.9: “The evolution of the Waterfall Model (a) and its long devel-
opment cycles (analysis, design, implementation, test) to the shorter, iter-
ative development cycles within, for example, the Spiral Model (b) to Ex-
treme Programming’s (c) blending of all these activities, a little at a time,
throughout the entire software development process.” From Beck 1999.

in Figure 3.9. With this evolutionary model, Beck is portraying his
Agile methodology as a continuation of software engineering prac-
tices, and stressing the commonality between software engineering
and the Agile movement.

The evolutionary model conceals the philosophical differences be-
tween software engineering and the Agile movement. Seen from the
perspective of the underlying philosophy, Agile is not so much a grad-
ual change in tradition as it is a radical shift in thinking.

Nevertheless, Agile has clear ties to the engineering tradition of
software engineering and this is an important part of the movement’s
self-perception. Both Schwaber and Highsmith conceptualize the dif-
ference between Agile and software engineering’s plan-driven meth-
ods as being between “empirical processes” and “defined processes”.53

The concepts of empirical and defined processes come from chemical
engineering process theory.54

The Lean approach to development has even stronger ties to tradi-
tional engineering, because it was originally developed in the Toyota

53Schwaber 2003 p. 2. Highsmith 2002 p. 4.
54Schwaber 2003 p. 146.

76 chapter 3. theory

Figure 3.10: Agile and plan-driven homegrounds. From Boehm & Turner
2003.

Production System for car manufacturing in the 1980s. The system
was later adapted to an Agile software methodology, primarily by
Mary and Tom Poppendieck.55

As the popularity of Agile methodologies has grown, so has the
interest from software engineering researchers in explaining these
methodologies in software engineering terms. One example of this
is a model proposed by Boehm and Turner in the 2003 article “Using
Risk to Balance Agile and Plan-Driven Methods”. This model, shown
in Figure 3.10, essentially presents Agile and plan-driven methods as
two alternatives, with the choice between them depending on five fac-
tors. Three of the factors are in reality matters of opinion rather than
factual assessments.

55Heidenberg 2011 p. 10 f.

3.2 mainstream programming theories 77

One of these three factors is whether the personnel “thrives on
chaos”. This is a statement so vague that it cannot be assessed fac-
tually. The second is what proportion of requirements changes per
month. Requirements change can be measured, but measuring lines
changed, number of features changed, or estimated amount of rework
changed will result in different figures – and in the case of measur-
ing estimates, the measure in practice becomes guesswork. The third
factor is the competence of the personnel, but again, the percentage
that is “able to revise a method, breaking its rules to fit an unprece-
dented situation” 56 is a criterion so vague that it becomes a matter of
opinion.

That leaves two factual factors: the number of personnel, and the
criticality of the software. It is indeed the case that, generally speak-
ing, larger and more critical projects require a larger bureaucracy.
Cockburn’s Crystal family of methodologies is an Agile attempt to
address these points.57 However, to make the choice of methodology
a matter of size, as Boehm and Turner do, is to overlook the fun-
damental differences in philosophy between Agile and software engi-
neering thinking. From an Agile point of view, the answer to larger
projects and bureaucracy is to make the bureaucracy more Agile – not
to discard the philosophy in favor of a software engineering model.

The traditional software engineering focus on planning and doc-
umentation is not surprising regarding the history of computer use.
Computers were first developed in settings that traditionally involved
strong bureaucracy and hierarchy: military staff and governmental ad-
ministration. According to Max Weber, one of the founders of modern
sociology, bureaucracy is characterized by making explicit rules and
upholding them through the use of well-defined duties, authorities,
and qualifications.58 The emphasis on these concepts is apparent in
software engineering, where they are often implemented as processes
(rules), roles (duties), standards (authority), and certifications (qualifi-
cations).

56Boehm & Turner 2003 p. 60.
57Cockburn 2001 chp. 6.
58Weber 1922 [2003] p. 63.

78 chapter 3. theory

This bureaucratic setting is often in conflict with the fact that pro-
gramming as an activity is intensely creative. The importance of the
creative aspect of programming is noted both by Brooks59 and by Pe-
ter Naur,60 famous for his contribution to the Algol 60 programming
language and winner of the Turing Award for computer science. If
the programmer spends most of his time administrating bureaucratic
rules, he will be creative in rule-making, not in programming. The
Agile movement can be seen as the creative programmers’ reaction to
the bureaucratic traditions of software engineering.

However, the tension between bureaucracy and creativity in pro-
gramming has deeper roots than the conflict between Agile and soft-
ware engineering regarding project management philosophy, for the
very origins and raison d´être of computers lie in bureaucratic orga-
nizations. The bureaucratic origins of programming are thus at odds
with its inherent creativity.

As an example of the practical consequences of this tension, we
saw in section 3.2.1.4 (Systems thinking) that the various documents
in a software engineering process are, in principle, all equal. From a
bureauratic point of view, their value lies in their function as transition
markers, which allow the process to proceed to the next step. The
actual content of the work products is not irrelevant, but secondary –
it is less important, as long as it lives up to the criteria for transition.

By contrast, a core Agile principle is that working, demonstrable
program code is the primary measure of success. Other work products
only have meaning through their contribution to the working code.61

Thus, in Agile methods, a piece of documentation is usually not pro-
duced unless there is a compelling reason to make it. Conversely, in
software engineering a piece of documentation will generally be made
unless there is a provision in the process to skip it.

The tension between bureaucracy and creativity in programming
highlights a fundamental difficulty of software development. Software
engineering thinking maintains that software development can and

59Brooks 1975 [1995] p. 7.
60Naur 1985 [2001] p. 194 f.
61Cockburn 2001 p. 37.

3.2 mainstream programming theories 79

should be equivalent to ordering a car part from a factory.62 From
an Agile perspective, software development is a collaboration with
the customer, and the customer needs to be involved as much as the
programmers. In chapter 6 (Safety critical programming) we will take
a closer look at what software development and car manufacturing
have in common in practice.

3.2.3 Computer science

3.2.3.1 Science, mathematics, formal systems

Computer science is the most prominent of the academic fields that
study computers and programming. It was proposed in 195963 and
created as a university field in the U.S. a few years afterwards. Soft-
ware engineering is sometimes regarded as a subfield of computer
science and this is true to a degree but the two schools of thought rest
on somewhat different academic traditions. Until around 1970 most
people who had anything to do with programming computers were
scientists, mathematicians, or electrical engineers.64 While software
engineering has its origins in the intellectual tradition of electrical
engineers, computer science is dominated by the perspectives of sci-
entists, who need computations, and mathematicians.

Howard Aiken, who developed some of IBM’s influential first au-
tomatic computers, imagined in 1937 that computers would be used
for scientific calculation in, for example, theoretical physics; and his
idea was to use computers for things that required a great deal of cal-
culation and tabulation, for example numerical differentiation.65 This
vision of computers was of specialized machinery for narrow scien-

62Czarnecki & Eisenecker 2000 p. 1 f.
63Fein 1959: “The Role of the University in Computers, Data Processing, and Related

Fields.”
64Mahoney 1990 p. 328.
65Aiken 1964 p. 192 ff, p. 196.

80 chapter 3. theory

tific fields, a long way from the general appeal of applications such as
spreadsheets and accounting.

In 1981, a programming guide for microprocessors gives labora-
tory work as an example of what computers might be used for. This
is not the specialized scientific calculations envisioned by Aiken, but
a practical device that can ease the laboratory worker’s daily life:
“There are many applications for division, but one of the most com-
mon is in taking the average of a set of numbers – perhaps the results
of a series of laboratory tests.” 66

The famous Dutch computer scientist Edsger W. Dijkstra regards
programming as a branch of applied mathematics and, at the same
time, a branch of engineering. This makes for a neat division of com-
puting into computer science on one hand and various flavours of
engineering on the other. The emphasis on mathematics is shared
by Lawrence C. Paulson, professor of programming languages, who
advocates a form of programming – functional programming – that
consists of expressions that obey mathematical laws.67 Functional
programming has met with limited success in the programming in-
dustries, but has been popular within academia.

For Paulson, the aim of functional programming is to make pro-
grams easier to understand by mathematical reasoning.68 In addi-
tion, the use of mathematical analysis is said to break bad habits that
programmers form through the use of low-level programming lan-
guages,69 where “low-level” means that the programming languages
have a fairly simple and direct relationship between how code is writ-
ten and what the computer does.70 In other words, direct manipula-
tion of the machine results in bad habits, and mathematical reasoning
is the way to combat this.

66Scanlon 1981 p. 117.
67Paulson 1991 [1996] p. 2 f.
68Ibid. p. 10.
69Ibid. p. 12.
70This does not mean, however, that they are simple to use. Many of the com-

plexities that “high-level” programming languages introduce are things that make the
programming task easier for the programmer.

3.2 mainstream programming theories 81

Some computer scientists place great emphasis on formal logic
and formal systems, and regard these as the essential characteristics
of computer science. According to one textbook of logic in computer
science:

“The aim of logic in computer science is to develop lan-
guages to model the situations we encounter as computer
science professionals, in such a way that we can reason
about them formally. Reasoning about situations mean
constructing arguments about them; we want to do this
formally, so that the arguments are valid and can be de-
fended rigorously, or executed on a machine.” 71

The reasoning here is that formal arguments lead to valid arguments
that can be defended rigorously. Another example of thinking that
is centered on formal systems comes from a textbook in type the-
ory. Type systems is a technique that is used in every modern pro-
gramming language; and this textbook states that type systems are
light-weight formal methods that can be applied even by program-
mers unfamiliar with the underlying theory.72 To view type systems in
this light emphasizes formal systems much more than as a natural de-
velopment of programmers’ need to keep different kinds of numbers
and letters separate from each other.

3.2.3.2 Algorithms and data structures

Computer science’s primary study object is programs, or program-
ming languages. Therefore, it makes sense to try to establish how
programs are perceived by computer scientists: that is, what do they
mean when they speak of a program? The authors of the famous
textbook The C Programming Language write that C consists of data
types and structured types, mechanisms for fundamental control flow,
and mechanisms for separating computation into functions and for

71Huth & Ryan 2000 [2004] p. 1.
72Pierce 2002 p. 1.

82 chapter 3. theory

separate compilation.73 Schematically, a programming language, and
by extension a program, can thus be described as:

structured data + fundamental control flow + modular
mechanisms.

Data structures are descriptions of how things, i.e. numbers and text,
are placed in the machine memory. Control flow is the mechanism
to describe algorithms: an algorithm is a sequence of steps that the
computer carries out; it is “what the program does”. The things that
an algorithm operates upon are the data. Modular mechanisms tie
smaller program modules together into larger programs.

Charles Simonyi, a programmer who is famous for his work on
Microsoft Word and Excel, has said that programming is a science,
an art, and a trade.74 The science is knowledge of the best algorithms
to use; the art the ability to imagine the structure of the code; the
trade is knowing the details of writing efficient code.

Bjarne Stroustrup, the creator of the widely used C++ program-
ming language, has written that procedural programming – what he
calls “the original programming paradigm” – amounts to the imper-
ative: “Decide which procedures you want; use the best algorithms
you can find.” 75 He continues: “The focus is on the processing – the
algorithm needed to perform the desired computation.” This sums up
neatly the perspective of much of classical computer science: it is first
and foremost a science of algorithms.

A complementary view is presented by Naur, who places the em-
phasis not on algorithms but on their counterparts, data structures.
For Naur, computer science is simply the description of data and data
processes. For this reason, Naur wanted computer science to be called
“datalogy” – “The datalogist describes data and data processes in a
way similar to how the botanist describes plants.” 76 The name caught
on in the Nordic countries, where it is used to this day (In Danish:
datalogi. In Swedish: datavetenskap, “data science”).

73Kernighan & Ritchie 1978 [1988] p. 1.
74Lammers 1986 p. 15.
75Stroustrup 1985 [1997] p. 23.
76Naur 1995 p. 9.

3.2 mainstream programming theories 83

Apart from the traditionally close relationship between science
and mathematics, there is a concrete reason that science and math-
ematics unite in computer science around the study of algorithms.
Scientific computing applications often consist of small pieces of code
that execute millions of times.77 This means that any change to the
central piece of code that makes it more efficient can result in saving
time, and thereby reducing costs. In turn, this has led to a focus on
efficient algorithms – an area where mathematics has had early and
large successes in the field of computing.

Neil Jones, professor of programming languages, provides a good
example of a view of computer science that combines mathematics, al-
gorithms, and formal systems. He regards a programming language,
L, as a mathematical function that maps programs to their mean-
ings:78

[[]]L : Programs → Meanings

An individual program, p, is similarly regarded as a mathematical
function from input to output data:

[[p]]L : Input → Output

This view of programs and programming languages leads, unsurpris-
ingly, to a research focus on the mathematical functions that can be
expressed by a computer. In mathematical terminology, these are
called computable functions – in this context, this is another name
for algorithms.

3.2.3.3 Abstraction

A common theme in computer science thinking is abstraction; both as
an ideal and as an explanation of progress. The standard explanation
for the evolution of the high-level programming languages of our day
is thus:79 In the beginning programs were written directly in binary

77Patterson & Hennessy 1997 p. 86.
78Filinski et al. 2005 chp. 1, p. 7.
79Patterson & Hennessy 1997 pp. 6–8.

84 chapter 3. theory

machine code. From this evolved the slightly more abstract assembly
code, in which programmers do not have to remember the numbers
of locations in the machine’s memory but can use names instead. Af-
ter that came low-level programming languages which are even more
convenient for the programmer to use and regarded as more abstract.
Finally, there are the high-level programming languages, which are
seen as the most abstract and which a programmer can use without
knowing many of the technical details of the machines he is pro-
gramming for. Thus, historically, what is today known as low-level
programming languages was once thought of as high-level.

Abstraction in this sense means that the programming language
does not closely describe what the machine does, but instead presents
a symbolic notation – an abstraction – that is seen as easier to use.
Abstract programming languages are considered to lead to a more
natural way of thinking as well as being more productive, because the
programmer has to write fewer lines of code.80 Conversely, assembly
language and low-level programming languages are considered to lead
to an unnatural style of programming: “Assembly . . . [is] forcing the
programmer to think like the machine.”81

According to Stroustrup, a programming language is a vehicle
for machine actions, plus concepts to use when thinking.82 This view-
point is a variant of an underlying idea common to much of computer
science: that a programming language is in some sense a way of think-
ing, and that abstraction is the ideal for thinking. Moreover, it is a
common viewpoint that “every high-level language provides abstrac-
tion of machine services.”83 Combined with Stroustrup’s definition,
this implies that a good, high-level programming language provides
abstract concepts to think about machine actions that are themselves
presented as abstractions.84 Jones writes that high-level programming

80Ibid.
81Ibid. p. 6.
82Stroustrup 1985 [1997] p. 9.
83Pierce 2002 p. 6.
84The general view described here is not exactly Stroustrup’s own position. He

advocates that the programming language, sans the concepts for thinking, should be
“close to the machine” i.e. non-abstract. Stroustrup 1985 [1997] p. 9.

3.2 mainstream programming theories 85

languages abstract away from any particular machine;85 this view-
point of course works well with an orientation of research away from
engineering and towards mathematics.

The ideal of abstraction is not only applied to program code but
also to the textbooks and articles that explain programming lan-
guages. To give an example, here is a textbook definition of what
a type system is:

“A type system is a tractable syntactic method for proving
the absence of certain program behaviours by classifying
phrases according to the kinds of values they produce.”86

The definition is so abstract and general that it hardly enlightens any-
one who does not already know what a type system is. A definition in
plain language could be: a type system is a mechanism in a program-
ming language that makes sure that different kinds of values do not
accidently get mixed up; for example numbers and letters, or integers
and fractional numbers.

According to the same textbook, the history of type systems begins
in the 1870’s with Gottlob Frege’s works on formal logic.87 However,
Frege did not have programming languages in mind: type systems
were first introduced to programming languages in the 1950s for rea-
sons of efficiency.88 To place the beginnings of type systems with
Frege has the effect of maximising the emphasis on formal, logical,
and mathematical aspects at the cost of downplaying practical as-
pects.

Finally, we should note with caution that abstraction is sometimes
given an unrealistic importance, as if “more abstract” is the same as
“better”. In reality, to regard a program or programming language
as abstract is simply a perspective. Any given program must run as
concrete instructions on a concrete computer in order to be useful,
no matter how “abstract” the programming language is. From the

85Filinski et al. 2005 chp. 1, p. 3.
86Pierce 2002 p. 1.
87Ibid. p. 11.
88Ibid. p. 8 f.

86 chapter 3. theory

perspective of the machine that executes the program, the high-level
programming language program is every bit as concrete as binary
machine code – the layers of programs that make up a high-level
programming language are perhaps thought of as abstractions, but
they exist in a concrete form.

3.2.3.4 Machine-orientation

Despite, or perhaps because of, the emphasis placed on mathematics
and logic in computer science, the thinking is remarkably oriented
towards the machines, meaning that the world is seen almost exclu-
sively in terms of what the computers can do, rather than what people
do. We read in a quote above that “Reasoning about situations means
constructing arguments about them; we want to do this formally, so
that the arguments are valid and can be defended rigorously, or ex-
ecuted on a machine.”89 This quote can also be read as indicating
that computer scientists should work with formal systems precisely
because they can be executed by a machine. Thus, the notion of an
abstract machine comes to dictate the focus of computer science.

Within computer science, the study of programming languages is
generally divided into syntax and semantics, where syntax is the study
of programming notation and semantics the study of the meaning
of programs. This notion of meaning, however, includes only the
mathematical formalization of a program, which is also what can be
executed on a machine.90 The usual sense of semantics – which is the
meaning a program has to a human – is lost.

Paulson writes that an engineer understands a bicycle in terms
of its components, and therefore a programmer should also under-
stand a program in terms of components.91 This thinking is a kind of
reification: mistaking concepts for concrete things. Machine-oriented
thinking easily leads to this kind of philosophical mistake, because
focusing solely on the machine means that the inherent ambiguity
of human thinking is ignored. The comparison between bicycle and

89Huth & Ryan 2000 [2004] p. 1.
90Filinski et al. 2005 chp. 1, p. 2.
91Paulson 1991 [1996] p. 59.

3.2 mainstream programming theories 87

program is fine as a metaphor – if it is extended with additional ex-
planation – but it cannot stand alone as an argument in itself.

3.2.3.5 Premises of argumentation

There is within computer science an unfortunate tendency to ignore
the premises of the mathematical systems upon which the research
focuses. Naur calls it a pattern in ignoring subjectivity in computer
science.92 By “subjectivity”, Naur largely means the consequences for
the people who are to use the programs, that is, the programs’ use-
fulness. According to Naur, computer science publications commonly
postulate a need for a new notation for some purpose. The notation
is then presented in thorough technical details; next, it is claimed in
the conclusion that the need is now met, without any evidence.

As an example, we will look at the doctoral dissertation of Ulla
Solin Animation of Parallel Algorithms from 1992. This is not badly-
executed research – on the contrary, it is exemplary in fulfilling the
expectations of a dissertation in computer science and precisely be-
cause of that it serves well as an example.

In the introduction to the dissertation, Solin briefly explains what
the subject is: making animations out of programs.93 She then pro-
ceeds in seven chapters to demonstrate a detailed method of con-
structing animated programs, complete with mathematical proof. The
dissertation’s conclusion begins with the sentence: “It is obvious that
animation has a wide range of potential use and should become an
important tool for testing and analysing algorithms.”94

The problem is that it is not at all possible to conclude this from
the dissertation, which concerns only the details of a solution to the
problem that has been posed. The statement that animation should
be an important tool is actually the direct opposite of a conclusion:
it is the premise for the whole dissertation. Without assuming ani-
mation of programs to be important, it makes little sense to devote

92Naur 1995 p. 10.
93That is, making a computer-generated animated film clip out of a computer pro-

gram to illustrate how that program is behaving.
94Solin 1992 p. 101.

88 chapter 3. theory

a dissertation to it. Nor is it obvious that animation is as useful as
claimed – as it is, history so far has shown that animating programs
is not actually an important tool for programming.95

An example on a larger scale comes from Jones, who conducted
research in automatic compiler generation since 1980.96 Twenty-five
years later he writes that: “It is characteristic of our grand dream
[of automatic compiler generation] that we are just now beginning to
understand which problems really need to be solved.”97 However,
Jones does not call for an examination of the premises of the dream,
but rather advocates more mathematics: “What is needed is rather
a better fundamental understanding of the theory and practice of
binding time transformations . . . ”.98

The focus on mathematics and logic to the exclusion of the pre-
mises of research sometimes has the consequence that overly spe-
cialized subfields in computer science develop an unrealistic sense of
their own importance. For example, Glynn Winskel, a researcher in
the field of programming language semantics – which is the mathe-
matical study of programming languages – writes that semantics is
useful for “various kinds of analysis and verification” and can also
reveal “subtleties of which it is important to be aware.”99 Moreover,
semantics is arguably not of great practical use, since “it is fairly in-
volved to show even trivial programs are correct.” 100 Overall, this
does not give the impression that semantics is a field of extreme im-
portance for the whole of computer science. Yet the fact that program
semantics is regarded as belonging to the foundations of computer

95It is not for want of trying. So-called visual programming is a long-standing idea
held by computer scientists. See for example the August 1985 issue of IEEE Com-
puter magazine devoted to “Visual Programming”, including an article on “Animating
Programs Using Smalltalk”.

96Jones & Schmidt 1980: “Compiler Generation from Denotational Semantics.”
97Filinski et al. 2005 chp. 1, p. 22.
98Ibid.
99Winskel 1993 p. xv.
100Ibid. p. 95.

3.2 mainstream programming theories 89

science101 indicates the emphasis placed upon the mathematical per-
spective.

3.2.3.6 Work processes

We will now look at what computer science has to say about program-
ming as an activity – that is, about the work processes of program-
ming. According to Dijkstra, programming is essentially a matter of
effective thinking.102 Dijkstra sees the programming field as being in
an ongoing transition from a craft to a science. The goal of using
computers, and of thinking, is to reduce the amount of reasoning that
is necessary in order to arrive at effective, intellectually elegant solu-
tions to problems. What Dijkstra means by “reasoning” is essentially
calculation, since it is something a computer can do.103 It is not dif-
ficult to discern the ideals of a mathematician in Dijkstra’s approach
to programming.

For Simonyi, the central things in programming is imagining and
writing code to maintain invariances in data structures. “Maintaining
invariances” is a concept that comes from mathematical analysis of
data structures. Simonyi writes that: “Writing the code to maintain
invariances is a relatively simple progression of craftmanship, but it
requires a lot of care and discipline.” 104

Stroustrup has a simple phase model of development that is remi-
niscent of software engineering’s waterfall model. According to Strous-
trup, the development process consists first of analysis, then design,
and finally programming.105 There is a marked difference from soft-
ware engineering, however, in that Stroustrup emphasises that many
of the details of the problem only become understood through pro-
gramming. This aspect of the model seems more in line with Ag-
ile thinking, which discourages programmers from planning too far

101Winskel’s book is published in the Massachusetts Institute of Technology series
“Foundations of Computing”.
102Dijkstra 1975.
103Dijkstra 1975 p. 6 f.
104Lammers 1986 p. 15.
105Stroustrup 1985 [1997] p. 15.

90 chapter 3. theory

Figure 3.11: “Accumulated errors of TEX78 divided into fifteen categories.”
From Knuth 1989.

ahead according to the view that only working code can show if the
program solves the right problem.

Since, as we have seen, computer science is preoccupied with
mathematics and a machine-oriented perspective, it has little to say
regarding the programming work process compared to software engi-
neering and Agile thinking. In general, according to computer science
the way a programmer works is much the same as the way a stereotyp-
ical mathematician works. One notion is that he works on the basis
of genius inspiration, which is basically inexplicable; another notion
is that he follows a very personal and ad hoc process that cannot
meaningfully be systematized.

The famous computer scientist Donald E. Knuth can serve as an
illustrative example of the “genius” perception of programming pro-
cesses in computer science. Knuth is the author of the colossal, un-
finished, and highly acclaimed The Art of Computer Programming. His
article “The Errors of TEX” tells the story of one man (the genius of
the story) who worked alone for 10 years on a typesetting program

3.2 mainstream programming theories 91

that later went on to become a huge success.106 He then publishes a
list of all the errors that he discovered and corrected in the program
during the 10 years, thinking that somehow a list of more than 850
former errors in a program that he alone has worked on could be of
interest to other people.

As it is, the list has no practical use, but it does serve as a
monument to Knuth’s lonely programming effort. Most interesting
is Knuth’s classification of the errors: some are classified according to
technical criteria such as “algorithm” (A), “data” (D), and “robustness”
(R), but others are classified in purely personal categories: “blunder”
(B), “forgotten” (F), and “surprise” (S). (See Figure 3.11.) It is of course
not surprising that there were errors in the program – every program-
ming effort is a process of trial and error. Nor is it surprising that
the programmer’s personality and emotions play a part in the pro-
gramming process. It is more remarkable that Knuth seems to regard
his strictly personal experience of the process as something that can
meaningfully be communicated to others in schematic form.

Naur writes that programming is primarily a question of achiev-
ing a certain kind of insight.107 He calls this building a theory of
the matters at hand. Programming is therefore a process of gaining
insight, and it is accordingly not possible to find any “right method”
for programming in general since every situation demands a unique
insight. What Naur calls “theory” is in my opinion close to what
is, in hermeneutical theory, termed “understanding”; and as we shall
see in chapter 5.2 (Analysis), Naur’s view of the programming pro-
cess appears to be quite close to a hermeneutical understanding of
programming.

106Knuth 1989.
107Naur 1985 [2001] p. 186.

92 chapter 3. theory

3.2.4 Object-Oriented Programming

Object-Oriented Programming is a collection of programming tech-
niques and a design philosophy that was primarily developed during
the 1980s and became successful, perhaps even dominant, during the
1990s. The spread of Object-Oriented Programming was largely due
to the popularity of the programming languages C++ and later Java,
which in many branches of the programming industries became de
facto standards.

Each Object-Oriented programming language has its own distinc-
tive features, so it is difficult to give a precise definition of what consti-
tutes Object-Orientation. However, if one looks at the basic features
of Object-Orientation there are a few traits that seem to be common.
Object-Oriented programming techniques are primarily characterized
by the use of so-called “classes” and “inheritance”. In addition to
these, Object-Oriented programming languages are founded upon a
distinctive philosophy of Object-Oriented Design.

An Object-Oriented class is essentially the same as what is more
generally, in computer science, called an abstract data type. It means
that the programmer is not limited to working with the data types that
can be represented directly by the machine, such as letters and num-
bers, but can also construct more complex data structures such as lists
and trees. Additionally, classes use “information hiding”, or “encap-
sulation”, which means that the details of the class are shielded from
any code outside the class, so that the programmer is not tempted to
use bad low-level habits in his code.

What makes classes different from abstract data types is the other
defining Object-Oriented technique: inheritance. Inheritance is essen-
tially a way of diverting the control flow of a program. Classes can be
divided into an inheritance hierarchy, in which some classes “inherit”
the other classes. Whenever a programming operation is requested,
the inheritance hierarchy then decides which of the classes’ program
code is executed.

3.2 mainstream programming theories 93

Stroustrup has the following view of what constitutes the Object-
Oriented programming process (with my explanations in parenthe-
ses):108

1. Decide on classes (define the data structures to be used).

2. Provide operations for classes (write the program code).

3. Make commonality explicit with inheritance (modify the control
flow).

Object-Oriented Programming is, as mentioned above, founded upon
an Object-Oriented Design philosophy; however in practice, the pro-
gramming techniques and the design philosophy are distinct
approaches that are not always encountered together. The first princi-
ple of Object-Oriented Design is to “use inheritance to classify objects
into taxonomies” 109 (The “objects” spoken of here have nothing to do
with the usual sense of the word “object”, but refers to instances of
Object-Oriented classes.) Stroustrup writes: “One of the most pow-
erful intellectual tools for managing complexity is hierarchical order-
ing.” 110

The second principle of Object-Oriented Design is to use inheri-
tance to exploit commonality in the program code – this is also called
code reuse. However, there is a difference between conceptual com-
monality, which somehow reflects some aspect of reality, and artificial
similarities.111 Obviously, a true Object-Oriented design build on the
former while avoiding the latter.

Object-Oriented Design has been criticized for being a far-fetched
design philosophy, while Object-Oriented Programming generally is
taken for given. Lauesen writes:

“The elusiveness of transferring functions from domain to
product makes it difficult to use the object approach for
requirements. . . .

108Stroustrup 1985 [1997] p. 39.
109Bruegge & Dutoit 2000 [2010] p. 347.
110Stroustrup 1985 [1997] p. 15.
111Ibid. p. 732.

94 chapter 3. theory

There are many other problems with modeling the
domain by objects, one being that users have difficulties
seeing that a hotel stay or an invoice can perform opera-
tions, such as object modeling suggests. Object modeling
also suggests that users are objects with operations, which
users find strange.

Another problem is that class models are not suitable
for describing how objects co-operate to support the user
tasks. . . .

However, there are systems where the object approach
works well for analysis and requirements . . . In these
cases we either model a computer artefact or we model
something that really is a collection of physical objects.
For good reasons, object people prefer these kinds of sys-
tems as examples.

These observations apply to object-oriented analysis
and requirements specification. Object-oriented program-
ming is another issue. . . . because many programming
tools and packages are object-oriented, OO-programming
is often a must.” 112

Stroustrup himself admits that “In many cases there is no real ad-
vantage to be gained from inheritance.” 113 A textbook on Object-
Oriented software engineering points out that “ . . . inheritance is such
a powerful mechanism that novice developers often produce code that
is more obfuscated and more brittle than if they had not used inher-
itance in the first place.” 114 Here, a critic of Object-Oriented Design
might point out that it is perhaps not on account of inheritance being
too powerful that it produces brittle and obfuscated code, but due to
this not being a very good design principle in the first place.

Another problem that Object-Oriented Programming and Design
shares with the rest of computer science115 is that its fundamental

112Lauesen 2002 p. 184 f.
113Stroustrup 1985 [1997] p. 727.
114Bruegge & Dutoit 2000 [2010] p. 348.
115See section 3.2.3.4 (Machine-orientation)

3.3 hermeneutical theory 95

principles carry with them a danger of reification – that is, a danger of
mistaking programming concepts for real things. This is because the
Object-Oriented approach is very strongly based upon the notion that
a program is a model of reality, and not just a useful tool for some
purpose. According to Stroustrup: “The most fundamental notion
of object-oriented design and programming is that the program is a
model of some aspect of reality.” 116

The following example is taken from the influential book Design
Patterns: Elements of Reusable Object-Oriented Software. The authors
write about how the program code for a document editing program
should be structured: “Logically there is [a programming] object for
every occurrence of a given character in the document: Physically,
however, there is one shared . . . object per character”.117 This is, of
course, absurd; physically, there is only the computing machine. Any
“object” in the program code will be physically present only in the
form of electrical currents in the machine. This goes to show that
when the whole design philosophy is based on the object concept, it
is easy to forget that the objects are metaphorical and not real.118

3.3 Hermeneutical theory

3.3.1 Introduction

Hermeneutics is a theory both of how understanding takes place and
of what understanding is. Hermenutical theory is used in this treatise
in order to interpret what software developers do and to understand
better why work processes take the form that they do.

116Stroustrup 1985 [1997] p. 732.
117Gamma et al. 1994 p. 196.
118Latour observes that reification happens all the time in science and has explained

it as a consequence of the rush to develop unassailable theories and establish facts.
Latour 1987 p. 91 f.

96 chapter 3. theory

Hermeneutical
concept

Characteristics

Prejudice Prejudice is a prerequisite for understanding – it
can have either a positive or negative influence.

Authority These are the sources of reason that are recognized
as valid.

Received tradition All understanding builds upon some kind of tradi-
tion, and carries this tradition onwards itself while
also contributing to it.

Personal reverence This is the basis for authority. Since understanding
is done by persons, personal reverence is crucial.

Pre-understanding This is the kind of factual understanding that is
necessary for understanding, but leaves relatively
little room for interpretation – for example to know
the language of a text one wishes to read.

Understanding In hermeneutical theory, understanding is produc-
tive and existential. Briefly put, this means that
understanding has consequences.

Hermeneutical
circle

A concept that expresses the relationship between,
for example, part and whole, or between action and
reflection.

Effective history A concept that expresses the historical nature of
knowledge and understanding.

Question All interpretation and understanding is driven by
some kind of question.

Horizon of
understanding

One’s horizon of understanding is the amount of
things that are understandable given the present
state of one’s knowledge and prejudice. Phenom-
ena beyond the horizon of understanding appear
meaningless.

Application Since understanding has consequences, it is crucial
to what end the understanding takes place. The
intended application of an effort of understanding
has an impact on the understanding itself.

Figure 3.12: Some hermeneutical concepts used in the analyses of program-
ming work process.

3.3 hermeneutical theory 97

In Figure 3.12 are listed some key hermeneutical concepts that will
be applied in the analyses in this treatise, along with some very short
explanations of the concepts. The use of each concept and its more
precise meaning is explained in the following sections.

3.3.2 What is hermeneutics

Briefly put, hermeneutics is the scholarly discipline that studies inter-
pretation. Originally, hermeneutics referred specifically to interpre-
tation of the Bible because for most of European intellectual history,
theology was considered the highest form of study. Over time, her-
meneutics came to be extended to other fields of study.

Thus, the German philosopher Hans-Georg Gadamer has devel-
oped a coherent view that has subsequently come to be known as
“philosophical hermeneutics”. Gadamer published his magnum opus
called Wahrheit und Methode (Truth and Method) in 1960 at the age
of 60. In this work Gadamer summarizes and engages in a discus-
sion with more than 2,000 years of European thinking, from Aristotle
through the developments of the Middle Ages up to and including the
science of his own time.

According to Gadamer, classical hermeneutics is divided into three
branches: theological, judicial, and philological hermeneutics, which
are concerned with interpreting the Bible, llegal texts, and works of
great literature respectively . During the 18th and 19th centuries the
branches of classical hermeneutics were supplemented by historical
hermeneutics. The growing professionalization and objectivism of
historians meant that they were faced with pertinent questions about
how to ensure a true interpretation of history; they turned to herme-
neutics for assistance with their task.

Since Gadamer’s work is a reaction to the historicism of the 19th
century, he is first and foremost concerned with how interpretation
can overcome the barrier of historical distance. However, for our pur-
poses we will assume that this distance in time might as well be a

98 chapter 3. theory

distance in culture. After all, Gadamer’s central problem concerns
how it is possible to understand an author whose historical distance
makes him strange to us. The strangeness, however, is still present
when we try to bridge a contemporary, but cultural, distance. Philo-
sophical hermeneutics applies equally well to historical and cultural
differences because culture is in essence historical.

It is important to understand that Gadamer’s philosophy is gen-
eral, in the sense that it applies to all true understanding, not only sci-
entific understanding or understanding in particular situations. This
is the case despite the fact that the situations that Gadamer mostly
uses as examples are those of the scholar, the historian, and the judge.
Gadamer uses hermeneutical understanding as a model of all true
understanding. By saying what true understanding is, he is implicitly
also defining false understanding: namely, an understanding that dis-
regards the fundamental restrictions of hermeneutics, thereby fooling
itself.

3.3.3 Prejudice and reason

Prejudice119 is a central concept in philosophical hermeneutics. Preju-
dice is a prerequisite for understanding.120 As such, reason and preju-
dice are intimately connected, because reasoning can only take place
on the foundation of prejudice. Reason cannot justify itself; there will
always be some axioms, basic assumptions, or a priori knowledge that
lay the ground rules for reason, and these assumptions are part of
prejudice.

The Enlightenment philosophers and the romanticism movement
have tried to replace prejudice by reason. However, the very notion
that it is possible to do so is itself a form of prejudice.121 An archetyp-
ical proponent of this kind of thinking is Descartes, who refused to

119“Vorurteil”.
120Gadamer 1960 [1965] II.II.1.a.α, p. 254 ff.
121Ibid. II.II.1.a.β, p. 260.

3.3 hermeneutical theory 99

accept anything as a basis for truth other than that which he could
reason about the world. The only basis for his reasoning was his own
ability to reason, as expressed in his famous aphorism “I think, there-
fore I am”. Of course, as others have pointed out, Descartes did not
adhere to his own strict methodology.122

To explain why prejudice is inevitable, consider that as you are
reading this text you believe that I have something to tell you, that I
am not lying or trying to deceive you, and that I am not saying the
opposite of what I mean – in other words, that my words have mean-
ing, and that this meaning can be understood. Your belief is a part of
your prejudice, and indeed it is necessary in order to understand the
text.

A radical rejection of prejudice is at the same time a rejection of
the meaningfulness of the outside world. The archetype of a person
rejecting all prejudice is a person suffering from paranoid schizophre-
nia: because he refuses to see meaning in the outside world, it be-
comes unintelligible to him, and in turn his own internal world be-
comes contingent, random, and meaningless.

Prejudice is thus a prerequisite for understanding, but it does not
follow from this that all prejudice is equally good, or that prejudice is
good just because it is prejudice. There exists false and true prejudice;
prejudice that helps understanding and prejudice that hinders under-
standing. The task of hermeneutics is to determine true prejudice
from false.123

122“[D]espite his austere recommendations about the methods of discovery and
demonstration, he hardly ever followed those methods, hardly ever wrote in the same
genre twice”. Amelie Oksenberg Rorty 1983 as quoted in McCloskey 1985 [1998] p. 59.
123“Es ist diese Erfahrung, die in der historischen Forschung zu der Vorstellung ge-

führt hat, daß erst einem gewissen geschichtlichen Abstande heraus objektive Erkennt-
nis erreichbar werde. . . . Nichts anderes als dieser Zeitenabstand vermag die eigentlich
kritische Frage der Hermeneutik lösbar zu machen, nämlich die wahren Vorurteile, un-
ter denen wir verstehen, von den falschen, unter denen wir mißverstehen, zu scheiden.”
Gadamer 1960 [1965] II.II.1.c, p. 282.

100 chapter 3. theory

3.3.4 Authority

The claim made by Enlightenment philosophy that reason is limit-
less has its opposite in the claim made by the Christian intellectual
heritage: that man is fundamentally limited by existence and by his-
tory.124 By existence because he cannot do whatever he wants; by
history because his knowledge is always given in a certain historical
context. From this it follows that tradition is always a part of under-
standing and history.125 There is always an already existing under-
standing and an existing way of doing things that must be evaluated
in the course of understanding.

When evaluating tradition, the crucial concept is authority. Tra-
dition has an authority of its own, such that we will often not accept
changes to tradition without good reason. The authority of tradi-
tion ultimately rests on other sources of authority, and rejection of
tradition requires authority as well. Appeals to authority are not un-
desirable: on the contrary, they are an integral part of understanding.

Of course, not all appeals to authority are equally good. The
good appeal to authority is the appeal to reasonable authority: that
is, authority that is exercised in accordance with its purpose and lim-
itations. False authority is authority that is misused: the authority
of the tyrant or the con-man. Reasonable authority is the basis for
personal reverence, and personal reverence is again the basis for prej-
udice. Thus we see why authority is important to understanding – we
form our prejudices on the basis of those whom we believe in, and
those who we believe in are determined by those to whom we ascribe
authority.

The personal aspect of reverence is important; the understanding
mind must have a personal relationship to authority in order to form
prejudice. This precludes that Descartes’ limitless individual reason
could be substituted with a limitless collective reason of humanity,
such as Rousseau’s “volonté générale”. For example, a scientist may

124Ibid. II.II.1.a.β, p. 260.
125“In Wahrheit ist Tradition stets ein Moment der Freiheit und der Geschichte selber.”

Ibid. II.II.1.b.α, p. 265.

3.3 hermeneutical theory 101

defer to scientific authority in the abstract, but this would not have
told him, at the time, whether to believe Bohr or Einstein, Lavoisier
or Priestley, or Edison or Westinghouse.

3.3.5 Understanding

Understanding126 is composed of two parts: pre-understanding127 and
understanding proper.128 Pre-understanding is the knowledge of the
facts of the case that is necessary before the meaning of the case can
begin to be understood. For example, knowledge of Classical Greek is
part of the pre-understanding for understanding the meaning of Aris-
totle’s original works. Note that pre-understanding, the knowledge of
bare facts, is never in itself enough to form understanding.

The concept of understanding is not a way to perceive subjectivity
– that is, it is not “subjective” understanding of some “objective” re-
ality. Understanding is an exchange between oneself and another.129

Both sides have subjective and objective perspectives. They share one
physical, existing reality, but they do not necessarily share their per-
ception of reality.

Understanding takes place in a circular movement between part
and whole.130 To take one example: the part can be a sentence and
the whole can be a book. To understand a sentence (the part), one has
to have an understanding of the book (the whole). But, on the other

126“Verstehen”.
127“Vorverständnis”.
128“Auch hier bewährt sich, daß Verstehen primär heißt: sich in der Sache verste-

hen, und erst sekundär: die Meinung des anderen als solche abheben und verstehen.”
Gadamer 1960 [1965] II.II.1.c, p. 278.
129“Das Verstehen ist selber nicht so sehr als eine Handlung der Subjektivität zu denken,

sondern als Einrücken in ein Überlieferungsgeschehen, in dem sich Vergangenheit und
Gegenwart beständig vermitteln.” Ibid. II.II.1.b.β, p. 274 f.
130“Die Antizipation von Sinn, in der das Ganze gemeint ist, kommt dadurch zu

explizitem Verständnis, daß die Teile, die sich vom Ganzen her bestimmen, ihrerseits
auch dieses Ganze bestimmen.” Ibid. II.II.1.c, p. 275.

102 chapter 3. theory

hand, an understanding of the whole is only accessible through the
understanding of its constituent parts. This means that the effort of
understanding is always shifting, now focusing on understanding the
part in context, now focusing on revising the context in the new light
of the part. This insight is so important that is has come to be known
as “the hermeneutical circle”.

The hermeneutical circle is not a method; method alone cannot
bring about understanding.131 Reading a pile of books is a method
for understanding, but whether or not the reading actually results in
understanding depends on the specific situation in which the reading
takes place. There is no way to proscribe a method that will with
certainty result in understanding.

Understanding is not merely reproductive – that is, carrying in-
tact knowledge around from mind to mind. Rather, understanding
is productive, in that when I understand another person’s utterance,
my understanding is never exactly the same as his, since our respec-
tive contexts are different. Therefore understanding will bring about
something new in the present situation, having a productive effect.132

Understanding is existential,133 meaning that understanding must
result in some kind of consequence for the one who understands. For
if there were no consequences, any other interpretation might do as
well as the one arrived at; it would not matter to the interpreter –
consequently the interpretation would not matter, meaning that it is
not true understanding.134

131“Der Zirkel des Verstehens ist also überhaupt nicht ein ‘methodischer’ Zirkel,
sondern beschreibt ein ontologisches Strukturmoment des Verstehens.” Ibid. II.II.1.c,
p. 277.
132“Daher ist Verstehen kein nur reproduktives, sondern stets auch ein produktives

Verhalten. . . . Verstehen ist in Wahrheit kein Besserverstehen, weder im Sinne der
sachlichen Besserwissens durch deutlichere Begriffe, noch im Sinne der grundsätzlichen
Überlegenheit, die das Bewußte über das Unbewußte der Produktion besitz. Es genügt
zu sagen, daß man anders versteht, wenn man überhaupt versteht.” Ibid. II.II.1.c, p. 280.
133“Denn erst von der ontologischen Wendung, die Heidegger dem Verstehen als ei-

nem ‘Existenzial’ verlieh, und der temporalen Interpretation, die er der Seinsweise des
Daseins widmete, aus konnte der Zeitenabstand in seiner hermeneutischen Produktivi-
tät gedacht werden.” Ibid. II.II.1.c, p. 281.

134“Verstehen erwies sich selber als ein Geschehen, . . . ” Ibid. II.II.2.a, p. 293. This point
expresses in a different way the insight encapsulated by the American philosopher C.S.

3.3 hermeneutical theory 103

Understanding is a connection between tradition135, understood in
a broad sense, and the interpreter.136 Thus, hermeneutics acts to con-
nect the strange and the familiar; or, seen from another perspective,
acts to connect objectivity and tradition.137

3.3.6 Effective history

Effective history138 is Gadamer’s concept for explaining the relation-
ship between understanding and history. It is so named to emphasise
that understanding has effects, in history as well as in the present day.
To be conscious of effective history is to be simultaneously aware of
historical reality and of the historical nature of understanding.139

Peirce’s “pragmatic maxim”: “Hence is justified the maxim, belief in which constitutes
pragmatism; namely, In order to ascertain the meaning of an intellectual conception one
should consider what practical consequences might conceivably result by necessity from the
truth of that conception; and the sum of these consequences will constitute the entire meaning
of the conception.” Peirce 1905 [1931-1958] vol. 5, ¶ 9.

135“Überlieferung.”
136“Der Zirkel ist also nicht formaler Natur, er ist weder subjektiv noch objektiv, son-

dern beschreibt das Verstehen als der Ineinanderspiel der Bewegung der Überlieferung
und der Bewegung des Interpreten. Die Antizipation von Sinn, die unser Verständnis
eines Textes leitet, ist nicht eine Handlung der Subjektivität, sondern bestimmt sich
aus der Gemeinsamkeit, die uns mit der Überlieferung verbindet. Diese Gemeinsamkeit
aber ist in unserem Verhältnis zur Überlieferung in beständiger Bildung begriffen. Sie
ist nicht einfach eine Voraussetzung, unter der wir schon immer stehen, sondern wir
erstellen sie selbst, sofern wir verstehen, am Überlieferungsgeschehen teilhaben und es
dadurch selber weiter bestimmen.” Gadamer 1960 [1965] II.II.1.c, p. 277.

137“Die Stellung zwischen Fremdheit und Vertrautheit, die die Überlieferung für uns
hat, ist das Zwischen zwischen der historisch gemeinten, abständigen Gegenständlich-
keit und der Zugehörigkeit zu einer Tradition. In diesem Zwischen ist der wahre Ort der
Hermeneutik.” Ibid. II.II.1.c, p. 279.
138“Wirkungsgeschichte.”
139“Eine sachangemessene Hermeneutik hätte im Verstehen selbst die Wirklichkeit der

Geschichte aufzuweisen. Ich nenne das damit Geforderte ‘Wirkungsgeschichte’. Verste-
hen ist seinem Wesen nach ein wirkungsgeschichtlicher Vorgang.” Gadamer 1960 [1965]
II.II.1.c, p. 283.

104 chapter 3. theory

For a hermeneutic theory to be effective, it has to be a theory that
is conscious that understanding is itself a part of historical reality.140

We demand of science that it is methodical; thus, we demand of
scientific hermeneutics not only that it is conscious, but also that it is
methodical in its consciousness. Effective history is a methodical way
of expressing this consciousness, because consistently employing the
concept of effective history in the hermeneutical process ensures that
the historical consciousness is not merely ad hoc, but can be carried
out in a systematic manner.141

What effective history essentially expresses is this: that the im-
mediate separation in time or in culture between the subject and the
interpreter is not the whole of the truth. In addition to the observable
differences there is a difference in perspective; namely that subject
and interpreter have different aims in application.142 A subject who
writes a text does not have the same ends in mind as the interpreter
who later tries to understand the text.

Effective history is a form of self-insight.143 It is an awareness that
when I try to understand something, I am placed in a hermeneutical

140“Ein wirklich historisches Denken muß die eigene Geschichtlichkeit mitdenken.”
Ibid. II.II.1.c, p. 283.

141“Daß das historische Interesse sich nicht allein auf die geschichtliche Erscheinung
oder das überlieferte Werk richtet, sondern in einer sekundären Thematik auch auf
deren Wirken in der Geschichte (die schließlich auch die Geschichte der Forschung ein-
schließt), gilt im allgemeinen als eine bloße Ergänzung der historischen Fragestellung,
. . . Insofern ist Wirkungsgeschichte nichts Neues. Daß es aber einer solchen wirkungs-
geschichtlichen Fragestellung immer bedarf, wenn ein Werk oder einer Überlieferung
aus dem Zwielicht zwischen Tradition und Historie ins Klare und Offene seiner eigent-
lichen Bedeutung gestellt werden soll, das ist in der Tat eine neue Forderung – nicht
an die Forschung, aber an das metodische Bewußtsein derselben – die sich aus der
Durchreflexion des historischen Bewußtseins zwingend ergibt.” Ibid. II.II.1.d, p. 284.

142“Wenn wir aus der für unsere hermeneutische Situation im ganzen bestimmenden
historischen Distanz eine historische Erscheinung zu verstehen suchen, unterliegen wir
immer bereits den Wirkungen der Wirkungsgeschichte. Sie bestimmt im voraus, was
sich uns als fragwürdig und als Gegenstand der Erforschung zeigt, und wir vergessen
gleichsam die Hälfte dessen, was wirklich ist, ja mehr noch: wir vergessen die ganze
Wahrheit dieser Erscheinung, wenn wir die unmittelbare Erscheinung selber als die
ganze Wahrheit nehmen.” Ibid. II.II.1.d, p. 284.

143“Wirkungsgeschichtliches Bewußtsein ist zunächst Bewußtsein der hermeneutische
Situation. . . . Der Begriff der Situation ist ja dadurch charakterisiert, daß man sich nicht

3.3 hermeneutical theory 105

situation that I cannot rise above. In the same way as I cannot choose
to let my body disobey the laws of physics, I also cannot choose to let
my understanding disregard the limits to knowledge that is given by
the concrete point in history in which I find myself.

It is a consequence of the nature of historical existence that a
reflection on effective history can never be complete; that is, we
can never arrive at the unequivocal true effective history of a phe-
nomenon.144 This is simply another way of saying that there is no
such thing as complete knowledge. Our understanding is always lim-
ited by different perspectives: of some of the perspectives we are
aware, of others we are not. The concept of effective history is a way
to guide our awareness to discover those perspectives that best serve
our purpose – our purpose being, ultimately, truth.

3.3.7 Horizons of understanding

As stated earlier, the task of hermeneutics is to tell true prejudice from
false. In order to do this, the prejudices have to be evaluated. For this
to happen, they must be engaged, and the engagement and evaluation
of prejudices happens when a question is posed that demands that
understanding is extended.145

Prejudice limits our point of view, in the sense that it limits the
understanding that we are able to form based on the available facts.
But at the same time prejudice serves as a solid ground that is the
foundation for meaning, for as we have seen prejudice is a prereq-

ihr gegenüber befindet und daher kein gegenständliches Wissen von ihr haben kann.”
Ibid. II.II.1.d, p. 285.

144“Auch die Erhellung dieser Situation, d.h. die wirkungsgeschichtliche Reflexion
ist nicht vollendbar, aber diese Unvollendbarkeit ist nicht ein Mangel an Reflexion,
sondern liegt im Wesen des geschichtlichen Seins, das wir sind. Geschichtlichsein heißt,
nie im Sichwissen aufgehen.” Ibid. II.II.1.d, p. 285.

145“Alle Suspension von Urteilen aber, mithin und erst recht die von Vorurteilen, hat,
logisch gesehen, die Struktur der Frage.” Ibid. II.II.1.c, p. 283.

106 chapter 3. theory

uisite for meaning.146 This unavoidable limitation of understanding
that is effected by prejudice is called, by Gadamer, a horizon of un-
derstanding.147

The double role of prejudice as both limit and foundation means
that prejudice must constantly be tested. The determination of what
is true and false prejudice is not an act that is done with once and for
all; rather, it is an ongoing process. As prejudice is in turn founded
on received tradition, the ongoing testing of prejudice also means that
our understanding of received tradition must constantly be tested.148

Our point of view is limited by our horizon of understanding, but
what happens when our understanding is expanded, when our preju-
dices are tested and revised? We speak then of a fusion of horizons.
Our horizon does not become completely replaced by the horizon of
the other, whom we are trying to understand; nor does the meaning
of the other suddenly become understandable fully within the preju-
dice of our original horizon. Rather, our horizon becomes nearer to
that of the other, and at the same time the other’s horizon comes to
be interpreted in a new light that connects it to our original horizon.
A partial fusion of the horizons takes place.

In order to understand the other we have to be able to set our-
selves in the other’s place, at least for a short while. Real understand-
ing cannot happen if we deny the validity of the other’s premises

146“Wir waren davon ausgegangen, daß eine hermeneutische Situation durch die Vor-
urteile bestimmt wird, die wir mitbringen. Insofern bilden sie den Horizont einer Ge-
genwart, denn sie stellen das dar, über das hinaus man nicht zu sehen vermag. Nun gilt
es aber, den Irrtum fernzuhalten, als wäre es ein fester Bestand von Meinungen und
Wertungen, die den Horizont der Gegenwart bestimmen und begrenzen, und als höbe
sich die Andersheit der Vergangenheit dagegen wie gegen einen festen Grund ab.” Ibid.
II.II.1.d, p. 289.

147“Alle endliche Gegenwart hat ihre Schranken. Wir bestimmen den Begriff der Si-
tuation eben dadurch, daß sie einen Standort darstellt, der die Möglichkeit des Sehens
beschränkt. Zum Begriff der Situation gehört daher wesenhaft der Begriff des Horizon-
tes. Horizont ist der Gesichtskreis, der all das umfaßt und umschließt, was von einem
Punkt aus sichtbar ist. In der Anwendung auf das denkende Bewußtsein reden wir dann
von Enge des Horizontes, von möglicher Erwiterung des Horizontes, von Erschließung
neuer Horizonte usw.” Ibid. II.II.1.d, p. 286.
148“In Wahrheit ist der Horizont der Gegenwart in steter Bildung begriffen, sofern wir

alle unsere Vorurteile ständig erproben müssen.” Ibid. II.II.1.d, p. 289.

3.3 hermeneutical theory 107

without understanding the consequences of those premises. Thus we
necessarily have to suspend our own perspective temporarily. Other-
wise, the perspective of the other becomes unintelligible to us. On
the other hand, there lies also a danger in being too eager to adapt
to the foreign perspective. This leads to an unrealistic perception
of our own reality, and to a romanticization of the other’s – for ex-
ample the romantic fictions of “the noble savage” and of historical
“Golden Ages”.149 A horizon of understanding is a frame of reference
of higher generality that suspends the particularity of both ourselves
and the other before understanding can take place.150

We see then that our horizon of understanding is a fundamental
limitation of what we can understand. But horizons are not static. All
true speech serves to bring horizons together, resulting in a fusion of
horizons. Moreover, horizons are not isolated. No culture’s horizon of
understanding is completely separated from others’.151 There is always
some overlap of horizon between cultures, at the very least the basic
experience of being human.

Horizons are always shifting, because life itself is not static. In
this regard, we may perceive human existence itself as fusions of hori-
zons,152 at least so long as we are talking about understanding as
149“Das historische Bewußtsein tut offenbar Ähnliches, wenn es sich in die situation

der Vergangenheit versetzt und dadurch den richtigen historischen Horizont zu haben
beansprucht. . . . Der Text, der historisch verstanden wird, wird aus dem Anspruch,
Wahres zu sagen, förmlich herausgedrängt. Indem man die Überlieferung vom histo-
rischen Standpunkt aus sieht, d.h. sich in die historische Situation versetz und den
historischen Horizont zu rekonstruieren sucht, meint man zu verstehen. In Wahrheit
hat man den Anspruch grundsätzlich aufgegeben, in der Überlieferung für einen selber
gültige und verständliche Wahrheit zu finden. Solche Anerkennung der Andersheit des
Anderen, die dieselbe zum Gegenstande objektiver Erkenntnis macht, ist insofern eine
grundsätzliche Suspension seines Anspruchs.” Ibid. II.II.1.d, p. 287.
150“Solches Sichversetzen ist weder Einfühlung einer Individualität in eine andere,

noch auch Unterwerfung des anderen unter die eigenen Maßstäbe, sondern bedeutet
immer die Erhebung zu einer höheren Allgemeinheit, die nicht nur die eigene Partiku-
larität, sondern auch die des anderen überwundet.” Ibid. II.II.1.d, p. 288.

151“Wie der Einzelne nie ein Einzelner ist, weil er sich immer schon mit anderen
versteht, so ist auch der geschlossene Horizont, der eine Kultur einschließen soll, eine
Abstraktion.” Ibid. II.II.1.d, p. 288.
152“Es macht die geschichtliche Bewegtheit des menschlichen Daseins aus, daß es kei-

ne schlechthinnige Standortgebundenheit besitzt und daher auch niemals einen wahr-

108 chapter 3. theory

being fundamental to human existence; and human existence is cer-
tainly not possible without understanding.

Historical consciousness and horizons of understanding are not
exactly the same things, but they are related. At the most fundamental
level, they are tied together by human existence – an existence that is
determined by heritage and received tradition.153

Thus, all understanding is a fusion of horizons.154 One’s own hori-
zon of understanding and that of tradition are two horizons that are
as a minimum always involved in the fusion. It is imperative for a
scientifically conscious hermeneutics to be aware of the distinction
between one’s own horizon and that of tradition. We see now why the
concept of effective history is so important to philosophical herme-
neutics, for effective history expresses nothing other than a conscious
awareness of the relationship between tradition and understanding.
Effective history is a way of letting the horizons fuse in a controlled
manner.155

haft geschlossenen Horizont. Der Horizont ist vielmehr etwas, in das wir hineinwandern
und das mit uns mitwandert. Dem Beweglichen verschieben sich die Horizonte. So ist
aus der Vergangenheitshorizont, aus dem alles menschliche Leben lebt und der in der
Weise der Überlieferung da ist, immer schon in Bewegung.” Ibid. II.II.1.d, p. 288.

153“Die eigene und fremde Vergangenheit, der unser historisches Bewußtsein zuge-
wendet ist, bildet mit an diesem beweglichen Horizont, aus dem menschliches Leben
immer lebt und der es als Herkunft und Überlieferung bestimmt.” Ibid. II.II.1.d, p. 288.

154“Vielmehr ist Verstehen immer der Vorgang der Verschmelzung solcher vermeintlich für
sich seiender Horizonte.” Ibid. II.II.1.d, p. 289.

155“Im Vollzug des Verstehens geschieht eine wirkliche Horizontverschmelzung, die
mit dem Entwurf des historischen Horizontes zugleich dessen Aufhebung vollbringt.
Wir bezeichneten den kontrollierten Vollzug solcher Verschmelzung als die Aufgabe
des wirkungsgeschichtlichen Bewußtseins.” Ibid. II.II.1.d, p. 290.

3.3 hermeneutical theory 109

3.3.8 Application

The central problem in hermeneutics is that of application.156 Appli-
cation is a part of all understanding, and cannot be separated from
it.157 There are two aspects of this problem. One is that the phe-
nomenon we are trying to understand originally had some intention
behind it: an application of knowledge. The other is our own reason
for trying to understand: the application to which we put our under-
standing. Understanding is action in that it requires effort: that is, an
application of will.

To give an example of the importance of application, consider
that performance and interpretation cannot be completely separated
in the arts of poetry, music and theater.158 Our interpretation of a
work is necessarily influenced by the circumstance that it was meant
to be read aloud, played or shown. Even if we do not have an actual
performance in mind, nevertheless the potential of the artwork to be
performed will determine the meaning that we ascribe to it.

For example, if a soldier were to refuse to carry out an order, he
would first have to understand it correctly. If he did not understand
the order, then his failure to carry it out would not be refusal but

156“Während von dem ästhetisch-historischen Positivismus im Gefolge der romanti-
schen Hermeneutik diese Aufgabe verdeckt worden war, liegt hier in Wahrheit das
zentrale Problem der Hermeneutik überhaupt. Es ist das Problem der Anwendung, die
in allem Verstehen gelegen ist.” Ibid. II.II.1.d, p. 290.

157“Das heißt aber negativ, daß ein Wissen im allgemeinen, das sich nicht der konkrete
Situation zu applizieren weiß, sinnlos bleibt, ja die konkrete Forderungen, die von der
Situation ausgehen, zu verdunkeln droht.” Ibid. II.II.2.b, p. 296.
158“Niemand wird ein Drama inszenieren, eine Dichtung vorlesen oder eine Kom-

position zur Aufführung bringen können, ohne den ursprünglichen Sinn des Textes
zu verstehen und in seiner Reproduktion und Auslegung zu meinen. . . . Wenn wir
vollends daran denken, wie die Übersetzung fremdsprachlicher Texte oder gar ih-
re dichterische Nachbildung, aber auch das richtige Vorlesen von Texten mitunder
die gleiche Erklärungsleistung von sich aus übernehmen wie die philologische Ausle-
gung, so daß beides ineinander übergeht, dann läßt sich dem Schluß nicht ausweichen,
daß die sich aufdrängende Unterscheidung kognitiver, normativer und reproduktiver
Auslegung keine grundsätzliche Geltung hat, sondern ein einheitliches Phänomen um-
schreibt.” Ibid. II.II.2.a, p. 294.

110 chapter 3. theory

incompetence. On the other hand, if he never considered the mean-
ing of the order but refused to comply out of hand, it would not be a
refusal of that particular order but a case of blind rebellion against au-
thority. The soldier who denies an order must first understand it; that
is, evaluate its meaning and consequence – which is to understand its
application.159

Understanding is an aspect of effect and shows itself as effect.160

For, as we have already seen, understanding without consequence is
not true understanding.

Older hermeneutics is divided into three parts: understanding,
explaining161 and application.162 Together, these parts make up the
interpretation. It is important to understand that application is not
somehow subordinate to the others – it is fully as relevant to interpre-
tation as are understanding and explaining.163

In judicial hermeneutics, the application takes the form of judg-
ment. This is the essential use of judicial hermeneutics: to help the
judge understand the law in order to pass judgment.164 In theological
hermeneutics, the application is preaching. Preaching is the act by
which the priest conveys an explanation of his understanding of the
Bible to the congregation.165

The branches of hermeneutics differ both in application and sub-
ject matter, but that does not mean that they are without relation to

159“. . . Es ist eine Schelmenmotiv, Befehle so auszuführen, daß man ihren Wortlaut,
aber nicht ihren Sinn befolgt. Es ist also kein Zweifel, daß der Empfänger eines Befehls
eine bestimmte produktive Leistung des Sinnverständnisses vollbringen muß.” Ibid.
II.II.2.c, p. 317.
160“Das Verstehen erweist sich als eine Weise von Wirkung und weiß sich als eine

solche Wirkung.” Gadamer 1960 [1965] II.II.2.c, p. 323.
161“Auslegung”.
162Gadamer 1960 [1965] II.II.2.a, p. 290 f.
163“Auslegung ist nicht ein zum Verstehen nachträglich und gelegentlich hinzukom-

mender Akt, sondern Verstehen ist immer Auslegung, und Auslegung ist daher die
explizite Form des Verstehens. . . . Wir werden also gleichsam einen Schritt über die ro-
mantische Hermeneutik hinaus genötigt, indem wir nicht nur Verstehen und Auslegen,
sondern dazu auch Anwenden als in einem einheitlichen Vorgang begriffen denken.”
Ibid. II.II.2.a, p. 291.
164And in order to explain his judgment in the motivation for the decision.
165Gadamer 1960 [1965] II.II.2.a, p. 292.

3.3 hermeneutical theory 111

each other. On the contrary: Gadamer takes judicial hermeneutics
and its interrelation between understanding and application as an ex-
ample of this interrelation in the other branches of hermeneutics. In
that way, it can serve to restore the old unity between judicial, theo-
logical and philological hermeneutics.166

Modernistic science splits understanding into three functions: cog-
nitive, reproductive and normative. This is problematic for several
reasons. Firstly, this perception of understanding ignores the signifi-
cance of explaining and application. Secondly, the introduced oppo-
sition between normative and cognitive is at odds with the experience
from judicial and theological hermeneutics, which shows that norma-
tive and cognitive function cannot be conceptually separated.167

The romanticist perception of history is grounded in a psycholog-
ical explanation that is based on a false opposition between subject
and object.168 In this perception, the main problem of interpretation
becomes the unification of distinct subjective perceptions. This has
the consequence that understanding becomes a matter of congenial-
ity, and ultimately that interpretation comes to be dependent on some
kind of mystical meeting of souls.

Modernistic science goes in the opposite direction, and commits
the fallacy of disregarding anything but the objective perspective of
history. This results in an inability to reconcile judgements and facts,
and leaves science always hunting for a pure objective reality that
turns out to be an illusion, for the simple fact that while subject and
object can be distinguished, they cannot be separated.

In opposition to both romanticism and modernistic science, her-
meneutic thinking maintains that understanding is based on meaning
and intention found in the received tradition, and understanding is

166Ibid. II.II.2.c, p. 311. Also Ibid. II.II.2.a, p. 292: “Die enge Zusammengehörigkeit,
die ursprünglich die philologische Hermeneutik mit der juristichen und theologischen
verband, beruhte aber auf der Anerkennung der Applikation als eines integrierenden
Momentes alles Verstehens.”

167Ibid. II.II.2.a, p. 293.
168Ibid. II.II.2.a, p. 294. The concepts “subjectivity” and “objectivity” are discussed

further in section 3.4 (Cultural form theory).

112 chapter 3. theory

immediately accessible to us, neither dependant on congeniality nor
on reducing all reality to objects.169

In hermeneutics, explaining is bound to the text in a way similar
to that in which perspective is bound to a picture. The picture can
be interpreted in many ways, but we are not free to choose the per-
spective, it is given beforehand.170 Each text must be understood on
its own premises, without the interpreter adding premises of his own.
That is the demand of science.171

The hermeneutic insight is that understanding always requires ap-
plication of the understanding mind. This is denied by modernistic
science, but the denial lands science in trouble when it demands of
the scientist a distanced mind, because the distance itself hinders
understanding.172 Hermeneutically, the scientist must be personally
engaged in the text in order to understand. This engagement is nec-
essarily subjective, but it can nonetheless be scientific.

3.3.8.1 The application of history

To return to the example of judicial hermeneutics, its application,
judgment, is a model of the relationship between past and present.
Judicial hermeneutics presupposes a community under law.173 This

169“Unsere Überlegungen verwehren uns, die hermeneutische Problemstellung auf die
Subjektivität des Interpreten und die Objektivität des zu verstehenden Sinnes aufzutei-
len. Ein solches Verfahren ginge von einem falschen Gegenüber aus, . . . Das Wunder
des Verstehens besteht vielmehr darin, daß es keiner Kongenialität bedarf, um das
wahrhaft Bedeutsame und das ursprünglich Sinnhafte in der Überlieferung zu erken-
nen. Wir vermögen uns vielmehr dem überlegenen Anspruch des Textes zu öffnen und
der Bedeutung zu entsprechen, in der er zu uns spricht.” Ibid. II.II.2.a, p. 294 f.

170“Die Zugehörigkeit des Auslegen zu seinem Text ist wie die Zugehörigkeit des Au-
genpunktes zu der in einem Bilde gegebenen Perspektive. Es handelt sich nicht darum,
daß man diesen Augenpunkte wie einem Standort suchen und einnehmen sollte, son-
dern daß der, der versteht, nicht beliebig seinem Blickpunkt wählt, sondern seinen Platz
vorgegeben findet.” Ibid. II.II.2.c, p. 312.

171“Das aber besagt, daß die historische Wissenschaft jeden Text zunächst in sich zu
verstehen sucht und die inhaltliche Meinung desselben nicht selber vollzieht, sondern
in ihrer Wahrheit dahingestellt sein läßt. . . . Nur der versteht, der sich selber aus dem
Spiele zu lassen versteht.” Ibid. II.II.2.c, p. 317.

172Ibid. II.II.2.c, p. 316.
173“Rechtsgemeinschaft”. Ibid. II.II.2.c, p. 312.

3.3 hermeneutical theory 113

community consist of both received tradition and of living practice.
Where there is no community under law, judicial hermeneutics is not
possible, because the declarations of a tyrannic ruler can immediately
and unforeseeably annihilate any given rule of law. Understanding the
declarations becomes then not a task of understanding the application
of law, but instead of understanding the self-serving interests of a
tyrant.

Where judicial hermeneutics is possible, the task of a legal profes-
sional is to determine the normative content of the law so that he can
anticipate what the court will do. To do this, he will look at the text
of the law, and in order to understand exactly what the text means he
must look at how the law has been used in the past. The law speaks,
for example, of “intent”, but what exactly does that mean? What are
the requirements to proving in court that there was intent? To answer
this, the legal professional must look at the history of the use of the
law, and discern the intention behind the wording.174

An historian of law that is interested not in the current application
of the law, but in how it was used in the past, must do the same
deliberation as the present legal professional in trying to discern how
to apply the law.175 That is, to understand how the law was used in
the past he must understand the consequences of applying the law in
this way or that. To do that he must have knowledge of how to apply
the law, and that knowledge must ultimately have its foundation in the
present practicing of the law, for the present use sets the perspective
in which all interpretations of the past are made.176

An interpretation of received tradition is, by its very nature always
seeking some application, though this does not necessarily have to be
a concrete task.177 The application of history is to see each single text

174Ibid. II.II.2.c, p. 308 f.
175“Ein unmittelbares Zugehen auf den historische Gegenstand, das seinen Stellen-

wert objektiv ermittelte, kann es nicht geben. Der Historiker muß die gleiche Reflexion
leisten, die auch den Juristen leitet.” Ibid. II.II.2.c, p. 310.

176Ibid. II.II.2.c, p. 311.
177“Der Interpret, der es mit einer Überlieferung zu tun hat, sucht sich dieselbe zu

applizieren. Aber auch hier heißt das nicht, daß der überlieferte Text für ihn als ein
Allgemeines gegeben und verstanden und danach erst für besondere Anwendungen

114 chapter 3. theory

as a source of received tradition.178 A person who understands a text
is always personally connected to the text and future generations must
necessarily understand the text in a different way.179

The application of history is made complete by the historical cri-
tique of received tradition. This is what it means to be conscious of
effective history.180

3.3.9 Ethical and technical knowledge

As mentioned above, philosophical hermeneutics is intended as a gen-
eral theory of true understanding, which means that the hermeneuti-
cal insights apply in all cases without exception. However, following
the rise of modernistic science it has become the norm in epistemo-
logical philosophy to draw a distinction between the natural sciences,
on one hand, and the humanities – or as J.S. Mill called them, the
moral sciences – on the other.181 It is therefore appropriate here to
discuss how the objectifying natural sciences are regarded in herme-
neutical theory.

Gadamer’s discussion of the different kinds of knowledge is based
on Aristotelian ethics. The central problem of Aristotelian ethics is to

in Gebrauch genommen würde. Der Interpret will vielmehr gar nichts anderes, als dies
Allgemeine – den Text – verstehen, d.h. verstehen, was die Überlieferung sagt, was Sinn
und Bedeutung des Textes ausmacht. Um das zu verstehen, darf er aber nicht von sich
selbst und der konkreten hermeneutische Situation, in der er sich befindet, absehen
wollen. Er muß den Text auf diese Situation beziehen, wenn er überhaupt verstehen
will.” Ibid. II.II.2.b, p. 307.
178“Für den Historiker tritt jedoch der einelne Text mit anderen Quellen und Zeug-

nissen zur Einheit des Überlieferungsganzen zusammen. Die Einheit dieses Ganzen der
Überlieferung ist sein wahrer hermeneutischer Gegenstand.” Ibid. II.II.2.c, p. 322.

179“In allem Lesen geschieht vielmehr eine Applikation, so daß, wer einen Text liest,
selber noch in dem vernommenen Sinn darin ist. Er gehört mit zum zu dem Text, den
er versteht. . . . Er kann sich, ja er muß sich eingestehen, daß kommende Geschlechter
das, was er in dem Texte gelesen hat, anders verstehen werden.” Ibid. II.II.2.c, p. 323.
180Ibid. II.II.2.c, p. 323.
181Gadamer speaks about “Geisteswissenschaften”.

3.3 hermeneutical theory 115

examine what role reason plays in ethical behaviour.182 Ethical knowl-
edge183 cannot be exact in the same way as for example mathematics
can. Furthermore, ethical knowledge cannot be reduced to formality:
the person that would act ethically must himself know and understand
the situation adequately.184

Ethical knowledge is contrasted with technical knowledge.185 The
two are similar in that they are both forms of practice. The fundamen-
tal difference between them is that in ethical knowledge, we are not
masters of the object of knowledge, whereas in technical knowledge
we are.186 The central question is thus one of mastery.187

The rules that a craftsman use to guide his work are a form of
technical knowledge. These rules aim at perfection. By necessity, the
rules cannot in practice be followed to perfection, but the craftsman
would rather be without this imperfection; deviation is a sort of loss
that is in a philosophical sense painful. Contrary to this, the law,
which is a form of ethical knowledge, is by its essence imperfect. Soft-
ening the law to apply to the situation at hand, and showing mercy,
is not a loss – this deviation does not result in a lesser law, but in a
better one. Attempting to create a perfect law, a law that anticipates
all possible situations, would result in a totalitarian law: the opposite
of the desired. All ethical traditions, like the law, are tied to a spe-
cific time in history and to a specific nation. They are neither mere
conventions, nor are they written in the stars.188

Ethical knowledge is to take counsel with oneself – technical knowl-
edge is not. Ethical knowledge does not possess a prescient aspect in
the same way technical knowledge does.189 Technical knowledge can
be taught to others, whereas ethical knowledge has to be lived; one

182Gadamer 1960 [1965] II.II.2.b, p. 295.
183“Sittliche Wissen”, φρόνησις.
184Gadamer 1960 [1965] II.II.2.b, p. 296.
185

τέχνη.
186In Aristotle’s terms, ethical knowledge is “self-knowledge” (“Sich-Wissen”) whereas

technical knowledge is “for-itself-knowledge” (“Für-sich-Wissen”).
187Gadamer 1960 [1965] II.II.2.b, p. 299.
188Ibid. II.II.2.b.1, p. 303 f.
189Ibid. II.II.2.b.2, p. 304.

116 chapter 3. theory

cannot be taught how to live life, it has to be done. In the same way,
it is easy to resolve to live a virtuous life, but to carry out the resolve
is not as easy as that.190

To consider which is best out of a range of equally appropriate
means is technical, but to consider which means are appropriate at
all is ethical. Ethical knowledge includes knowledge of both ends and
means, and is the fundamental form of experience.191

Experience can only be understanding if it is related to someone
else, and if, through this relation, it is an expression of the will to do
the right thing. Technical ability without an ethical goal or excellence
without moral restraint is δεινός: horrible.192

The fields of science cannot simply be separated into those that
are concerned with ethical knowledge and those that are concerned
with technical knowledge. Because the humanities are concerned with
studying the conditions of human existence, there is a strong affinity
between ethical knowledge and the humanities, also known as the
moral sciences. However, ethical knowledge is not identical to moral
science. In addition to being contrasted with technical knowledge,
ethical knowledge is contrasted also with theoretical knowledge,193 of
which mathematics is a prime example.

However, any good science partakes in ethical knowledge, regard-
less of the field. The different fields of science are demarcated by their
objects of study, and they are of course influenced by the character of

190Carl von Clausewitz illustrates this aspect of ethical knowledge in his writings on
the virtues of a military commander. The good commander needs a certain amount of
experience that can only be accumulated in actual war, because “War is the realm of
uncertainty; three quarters of the factors on which actions in war is based are wrapped
in a fog of greater or lesser uncertainty.” von Clausewitz 1832-34 [2007] book 1, chp. 3.

191“Das sittliche Wissen ist wirklich ein Wissen eigener Art. Es umgreift in einer
eigentümlichen Weise Mittel und Zweck und unterscheidet sich damit vom technischen
Wissen. . . . Denn das sittliche Wissen enthält selbst eine Art der Erfahrung in sich,
ja, wir werden noch sehen, daß dies vielleicht die grundlegende Form der Erfahrung
ist, der gegenüber all andere Erfahrung schon eine Denaturierung, um nicht zu sagen
Naturalisierung, darstellt.” Gadamer 1960 [1965] II.II.2.b.2, p. 305.
192Ibid. II.II.2.b.3, p. 306 f. “Nichts ist so schrecklich, so unheimlich, ja so furchtbar

wie die Ausübung genialer Fähigkeiten zum Üblen.” Ibid. p. 307.
193Theoretical, or learned, knowledge: ἐπιστήμη. Ibid. II.II.2.b, p. 297.

3.4 cultural form theory 117

that object, such that the natural sciences are strongly connected with
technical knowledge and the moral sciences are strongly connected
with ethical knowledge. But the scientific fields do not follow the dis-
tinctions of knowledge, and in any science worth its name, technical,
theoretical, and ethical knowledge is found.

3.4 Cultural form theory

Applying cultural theory to the study of programming is like applying
mathematical theory to a problem in electrical engineering. This is
fruitful because mathematical theory is well suited to describe rela-
tionships between quantities, and those quantities can be defined and
measured in terms of electrical circuits. When it comes to the study
of why people do what they do, that is, the study of culture, there
are rarely any measurable quantities or fixed relationship that can be
described with something like a mathematical theory. Cultural theory,
therefore, is concerned not with things that are certain but with things
that are uncertain: how meaning arises, and the relationships between
people. Just as mathematical theory is an abstract way of describing
necessary relationships, and is useful for understanding quantities, so
cultural theory is an abstract way of describing how meaning is made,
and is useful for understanding human activity.

It is common to distinguish between culture and nature, or be-
tween human factors and physical factors, and even common to view
them in opposition. While the distinction is useful, the notion of
opposition is not congruent with how technological development ac-
tually takes place.194 Human action always has a cultural as well as a
natural, or physical, side: in this regard, culture and nature are differ-
ent aspects of the same activity. The relationship between the two is
an important concept at the base of cultural theory of technology.

194See Latour 1987 chp. 2.C, p. 94ff.

118 chapter 3. theory

In order to conduct a cultural analysis of the work processes of
programmers, it is necessary first to look at the concepts that will be
used in the analysis: cultural practice and cultural form. The con-
cepts as they are presented here come from the ethnological research
community, particularly the Danish professor of ethnology Thomas
Højrup and his followers. The specific presentation, however, is my
own responsibility.

There are two fundamentally different ways of explaining what
happens in the world. One perspective is teleological: I get in my car
and drive because I want to get home. Getting home is my goal, my
télos (τέλος), and driving in the car is the means of reaching my goal.
The other perspective is causal: I press the gas pedal with my foot,
which causes more fuel to be let into the combustion engine, which
causes the car to move forward. The action is explained as a matter of
cause and effect. If teleology and causality are viewed as unrelated or
even contradictory principles, as is often the case, it becomes difficult
to explain the world around us. For example, what is the explanation
if I lose control of the car and drive into the ditch on my way home?
In the teleological perspective, my strong desire to get home resulted
in the means of getting there – speed – getting out of hand. In the
causal perspective, the cause of the accident was the slippery road,
which had the effect that the car lost traction, further causing me to
lose control of the car.

The concept of practice195 is a way of resolving the contradic-
tions of teleology and causality. Teleology and causality are simply
regarded as two opposite but equally valid aspects of practice. Fur-
thermore, the concepts that make up teleology and causality are put
into relation with each other: the goal of teleology is identified with
the effect of causality; the means of teleology is identified with the
cause of causality.

As a consequence of this, the concept of practice establishes a
correspondence between the concepts of subjectivity and objectivity.
The identification of means and cause shows that causal relations do

195Højrup 1995 p. 67.

3.4 cultural form theory 119

not exist independently of ourselves.196 It is the presence of a self-
conscious subject that, through regarding the world as consisting of
goals and means, identifies what is cause and effect. Thus subjectivity
and objectivity are two perspectives on the world that proceed from
the practice concept; again, they are opposite and both valid. Subjec-
tivity is to take a teleological perspective on the world, and objectivity
is to regard it as made up of cause and effect. The objective perspec-
tive is set by the subjective, and the subjective perspective is likewise
set by the objective.197

The concept of practice is connected to hermeneutics in the way
that a given practice is an expression of tradition – nothing comes
from nothing; a practice must either be a repetition of an existing
practice, or a break away from a former practice. Another point of
connection is the purposefulness of practice: the teleological aspect of
practice has a goal, and that goal is akin to the concept of application
in hermeneutical theory.198

The realization of a practice will result in a plethora of related
practices. What is a means in one practice is a goal in another prac-
tice: My goal is to get home, so I get in the car, which is the means of
getting there. But while I am driving, the immediate goal becomes to
keep the car safely on the road. Thus, the means to my original goal
becomes a sub-goal in itself, in service of a higher goal.199

The concept of practice is closely connected to another concept:
that of form. In cultural theory, the concept of form has a specific
content that goes back to Aristotle and Plato.200 A form is not simply

196Or more precisely, it is the designation of something as “cause” and something
as “effect” that does not exist independently of ourselves. In a system that altogether
lacks a teleological perspective, such as formal physics, everything affects everything
else, so “cause” and “effect” become merely shorthand referrals to whatever interests
us. Between two masses there will be a gravitational force at work, so we can say that
the gravitational force causes the masses to attract each other. But we can equally say
that the gravitational force is caused by the two masses being present.

197Højrup 1995 p. 69.
198See 3.3 (Hermeneutical theory) for an explanation of the hermeneutical concepts

in this section.
199Højrup 1995 p. 74 ff.
200Højrup 2002 p. 375 ff.

120 chapter 3. theory

the outer physical form of a thing, its morphé (μορφέ), as the word is
often used in daily speech.201 Rather, a form, eidos (ε̃ἰδος), is the idea
of a thing, a structural concept that subjugates the matter of which it
is made up. As such, the form of a fire, for example, can be made
up of many different kinds of matter: wood, oil, tallow, et cetera. Each
particular kind of matter will have different properties, which means
that the resultant form – the fire – will also have many properties that
are not essential, but accidental.

A form (eidos) is a solution to a problem, or a way of reaching a
goal, that consists of an idea or structure that expresses the function
of the form, plus the matter in which the idea is expressed and which
is the means of the form:

form = function (idea, structure) + matter (means).

The problem that a form solves comes from the goals of a practice.
This means that it is ultimately practice that determines the forms, but
constrained by the properties of matter. A form is a solution to the
demands of practice, and demands are contradictory.202 For example,
a fire has to provide warmth and light, to be safe, and to conserve fuel.
Not all of the demands can always be met efficiently at the same time.
Thus, a bonfire and a oil lamp do the same thing, but they are well
suited to different situations. On one level they are the same form –
fire – and on another level they are different: warm-fire-burning-wood
versus illuminating-fire-burning-oil.

For the purpose of cultural form theory, it does not matter whether
a form is material, social, or theoretical. A fishing vessel, bureaucracy,
and the rational numbers are all examples of forms.203 However,
we cannot hope intellectually to comprehend the existing forms fully.
We are fundamentally limited by our experience with the practical
world, and any concept of a specific form is always only a temporary
and incomplete understanding of reality.204 In this way, the concept

201Ibid. p. 378.
202Ibid. p. 380.
203Ibid. p. 384.
204Ibid. p. 376.

3.5 rhetorical theory 121

of form corresponds to the hermeneutical notion of understanding,
which is fundamentally limited by the horizon of understanding.

3.5 Rhetorical theory

The primary focus of this dissertation is on hermeneutical and cul-
tural form theory than on rhetorical theory. For this reason, a thor-
ough explanation of rhetorical theory will not be given here. The
rhetorical concepts that are used will be explained along with the
analysis itself in chapter 8.

Fields other than programming have examples of rhetorical anal-
ysis of a practical bent. Of interest is McCloskey’s excellent analysis
of scientific writing in economics.205 Also noteworthy is Kennedy’s
analysis of New Testament texts.206

A further illustrative example is Bruno Latour and Steve Woolgar’s
1979 study of the work of neuroendocrinologists, a branch of the nat-
ural, or “hard”, sciences. The study shows how scientific facts consist
not only of observations from the laboratory, but also of rhetorical
efforts to establish the explanations of observations as facts.207 The
rhetorical aspect of the scientists’ work has the important function of
persuading their colleagues, in order to strengthen the credibility of
the scientists.208

It should be noted that hermeneutics and rhetorics are intimately
connected; it is a central insight of both that doing and understanding
are inseparable. Hermeneutics, then, looks at doing and understand-
ing from the perspective of understanding, while rhetorics looks at
the same thing from the perspective of doing.

205McCloskey 1985.
206Kennedy 1984.
207Latour & Woolgar 1979 [1986] p. 240.
208Ibid. p. 200.

122

123

Chapter 4

Method

The data on which this dissertation is based consist of a larger case
study in game programming and a number of smaller case studies
and interviews in safety critical programming. There is not a gener-
ally agreed upon definition in the literature of what constitutes a case
study.1 This thesis uses the definition put forth by Yin and Easter-
brook et al.: “an empirical enquiry that investigates a contemporary
phenomenon within its real-life context”.2 For the purpose of this the-
sis, an inquiry can be based on data obtained either from participant
observation or from interviews.

The case study in game programming is presented in section 5.1
followed by analyses. Two case studies in safety critical programming
are presented in section 6.2 followed by analysis. Section 7.1 presents
a comparative analysis of the cases in sections 5.1 and 6.2. Section
7.2 presents a number of other case studies in safety critical program-
ming along with their comparative analysis. Chapter 8 presents some
source code from the case study in game programming along with its
analysis.

1Easterbrook et al. 2008 p. 296.
2Ibid.

124 chapter 4. method

4.1 Choice of cases

The choice of a small startup computer game company as one of
the case studies presented advantages of a practical nature. Since
the company is small and newly founded it is possible via participant
observation to get an overview of the totality of the work process
that is difficult to obtain in the case of larger and better established
companies.

The primary reason for choosing a computer game company for
study, however, is that it suits the argument in this dissertation well.
It is argued in section 3.2 (Mainstream programming theories) that
mainstream programming theories have some shortcomings in de-
scribing programming processes in general. This is easier to observe
in some programming processes than in other. The game program-
ming process is one in which it is easy to observe because the process
is not derived from one of the mainstream theories and because the
goals of game programming are relatively far from the administrative
and computational origins of programming (see sections 3.2.1 and
3.2.3).

The second part of the empirical data consists of case studies of
companies in the safety critical programming industries. Safety crit-
ical programming was chosen for two reasons. First, to provide a
contrast to the work process of computer game programming. Ac-
cording to cultural form theory (section 3.4) it is important to study
different forms of a practice (i.e. programming) in order to get a
clear understanding of the practice. As safety critical programming
is in many aspects different from game programming is serves this
purpose well. From an ethnological point of view, making compar-
isons between contrasting empirical practices is a central method of
increasing understanding of the practices.3

The other reason to study safety critical programming is that it
is closely connected to software engineering and that its formal work
processes often derive directly from this tradition. The shortcomings

3Christensen 1987 p. 14 ff.

4.2 participant observation 125

of mainstream theories that are pointed out in section 3.2 form an ar-
gument for pursuing other theoretical perspectives on programming,
in the case of this dissertation: hermeneutics. But in order for herme-
neutics to be more than a mere contender to the mainstream theories
it is necessary to show not only that hermeneutics is better suited to
describing actual programming practices, but also that it is able to
explain what function the mainstream theories have in programming
practice. Since safety critical programming is ideologically derived
from software engineering, it serves well as an example for this pur-
pose. It would be possible, in future research, to do similar studies
regarding Agile thinking and computer science theory.

4.2 Participant observation

Participant observation is an established method in software engineer-
ing research, cf. Seaman.4 Participant observation was used in this
dissertation to gather data for a case study in software engineering.

The author spent a total of 17 workdays in the period 15th August
– 9th September 2011 observing the work at the small game company
Tribeflame in Turku, Southwestern Finland. The observation normally
took place in the developers’ office whenever they were present. In
addition to strict observation, conversations, regular interviews and
collection of some documents took place.

Seaman does point out the risk of obtaining inaccurate data due to
the participant observer’s bias. However, since hermeneutical analysis
is an interpretive approach participant observation is deemed to be
the best alternative for data collection:

“Qualitative data is richer than quantitative data, so using
qualitative methods increases the amount of information
contained in the data collected. It also increases the di-
versity of the data and thus increases confidence in the re-

4Seaman 2008 chp. 2.1, p. 37.

126 chapter 4. method

sults through triangulation, multiple analyses, and greater
interpretive ability.” 5

4.2.1 Interdisciplinary concerns

A number of researchers within social science and the humanities
perceive the use of ethnographic methods, of which participant obser-
vation is an example, within the technical fields and natural science
to be a contentious issue.6 The concern is that ethnographic method
has a subjective and holistic character that is violated when subjected
to the demands of objective measurement of the technical and natural
scientific fields. From the point of view of hermeneutical theory this
implicit opposition between subjective and objective observations is
misguided, as explained in section 3.3.5. The stance taken in this dis-
sertation is that the ethnographic method used does indeed aspire to
arrive at objective truth, but notably objective truth as measured by the
objectives of programming practice, and not as measured by the objec-
tive criteria of either social/humanities research or technical/natural
science.

4.3 Interviews

Interviews were used in this dissertation as part of the participant ob-
servation of game programming, and as the primary means of gath-
ering data on safety critical programming. All the interviews were
conducted as semi-structured interviews.7

5Ibid. p. 60f.
6Jensen 2008.
7Seaman 2008 p. 44.

4.4 ethnological method 127

Similarly to participant observation, interviews is an established
data collection method in software engineering. It fits well with many
types of approaches and theoretical frameworks.8

4.4 Ethnological method

From an ethnological point of view, the methods used in this disser-
tation are not unusual. Both interviews and participant observation
are well-established ethnological methods.9 The subject of the disser-
tation is not commonplace within ethnology, but it is not unheard of
either (see section 2.2.1). The main theory of this dissertation, her-
meneutical theory, is a well-established theoretical perspective within
ethnological research.10 The secondary theory of this dissertation,
cultural form theory, is used in a variant, life mode theory, in numer-
ous recent ethnological studies, primarily by Danish ethnologists.11

The theory used least in this dissertation is rhetorical theory. Rhetor-
ical theory is not much used within ethnology though examples of its
use do exist.12

The fieldwork (participant observation and interviews) done for
the sake of this dissertation gave rise to some interesting choices and
strategies regarding data collection. These are discussed further in a
published paper by the author, which for the sake of convenience is
reprinted in this dissertation.13

8Singer et al. 2008 chp. 3.1.2, p. 14.
9Fägerborg 1999. Öhlander 1999.
10Borda 1989 p. 20. Pedersen 2005 p. 8.
11See e.g. Højrup 2002. Højrup 2003. Nielsen 2004. Suenson 2005.
12See e.g. Suenson 2008 p. 91.
13Suenson 2013. See appendix A.

128 chapter 4. method

4.5 Analysis methods

4.5.1 Mainstream analysis

It is asserted in this dissertation that a cultural approach to program-
ming research is needed to supplement the mainstream approaches.
To back up this assertation, the most prominent mainstream theories
in programming research are used to analyze a case study in game
programming, and the shortcomings of the mainstream theories are
pointed out.

The mainstream theories in programming are presented in section
3.2. This presentation is in itself a conceptual analysis that identifies
the basic concepts on which the mainstream theories are based. The
mainstream perspectives are then applied to the case study in section
5.2.1.

4.5.2 Hermeneutical analysis

The hermeneutical analyses use the theory presented in section 3.3.
Hermeneutical analysis is an interpretive approach. The facts of the
case studies are seen through the perspective of hermeneutical con-
cepts. The result is a hermenutically structured understanding of the
case studies. The analysis is applied to the game programming case
study in section 5.2.2 and to two safety critical case studies in section
6.3.

The analysis method itself is not so much a procedure as it is a
process of understanding, similar to the constant comparison method
described by Seaman.14 This means that the data are interpreted
repeatedly in a hermeneutical perspective until they make sense within
the framework. The final interpretation is the result of the analysis.

14Seaman 2008 chp. 3.1.1, p. 49.

4.5 analysis methods 129

4.5.3 Cultural form analysis

4.5.3.1 Comparative analysis

The hermeneutical analyses of sections 5.2.2 and 6.3 provide insights
into game programming and safety critical programming but they do
not explain the differences between the two types of programming.
Therefore, a comparative cultural form analysis is applied to the case
studies in game programming and safety critical programming and to
the hermeneutical analyses of these in section 7.1. Applying a cultural
form analysis is similar to applying a hermeneutical analysis except
that the concepts used are different.

The game programming data come from a single relatively de-
tailed case study while the safety critical programming data come
from two less detailed case studies. This is, however, not an obstacle
for the analysis, since cultural form theory perceives all practices as
more or less generalized forms. An uneven data material can easily
be compared because what is being compared are not the concrete
practices but the forms of practices. See section 3.4 (Cultural form
theory).

4.5.3.2 Safety critical case studies

Looking at the safety critical programming process as a cultural form
is an abstraction that disregards the variety found within the safety
critical industries. In section 7.2 a number of case studies in safety
critical programming are compared to each other using cultural form
theory, similar to the comparison between game programming and
safety critical programming, but within an industrial paradigm instead
of between two different paradigms. The case studies used are based
on interviews, similar to the two case studies that were subjected to
hermeneutical analysis. However, they are treated in much less detail
compared to the ones subjected to hermeneutical analysis.

130 chapter 4. method

4.5.4 Rhetorical analysis

This dissertation focuses on hermeneutical theory, not rhetorical. Yet,
a rhetorical analysis is included for two purposes: to give a demon-
stration of how to carry out a rhetorical analysis, and to show the
intimate connection that exists between rhetorics and hermeneutics.

The analysis is based on source code obtained from the case study
in game programming as well as two interviews with programmers in
which they explain the company’s source code. Only a small part of
one particular game’s program code is analyzed, and not in depth.

Though the rhetorical analysis makes up only a small part of this
dissertation it is important that it is included. The dissertation is
directed towards programming practice and as such it is necessary
that the results can be used in said practice.15 Hermeneutical the-
ory in itself has the potential to be a valuable conceptual tool in the
programming process but in the inevitable interplay between under-
standing and application (in the form of creation) that characterizes
a hermeneutical process such as software development, hermeneutics
focuses more on the understanding part of the process while rhetorics
focuses more on the creative part. For this reason rhetorics has the
potential to become an important practical conceptual tool for pro-
grammers, as demonstrated in chapter 8 (Rhetorical case study and
analysis); not only in the creation of source code but also in the com-
munication between developers. This is the reason why it has been
crucial to include an example of rhetorical analysis in this dissertation
and it points towards a fruitful area of analysis for future research.

4.6 Theory of science

Runeson & Höst divide case study research into four categories ac-
cording to purpose: exploratory, descriptive, explanatory, and improv-

15See sections 3.3.5 (Understanding) and 3.3.8 (Application).

4.7 data 131

ing. According to this classification, this dissertation is exploratory:
it aims at “finding out what is happening, seeking new insights and
generating ideas and hypotheses for new research.” 16

They also identify three types of research perspective: positivist,
critical, and interpretive. According to this classification, this disser-
tation is interpretive. Overall, hermenutics is a very general theory
of interpretation and it is used not only as a method of analysis but
also as the underlying theory of science of the dissertation. The use
of hermeneutical theory in science is discussed further in the paper
“Method and Fieldwork in a Hermeneutical Perspective.” 17

4.7 Data

The game programming data were collected specifically for this dis-
sertation and not used in any other setting. The safety critical pro-
gramming data were also used as survey data in work product D4.2a.2
of the RECOMP joint research project.

4.7.1 Game programming

Observation by the author in the company Tribeflame in Turku, Fin-
land during the period 15th-19th August, 22nd-24th August, 30th-31st
August, 1st-2nd September, and 5th-9th September 2011. Observation
time was normally around 9 AM to 5 PM, depending each day on the
working hours of the company.

16Runeson & Höst 2009 p. 135.
17Suenson 2013. Also reprinted in appendix A.

132 chapter 4. method

Field diary — A handwritten field diary was kept wherein
observations were systematically noted throughout the day. The
owners and programmers of Tribeflame spoke Swedish amongst
each other, and the graphic artists spoke Finnish, meaning that
company meetings were also in Finnish. The diary is kept mostly
in Danish mixed with Swedish and Finnish phrases. 233 pages

Interview 1 — Swedish. 1 hour 34 minutes. 19th August 2011. Björn
(name changed). 33 year old male, born in Helsingfors. Founder
and owner of Tribeflame.

Interview 2 — Swedish. 1 hour 54 minutes. 23rd August 2011.
Mickie (name changed). 38 year old male, born in Helsingfors.
Programmer in Tribeflame.

Interview 3 — English. 1 hour 27 minutes. 24th August 2011. Kati
(name changed). 30 year old female, born in Kotka. Temporary
graphic artist in Tribeflame.

Interview 4 — English. 2 hours 1 minute. 30th August 2011. Matti
(name changed). 31 year old male, born in Parainen. Graphic artist
in Tribeflame.

Interview 5 — Swedish. 1 hour 57 minutes. 1st September 2011.
Andreas (name changed). 34 year old male, born in Åbo. Founder
and owner of Tribeflame.

Interview 6 — Swedish. 1 hour 34 minutes. 1st September 2011.
Interview with Mickie where he explains the source code for the
game with the working title Flower.

Interview 7 — Swedish. 1 hour 11 minutes. 6th September 2011.
Interview with Andreas where he explains the internally developed
library code at Tribeflame and the company’s technological
strategy.

Interview 8 — Swedish. 1 hour 33 minutes. 22nd September 2011.
Fredrik (name changed). 25 year old male, born in Korsnäs. Part
time programmer in Tribeflame.

4.7 data 133

Presentation — English. Presentation of Tribeflame by Björn at the
Department of Information Technologies, Åbo Akademi, 4th
December 2012 at 9 AM – 10:10 AM. Notes. 5 pages.

Documents — Concept sketch and various documents used in
meetings by Tribeflame. Printed and hand written. 20 pages.

Source code — Printed source code from the game with the
working title Flower. From the files “GameScene.hpp”,
“GameScene.hpp”, “Obstacle.hpp”, and “Obstacle.cpp”. 28 pages.

Diagrams — Hand drawn diagrams explaining the structure of
Tribeflame’s library code. 2 flip-chart sheets.

News article — “Akademisk spelhåla på mässan”. Meddelanden
från Åbo Akademi no. 13/2012, p. 28.

Photographs — Photographs of Tribeflame’s office taken 2nd
September 2011.

4.7.2 Safety critical programming

“RECOMP” stands for Reduced Certification Costs Using Trusted
Multi-core Platforms and is a European Union-funded project from
ARTEMIS (Advanced Research & Technology for Embedded Intel-
ligence and Systems) Joint Undertaking (JU). The project started 1st
April 2010 and had a duration of 36 months. The aim was to establish
methods, tools and platforms for enabling cost-efficient (re)certifica-
tion of safety-critical and mixed-criticality systems. Applications ad-
dressed were automotive, aerospace, industrial control systems, and
lifts and transportation systems.18 The Software Engineering Labo-
ratory at Åbo Akademi participated in the project through professor
Iván Porres, Jeanette Heidenberg, and the author. The interviews

18Information from the official RECOMP website.

134 chapter 4. method

listed here were conducted and transcribed by the author except in
one case, noted below.

Interview 9 — Swedish. Åbo Akademi. 50 minutes. 21st January
2011. 38 year old female, born in Mariehamn. M.Sc. in computer
science. Software design architect in a large telecommunications
company, Finland.

Interview 10 — English. Telephone interview. 46 minutes. 2nd
March 2011. Jensen, Martin Faurschou. 34 year old male, born in
København. M.Sc. in engineering. Part of functional safety team at
Danfoss Power Electronics, Graasten. Jeanette Heidenberg
conducted the interview.

Interview 11 — English. Skype telephone interview. 1 hour. 7th
March 2011. Ambrosio, Gustavo. 26 year old male, born in Madrid.
Electrical engineer, masters degree in aerospace engineering.
Software engineer. Integrasys, Madrid.

Interview 12 — English. Telephone interview. 1 hour 1 minute. 9th
March 2011. Two persons interviewed. 33 year old male, born in
Brno. Degree in electrical engineering and computer science.
Responsible for quality and ISO standard, project manager. 45
year old male, born in Brno. Degree in electrical engineering and
computer science. Co-founder. Company in image and signal
processing, industrial and traffic management, Brno.

Interview 13 — English. Telephone interview. 1 hour 3 minutes.
10th March 2011. 40 year old male, born in Italy. Aerospace
engineer. Director of critical real time software in a space industry
company, Finland.

Interview 14 — Danish. Telephone interview. 1 hour 8 minutes.
16th March 2011. Jessen, Poul. Male. Electrical engineer. Director
and owner of PAJ Systemteknik, Sønderborg.

4.7 data 135

Interview 15 — English. Telephone interview. 59 minutes. 17th
March 2011. Loock, Detlef. 51 year old male. Electrical engineer.
Group leader for quality assurance in functional safety in Delphi
Automotive, Wiehl.

Interview 16 — English. Telephone interview. 1 hour. 24th March
2011. Philipps, Jan. 42 year old male, born in Saarland. Degree in
computer science and executive MBA in innovation and business
creation. Co-founder and management board member of Validas,
München.

Interview 17 — English. Telephone interview. 30 minutes. 25th
March 2011. Slotosch, Oscar. 45 year old male, born in München.
PhD in computer science. CEO, co-founder, and management
board member of Validas, München.

Interview 18 — English. Telephone interview. 1 hour 2 minutes.
25th March 2011. 44 year old male, born in Germany. PhD in
computer science. Quality manager, previously team manager for
electronic control units business unit in a automotive company,
Germany.

Interview 19 — English. Telephone interview. 58 minutes. 29th
March 2011. 38 year old male, born in Germany. PhD in electrical
engineering. CTO in a company that makes software development
tools for the automotive industry, Germany.

Interview 20 — Danish. Telephone interview. 1 hour 2 minutes.
30th March 2011. Riisgaard-Jensen, Martin. 49 year old male, born
in København. Master in electrical engineering. Software project
cooperation coordinator in Skov, Glyngøre.

Interview 21 — English. Telephone interview. 1 hour 1 minute. 4th
April 2011. Delebarre, Véronique. 53 year old female, born in
France. PhD in computer science. CEO and founder of Safe River,
Paris.

136 chapter 4. method

Interview 22 — English. Åbo Akademi. 1 hour 7 minutes. 15th
April 2011. Two persons interviewed. Tolvanen, Markku. 41 year
old male, born in Lappeenranta. Computer science engineer.
Principal designer in embedded systems. Hakulinen, Sami. Male.
R&D Manager. Metso Automation, Finland.

Interview 23 — English. Telephone interview. 1 hour 6 minutes.
2nd May 2011. Two persons interviewed. Tchefouney, Wazoba. 32
year old male. Diploma engineer from Brest. Networks specialist,
electronic architecture, research and innovation department.
Graniou, Marc. 37 year old male. Diploma engineer from Brest.
Specialist in safety domain, electronic architecture, research and
innovation department. PSA Peugeot Citroên, Paris.

Interview 24 — English. Telephone interview. 1 hour 12 minutes.
4th May 2011. Two persons interviewed. Honold, Michael. 49 year
old male, born in Germany. Electronics engineer. Hardware
certification expert. Bitzer, Holger. 39 year old male, born in
Germany. Electronics engineer. Project responsible for subsystems
engineering. Cassidian Electronics, EADS, Ulm.

Interview 25 — English. Pasila. 1 hour 5 minutes. 5th May 2011.
Two persons interviewed. Longhurst, Andrew. 40 year old male,
born in Kent. Masters in robotics and automation. Engineering
manager and quality manager. Davy, William. 25 year old male,
born in Johannesburg. Masters in engineering. Senior engineer.
Wittenstein Aerospace and Simulation, Bristol.

Interview 26 — English. Pasila. 1 hour 3 minutes. 5th May 2011.
48 year old male, born in Stanford. Computer science degree.
Engineer in industrial research company, England.

Interview 27 — English. Telephone interview. 57 minutes. 17th
May 2011. Two persons interviewed. 35 year old female, born in
Zaarbrücken. Industrial engineer and quality assurance manager.
37 year old male, born near Hannover. Computer scientist and
project manager. The company develops a real-time operating
system. Germany.

4.7 data 137

Interview 28 — English. Telephone interview. 56 minutes. 23rd
May 2011. Marino, Javier Romero. 43 year old male, born in
Madrid. Aeronautic engineer. Project manager in
telecommunications and control systems department in FCC,
Madrid.

Interview 29 — English. Telephone interview. 1 hour. 26th May
2011. Suihkonen, Kari. 43 year old male, born in Parainen. Masters
in physics. R&D division director in Kone, Chennai.

Interview 30 — English. Telephone interview. 31 minutes. 5th July
2011. Male. COO and R&D Director in a hardware company
working with video surveillance and in the space industry, Spain.

Interview 31 — English. Telephone interview. 1 hour. 14th July
2011. Brewerton, Simon. 41 year old male, born in London. BSc in
cybernetics and control systems. Senior principal for
microcontroller division in Infineon, Bristol.

Interview 32 — English. Telephone interview. 1 hour 9 minutes.
28th May 2013. 32 year old male, born in Germany. Diploma
engineer in communication systems. Certifier and group leader of
generic safety systems in TÜV Süd, Germany.

Presentation — English. William Davy, Wittenstein Aerospace and
Simulation. Presentation on Free, Open and Safe RTOS to the
Embedded Systems Laboratory at Åbo Akademi 23rd May 2012,
2 PM to 3 PM. Notes. 4 pages.

Web sites — Official web sites of companies participating in
RECOMP.

Documents — Presentation slides and various internal information
documents provided by companies participating in RECOMP.

Deliverables — Official deliverables and intermediate work
products of RECOMP, especially WP4.2a.

138

139

Chapter 5

Game programming

5.1 Case study

5.1.1 Tribeflame

In order to learn something about programming, we need to take a
look at a programming process. In section 3.2 (Mainstream program-
ming theories), we studied the models of programming processes that
have already been made and discussed in the literature. But any
model of programming processes must necessarily be an idealisation,
to some degree; and while we are interested in finding out the ways
in which these idealisations are useful, but to do that we cannot be-
gin with the models. We have to start from the concrete, real work
processes that the models represent.

Therefore in this chapter, we will study the work process of the
company Tribeflame in Turku, Southwestern Finland, during four
weeks in August and September 2011. Tribeflame is a small company
that makes computer games for tablet computers, primarily Apple’s
iPad. At the time of the study period, Tribeflame had completed six

140 chapter 5. game programming

Figure 5.1: Concept sketch of the tablet computer game with the work-
ing title Flower, which the Tribeflame developers worked on during the
observation period.

games. Over the course of the study, the company worked on devel-
oping three different games, though most of the time was spent on
one of these (see Figure 5.1). At the time, Tribeflame consisted of the
two founders, two programmers, and two graphic artists, though out
of the six one worked only part time, and one was only employed for
the summer.

Is the development process used by Tribeflame typical? There is
no reason to doubt that it is a typical small game company.1 How-
ever, we are not really interested in the question of whether Tribe-
flame’s process is typical of programming in general: any real process
will have its own peculiarities and in this sense be atypical. We are

1In 2010, 4473 out of 4981 Finnish software companies had 9 or fewer people work-
ing in them. In 2011, 3% of Finnish software companies (around 150) were in the game
industry. Rönkkö & Peltonen 2012.

5.1 case study 141

looking for some cultural traits and constraints on the possible forms
computer programming can take, and for this purpose Tribeflame
serves very well as an example. Later on in chapter 6 (Safety critical
programming), we will take a look at some very different development
processes.

5.1.2 The development team

Björn and Andreas2 are the founders and owners of Tribeflame. They
became friends in university and started Tribeflame together after
having worked as employees for other companies for five or six years
after graduation. Björn acts as the company’s Chief Executive Officer
(CEO), and takes care of most of the administrative side of running
the business. The largest part of his work, however, is to do the level
design for Tribeflame’s games. That means thinking up the puzzles
that the player has to solve when playing the games. Björn has the
final say regarding how the games look and work. Andreas acts as the
Chief Technological Officer (CTO): he works mainly as a programmer,
and has the final say in technical decisions.

Mickie is employed full time as a programmer. Before Tribeflame,
he worked as an employee elsewhere in the IT industry. Björn, An-
dreas, and Mickie all have technical IT degrees from the same Finnish
university.3

Matti is employed as a full time graphic artist in Tribeflame, re-
sponsible for producing almost all the graphics for the games. Fredrik,
a programmer, is finishing his education at the university while work-
ing part time; he is about to start his own company in an unrelated
business, which means that he is slowly ending his time with Tribe-
flame. Kati is a graphic artist who was employed for the summer to
replace Matti while he was on vacation.

2The names of the owners and employees of Tribeflame have been changed in this
treatise to protect their privacy. The name of the company itself is the real name.

3Åbo Akademi, the Swedish language university in Finland.

142 chapter 5. game programming

Tribeflame mostly works as a team of individuals with specialised
competences. The graphic artists Matti and Kati do not have the skills
to do what the programmers, Andreas, Mickie, and Fredrik, are doing,
and vice versa. Decisions about running the business are taken jointly
by Björn and Andreas and do not involve the employees. Besides the
administrative decisions, Björn and Andreas share the formal deci-
sion competence, with Björn being in charge of product decisions and
Andreas in charge of strategic technical decisions. However, most of
the decisions regarding the products (the games) are arrived at in a
common process of discussion and decision that involves everyone in
the company.

5.1.3 The rhythm of work

The work at Tribeflame has a certain rhythm. Most of the work takes
place in the company’s office, a single room in an office building next
to the university’s IT facility in Turku. At times, everyone is focused
on their own tasks: the room is silent except for the clicking of mice
and the tapping of keyboards, and the concentration is almost pal-
pable.4 At other times the room is alive with laughter and jokes
– people constantly interrupt each other and show each other games
and graphics on their screens. On frequent occasions, everyone leaves
their desks and gathers together around the table in the center of the
room in order to have a meeting.

In figure 5.2 we see the three main activities that are usually car-
ried out alone, and how often they happen. Coding refers to the part
of programming that is actually entering the programming code on

4Robert Willim describes a similar atmosphere in the Swedish IT company Framfab:
“As mentioned, a quiet sense of being busy prevailed in the Ideon office. The mood of
relative ease was partly due to much of the awareness being focused on the interface to
the technology. The employees’ concentration and focus was on what Steven Johnson
(1997) calls the data rhythm. From this arises a contemplative concentration, trained
inwards and at the same time connected to technology.” Willim 2002 p. 84.

5.1 case study 143

Figure 5.2: Frequency of tasks at Tribeflame during the observation period.
The axis represents days. The boxes indicate that the activity occurred on
that day, the crosses indicate missing observation data.

144 chapter 5. game programming

Figure 5.3: Frequency of meetings within Tribeflame. The axis represents
days. The boxes indicate that the activity occurred on that day; the crosses
indicate missing observation data.

the computer, as opposed to planning it and talking about it. This
task is done by the programmers. Graphics and animation refers to
drawing the pictures and animations used in the games, and this is
done by the graphic artists. Level design refers to thinking up the
puzzles the player has to solve and entering them into the game in a
suitable form. This task is done by Björn, the CEO.

We can see that these tasks are very frequent. Coding and graph-
ics work happens every day; level design happens whenever Björn is
free from more important duties, though still quite frequently. These
are the tasks that directly contribute to the games, so it is not surpris-
ing that they occur so often.

However, equally important as the time spent working alone is
the interaction within the company. Figure 5.3 shows the occurrence
of meetings, which happen almost as frequently as the activities that
contribute directly to the games. Occasionally the meetings are short
but commonly last for an hour or two. On Fridays the meetings
sometimes take up most of the day. During the final two weeks of the
observation period, Björn instituted a daily meeting. Note that Figure
5.3 shows only internal meetings in the company – Björn and Andreas
also have meetings with external contacts.

This means that the work within Tribeflame is forever rhythmi-
cally shifting between working more or less individually on tasks, and
coming together to discuss the tasks. If viewed from above, the work
in Tribeflame looks like the schematic drawing in Figure 5.4: the de-

5.1 case study 145

Figure 5.4: The work at Tribeflame shifts from the individual desks in the
periphery of the room to the meeting table in the center (left); then it shifts
back again to the periphery (right). This process goes on continually.

Figure 5.5: Frequency of discussions, work-related chats, and working to-
gether on tasks. The axis represents days. The boxes indicate that the
activity occurred on that day; the crosses indicate missing observation data.

velopers move from their desks at the periphery of the room to the
meeting table in the center; then they move back away from the center
to the periphery, and so on and so forth.

The meetings at the central table are not the only form of ex-
change between the developers. As shown in Figure 5.5, interaction
is just as frequent in the form of discussions, informal chat, banter,
evaluation of each others’ work, or working together on solving tasks.
Schematically, the drawings of Figure 5.4 have to be complemented
by the one in Figure 5.6, which shows the interaction that takes place
between the developers when they are not in meetings.

146 chapter 5. game programming

Figure 5.6: The developers also interact frequently outside of meetings.

The time spent on interaction is significant. As an example, Figure
5.7 shows the work interaction of Andreas on an ordinary Wednes-
day.5 On this day, everyone spent more than half their time working
with others. Over a third of the time was spent with everyone in a
meeting around the central table (four people were at work during
this week). Around a fifth of the time was spent in interactions in
smaller groups, discussing and chatting.

As we see from Figure 5.7, there are two main blocks of time spent
alone: one in the morning and one after lunch, beginning at around
220 minutes. Each of these blocks are followed by a meeting period
involving everyone. Other types of interaction are spread throughout
the day. Thus we see both the rhythmic movement between center
and periphery, which is illustrated in Figure 5.4, and the individual
interactions shown in Figure 5.6.

The lesson of this is that the Tribeflame work process is not only
a coordinated effort between specialised individuals – it is also an
intensely social and communicative process in which common discus-
sions are central. The function of the discussions is to build under-
standing in the company. Decisions are then made on the basis of this
common understanding, which is constantly evolving and corrected
by the developers. Though the developers have specialised roles, they
all contribute to the common direction of the company’s games, and

5This particular day was chosen as an example in an attempt to find a typical work
day: although it should be noted that all the observed days had some atypical features.

5.1 case study 147

Figure 5.7: Work interaction for Andreas, Wednesday 7th September 2011,
9:00-15:00. When the number of persons is one it means that he is working
alone; when it is greater than one that he is working together with others.
The number of persons at work this week was four, so the high points in
the graph indicate the whole company working together.

it is important that they are all heard. For example, though Kati is
a temporary employee she is expected, even on her last work day, to
participate in the development meeting and contribute her opinions,6

regardless of the fact that she will not be involved in the development
process anymore.

The focus on common understanding and consensus-building dis-
cussions means that an authoritative decision is rarely made. For ex-
ample, after a lengthy discussion between the developers about where
on the screen the game menu should be placed, Björn finally takes a
decision because agreement cannot be reached: “In the end I decide
that it will be moved to the right. Sorry guys.” 7 Though Björn clearly
has the authority to make the decision, and it is socially acceptable
for him to do so, the fact that he feels the need to give an apology
shows that this is not the normal way of reaching a decision in the
company.

6Field diary, Friday September 2nd 2011, 11:00-12:24.
7“Til slut bestemmer jeg det bliver flyttet til højre. Sorry guys.” Field diary, Thurs-

day 8th September 2011, 16:15.

148 chapter 5. game programming

Figure 5.8: The relative infrequency of information sharing. Information
sharing is when one person provides the information and the other merely
listens and can ask clarifying questions. The axis represents days. The
boxes indicate that the activity occurred on that day, the crosses indicate
missing observation data.

The focus on understanding also means that the kind of commu-
nication that could be called “information sharing” is relatively infre-
quent: if we understand information sharing to be a process whereby
one person gives some information to another person, who mainly
listens and can ask clarifying questions. As can be seen in Figure 5.8,
information sharing is much less frequent than the more collabora-
tive meetings and discussions shown in Figure 5.3 and 5.5. That the
communication patterns in Tribeflame are characterised more by dis-
cussions than by information sharing is somewhat paralleled by the
decision process, which can better be described as “decision reaching”
than as “decision making”. The term “decision reaching” emphasizes
that agreement and exchange plays a much larger role than in a pro-
cess where decisions are simply made on the basis of the best available
information.

5.1.4 Playing and planning

Playing the games that are being developed is an important part of
the work process. For this, I use the term “playtest”. The developers
continually run the game to see how some detail has turned out, but

5.1 case study 149

Figure 5.9: Frequency of playtest by the developers themselves (top), and by
persons outside Tribeflame (bottom). The axis represents days. The boxes
indicate that the activity occurred on that day; the crosses indicate missing
observation data.

this is not what is meant by playtest. Rather, it is playing the game for
a longer period to see how it works as a whole and how much fun it is.
In this sense, there are two kinds of playtest: one when the developers
themselves play their game, and another (“external playtest”) when
they get someone from outside the company to play it and talk about
their experience.

Figure 5.9 shows the frequency of internal and external playtest.
It indicates that the developers do not start to perform playtests until
near to the final week of the observation period. At this time, however,
playtests become a nearly daily occurrence, and the tests have a large
influence on the discussion topics and meetings in the company. For
the external tests, the developers ask colleagues in the game industry,
colleagues in other branches of industry, relatives, spouses, and even
me – almost everyone with whom they come into contact and can
persuade to try the game.

Besides playing their own games, the developers also frequently
play other companies’ games and talk about them. Figure 5.10 shows

150 chapter 5. game programming

Figure 5.10: Frequency of playing other companies’ games during work
hours. The axis represents days. The boxes indicate that the activity
occurred on that day; the crosses indicate missing observation data.

the frequency of playing other games during working hours. Since the
company was only observed during work hours, there is no data on
how often other companies’ games are played outside work hours; but
this clearly happens as it frequently features as a topic of conversation.

Planning in Tribeflame is neither very systematic nor very long
term. There is a general idea about where the game is headed, but
this is rarely written down or captured in a form other than concept
sketches or similar. Tasks are usually planned one week ahead at
the Friday meeting; they are written on a flip-chart or whiteboard and
crossed out during the week as they are completed. New tasks that are
discovered during the week are added to the whiteboard immediately.
The tasks are frequently discussed during the course of the work. On
an individual level, the developers sometimes write “to-do lists” for
themselves on a piece of paper.

A humorous illustration of the ad hoc approach to planning in
Tribeflame comes when Björn has difficulty wiping the whiteboard
clean of old scribblings before a meeting. Instead of going in search
of some spirit meant for cleaning he uses a small bottle of Minttu
(Finnish mint liqueur) that happens to be standing around in the office,
exclaiming: “whatever”.8 Though the gesture does not strictly have
anything to do with the planning process, it illustrates very well the
mindset in Tribeflame towards planning: do whatever works.

8Field diary, Friday 2nd September 2011, 11:11.

5.2 analysis 151

From a business perspective, the goal of Tribeflame is to produce
games that can be sold and generate enough profit to sustain the
development. This, however, does not explain what it is that makes
it possible to sell a game, or how to make one. Mickie explains that
“the code is just a means to reach a goal”.9 The game customers do
not care about Tribeflame’s business goal: they have their own goal,
which is to have fun.

Consequently, many of the discussions at Tribeflame revolve around
whether the games are fun and what it means for a game to be fun
– both their own games and those developed by other companies.
The developers are conscious that what they are doing is a form of
entertainment. When presenting the company, Björn says that “enter-
tainment is the constant in the company.” 10 Andreas justifies charging
money for the games by comparing them to other forms of entertain-
ment: “it’s a form of entertainment, it’s fair to pay for games. People
pay ten euro for two beers at a café.” 11 – meaning that the entertain-
ment value justifies charging more than the production costs.

5.2 Analysis

5.2.1 Analysis with mainstream theories

In section 5.1 (Case study), we discussed the work process of Tribe-
flame, a small computer game company of six people in Turku, South-
western Finland. In section 3.2.1 (Software engineering), 3.2.2 (Agile
software development), and 3.2.3 (Computer science), the most im-
portant mainstream theories of programming were explained. In this

9“koden er jo bare et middel til at nå et mål”. Field diary, Thursday 1st September
2011, 13:00.

10 Presentation of Tribeflame at Åbo Akademi, Tuesday 4th December 2011.
11“det er en form for underholdning, det er fair at betale for spil. Folk betaler 10

euro for to øl på café.” Field diary, Wednesday 7th September 2011, 13:50.

152 chapter 5. game programming

Figure 5.11: Frequency of bug fixing, a part of testing. The axis represents
days. The boxes indicate that the activity occurred on that day; the crosses
indicate missing observation data.

section we will attempt to apply the mainstream theories of program-
ming to Tribeflame’s process in order to see how well they are suited
to analysis of a concrete programming process. The purpose of this is
not to indicate where the mainstream theories are wrong, but to inves-
tigate whether they work as general programming theories. If they are
truly general programming theories, they should be able to explain a
viable commercial process as provided by the Tribeflame example. If
they are not, science demands that we explain what situations the
theories are suited to and what their limitations are.

5.2.1.1 Software engineering

Looking at the Tribeflame process, we see a distinct lack of the clearly
separated phases that are the basis of software engineering theories.
The phases that are common to nearly all theories are specification,
architecture (or high level design), design, coding, and test. Of these,
the specification, architecture, and design activities at Tribeflame are
carried out during the meetings, shown in Figure 5.3 (page 144), and
during the constant discussions and interactions outside meetings,
shown in Figure 5.5 (page 145). As indicated, the activities are spread
out over the duration of the process.

The same is the case with coding, as can be seen in Figure 5.2
(page 143). Testing is composed of several activities. According to
traditional software engineering, bug fixing (error fixing) is part of

5.2 analysis 153

testing. Bug fixing at Tribeflame is shown in Figure 5.11. Playtests
and external playtests, shown in Figure 5.9 (page 149), also function
as forms of testing. As we can see, testing occurs throughout the
observation period except for the first week, and testing is concurrent
with the specification, design and coding activities.

Even though the observation period covers but a small fraction of
the development of a complete product, we find the activities of all
of the phases of traditional software engineering represented within
it. Moreover, the activities do not occur in an orderly, separated
fashion, so we cannot interpret the development process as consisting
of smaller iterations, each containing a complete set of phases, as
advocated by some software engineering theories. The conclusion is
that the activities described by the software engineering phases all
occur in Tribeflame’s process, but the idea of separating the activities
into distinct phases does not help to explain what is happening in the
process.

Corresponding to the lack of separate phases is a lack of transition
criteria. In software engineering, transition criteria between phases
are normally the completion of a document, work product, or artifact.
In Tribeflame’s work, there are remarkably few documents, and they
do not play a central role. A few concept sketches and similar are
important, and these are lying around in the office. But they are
not kept up to date, and they are seldom referred to. Most of the
knowledge is transmitted orally or in the game itself. The source
code of the game can conceivably be thought of as a work product,
but it does not function as a transition point since it is constantly
evolving and never reaches a finished state that is signed off.

As we saw in section 3.2.1 (Software engineering), the main con-
cerns of software engineering are planning, documenting, and eval-
uating. We can recall from section 5.1 (Case study) that in Tribe-
flame planning is done in an impromptu way on temporary flip-charts
and whiteboards – far from the systematic planning and milestone-
oriented methods promoted by software engineering, such as PERT
and Gantt charts. Regarding documentation, Tribeflame produces al-
most none. Knowledge is kept in the developers’ memories, in the

154 chapter 5. game programming

Figure 5.12: Frequency of evaluation sessions. The axis represents days.
The boxes indicate that the activity occurred on that day; the crosses indi-
cate missing observation data.

evolving source code, and occasionally concretized in a few concept
sketches.

Whereas planning (in a software engineering sense) and documen-
tation are not major aspects of Tribeflame’s work, evaluation is promi-
nent. This is often a significant feature of meetings at Tribeflame, as
indicated in Figure 5.3 (page 144). In addition, distinct evaluation ses-
sions sometimes take place, shown in Figure 5.12. Thus, of the three
major concerns of software engineering, evaluating seems to be the
concept that is most useful for describing what is going on during the
process observed, but it only applies to a part of Tribeflame’s work.

As we saw in Figure 5.10 (page 150), playing other companies’
games during work hours is a frequently-occurring activity. It is hard
to characterize this important activity within the conceptual frame-
work of software engineering, as it clearly does not fit into any of the
categories of architecture, design, coding, or testing. It could per-
haps be perceived as a kind of research necessary for requirements
specification. However, specification is supposed to be as complete
as possible before starting the design work, and this does not fit well
with the ongoing activity of game playing.

Some might say that it is unfair to try to analyze Tribeflame’s
process with software engineering terms, as software engineering is
specifically oriented toward large projects, and not small teams. Soft-
ware engineering theory is useful in the right circumstances. In chap-

5.2 analysis 155

ter 6 (Safety critical programming) we shall see examples of software
engineering theory being put to good use in practice. Nevertheless,
as we have seen above, traditional software engineering theory is in-
adequate for explaining this example of a small team development
process. Since 90 percent of Finnish software companies are of a sim-
ilar small size, this is a real challenge to the explanatory power of
software engineering.12

From a research perspective, it is not necessarily a problem that
software engineering theory might only be applicable to a minority of
companies within the software industry.13 From a programming per-
spective, however, this can have serious consequences. Most program-
mers learn about software engineering during their education, but not
so much about the limitations of software engineering. When pre-
sented with a real software process, many will unconsciously perceive
it in terms of the software engineering theories they have learned,
even when the process is not suited to software engineering analysis,
as is the case in Tribeflame’s example. Not being aware of the limi-
tations of software engineering theory then has the unfortunate effect
of making the programmer apply the wrong mental tool to his task.

5.2.1.2 Agile development

The diversity of Agile approaches makes it rather challenging to use
Agile concepts for analyzing a concrete process, for it is not given
which of the Agile approaches should be used. It is immediately clear,
however, that on a practical level, Tribeflame’s process corresponds
only sporadically to Agile concepts.

To take one example: Tribeflame’s work corresponds to the Ex-
treme Programming practice of placing all developers together in the
same room, simply because Tribeflame has only one office room avail-
able. But there is no correspondence to the practice that all program
code should be tested every day, as Tribeflame does not have an auto-

12In 2010, 90% of Finnish software companies had 9 people or fewer. Rönkkö &
Peltonen 2012. See note 1 on page 140.

13Though it is of course a serious problem if the limitations of the theory are not
clearly understood and presented.

156 chapter 5. game programming

mated testing system in place, much less test cases for all of the code.
This, of course, stems from the nature of their product – it is nearly
impossible to design test cases that determine whether an interactive
computer game is “correct”. Likewise, the practice of programmers
coding together in pairs is not followed, as Tribeflame’s developers
spend much more time working alone than in pairs. There are more
practices in Extreme Programming, but it is clear that Tribeflame’s
process does not resemble Extreme Programming to a significant ex-
tent.14

In another example, we can look at how well Tribeflame’s work
corresponds to the Scrum rules. The three important roles in Scrum
are the Product Owner, the ScrumMaster, and the Team. Tribeflame
has neither Product Owner nor ScrumMaster. The Team, understood
as everyone working in Tribeflame, is of course very important in
Tribeflame; but it is not exactly the same as the Scrum conception
of a Team. In Scrum, the Team has to be without internal hierarchy;
in Tribeflame, Björn and Andreas, as the owners, have the formal
decision making authority, even if they seldom exercise their authority
directly.

Those working at Tribeflame do not use the Scrum version of
iterations, Sprints; they seldom explicitly prioritize their tasks, and
they do not commit to a specific workload each month. Sprint reviews
do not have an equivalent either, as there is rather little evaluation of
the work process itself. Only once during the observation period
did Tribeflame have a stand-up meeting that could be interpreted as
something akin to the daily Scrum meeting.

Whereas the concrete rules and practices of Agile development do
not correspond to Tribeflame’s process very well, the more abstract
concepts of Agile fit much better. As an example, let us compare the
process to the Scrum values: transparency, inspection and adaption.

Scrum demands that the process is so completely transparent that
it is visible at all times who is working on what, and that this is re-
peated verbally every day at the Scrum meeting. Tribeflame’s process
is not quite as transparent as that. However, since the developers sit so

14There are at least 12 Extreme Programming practices.

5.2 analysis 157

close to each other and interact so frequently, they are generally well
informed about what the others are doing, and they do not hesitate
to ask each other what they are working on. Perhaps more impor-
tantly, the game they are developing is tested and played constantly,
so that everyone knows the current state of the product. This creates
a high level of transparency, since there are only a few aspects of the
product whose state cannot be assessed by playing the game, namely
integration with the distribution channel (Apple’s Game Center), and
cross-platform support.

Inspection is closely linked to transparency. Inspection in Tribe-
flame is also performed by playing the game, both by the developers
themselves and by external persons. In addition, there are evaluations
(Figure 5.12) and frequent discussions (Figure 5.5, page 145) which of-
ten include aspects of inspection. That the company instituted daily
meetings in the middle of the observation period gives evidence that
inspection of the work process itself also happens.

Adaption is very prominent in the work process. There are no
detailed, long-term plans; rather, the planning is done as the game
is progressing from week to week. Features are constantly taken up
for discussion at meetings, and whenever a feature in the game is
complete it is promptly evaluated in discussions and has an effect on
further development. As mentioned above, daily meetings are added
halfway through the observation; this shows that adaption is present
at the process level, as well as the product level.

Thus, the abstract values of Scrum correspond well to Tribeflame’s
process. The common values of Agile development, as expressed in
the Agile manifesto, correspond partly to the process. We recall the
Agile values, shown in the manifesto, Figure 3.8 (page 65):

1. Individuals and interactions over processes and tools.

2. Working software over comprehensive documentation.

3. Customer collaboration over contract negotiation.

4. Responding to change over following a plan.

158 chapter 5. game programming

Regarding the first value, at Tribeflame, individuals and interactions
are clearly much more important than processes and tools, as pro-
cesses are seldom referred to, and tools are only referred to when
necessary. Regarding the second value, Tribeflame’s product is always
in the form of working software, and the company produces very little
documentation in general, and no documentation that can be called
comprehensive. Regarding the fourth value, the decision process at
Tribeflame is dynamic and adaptive rather than planned in advance.

The third value is not applicable to Tribeflame. The company
produces for a mass market of anonymous players, so they do not
collaborate with customers or with representatives of customers in
the sense that is meant in Agile development. Nor do they enter into
contracts or negotiate them with customers: they have investors, but
their role is not quite the same as that of a customer. This value there-
fore seems to reflect an aspect of Agile development that is absent in
Tribeflame.

As we can see, many, but not all, of the more abstract values
of Agile development correspond well to Tribeflame’s process. With
one exception, the Agile concepts are well suited, in contrast to the
concepts used by software engineering which, as we have seen, are in
fundamental conflict with Tribeflame’s way of working.

However, though Agile concepts are generally compatible with
Tribeflame’s process when used descriptively, they nonetheless have
serious deficiencies as analytical concepts. The reason for this is that
even though the Agile concepts are based on a philosophical ethi-
cal system, as described in section 3.2.2.5 (Work ethics), the concepts
themselves are primarily part of a prescriptive system of software de-
velopment. Agile methodologies are possible approaches to produc-
tive software development, but they are not meant to or well suited to
analyze processes that are not Agile and are not intended to become
Agile.

Thus, the Agile concepts offer us no help in explaining the differ-
ences we see between Agile processes and Tribeflame’s process. For
example, Agile concepts cannot explain why the playing of other com-
panies’ games is so important to Tribeflame. Agile thinking certainly

5.2 analysis 159

leaves room for this activity, but it offers no guidance in determining
what its function is.

Another example is the absence of a customer or customer repre-
sentative in Tribeflame’s process. The customer (represented in Scrum
by the Product Owner) is such a central part of Agile thinking that
the fact that Tribeflame’s process lacks it is something of a mystery
from an Agile perspective.

5.2.1.3 Computer science

As we saw in section 3.2.3 (Computer science), mainstream computer
science perceives itself as a mix of applied mathematics and formal
methods. During the observation period at Tribeflame, mathematics
was applied in only two cases, both of which had to do with how the
graphics should be moved around on the screen in the game, and used
mathematics of a high school level. There were no cases where formal
methods were applied, or could appropriately have been applied.

A common view of programming within computer science is that
a program consists of algorithms and data structures. The task of the
programmer is to divide the program into modules, then use the best
algorithms he can find. Tribeflame, like any other software company,
needs to select algorithms for its programs. However, it is not a top
priority that the algorithms are the best possible – they merely have
to be good enough.

As an example: before developing one of their games, the devel-
opers were worried whether the main algorithm was too inefficient to
run on an iPad. They quickly developed a simple prototype of the
algorithm and let it run with a few hundred objects, far more than
would typically used in a real computer game. When this test proved
successful, they proceeded with development without caring further
about the efficiency of the algorithm. No mathematical analysis or
advanced methods were employed apart from this simple but effective
practical test.

Another common computer science view of programs is to regard
them as computable functions. This means that there is some input
and a mathematical rule that transforms it into output. This view

160 chapter 5. game programming

does not correspond very well to the practice of Tribeflame either, for
the reason that it is unknown what form the input and output should
take for a computer game. If those working at Tribeflame spent their
time figuring out how a game could be represented mathematically,
they would not have time actually to make the game.

As we have seen, in computer science there is a pronounced ori-
entation towards the machine, and not towards the uses to which it is
put. This perspective is not consistent with the practice of Tribeflame.
On one hand, the machine is central to the work, because without it
there could be no computer games at all, and the limitations of what
the people can do are dictated by the limitations of the machine. On
the other hand, though the limitations of the machine are certainly
present in everything they do, they are seldom discussed or addressed
directly. The discourse at Tribeflame normally focuses not on the ma-
chine itself, but on the experience of using the machine. This is not
a technical but a human discourse and it takes place mostly in terms
of human imagination and emotions.

If we look at the computer science perception of the work process
involved in programming, we see that the correspondence with Tribe-
flame’s process is mixed. There is within computer science an empha-
sis on mathematical intellectual elegance in the work process. Since
mathematics plays no big role in Tribeflame’s work, this emphasis is
obviously lacking in their process. Computer science also emphasizes
the individual in the process, almost to the point of becoming per-
sonal. Neither does this emphasis resonate with Tribeflame’s process,
which is intensively social and cooperative.

On the other hand, computer science emphasises that the details
of a problem only becomes understood through actual programming.
This corresponds well to Tribeflame’s process, which is essentially
a continuous cycle of discussing ideas and then trying them out in
practice: that is, programming them. There is also Naur’s view, that
programming is essentially a process of acheiving a certain kind of
insight. This corresponds well with the ongoing knowledge building in
Tribeflame, which we will examine in more detail in the next section.

5.2 analysis 161

Doing, experience

Discussions, reflection

Meetings

Tasks

Figure 5.13: The hermeneutical circle depicts the relationship between tasks
and meetings. Tasks are usually carried out alone and result in experience.
In meetings the experience from the tasks is discussed and reflected upon.
Meetings and tasks are mutually dependent.

5.2.2 Hermeneutical analysis

5.2.2.1 The work process

When we looked at Tribeflame’s process we noticed the rhythm in-
herent in the work. There is a continuous rhythmical shift between
working at the individual desks in the periphery of the room, and
coming together at the central table to have discussions. At the same
time, the rhythmical shift is between working with concentration and
alone, on one hand, and on the other hand talking, bantering, joking,
and interacting with others. The work that is mostly done alone at in-
dividual desks is specific tasks. Through the tasks the game is slowly
built. Each task amounts to doing something, trying something out,
and getting experience when it is seen if and how it works. In the
meetings the experience is discussed and reflected upon. The meet-
ings provide afterthought, which again leads to ideas for new tasks
that can be tried out.

The relationship between meetings and tasks is shown schemati-
cally in Figure 5.13 as a circle that leads from meetings to tasks, and

162 chapter 5. game programming

back again from tasks to meetings. Meetings and tasks are depen-
dent on each other. The meetings generate the ideas and the plans
for tasks that should be carried out. The tasks provide experience of
what works and what does not, and serve as input to the meetings to
make sure that the discussions are grounded in reality. It would be
extremely inefficient to discuss and plan the whole game in detail be-
fore attempting to carry it out in practice; likewise, it would be unwise
to make a whole game without stopping along the way to reflect on
the progress.

The sort of mutual dependence between two parts of a process
that is shown in Figure 5.13 is very common in hermeneutics – so com-
mon that is has been given a name: the hermeneutical circle.15 The
hermeneutical circle expresses that experience and reflection cannot
be separated. Neither can be subordinate to the other, and they need
to happen concurrently.

Because the hermeneutical circle is such a common phenomenon,
it is often also recognized outside of hermeneutic theory, under an-
other name. Donald Schön has analyzed the practice of a range
of modern professions: engineers, architects, managers, etc. Schön
writes that the professional oscillates between involvement and de-
tachment, from a tentative adoption of strategy to eventual commit-
ment.16 “The unique and uncertain situation comes to be understood
through the attempt to change it, and changed through the attempt to
understand it.” 17 We recognize here the structure of the hermeneuti-
cal circle as it is observed in Tribeflame.

In theory, this rhythmical, circular process goes on indefinitely. In
practice, the game is deemed finished at some point. The meetings
and tasks do not stay the same but lead to an ever-better understand-
ing of the game being developed. Schematically, we can picture the
relationship between tasks and meetings in the hermeneutical circle

15The hermeneutical circle depicted here shows the relationship between experience
and reflection. The hermeneutical circle also appears between other concepts. The
most common use of the hermeneutical circle is to describe the relationship between
the part and the whole in a process of understanding: see section 3.3.5 (Understanding).

16Schön 1983 p. 102.
17Ibid. p. 132.

5.2 analysis 163

T
im

e

MeetingsTasks

Figure 5.14: Over time, the hermeneutical circle between tasks and meetings
results in better understanding. Whereas the process is very open in the
beginning and decisions are relatively easy to undo, with time it becomes
more and more tight and resistant to radical change.

as time goes by as the spiral shown in Figure 5.14. The hermeneutical
circle is still seen shifting from tasks to meetings and back again, but
we also see that the process becomes more focused with time.

Initially, the process is very open. The available alternatives are
big and visionary, and the chosen decisions are not clung to with great
commitment. But as time passes and understanding deepens, deci-
sions made in the past become increasingly costly to revise because
time and resources have already been committed to them. Decisions
are still up for discussion – the process is not rigid – but it is no
longer as easy to undo them. The process has become more tight,
and focused. Schön recognises the same gradual tightening of the
professional process. He writes that the professional can always break
open his chosen view, but that “This becomes more difficult to do
as the process continues. His choices become more committing; his
moves, more nearly irreversible.” 18

18Ibid. p. 165.

164 chapter 5. game programming

5.2.2.2 Horizons of understanding

Tribeflame’s process is not simply a matter of planning, of optimizing,
or of construction. It is primarily a process of understanding. At the
outset, the developers do not fully understand the myriad details that
together make up a successful game. As the work progresses, they
slowly and gradually come to a fuller understanding of the central
question of their work: what makes a game fun, and specifically, what
makes the game we are working on right now fun?

The process of understanding does not start from scratch. Tribe-
flame’s team is composed of individuals with different and highly spe-
cialized competences. Matti and Kati are competent in the area of
graphic art; Andreas, Mickie, and Fredrik in the area of program-
ming. Björn is competent in the areas of business economy and pro-
gramming. They all have a general understanding and personal ex-
perience of computer games. All this foundational knowledge and
competence forms the pre-understanding that is the basis of the pro-
cess of understanding. If Tribeflame’s developers did not have this
pre-understanding, they would first have to acquire it before the pro-
cess could begin of understanding the game they are developing.

The understanding process is a social process that takes place in
meetings, discussions, and chat between the developers. As we have
seen in Figure 5.8 (page 148), “information sharing” is quite rare in
the process, where information sharing means that some information
is simply delivered from one person to another. The process of un-
derstanding is much more interactive. Nor is the process primarily
a decision process. Decisions are usually the outcome of discussions,
but the discussions contain much more than the information and de-
liberations needed to make decisions. Sometimes, the decisions that
are the result of a discussion are even left more or less unstated. As
soon as the developers reach a common understanding, the conse-
quences often become so clear to them that they do not really need
explicit decisions; everyone agrees on the common direction.

So how can we characterize the majority of the content of the
discussions if it is neither information sharing nor explicit decision
making? The developers seek to expand their understanding in the

5.2 analysis 165

process. At the onset of a discussion, they have a certain knowledge
and range of ideas that they are prepared to understand: their horizon
of understanding. Through discussions they exchange facts, opinions,
and viewpoints, and in that way expand their horizon. The process of
understanding is a process of horizon fusion. When the developers’
horizons of understanding fuse, their understanding becomes larger
– not by streamlining everyone’s opinion, but by expanding each in-
dividual’s horizon.

5.2.2.3 Authority and tradition

Though the process of understanding is complex and difficult to de-
scribe in simple categories such as for example the software engineer-
ing phases, this does not mean that it is unstructured or haphazard.
The process is strongly guided by authority in various forms. The
final authority of decisions rests with the owners, Björn and Andreas.
They share the responsibility for business decisions, while Björn has
the overall product responsibility, and Andreas has the overall tech-
nical responsibility. The business decisions rarely impact upon the
development process directly, and in this area they exercise their au-
thority freely. Regarding the development, they rarely exercise their
authority directly, as we saw in section 5.1 (Case study), with Björn’s
reluctance to impose a decision outside of the consensus process. It
does happen, however. For example, Andreas has insisted that the
programmers use shared pointers, a form of memory management.19

In their daily operation and management of business decisions,
there is hardly any conflict between the two. The basis of the unprob-
lematic sharing of responsibility and authority between them is their
good relationship – the personal reverence they have toward each
other. The authority they have over their employees is based partly
on the formal economic relationship between employer and employee,
and partly on the personal reverence the employees have for Björn and
Andreas in Tribeflame’s small, tight-knit team.

19The class shared_ptr of the Interprocess library from the Boost collection of li-
braries for C++.

166 chapter 5. game programming

Since Tribeflame’s process is primarily a consensus process, the
dominating form of authority in discussions is not the authority of
Björn and Andreas as employers. The work is a teamwork of under-
standing. Each individual has a specialized role and authority within
his field of competence, but the work is not just a collaboration be-
tween experts where each has the final say in his or her area: rather,
each individual can influence every area of the game and contributes
to the overall direction of the development. The primary form of
authority between the developers comes from the ability to argue
convincingly.

Convincing arguments also rest on authority and, as mentioned
above, not merely the authority of expertise. The most frequently
invoked authority in Tribeflame’s discussions is that of other games.
All the developers have a notion of what a good game should be like,
as well as examples of games that they consider successful. An argu-
ment about how their own game should be is very often supported by
a reference to another game that contains the feature in question, and
thus the other game lends its success to the argument.

A few games carry so much authority that a reference to them can
almost settle an argument in itself. The most authoritative game is
Angry Birds, the most successful tablet game in the world, which is also
made by a Finnish company. Another game that is often mentioned
is Cut the Rope, perhaps because its gameplay is somewhat similar to
Tribeflame’s own game. Older games are also mentioned occasionally,
for example The Incredible Machine from the 1990s.

The collected knowledge of the developers about how a game is
supposed to be forms a tradition with which they became acquainted
before they became involved with Tribeflame, and which acquaintance
they continue to develop. Tribeflame’s games are built upon, and are
a continuation of, this tradition of computer games.

The tradition of computer games is an important source of au-
thority and this is one reason why the Tribeflame developers spend
so much time playing games and talking about them. Another is that
the computer game tradition provides the yardstick with which the
success of Tribeflame’s games is measured. As long as the developers

5.2 analysis 167

do not have hard data on their game’s success in the form of sales fig-
ures or number of downloads, they have to compare their half-finished
game to the existing tradition. For this reason, the fusion of horizons
of understanding that goes on in the hermeneutical circle is not only
a fusion of the horizons of the individual developers on the team; it is
at the same time a fusion of the developers’ horizons and the horizon
of tradition.

Thus there are at least two levels of fusion going on in the herme-
neutical process of Tribeflame: a fusion of the different expertises that
is needed to make a game, and a fusion with the tradition that sets the
standard for what a good game is. With this notion, we can explain
some aspects of Tribeflame’s process that were difficult to explain sat-
isfactorily with mainstream theories of programming. Tribeflame’s
developers spend a significant amount of time playing games made
by other companies (see Figure 5.10, page 150), which has the effect
both of providing them with arguments and of making them more
knowledgeable of the computer game tradition.

They also spend a significant amount of time playing their own
game (see Figure 5.9, page 149). This has not only the function of
finding errors in the programming and graphics, but also of giving
the developers a sense of whether their game is fun to play: that is,
whether they are reaching their goal. Playing their own game is not
only a technical activity that corrects the code: it is as much or more
a way for the developers to get a sense of the practical application
of their game. They are trying to put themselves in the place of the
eventual player, and experience the game as a player would.

To experience the game as another person would requires that
the developer can suspend his horizon of understanding temporarily,
or else his own knowledge will prevent him from understanding the
other person’s experience. For example, the developer must try to
forget his knowledge of how a certain puzzle is meant to be solved,
and approach the puzzle as if he saw the game for the first time,
as an eventual player. This is a difficult task, and to make it easier
the developers also have other people from outside the company play
their game (see Figure 5.9).

168 chapter 5. game programming

The developers experience their game on the basis of prejudice.
In hermeneutic theory, prejudice does not have the negative associ-
ation that it does in everyday language. Rather, prejudice is a re-
quirement for understanding – understanding simply cannot happen
without prejudice, whether the prejudice is consciously known or not.
Prejudice is simply the fundamental assumptions humans make in or-
der to make sense of things.

However, prejudice can be either true or false. True prejudice
will make understanding easier, while false prejudice will hinder un-
derstanding. It is a central part of the process of understanding to
examine prejudice and correct it. The developers do this by playing
their game themselves, but correcting one’s own prejudice is difficult
precisely because it is the basis of understanding. This is an area
where the developers cannot trust their own competence completely.

Therefore it is of great importance to them to have external peo-
ple play their game. It provides them with an interpretation of the
game that they have not made themselves, and therefore they can use
it to correct their prejudice and thus move along in the process of
understanding.

5.2.2.4 To have fun

All of the activities at Tribeflame, and the process of understanding
that is analyzed above, is directed by the application of their product:
to play the game and have fun. From the use of shared pointers in
the code to the choice of colour scheme for the graphics, and even to
business decisions such as an eventual merger with another company
– every decision has to be evaluated in the light of the overall goal
of creating a game that is fun to play. The developers are conscious
of this when they say that the code is just a means to reach a goal.20

This has an important consequence for programming research, in
that it does not make sense to study programming in isolation from
the context in which it appears. Computer game code cannot be
understood without some knowledge of computer games.

20See note 9, page 151.

5.2 analysis 169

The application, in the form of “having fun”, is what drives the
activities, but the application in itself is not quite enough to explain
the process of understanding fully. After all, if “fun” were completely
defined by an existing computer game, all Tribeflame would have to
do was to copy that game. All understanding is in essence driven
by a question, and for Tribeflame the question is what “fun” actually
means. The beginning of Tribeflame’s answer is that “fun” means
entertainment.21 This might seem self-evident, but it is not. Consider,
for example, that for Björn and Andreas themselves, “fun” means to
work, among other things.22

Thus, in essence, Tribeflame’s business is a process of trying to an-
swer the question of what it means to have fun, for the kind of person
that would be inclined to play its game; and all of the company’s activ-
ities are somehow related to this question. Of course, those working at
Tribeflame have to do many activities that do not directly contribute
to answering this question, such as administration of the payroll. But
the supporting activities are only necessary for success, not sufficient.
They are not the critical factor that decide whether Triblame will suc-
ceed or not in competition with other competent companies.

The question of what is “fun” is interesting and it would be quite
instructive to analyze more in depth both what Tribeflame’s develop-
ers’ concept of fun is and how they arrive at it. Unfortunately, such an
analysis lies beyond the scope of this dissertation. While the concept
of fun is central to this kind of programming it is not relevant to other
kinds of programming practice, as we shall see in chapter 6. Thus, in
the compound concept “game programming” fun is intrinsic to games
but not to programming, the subject of the dissertation. The reader
that is interested in further understanding fun and computer games is
advised to consult the works of Turkle and of Crawford.23

In the analysis of Tribeflame with hermeneutical theory, we have
seen the use of all the essential hermeneutical concepts apart from

21See note 10, page 151.
22Andreas. “is it already time for lunch?” Björn. “yes, time passes quickly when

you’re having fun.” (Andreas. “er det allerede tid til lunch?” Björn. “ja tiden går fort
når man har det roligt.”) Field diary, Monday 5th September 2011, 11:47.

23Turkle 1984. Crawford 2002.

170 chapter 5. game programming

one: the concept of effective history. Effective history means to be
conscious of the role of the knowledge one produces in a historical
perspective. During the observation period, Andreas touches upon
this question a single time when he muses on the fairness of charg-
ing money for computer games.24 His comment brings to mind the
question of the moral justification for the game, and of the place of
their product – entertainment – in the grander scheme of things. But
his is only an offhand comment; an explicit consciousness of effective
history is absent in Tribeflame’s process.

5.2.2.5 Summary

The process of Tribeflame can be explained as a hermeneutical pro-
cess, which is shown in schematic form in Figure 5.15. The alternating
activities of doing tasks and discussing them makes up a hermeneu-
tical circle in which understanding is built through repetition. The
increase in understanding takes the form of a fusion of horizons of
understanding, both between the individual developers, and between
the developers as a team and the outside world: their customers and
competitors.

The hermeneutical process rests on a foundation of pre-under-
standing and prejudice. The pre-understanding is made up of the
developers’ preexisting skills and competences. The prejudice is made
up of their ideas of what a computer game is supposed to be like, and
what it means for it to be fun.

The process is guided by authority and tradition. Authority draws
from various sources; both from the expertise of the developers and
from the tradition of computer games. The tradition is not an ancient
and static tradition; rather it is living and constantly evolving. Thus,
the newest games on the market are also part of tradition.

The process is directed by the goal of the computer game, in other
words by its application. This is the reason for the process, and as
such it influences all parts of the process. The reason, entertainment,

24See note 11, page 151.

5.2 analysis 171

Hermeneutical
concept

Results

Prejudice The developers’ ideas of what the game players will
like. Corrected by external playtests.

Authority Business decision authority rests with the owners.
Other authority comes from convincing arguments,
drawing from expertise and references to exem-
plary games.

Received tradition An informal knowledge of computer games from
life experience. Rests on a collection of authorative
games.

Personal reverence The developers respect each others’ competence
and personal authority.

Pre-understanding Skills and expertise in programming and graphic
design.

Understanding A gradual process that slowly deepens over time,
and that involves the whole company.

Hermeneutical
circle

Manifest in the mutual dependency between tasks
that bring experience, and meetings that reflect
upon the experience.

Effective history Largely absent.
Question The question of what “fun” acually means. All ac-

tivities relate to this.
Horizon of
understanding

Expanded during discussions in the company. De-
velopers’ horizons fuse with each other, and with
computer game tradition.

Application To make a game that is fun to play, in order to
provide entertainment, so that the company can
stay in business.

Figure 5.15: A schematic summary of the principal results of analyzing
Tribeflame’s process with hermeneutical theory.

172 chapter 5. game programming

is an encompassing perspective that must be kept in mind in order to
understand the process and the product correctly.

173

Chapter 6

Safety critical
programming

6.1 Introduction to safety critical development

In chapter 5.2 (Analysis) we examined the working process of a small
computer game company. Using concepts from hermeneutical the-
ory, we found that the programming work in this case was easily
understood as being a process of understanding. By contrast, the
mainstream theories – software engineering, Agile development, and
computer science – proved to be less useful. The conclusion drawn
by the analysis was that the mainstream theories are not well suited
as general theories of programming.

In this chapter we will take a look at some programming processes
where software engineering theory is prominent and used in practice:
namely, safety critical programming. We will do this for two rea-
sons. First, investigating programming practices that take place in
very different circumstances to a small game company will deepen
our understanding of how programming works.

174 chapter 6. safety critical programming

The second reason is that, from a cultural perspective, it is not
enough to criticize the mainstream theories on the basis of one ex-
ample. We must also be able to explain what the theories are actually
useful for and why they look the way they do. In this respect, the
software engineering theories are the most interesting examine. As
explained in sections 3.2.2 (Agile software development) and 5.2.1.2
(Agile development), Agile development is very close to ordinary pro-
gramming practice, and computer science theory is not primarily con-
cerned with work practices. Software engineering is oriented toward
work processes and, at the same time, quite different from the way
programmers organize themselves if left to their own devices.

The term “safety critical” applies to products and areas in which
malfunctions can result in people being injured or killed, or in which
errors are extremely expensive.1 Safety critical products are products
such as cars, aeroplanes, and hospital equipment; and safety criti-
cal industries include nuclear power plants and chemical processing
plants. The software involved in safety critical applications is often
control software for machines or products, such as the software that
controls the brakes in a modern car, or the software that controls the
valves in an industrial plant. This kind of software is often embedded
software, which is situated in the machine or product itself during
execution.

The safety critical area is regulated by a large number of stan-
dards, depending on the particular industry or geographical area.
The most important standard in Europe currently is called IEC 61508
“Functional safety of electrical /electronic/programmable electronic
safety-related systems”.2 The IEC 61508 is a general standard, with
a number of derived standards that apply to specific industries. The
standards are often backed by legal requirements in national courts.
On other occasions, the only requirements that apply are the ones
that industry associations agree upon among themselves. In any case,
the standards are most often verified by separate verification agencies,

1These last are also called “mission critical” areas.
2International Electrotechnical Commission 2009.

6.2 case studies 175

such as the German TÜV, or the German-American Exida, which per-
form the verifications for a fee for their industry customers.

6.2 Case studies

6.2.1 A large avionics company

Before we discuss safety critical programming processes in general,
we will take a look at a couple of specific examples of processes. First
is the way work is done at a software department in the company
Cassidian. The following description is based on an interview with
two engineers who work there and thus respresent the employees’ own
opinion of their work.3 The company makes components for military
aircraft such as the Airbus A400M. Cassidian is a part of the holding
company EADS, which is an international European aerospace and
defence company with around 110,000 employees – more than a small
city in size. Cassidian itself has around 31,000 employees. The most
well known EADS products are the Airbus aircraft.

A typical software department in Cassidian will be a sub-depart-
ment of an equipment level department, a department that works
on coordinating the efforts of creating some piece of equipment for
the aircraft. The equipment level department might have, for exam-
ple, around 30 system engineers and four sub-departments. Two of
the sub-departments are hardware departments, with around 25 en-
gineers each. The two others are software departments with around
20 software engineers each – one department for resident software
(embedded software) and one for application software.

Besides the software departments that do the actual software work,
and the equipment level department that gives the software depart-
ment its requirements, there are some more departments involved in
the work. The quality department contains some sub-departments

3Interview 24.

176 chapter 6. safety critical programming

that observe the software development process and modify it based
on feedback from lower-level departments. The safety department
is involved in making sure that the work fulfils the safety standards.
Both the quality department and the safety department are indepen-
dent departments within Cassidian. The quality department is inde-
pendent because this is required by the safety standards; the safety
department is not required to be independent, but it has been found
very helpful to have it that way.

The general working process at Cassidian is an engineering pro-
cess. The first phase is requirements engineering, in which it is de-
cided what the piece of equipment is going to do. After that follows
conceptual design and detailed design. Then comes implementation
– the actual making of the equipment – followed by the verification
phase, which checks whether the equipment actually fulfils the re-
quirements from the first phase.

The work process is standardized internally in Cassidian, but it
is tailored to each project. Before a project is started, a project team
gets together and defines the tailoring of the process that will be used.
This team consists of high-ranking managers that represent different
interests: the project’s financial officer, the quality manager, the con-
figuration manager, the project responsible for engineering, and peo-
ple representing logistics support, tests, and production. Sometimes
even the head of Cassidian is involved in the project team’s decisions.
The reason that so many important people are involved is that the
projects are big and costly and therefore carry a lot of responsibility,
with budgets of between 5 and 10 millions Euros. In addition to deter-
mining the process tailoring of a project, the project team also carries
out risk assessment, risk analysis, feasibility studies, assesses financial
feasibility, and predicts marketing consequences.

When the project has been approved by the project team the actual
engineering process can begin. The higher level system requirements
are broken down to unit level requirements, and separated into basic
hardware and software requirements. This makes up the equipment
architecture. After the architecture has been defined the unit activities
start. Each unit prepares its own requirements paperwork and works

6.2 case studies 177

out a unit architecture. After this the unit requirements are validated,
if it is required in that particular project. This is followed by the
actual implementation of the unit, after which comes informal testing
to weed out errors. Once the unit is ready, the various hardware and
software units are integrated and formally tested. When all units have
been integrated and tested, the final product is complete.

When, in the engineering process, the system level architecture
has been defined, it has at the same time been decided which parts
of the system are to be created in hardware and which in software.
The software departments can then start their work, which follows
the software development process. This process starts with writing a
software requirements specification, which document is then reviewed
by the system department, the hardware department, and members
of the software department. The review includes validation of the
software requirements to make sure that they are in accordance with
the system requirements and hardware requirements. Sometimes, if
the piece of equipment is meant to stand alone, the validation is
omitted to save on the workload and cost, but for systems that go into
aircraft the full program is always required.

After the software requirements specification has been written and
reviewed, the conceptual design phase takes place. In this phase, the
designers tend to arrive at a conceptual design they think will work,
and try it out in some way. The feedback they get from this reveals
problems in the conceptual design, which can then be corrected. The
correction happens in the form of derived requirements, which the
designers impose in addition to the system requirements from the re-
quirements specification phase. The system department then verifies
the derived requirements, because the derived requirements are not
a part of the high-level system requirements that have been agreed
upon.

After the conceptual design comes the detailed design phase,
which consists mainly of generating the C code of the programs,
compiling it to machine code, and finally implementation. But here,
implementation does not mean coding, as is usual in programming.
Rather, it means transfering the programs to run on a piece of hard-

178 chapter 6. safety critical programming

ware, which will often be some kind of test hardware, and then con-
ducting some trials and tests on the newly-transferred software. After
the detailed design phase comes integration of software and hard-
ware, this time not with test hardware but with the hardware that has
been developed by the hardware departments at the same time as the
software departments wrote the programs. Finally, there is verification
of the whole integrated system.

Because of the derived requirements, there is close cooperation
throughout the development between the software, hardware, and sys-
tems departments. The derived requirements are always assessed by
the independent safety department.

Equipment units can be qualified and certified according to stan-
dards. All units are qualified, but not all are certified. Each software
or hardware unit does its own verification and qualification, meaning
that it prepares its own qualification specification and qualification
procedures. For a unit to be certified, it is necessary to convince a
body of authority outside Cassidian that the unit and the develop-
ment procedures fulfil the relevant standard. In order to do that, it
is necessary to record evidence of each step in the development pro-
cess so that it can be shown later that the step has been carried out
correctly. This can, for example, be evidence connected with phase
transition criteria, such as the outcome of a phase; it can also be ev-
idence that certain rules have beenfollowed, for example that certain
forbidden structures are not found in the C code. The verification of
requirements is a part of the evidence gathering process. There are
three main ways of showing that requirements are covered: tests, anal-
ysis, and reviews. Tests provide the strongest evidence, but it can be
difficult to get to cover a high enough percentage of the requirements
with tests.

A number of software tools are used in Cassidian to help with
the development process. IBM Rational DOORS is a requirements
management program that is used to keep track of the large number
of requirements in a project. The derived requirements of a subsystem
need to be linked to the higher level system requirements from which
they come. All the requirements also need to be linked to the tests

6.2 case studies 179

that verify that they are satisfied, and all links need to be updated at
all times. Aside from the requirements management software, a code
checker is run regularly on the C code to check that it conforms to
the style guides. This is required by the standards.

At Cassidian, experienced colleagues act as coaches for new em-
ployees and less experienced colleagues. The coaches help their col-
leagues with using the software tools, and with following the work
processes. In addition, there are internal training programs where
necessary; for example, if an engineer is promoted to systems en-
gineer he will participate in a training program explaining his new
responsibilities. Regardless, the day-to-day work is the most impor-
tant way of educating the engineers, as at least 80 percent of the
understanding needed to work with the avionics standards depends
on everyday experience.4

The work processes at Cassidian are defined in the internal com-
pany standard, FlyXT. This standard is a synthesis of a number of
other standards. On the system level, it originally builds on the V-
model, a government model that was taken over from the military
administration department Bundesamt für Wehrtechnik und Beschaf-
fung. FlyXT completely covers two avionics standards: DO178B and
DO254. DO178B applies only to the software parts of aircraft and
DO254 applies only to the hardware. Together, they are the standards
that are most usually applied to aircraft production. The software
development process at Cassidian follows the DO178B standard as it
is expressed in the FlyXT standard. At the beginning of each project,
the process steps are then copied to the project’s handbook or refer-
enced from it, according to the wish of the project leader.

After each project is completed, an effort is made to record the
lessons learned and incorporate them in the company standard. How-
ever, it is a big company, and whether this actually happens depends
on the workload and on the people involved in the process. The top
level management wants to make the company as a whole comply
to the process maturity model CMMI level 3. A process maturity
model is a standard that is not particular to safety critical develop-

4See quote on page 191.

180 chapter 6. safety critical programming

ment: it sets some requirements to a company’s paperwork processes,
especially that they be well documented and consistent. CMMI com-
pliance is an attempt by management to record systematically and
standardize all processes in the company. The goal of this is to get rid
of all tailoring of the process, so that the projects always follow the
company standard without modifications. This goal is linked to a wish
in Cassidian to make FlyXT the only standard in use by the company.
Since Cassidian works as a subcontractor, the customers sometimes
impose their own choice of standard on the work process. The ambi-
tion is to be able to say that FlyXT covers every avionics standard so
that there is never any need to work with other standards. As part of
this goal, the company strives to have reproducible process steps for
all projects.

6.2.2 A small farming systems company

The process at Cassidian is in many ways typical of how software is
developed in large companies in safety critical industries. However,
not all safety critical software is developed by large companies or in
typical settings. For a different example, we will take a look at how
work is done in a small, Danish company named Skov. The descrip-
tion is based on an interview with the engineer who is in charge of
software methods and tools.5

Skov makes automated equipment for animal production, primar-
ily for swine and chicken. One area of business is ventilation and
heating systems for animal stables. Another is production control
systems, for controlling feeding, water dispensation, and lights. Minor
areas of business include air purification systems and sensors for use
in animal stables.

Skov has around 300 employees, of which 45 are employed in the
development department. Of these, around 20 are software develop-

5Interview 20.

6.2 case studies 181

ers. Ten software developers work with ventilation systems, 10 with
production control systems, and one with sensors. The majority of
the software made is control software for the systems that Skov sells,
meaning that it is embedded software.

Skov considers its software development process to be nothing out
of the ordinary compared to other small Danish companies. Most of
the process is very informal, and it is not written down. The devel-
opers follow an Agile process where the work is planned in relatively
short periods of a month or so, called Sprints.6 Much of the plan-
ning is also done from day to day. Every morning there is a short
standing Scrum meeting where the day’s work is discussed, and be-
fore each project starts, developers, project managers and department
managers have an informal discussion about the course of the project.
The Agile process was adopted in the company three years ago after
a trial Agile project.

As a part of the Agile process the developers make an effort to
include the customer throughout the development process. The soft-
ware customers are typically internal Skov customers, though occa-
sionally there is an external customer. The close collaboration with
customers during software development is something the company
has always practiced. The basis for the software development is a
written requirement specification, and occasionally a design specifica-
tion is written too, though neither document is at all formalized.

The software for Skov’s controllers is coded in UML, a graphical
notation for software models. The models are then automatically
translated to C code, which can run on the hardware. The company
uses the commercial software tool Rhapsody for translating the UML
models: this is used with almost no custom modification. The UML-
based way of working is well suited to Skov’s products, which from a
software perspective consist of a few main products that are sold in
many slightly different variants under different trade names.

Because of the safety critical nature of Skov’s products, the testing
process is very well developed. The tests are fully automated and
take place in Skov’s test center, where the software is tested against its

6See section 3.2.2.3 (Scrum as an example).

182 chapter 6. safety critical programming

specifications and in a variety of application situations. The testing
procedures are thorough and formalized. In addition to ordinary tests,
the company also performs so-called service tests, where customers
test the company’s products; and there are stable tests, where the
products are tested in real environments.

The safety critical aspects of Skov’s systems are mostly connected
to ventilation. If the ventilation fails in a modern animal stable, the
animals can suffocate in a few minutes. A stable filled with hundreds
or thousands of dead animals would be catastrophic and reflect very
poorly on the company’s reputation.

There are no formal requirements to certification of processes or
products in the animal production industry. Likewise, there are no
standards within the industry. Skov is very careful with its testing,
not because of any external requirements, but in order to avoid bad
publicity and a reputation for unsafe products. It strives to attain a
high degree of safety while at the same time, their people “do not
produce documentation for the sake of documentation”.7

Skov considers itself to be a developer of total systems, not of
components, and that identity also influences the perception of soft-
ware development in the company. From the company’s point of view
it is an advantage that there are no formal standards in the industry,
because it makes it possible to come up with innovative solutions and
products without risking conflict with existing standards. The only
standards that exist are the traditions in the markets. Each market
has its own distinct cultural tradition, and there is a big difference be-
tween what the United States’ markets expect of a product and what
the European markets expect.

Besides their own Agile software development process, Skov has
an ambition to conform to the process maturity model CMMI level
2 (level 2 is a lower stage of compliance than level 3). This ambi-
tion held by Skov’s management and, as such, the introduction of
CMMI has been a top-down process. By contrast, the Agile develop-
ment method has been introduced as a bottom-up process, in that it

7“ . . . altså vi producerer ikke dokumenter for dokumenters skyld.” Interview 20
∼00:15:39.

6.2 case studies 183

was the software developers themselves that desired and introduced
the method with the consent of management. CMMI and the Agile
method have never been in conflict in Skov: they appear to coexist
peacefully within the company without much conscious effort.

The introduction of Agile methods did not in any way revolu-
tionize the development process at Skov. When the company became
curious with regard to Agile method and decided to try it out, they
discovered that they were already very agile in their approach, so the
introduction did not add or change a whole lot of things. In Skov’s
opinion, constant testing is part of what makes a process Agile. This
corresponds well with Skov’s process, which emphasizes the need for
automatic, reproducible tests during the whole process.

Until a few years ago, Skov did not even use the phrase “safety
critical” to describe itself. The company just said that it had to ensure
that its products did not kill animals. However, in the past few years
the company has become interested in finding out of how much it
has in common with the more formalized safety critical industries,
as it has grown in size. This has been an organic growth without
drastic changes in process, meaning that the company has always been
able to retain the experience that have been accumulated among the
employees. The company’s processes in general are primarily based
on the experience of the participating persons. This is also true of the
critical test process, which is not based on formal certification but on
a slow growth of experience and adjustments.

6.2.3 The safety critical standard

Having looked at the actual safety critical development processes of
two different companies, we will now focus on one of the safety critical
standards that governs most of safety critical development, in order
to get an impression of what they are like and what it requires to work
with the standards. It is necessary to go into some detail regarding the
standard, but the reader should not be discouraged if its technicalities

184 chapter 6. safety critical programming

61508-3/FDIS  IEC – 17 –

Figure 5 – Relationship and scope for IEC 61508-2 and IEC 61508-3

E/E/PE system

safety
requirements
specification

Software
architecture

Software safety
requirements
specification

Software
system design

Module
design

Module
testing

Validation
testing

Coding

Integration testing
(components,

subsystems and
programmable

electronics)

Validation Validated
software

Output

Verification

Integration
testing (module)

E/E/PE system
architecture

Figure 6 – Software systematic capability and the development lifecycle (the V-model)

E/E/PE system
design requirements

specification

E/E/PE system
design requirements

specification

E/E/PE
system

architecture

Software safety
requirements

Software design
and

development

Programmable electronics
integration (hardware and

software)

Hardware safety requirements
specification

Programmable
electronic hardware

Non-programmable
hardware

Programmable
electronics design
and development

Non-programmable
hardware design
and development

E/E/PE
system

integration

E/E/PE
system

integration

Scope of
IEC 61508-2

Scope of
IEC 61508-3

Figure 6.1: “Software systematic capability and the development lifecycle
(the V-model)”. IEC 61508-3. International Electrotechnical Commission
2009.

seem overwhelming – the aim is solely to give a taste of what the
standard is like. Bear in mind that even for experts in the field, it will
take years to become thoroughly familiar with a standard such as IEC
61508.

As mentioned, the IEC 61508 is the most important safety critical
standard, at least in Europe. It is a document numbering 597 pages,
in seven parts, which governs all of the safety critical development
process in general terms not specific to any particular industry.8 Part
3 – “Software requirements” – chiefly governs software development.

The standard specifies how software development should be done.
Figure 6.1 shows the model for software development taken from IEC
61508-3 Figure 6, the V-model. This model was also mentioned in
section 3.2.1.3 (Process thinking); it takes its name from its shape.

8International Electrotechnical Commission: IEC 61508-(1–7) Ed. 2.0. 65A/548 /
FDIS Final Draft International Standard, distributed on 2009-12-18.

6.2 case studies 185

In principle, the choice of development model is free, since the
standard states:

“7.1.2.2 Any software lifecycle model may be used provided
all the objectives and requirements of this clause are met.”

However, in practice, the choice of model is severely limited, since
it essentially has to perform the same function as the V-model. The
next paragraph of the standard specifies that the chosen model has
to conform to the document-oriented software engineering models
described in section 3.2.1.3:

“7.1.2.3 Each phase of the software safety lifecycle shall be
divided into elementary activities with the scope, inputs
and outputs specified for each phase.”

Let us take a closer look at a typical paragraph of the standard:

“7.4.4.4 All off-line support tools in classes T2 and T3 shall
have a specification or product manual which clearly de-
fines the behaviour of the tool and any instructions or
constraints on its use. See 7.1.2 for software development
lifecycle requirements, and 3.2.11 of IEC 61508-4 for cate-
gories of software off-line support tool.

NOTE This ‘specification or product manual’ is not a
compliant item safety manual (see Annex D of 61508-2
and also of this standard) for the tool itself. The concept
of compliant item safety manual relates only to a pre-
existing element that is incorporated into the executable
safety related system. Where a pre-existing element has
been generated by a T3 tool and then incorporated into
the executable safety related system, then any relevant in-
formation from the tool’s ‘specification or product man-
ual’ should be included in the compliant item safety man-
ual that makes possible an assessment of the integrity of
a specific safety function that depends wholly or partly
on the incorporated element.”

186 chapter 6. safety critical programming

Off-line support tools refers to the programs the developers use to
make the safety critical software, such as editors, compilers, and anal-
ysis software. Categories T2 and T3 are those programs which can
directly or indirectly influence the safety critical software; the cate-
gories are defined in sub-clause 3.2.11 of part 4 of the standard, as
stated. Thus, paragraph 7.4.4.4 states that all programs that are used
to make safety critical software, and which can directly or indirectly
influence the software, have to have some documentation of the pro-
grams’ function and use.

The reference to sub-clause 7.1.2 is probably intended to indicate
where among the overall safety development phases the activities con-
nected with paragraph 7.4.4.4 have their place. The software phases
and their corresponding sub-clauses and paragraphs are listed in ta-
ble 1 of IEC 61508-3, which is referenced from sub-clause 7.1.2.

The note to paragraph 7.4.4.4 makes it clear that the documen-
tation required for programs used to make safety critical software is
not the same as that required for the safety critical software itself. It
also points out that if a program is used to make something that ends
up in the safety critical software, then the relevant bits of the pro-
gram’s documentation should be copied over into the safety critical
documentation.

A sizeable portion of the standard is made up of tables. In part 3
alone there are 43 tables, some spanning multiple pages. An example
of such a table is shown in Figure 6.2. The table shows recommen-
dations for design and coding standards, that is, guidelines for how
to write the computer code. From top to bottom, the table lists some
different techniques that can be used during coding. They are mainly
prohibitions on using certain forms of code that are considered un-
safe, such as, for example, automatic type conversion.9 To the left of
each technique are listed the safety levels from SIL (Safety Integrity
Level) 1 to SIL 4. SIL 1 is the lowest level of safety. For each level and
each technique, it is noted whether that particular technique is rec-
ommended, “R”, or highly recommended, “HR”, for the safety level

9A programming language technique which some programmers find more conve-
nient, but which also carries the risk of allowing serious errors to go undetected.

6.2 case studies 187

61508-3/FDIS  IEC – 55 –

Annex B
(informative)

Detailed tables

Table B.1 – Design and coding standards

(Referenced by Table A.4)

Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4

1 Use of coding standard to reduce likelihood of errors C.2.6.2 HR HR HR HR

2 No dynamic objects C.2.6.3 R HR HR HR

3a No dynamic variables C.2.6.3 --- R HR HR

3b Online checking of the installation of dynamic variables C.2.6.4 --- R HR HR

4 Limited use of interrupts C.2.6.5 R R HR HR

5 Limited use of pointers C.2.6.6 --- R HR HR

6 Limited use of recursion C.2.6.7 --- R HR HR

7 No unstructured control flow in programs in higher level
languages

C.2.6.2 R HR HR HR

8 No automatic type conversion C.2.6.2 R HR HR HR

NOTE 1 Measures 2, 3a and 5. The use of dynamic objects (for example on the execution stack or on a heap)
may impose requirements on both available memory and also execution time. Measures 2, 3a and 5 do not need to
be applied if a compiler is used which ensures a) that sufficient memory for all dynamic variables and objects will
be allocated before runtime, or which guarantees that in case of memory allocation error, a safe state is achieved;
b) that response times meet the requirements.

NOTE 2 See Table C.11.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

Figure 6.2: Table B.1 “Design and coding standards” from IEC 61508-3.
International Electrotechnical Commission 2009.

in question. For safety levels 3 and 4, all the techniques are highly
recommended.

Since the table lists recommendations, the safety critical software
is not absolutely required to use the suggested techniques. However,
it must still fulfil the standard; so if it does not use a particular rec-
ommended technique, a good explanation is expected for why , and
how the standard’s requirements are nevertheless still fulfilled. This
goes especially for the highly recommended techniques. Thus, while
a company is in principle free to develop its safety critical software as
it likes, in practice it must take into account that the more it deviates
from the standard’s recommendations, the more it must be prepared
to argue, prove, and provide evidence for its own solution. As such,

188 chapter 6. safety critical programming

in terms of paperwork the easiest thing might well be to simply follow
the standard’s recommendations without question.

6.3 Hermeneutical analysis

After discussing the realities of safety critical programming in sec-
tion 6.2.1 (A large avionics company), 6.2.2 (A small farming systems
company) and 6.2.3 (The safety critical standard), we will turn to
a hermeneutical analysis of safety critical programming, in parallel
with the hermeneutical analysis of game programming at Tribeflame
in section 5.2.2 (Hermeneutical analysis). The purpose is to show how
hermeneutical theory can be applied in a concrete case. In the case of
safety critical programming, the analysis is conceptually more difficult
than in chapter 5.2 because we are not analyzing a single company’s
concrete work process, but rather the role that safety critical stan-
dards play in the work processes of different kinds of companies. To
make matters even more complicated we are not even analyzing a
concrete safety standard as such, but rather the idea of using a stan-
dard in safety critical programming. In other words, we will analyze
safety critical standards as a cultural form.10 The analysis is primar-
ily based on 24 interviews made in connection with a pan-European
research project about reducing the costs of certification, mostly ac-
cording to IEC 61508. The project was sponsored by the European
Union, and universities and companies from different safety critical
industries participated. The interviews are summarized in the list of
source material, page 133. For a short introduction to hermeneutical
analysis, see section 3.3.1 (Introduction). For a more thorough expla-
nation of hermeneutics, see section 3.3 (Hermeneutical theory).

The first step in understanding safety critical standards is pre-
understanding; that is, those fundamental skills such as reading and
writing that are a prerequisite even to beginning the process of under-

10See section 3.4 (Cultural form theory).

6.3 hermeneutical analysis 189

standing. In the field of safety critical standards, those fundamentals
are: to understand engineering terms; to understand software engi-
neering terms; and to have some knowledge of programming tech-
niques, which is necessary in order to understand, for example, the
table in Figure 6.2. In addition, it is necessary to be able to under-
stand the kind of documents that IEC 61508 represents, and which
is exemplified above by paragraphs 7.1.2.2, 7.1.2.3, and 7.4.4.4 of this
standard. It is a lawyer-like language of numbered clauses, sub-clauses
and paragraphs, full of references and abbreviations, which uses awk-
ward sentence structures and many uncommon words with precise
definitions. It is perhaps not a daunting task for a trained engineer to
learn this, but many other people would find it challenging.

The prejudice inherent in safety critical standards are those as-
sumptions that are necessary in order to make sense of them. The cer-
tification company Exida has published a book about the IEC 61508
that contains the following characterization of the standard:

“Many designers consider most of the requirements of IEC
61508 to be classical, common sense practices that come
directly from prior quality standards and general software
engineering practices.” 11

It is undoubtedly the case that most of the IEC 61508 is common
sense in safety engineering, but what is interesting here is that the
safety critical notion of “common sense” is a very specific one, limited
to a narrow range of situations. For example, the table in Figure 6.2
essentially recommends that the programming language technique of
dynamic memory allocation should not be used at all (entries 2 and
3a). This is a good idea in a safety critical system, but in most other
forms of programming, including game programming, it would not
be common sense to program without dynamic memory allocation:
arguably, it would be madness.12

11Medoff & Faller 2010 p. 2.
12Some common programming languages, most notably C, lack automatic memory

management, but it is only the most hardware-centric programming languages that
entirely lack the possibility of allocating memory dynamically. An example is the
original definition of Occam, the Transputer programming language.

190 chapter 6. safety critical programming

What, then, are the assumptions needed to make sense of safety
critical standards? First of all that safety is an engineering problem
that can be approached with engineering methods and solved satis-
factorily in that way. Closely connected with this assumption is the
notion that difficult problems can be broken down into simpler prob-
lems that can be solved separately, and that the solutions can be com-
bined to form a solution to the original problem. A third, and also
closely connected, assumption is that both process and problem can
be kept under control, using the right approaches. All three assump-
tions are also found in the software engineering models described in
section 3.2.1.3 (Process thinking).

Personal reverence is a foundation of understanding. A person
interpreting a text or a practice must have some kind of personal at-
tachment to the thing being interpreted. In Tribeflame, we saw that
the personal reverence mainly took the form of personal relations be-
tween actual people; but personal reverence can also take the form
of, for example reverence, for the author of a text. The safety critical
standards do not depend on personal relationships; they are imper-
sonal. Nor is there any particular reverence for the authors of the
standards; they are anonymous or hidden among the other members
of committees. To where, then, is the personal reverence directed in
safety critical programming? The programmers revere neither col-
leagues nor authors, but instead they seem to revere the system of
safety critical standards itself, as an institution.

The reverence associated with safety critical standards is probably
a case of reverence towards a professional identity and code of con-
duct. What programmers revere in the standards is their profession-
alism, rather than the standards themselves. This is a consequence
of their bureaucratic character of. According to Weber, modern bu-
reaucracies replace personal loyalty with loyalty to an impersonal,
professional cause.13 The prerequisite for this shift in loyalty is that
professionals have a long and intensive education,14 which provides
them with the necessary training and self-discipline to behave profes-

13Weber 1922 [2003] p. 66.
14Ibid. p. 65.

6.3 hermeneutical analysis 191

sionally. Accordingly, most of the people working with safety critical
standards have long educations at university level or equivalent. Out
of 26 people whom I interviewed, and who work with safety critical
software development, 20 are engineers, five are educated in com-
puter science, and one in physics.

All knowledge builds upon tradition of some kind. In the case of
safety critical standards, the tradition goes way beyond that which is
written in the standards themselves. In the words of an experienced
engineer at Cassidian:

“In order to understand the avionic standard it’s really not
sufficient to have a training course of only two or three
days. I think a training course is helpful, but it covers only
let’s say 10 or 20 percent – if you are very intelligent, let’s
say 20 percent – of your knowledge, but the remaining 80
percent, it’s really experience. It’s your everyday job.” 15

The point is that it is not enough to read and study the standard
alone; it is also necessary to acquire the needed experience in order
to understand it. I have already mentioned the lengthy education
of people who work with safety critical standards and which prepare
them to understand the standards to some degree. The additional
experience they require is what we can call exposure to the tradition
of safety critical standards.

A specific safety critical standard does not exist in isolation. There
are previous versions of the standard, and the standard itself is based
on an older standard, and yet other standards have influenced it. The
tradition of which a standard is part can be followed back in time
through a trail of standards. The main components of the tradition
are nicely summed up in the Exida quote above:

“Many designers consider most of the requirements of IEC
61508 to be classical, common sense practices that come
directly from prior quality standards and general software
engineering practices.” 16 (My emphasis.)

15Interview 24 ∼01:00:07.
16Medoff & Faller 2010 p. 2.

192 chapter 6. safety critical programming

The “general software engineering practices” embody a tradition of
engineering of which the safety critical standards are also part. The
education of people working with the standards familiarizes them with
this part of the tradition. The other part of tradition, the “prior qual-
ity standards”, points to a long judicial tradition for regulating com-
merce and manufacture. The standards all have a more or less clear
legal authority for deciding the validity of practices, and this author-
ity is, per tradition, delegated to experts in the field. The history of
engineering is so long and complicated that it is probably futile to try
to point out exactly when engineering tradition was institutionalized
for the first time.17 Likewise with the judicial tradition, but it is at
least safe to say that engineering practice was regulated via patent
legislation as early as 1624 in England.18

The question of authority is important because it plays a central
role in the hermeneutical notion of understanding. The texts of the
safety critical standards carry great authority in themselves; but they
can only do so because they have been assigned authority by outside
parties. The ultimate source of authority is often the law, where na-
tional or international (European Union) legislation has adapted some
standard as a requirement of professional liability. Where standards
are not backed by courts, but rely solely on the agreement of industry
associations, they will often be backed indirectly by courts, since there
is often a legal formulation that the “state of the art” in engineering
will be taken as the measure of liability, and the “state of the art” will
then in practice often be taken to be the existing standards of the
industry association.19

The words of the standards, however, are rarely taken to court
in lawsuits, and therefore the authority of the courts are in practice
delegated to other institutions, the most important being the indepen-
dent assessment companies such as the German TÜV. These private

17Though it was probably in the military, since most early engineering applications
were military – in contrast to the later “civil engineering”.

18Cardwell 1994 p. 106. An example of a more recent institution that is closer in
function to the standards (though distinct from them) is the Danish special court of
commerce and maritime law, Sø- og handelsretten, which was established in 1862.

19Interview 32.

6.3 hermeneutical analysis 193

institutions have authority over the interpretation of the standards in
practice, as they judge whether a product satisfies the standard or
not. Since there are several institutions that act in competition with
each other, they do not have absolute authority individually. Another
important source of authority lies with the committees of experts that
define the standards. Their authority, which represents a compromise
position taken by the competing companies in a particular industry,
is the guarantee that the standards do actually represent “general en-
gineering practice”, or in other words the “state of the art”. A final,
local form of authority is the management of the individual company
which decides what standards the company are to follow, and as such
acts as a source of authority over the individual developer.

The central question in understanding how safety critical stan-
dards are used is that of application – what the standards are used
for. The obvious answer is that the standards are used to ensure that
products are safe, but this answer is too simplistic. As we have seen
in the case of the farming systems developer Skov in section 6.2.2, it
is not strictly necessary to follow standards in order to develop safety
critical products. This has to do with the fact that although part
of the standards’ function is to impose a certain “safe” engineering
form on the product, this is not their primary function. The primary
function is as a bureaucratic mechanism to generate documentation,
by making it compulsory. The engineering manager for Wittenstein
Aerospace and Simulation, a small company, describes safety critical
software development thus:

“The [program] code’s a byproduct of the safety critical de-
velopment, the code is sort of always insignificant, com-
pared to the documentation we generate and the design.
You can spend five percent of your time doing the coding
in safety critical development, and the rest of the time on
documentation, requirements, design, architecture, safety
planning, evaluation, analysis, verification, and verifica-
tion documents.” 20

20Interview 25 ∼00:47:49.

194 chapter 6. safety critical programming

It is of course crucial to notice that the engineering manager speaks
not merely of requirements, design, and so on, but of documented
requirements, documented design, documented architecture, and so
on. It is clear that while documentation plays a central role in safety
critical development, documentation of the development is not the
same thing as safe products. To answer the question of what the
application of safety standards is, we have to split the question in two:
How do the standards contribute to safety? And what exactly is meant
by “safety”?

The standards contribute to safety primarily by acting as a sys-
tem for generating documentation, and the documentation serves as
evidence for what has happened during development. This evidence
serves to link the engineers’ application of standards to the courts of
law from which their authority derive by means of assigning respon-
sibility for every part of the development. The legal system cannot
carry out its authority without being able to clearly determine re-
sponsibility in each case. On the other hand, the standards are linked
to the engineering tradition through the standards’ insistence on re-
peatability. Responsibility cannot be assigned meaningfully to the
engineers unless the engineers are in control of what they are respon-
sible for, and the engineering tradition’s way of enacting control is
through repeatability. In the safety standards’ assignment of respon-
sibility, the role of the engineers is to provide the required evidence
and to convince the standards’ authorities that it is indeed sufficient.
The role of the independent assessors, such as TÜV, is to provide the
verdict on whether the engineers’ evidence is convincing enough.

The question of what “safety” means is the central question in un-
derstanding safety critical standards. In parallel with the process at
Tribeflame, which could be described as a single effort to determine
what “fun” means for computer game players, the whole practice of
safety critical development is essentially an attempt to find out what
safety means. Being pragmatic, engineers would like to define unam-
biguously what safety means: that is, to operationalize the concept
completely. However, this is not possible. An illuminating definition

6.3 hermeneutical analysis 195

from an article about integrating unsafe software into safety critical
systems reads:

“ ‘Unsafe software’ in the context of this article means:
Software that does not fulfil the normative requirements
for safety critical software (especially those of IEC 61508).” 21

This definition is both pragmatic and operational, but it does not say
much about the nature of safety. Defining safety as that which fulfils
the standards does not help to explain why the standards are defined
as they are.

We saw that repeatability is central to the standards. Repeatabil-
ity is expressed in the safety standards through underlying probability
models. These models are present in terms such as “failure rate” and
“safe failure fraction”, which combine to form the measure for safety –
SIL (Safety Integrity Level). Thus, the safety critical standards’ notion
of safety is a probabilistic one.22 What is probabilistic, however, is
never certain, and so safety becomes not a question of whether acci-
dents can be avoided altogether, but rather a question of how much
one is prepared to pay in order to try to avoid an unlikely event. In
that way, safety becomes a question of cost-effectiveness. In the words
of a senior principal engineer for the microcontroller manufacturer
Infineon:

“The whole key in automotive is being the most cost effec-
tive solution to meet the standards. Not to exceed it but
only to meet it. So you can put all the great things you
can think of inside . . . [but] if it means more silicon area

21“ ‘Nicht-sichere Software’ – das bedeutet im Kontext dieses Artikels: Software, die
nicht die normativen Anforderungen (insbesondere der IEC 61508) an sicherheitsge-
richtete Software erfüllt.” Lange 2012 p. 1.

22Interestingly, it is difficult to apply a probabilistic failure model to software, be-
cause in principle software either works or not. There is no such thing as “mean time
to failure” in software, nor a notion of structural failure due to stress on materials,
for example. Presentation by William Davy at Embedded Systems Laboratory, Åbo
Akademi, May 23rd 2012.

196 chapter 6. safety critical programming

in the manufacturing, and it’s not required to meet the
standard, then you’re not cost competitive anymore.” 23

In a hermeneutical perspective, understanding always happens as a
result of a fusion of horizons of understanding. So in order to find
areas where a lot is happening in terms of understanding, one has to
identify the places where horizons of understanding changes a lot. In
the world of safety critical standards, horizons change relatively lit-
tle.24 Once a horizon of understanding of the standards is established,
it serves as a common language or a shared set of basic assumptions
between the involved parties, making it easier to understand, and
communicate with, each other. A quote from the software director of
the elevator company Kone illustrates how the development models
of the standards serve as a common language between developer and
certifier:

“Waterfall [i.e. the V-model] is definitely easier [to follow]
for the notified body, for the people who are giving the
certificate. Waterfall is easier for them because there is a
very easy process, because you have steps, you have the
outputs of each phase, and then you have the inputs for
the next phase, so it’s very easy to analyze.” 25

This shared horizon of understanding is a practical reality, but it is
also an ideal; the ideal essentially being that a well-written standard
should not need to be interpreted. However, this ideal is contradicted
by reality, in which the shared understanding is not, after all, uni-
versal. This can be seen by the fact that it is not uncommon that
the companies in safety critical industries have to educate their cus-
tomers: to teach them the proper understanding of the standards, and

23Interview 31 ∼00:10:00.
24This is because practitioners have very similar backgrounds. Contrast with the

practice of Tribeflame in which horizons change relatively more as the developers seek
to expand their horizon to merge with those of their future customers, a mass of largely
unknown players.

25Interview 29 ∼00:55:04.

6.3 hermeneutical analysis 197

to teach them “to see the intent behind the standard and not just the
words on the page.” 26

This education of customers works to bring about a shared under-
standing if the people who need to be educated are prepared to accept
the assumptions and prejudices of the safety standards. However, if
their values are in conflict with the assumptions of the standards, a
mismatch will occur. The principal engineer from Infineon sees a
conflict between creative engineers and the standards:

“Engineers like to create, they like to be inventive, they like
to experiment . . . Consequently engineers don’t like the
standard. They don’t wanna adopt it, it makes their lives
more painful, it makes them do more jobs they don’t want
to do. So they don’t see any value in it because they think
they’re perfect engineers already.” 27

The conflict in this case is primarily with the implicit assumption of
the standards, that documentation is the way to engineer a safe sys-
tem. When, as the Wittenstein engineering manager says, 95 percent
of the safety critical engineering job consists of documentation; this
can be a real point of contest with other traditions who do not value
documentation as highly. An example of other traditions are the Ag-
ile development philosophies, illustrated by the company Skov, which
does “not produce documentation for the sake of documentation”.28

In order truly to understand the safety critical standards, it is nec-
essary to understand why they are written the way they are, and this
requires understanding the two sides of their functioning: both the

26Interview 31 ∼00:50:02.
27Interview 31 ∼00:50:02. The conflict between creativity and adherence to process

can be resolved by regarding, not the product, but the process, as a target for creativity.
This seems to be appropriate for safety critical companies that are highly process
oriented, such as Wittenstein: “We like to think we don’t have a quality system. We have
a business manual quality, and the way we run our business is running the same thing
– so, we operate a business. And these processes are how we operate our business.”
Interview 25 ∼00:17:10. The same point is made about the development of the Space
Shuttle software in a journalistic essay by Charles Fishman from 1997: “People have to
channel their creativity into changing the process . . . not changing the software.”

28See note 7, page 182.

198 chapter 6. safety critical programming

Safety critical development practice

Text of safety critical standards

Figure 6.3: Illustration of the hermeneutical circle between the safety crit-
ical standards themselves and the development practices that follow them.
One cannot be understood without the other, and vice versa.

engineering side and the judicial side. In both the process by which
the standards are created and in the work practices of safety critical
development, we see a remarkable degree of influence between on
the one hand the text of the standards, that resemble law texts, and
on the other hand the practical engineering experience that comes
from working with the standards. The influence constitutes a herme-
neutical circle between the regulatory text of the standards and the
engineering practice being regulated (see Figure 6.3). To understand
one, it is necessary to understand the other. Indeed, it is practically
impossible to understand the standard just by reading it, without prior
knowledge of the engineering practice to which it refers. Likewise, the
engineering practice of safety critical development is directed by the
standards to such a degree that it would be hard to make sense of the
developers’ work practices without knowledge of the standards.

To consider the effective history of safety critical standards means
acknowledging that they have grown out of certain traditions and that
the problems they solve are the problems of those traditions: first and
foremost problems of engineering, and of assignment of responsibility.
It is to acknowledge that there are limitations to the problems that
can be solved with safety critical standards, and that the notion of

6.3 hermeneutical analysis 199

Hermeneutical
concept

Results

Prejudice Engineering problem solving. The assumptions that
problems can be reduced to simple sub-problems,
and that development can be controlled.

Authority Ultimately the courts of national and international
law. More immediately industry associations and of-
ficial certifying bodies.

Received tradition A trail of standards. Institutions that preserve engi-
neering knowledge and legal oversight of industrial
production.

Personal
reverence

Largely replaced by reverence towards institutions
and a professional identity. A consequence of the
bureaucratic character of standards.

Pre-
understanding

Knowledge of engineering and software engineer-
ing terms, and programming techniques. Familiarity
with the legalistic language of safety standards.

Understanding Safety critical programming rests on both engineer-
ing and judicial tradition, and it is necessary to un-
derstand both.

Hermeneutical
circle

The regulatory texts of the standards and the expe-
riences of engineering practice presuppose one an-
other.

Effective history Largely absent.
Question What “safety” means. Predominantly a probabilistic

concept, which as a consequence leads to a search
for cost-effective solutions.

Horizon of
understanding

Horizons change relatively little compared to e.g.
game programming. The safety standards and pro-
cess models function as a common language between
practitioners.

Application To exert control over development processes through
the production of documentation: a bureaucratic
mechanism. Control is a prerequisite for placing re-
sponsibility, which is demanded by courts of law.

Figure 6.4: A schematic summary of the principal results of analysing
safety critical programming with hermeneutical theory.

200 chapter 6. safety critical programming

safety implied by the standards is a specific one – safety in this sense
means to fulfil the requirements of the standards in a cost-effective
way, and to avoid certain classes of engineering malfunctions with
a certain probability. This notion of safety is not necessarily the
same notion that the eventual users of safety critical products have.
As was the case with game development at Tribeflame, there is very
little explicit reflection upon effective history within the safety critical
industries. Safety critical developers are of course aware that their
practices and actions have important consequences in society, but
they tend to regard their own actions wholly from within the thought
world of safety critical development.

To sum up this hermeneutical analysis of safety critical program-
ming, some of the results are presented in schematic form in Figure
6.4.

201

Chapter 7

Cultural form analysis

7.1 Comparative analysis

The examples of companies we have looked at so far – Tribeflame,
Cassidian and Skov – have in common that their businesses depend
critically on software development. However, what we have discov-
ered with hermeneutical analysis is that their work processes are not
dominated by the concept of programming but by concepts that stem
from the products they make: in one case “fun”, in the other cases
“safety”.

The hermeneutical analysis of Tribeflame was straightforward in
that it is an analysis of a concrete, individual work process at a given
time. The analysis of safety critical programming was more complex
in that it is an analysis of the cultural form of safety critical work
processes. It focuses on the essential features that make a program-
ming work process safety critical in contrast to something else. In this
section we will compare the cultural practice of safety programming
with the cultural practice of game programming that is represented
by Tribeflame’s work process.

202 chapter 7. cultural form analysis

The standards and processes that are used in safety critical pro-
gramming is a form of cultural practice. When they are used in prac-
tice, they take the form of hierarchical organization and procedures
to be followed, with the goal of assigning responsibility to individual
steps in the programming process and controlling it. It is clear from
the examples we have seen so far that this particular cultural form is
not absolutely necessary to programming, but that it can be useful in
some cases, depending on circumstances.

Cassidian is constrained by its customers in that it is required to
fulfil the safety standards. The company makes the most of this by
adopting the thinking behind the standards and organizing the whole
company’s work around a cultural practice that follows the standards
quite closely. Moreover, the company is so large that it believes it
can influence its circumstances; not passively being subject to the dic-
tates of the standard, but attempting to impose its own version of the
standard on its customers. For Skov, there is no external requirement
to follow standards and processes, and the company is consequently
free to adopt a development practice that it likes and sacrifice rigid
control of the programming process. The company only considers it
worth having a control- and document-oriented approach in a limited
area of the development process: namely, the testing process. For
Tribeflame, there is no external constraint and the company clearly
sees no benefit in adopting a rigid process. Of course, this does not
prove that it is impossible to run a successful game company following
the principles of safety critical standards – but the example of Tribe-
flame does show us that the programming principles inherent in safety
critical standards are not strictly necessary to game programming.

An important feature that these examples have in common is that
though their businesses depend crucially on programming, the goal
of their business is not programming. What they are really striving
for is to make games that are fun to play, or products that are safe
to use. Programming is, in this respect, a means for the business
to achieve its goals; and the specific form given to the programming
process – whether the V-model, Agile, or something else – is merely
a sub-means to the programming means. To put this another way:

7.1 comparative analysis 203

the goal of the programming process is to make a program. The
program is a sub-goal that itself acts as the means to the real goal of
the companies: to make their products useful.

The safety critical programming practice that follows standards
is traditional: it builds on other, older traditions. These are primar-
ily the engineering tradition, legal tradition, bureaucratic tradition,
and software engineering tradition. Although the software engineer-
ing tradition is arguably a descendant of the engineering tradition,
the two are not identical. Even among its practitioners, software en-
gineering is frequently regarded as something that is not “real en-
gineering”.1 Building on these diverse traditions, the safety critical
programming practice has existed for so long that it has itself become
a distinct tradition, expressed in the standards’ chapters on software
development and in the non-written knowledge about safety critical
programming that is preserved among the professionals who work
with it. As we saw in the hermeneutical analysis, the safety critical
tradition is largely impersonal, based on extensive education of its
practitioners and commitment to a professional identity.

The game development practice at Tribeflame is also based on
tradition, but this is a tradition of a different character. The devel-
opers here related to a tradition that is primarily personal and based
on direct experience rather than formal education. Their knowledge
of the tradition comes from the games they play themselves, from
games they have heard about through friends, and from exposure to
computer games and other games since their youth. It is a tradition
that is shared with many people who are not themselves developers
of games, but merely play them. For most people, the computer game
tradition is more immediately accessible than the safety critical tradi-
tion.

1See for example Jacobson et al. 2012 p. 9: “Software engineering is gravely
hampered today by immature practices. Specific problems include: The prevalence
of fads more typical of fashion industry than of an engineering discipline. . . . ” Also
Bryant 2000 p. 78: “Whatever the basis for understanding the term software engineering
itself, software developers continue to be faced with the dilemma that they seem to
wish to mimic engineers, and lay a claim for the status of an engineering discipline;
but commercial demands and consumer desires do not support this.”

204 chapter 7. cultural form analysis

In safety critical development, the processes and standards func-
tion as a common language that makes it easier to communicate
across companies and departments – both for engineering and bu-
reaucratic purposes. It works well because most communication is
with other engineers who have similar training and experience. As a
cultural form, the common language of safety standards is a response
to the circumstances of safety critical development. The products are
so complex to make that a vast number of people are involved and
they need to talk to each other about their work in order to coordinate
it.

In Tribeflame, investors and computer game players are the out-
siders to whom the developers mostly need to talk about their work.
They need to talk to investors in order to convince them that they
know what they are doing, and they need to talk to players, who rep-
resent the actual customers of the company, in order to get feedback
on their games. They have a need for talking about their games,
but they do not have a great need for talking about exactly how they
make them. An investor might of course take an interest in how the
company carries out its development in order to be reassured that the
invested money is spent well; but it is essentially not the investor’s
job to inspect and control the development process in the way that an
assessment agency like TÜV inspects and controls the safety critical
development process.

In safety critical programming, the developers’ need to discuss
their work has, over time, led to the development of models, most
notably the V-model, which serve as references during arguments and
discussions about the work. In this sense, the models are argumen-
tative: an aspect of a work process can be explained by pointing out
the place in the model where it belongs.

In the computer game industry, the need for discussing work pro-
cesses is not so great. Consequently, it would not be an efficient use of
time and energy to develop and maintain consensus about models of
the working process. Whenever game developers do need to discuss
their work process, it is likely to be more efficient for them to come

7.1 comparative analysis 205

up with an argumentative model of their process spontaneously, in a
face to face meeting.

It is widely known that the process models of software engineering
rarely describe what actually happens in development practice. A
textbook on software requirements states:

“The waterfall model represents an ideal. Real projects
don’t work like that: developers don’t always complete
one phase before starting on the next. . . . All this means
that the phase idea of the waterfall model is wrong. The
activities are not carried out sequentially and it is unreal-
istic to insist that they should be. On the other hand, de-
velopers do analyze, design, and program. The activities
exist, but they are carried out iteratively and simultane-
ously.” 2

One of the founders of a consulting company in the safety critical
industry characterizes the development processes of automotive com-
panies in this way:

“Usually they work. The car companies manage to put
out car after car precisely on the scheduled time. They
have these start of production dates that they can never
shift, they are fixed a few years in advance and they al-
ways keep them and I think this is rather impressive. If I
were to form an opinion I would say that they are really
impressive and they work really really well.

That’s the big view of it, of course if you look at the
smaller view then you see that for instance in software de-
velopment, things do happen to go wrong, so you always
have a last minute panic when the start of production
comes closer and the control units don’t seem to work
the way they were intended to work, and then you see
some kind of panic mode: that people work overtime and
it is stressful and everybody has to examine where the

2Lauesen 2002 p. 3.

206 chapter 7. cultural form analysis

problems come from, to change the software, to make
additional tests. This is something where you think that
obviously this is no straight development path that is be-
ing taken here, it’s a little bit chaos in the end, and . . .
this means that the development processes for software
are not working as nicely as they should work.” 3

Another experienced consultant, a founder of three consulting com-
panies, explains that important parts of the safety critical develop-
ment process necessarily must take place outside the framework of
the V-model:

“The V-model is a nice framework for reasoning but I
never saw someone adding all the complexity of a prob-
lem at the specification stage. I mean, in fact you have
plenty of implicit assumptions on the design. Also, you
need to go further in the development in order to, for in-
stance, evaluate some solution, and then go back to the
specification. You know, the process is not so straight, so I
think it’s better that you have some sort of prototypes and
some trials before you go back to the specification stage.
And only when you have a precise idea of the system and
the system behaviour, in the form of a technical solution,
only then is it useful to do verification of the specification
and the design. . . . You must sort of go and return be-
tween specifications and proof of concepts, go back to the
specifications and so on. And once it has been more or
less validated you can enter the V-model and synchronize
verification and development.” 4

In the software engineering literature, the usual explanation for the
fact that process models rarely describe what people actually do is
that the models are not actually meant to describe what people do:
they are prescriptive, not descriptive, serving as an ideal for what

3Interview 16 ∼00:30:18.
4Interview 21 ∼00:50:01.

7.1 comparative analysis 207

people should be doing. That the ideals do not work out in prac-
tice is blamed on human weakness and organizational inadequacies.
The hermeneutical analysis of safety critical programming provides a
much simpler explanation: that the process models are not essentially
models of how the work is done, but models of how the work is under-
stood by those involved in it. This makes sense when the models are
understood as part of a common language through which the work
processes can be talked about. In the words of the safety consultant,
the models are a framework for reasoning; not only reasoning with
oneself but also reasoning with others, as part of communication.

In the game programming practice of Tribeflame, the lack of bu-
reaucracy means that there is no direct counterpart to the process
models of safety critical programming. Of course the developers have
some kind of mental model of how they do their work, but since they
rarely need to talk about it, it is not explicit or schematic. Moreover,
it is far more flexible than formal process models. For example, Tribe-
flame came up with the idea of having a short meeting for the whole
company every day and instituted it in the course of a few days.5

All forms of cultural practice are dependent on history, and there-
fore it is important to understand their history in order to under-
stand them. Safety critical programming has a long history of insti-
tutions that enforce standards: courts of commerce, regulatory bod-
ies, assessment companies, and industry associations. So far game
programming has a lot less institutional history – the existing game
programming institutions are mostly the game companies themselves.
The historical aspect of game development often comes through the
developers’ personal history. Game development is shaped by the
history of tabletop games and the history of computer games. When
a new game company is formed by inexperienced programmers, the
work practices they bring to game programming are the traditions of
working at a desk job, and in many cases the work practices of con-
ducting study projects in university or other educational institutions.
When inexperienced engineers join a safety critical company, they are
faced with a long-standing tradition of safety critical work practice

5Field diary, 30th August 2011, 11:25-12:15.

208 chapter 7. cultural form analysis

with which they have to familiarize themselves before they can hope
to have an impact on the industry.

Forms of practice are dependent on history but they do not merely
repeat old traditions. Cultural practice is shaped by the goal of the
practice, no matter what the historical origin of the practice is. For
this reason, the goal of a cultural practice will be able to explain
much about why the practice looks the way it does. In safety critical
programming, the goal is to make safe products through the mech-
anisms of control and assignment of responsibility. In the cultural
context of safety programming, control and assignment of responsi-
bility therefore appear as sub-goals, meaning that much of the cultural
practice of safety programming has to be understood through these
concepts. In game programming, the goal is to provide entertainment
through the sub-goal of making the products fun to play. Since fun
is a somewhat ambiguous concept, much of the cultural practice of
game programmers revolves around trying to find out what fun is, in
the eyes of potential players.

Software engineering theory is created for, and suited to, specific
cultural contexts that are shaped by external hermeneutical demands,
primarily the demands of bureaucracy and legal systems. This is
particularly true for safety critical development but it also applies
to ordinary software engineering, which in the main has its origin
in projects for the U.S. Department of Defense and similar official
bodies.6

In game programming, those particular bureaucratic and judicial
demands are missing. To follow a process model like the V-model
would be a waste of resources, unless, of course, the process model
served some other specific purpose for the company. To insist in
game programming on a professionalism of the same kind as that
in safety programming would be pointless, since professionalism is
a mechanism rather thana goal in itself, and software engineering
professionalism has been created to serve goals other than those of
game programming.

6See section 3.2.1 (Software engineering).

7.1 comparative analysis 209

The purpose of software engineering practice – and safety crit-
ical practice in particular – is not essentially to create entirely new
things, but largely to preserve the existing state of affairs, the status
quo. Especially in safety critical practice, this is easily understandable
because it is dangerous to make new, untested products.7 It is better
to keep to the traditional way of doing things until it is absolutely
certain that a new way of doing things is equally safe. For this rea-
son, new inventions are only allowed if they are kept within strictly
defined parameters, which are defined beforehand and permitted to
be adjusted only within limits. Inventions that cannot be fitted within
the predefined parameters will usually be rejected in order to err on
the side of safety.

This practice of the conservation of the existing state of affairs
is enforced conceptually by a hierarchical categorization, which is in
turn the source of the parameters within which variation is allowed.
An example of hierarchical categorization is the V-model: the over-
all category is a sequential process of phases; within each phase are
inputs, outputs, and workflows; each input or output can again be di-
vided into its constituent parts and so forth. In practice, conservation
is enforced by rigorous procedures that ensure that things are done in
a certain way according to the hierarchical categorization. The pro-
cedures are, for example, the step-by-step workflow descriptions for
carrying out the V-model in practice, or the list of documents that
must be written, verified, and approved in a certain order. The bu-
reaucracies connected with software engineering exist, not for their
own sake, but to uphold the tradition of engineering practice.8

Game programming is different in this respect, because tradition
is experimented with quite freely. If a game oversteps the bound-
aries that players find acceptable, this will quickly become apparent
in the market as the game will sell badly. Computer games are a
form of entertainment, and in entertainment businesses in general it

7Bear in mind that much ordinary software engineering has its origins in a military
context, and the military can indeed also be a dangerous work environment.

8Should the bureaucracy become an end in itself a dysfunctional work practice will
be the result.

210 chapter 7. cultural form analysis

is not particularly valuable to preserve the existing state of affairs:
customers demand constant innovation and change, which is why cre-
ativity is so highly valued within these industries. Of course, computer
games do have to preserve some amount of tradition – games are ex-
pected to stay within broad genres. A platform shooter, for example,
has to conform to the expectations to the platform shooter genre; but
within these broad limits the more innovative games tend to be more
successful.

We see that the hermeneutical interpretation of game program-
ming and safety critical programming in chapters 5.2 (Analysis) and
6 (Safety critical programming) support the cultural practice analysis
of the current chapter: safety critical programming practice is very
traditionally bound. The hermeneutical circle of interpretation works
very slowly in a safety critical context: the time span from a standard
being interpreted to its consequences being carried out in practice,
and from there to the consequences affecting the original interpreta-
tion, can be many years. The safety critical processes are thus slow
to carry out in practice and slow to change. The strong emphasis
on tradition and bureaucracy means that safety critical practice of-
fers a precise and easy form of communication that is also inflexible,
because it cannot accommodate thoughts outside the hierarchical cat-
egorizations, and requires years of highly specialized training.

Game programming practice is, by comparison, fluid, because the
timescale of the hermeneutical circle operating in practice is short
– consequences of interpretation can often be seen in mere days or
weeks. This means that the practice can change more quickly. The
practice is seldom explicit, but lives in the actions and thoughts of the
game makers: it is simply inefficient to write everything down. Con-
sequently, the practice is seldom presented to outsiders other than in
the form of the product – the game. The tradition that underlies game
practice is more personal and informal, and the ability to contribute
constructively and get involved is more important than formal quali-
fications. In this way the work is similar to that in other creative jobs,
such as writing and design.

7.2 safety critical case studies and analysis 211

In safety critical programming as well as in game programming,
we see that in the work practices, the concept of programming is sub-
ordinate to other concepts that more directly express the goals of the
companies. In the case of safety critical development, programming
is subordinate to machine production and its regulation. As we see
in section 6.2.3 (The safety critical standard), much of the vocabu-
lary that is used in safety development comes from factory settings or
from the legal sphere, and the terms used in safety development are
usually object terms – they describe how to reach given goals, with-
out questioning the interpretation of the goals to any great extent.
In game development, programming is subordinate to entertainment,
and entertainment is usually measured by how much fun a game is.
The observations from Tribeflame indicate that the discussion about
game development centers around terms that express the players’ ex-
perience of fun, and as such they are subject terms.

However, though programming in both practices is subordinate to
the goal of concepts safety and fun, it is important to keep in mind
that programming, in essence, is neither of these concepts. Though
directed by the dominating goal concepts, programming has its own
cultural characteristics that are not fully explained by the goal con-
cepts. We will return to this point in the conclusion, chapter 9.

7.2 Safety critical case studies and analysis

So far we have looked at safety critical programming as a single cul-
tural form, which means that we have been looking at safety critical
programming as a more or less undifferentiated, homogenous prac-
tice. This was the case both in the hermeneutical analysis of safety
critical programming in chapter 6 (Safety critical programming) and
in the section above, which contrasted safety critical programming
with game programming. Of course, safety programming practice is
not a single, undifferentiated activity: in reality, it displays as much
variety as any other cultural activity. In this section, we will look

212 chapter 7. cultural form analysis

at how the concept of cultural form can be used to analyze safety
critical programming in order to categorize and explain some of the
differences that are visible in the practices as they are expressed in
empirical data. Thus, this section is based on interviews with em-
ployees in 17 companies in the safety critical industry which provided
data that was suitable for form analysis (see the list of source material,
page 133). The companies are briefly summarized in Figure 7.1.

At this point it is probably prudent to repeat the warning that, to
the reader unfamiliar with cultural research, it might seem strange to
say something about the practices of a whole industry on the basis of
only 17 cases, and sometimes on the basis of just a single case. The
explanation for this is that we are not really trying to say anything
about the “average” company, whatever an “average” company might
be. Rather, we are trying to say something about the possible forms of
practices, and to that end a single case is more than sufficient, because
it demonstrates what is possible in practice. This of course means
that we are not guaranteed to end up with a complete picture of all
possible forms of practice; however, when the reader encounters a
new, hitherto unknown form of practice, he should be able to analyze
the practice himself, with the help of the cultural concepts of form
and practice and the examples provided by this chapter.

The majority of the companies that we are observing – 10 out of
17 – are required to follow the safety critical standards, and they have
done so in the most obvious way, by building a bureaucratic organiza-
tion that revolves around the standards and which has internalized the
development models that the standards prescribe, both explicitly and
implicitly. Below, we will take a closer look at the variations in the way
in which these companies work; first, we examine the remaining group
of companies, which for one reason or another are not required to fol-
low safety critical standards development procedures. Although these
companies are not subject to the dictates of the standards they do not
fall entirely outside the safety critical industries – each company is
in its own way connected to safety critical development. Looking at
these forms of development practice can, by contrast, tell us some-

7.2 safety critical case studies and analysis 213

Company Size Dept. Office Product or Process
size location industry

Skov 300 45 Glyngøre Farming Agile
(anonymous) 25 Germany Automotive Agile
Integrasys 20 Madrid Satellites Software

engineering
FCC 700 60 Madrid Simulation,

planning
Software
engineering

(anonymous) 60000 100 England Research Eclectic
Metso
Automation

700 5 Finland Valves Software
engineering

Wittenstein 1800 15 Bristol Real-time
OS

Safety
critical

(anonymous) 90 Germany Real-time
OS

Safety
critical

Cassidian 31000 70 Ulm Aircraft Safety
critical

PAJ
Systemteknik

20 Sønderborg Medico,
railway,
sensors

Safety
critical

(anonymous) 28 Finland Satellites Safety
critical

PSA Peugeot
Citroên

200000 700 Paris Automotive Safety
critical

Delphi
Automotive

146000 300 Wiehl Automotive Software
engineering

Danfoss 22000 2000 Graasten Electrical
motors

Software
engineering

(anonymous) 800 250 Germany Automotive Tool
supported

Safe River 10 Paris Consulting Formal
methods

Kone 33000 85 Chennai Elevators Software
engineering
/ Agile

Figure 7.1: Brief summary of the companies mentioned in this section, in
the order in which they are encountered in the text.

214 chapter 7. cultural form analysis

thing important about the practices of companies that do actually
follow the standards.

The first thing to notice is that, because of the costs, no company
follows safety critical standards unless it is forced to. The farming sys-
tems company Skov is one example of a company that is unaffected
by standard regulation. In section 6.2.2 (A small farming systems
company), we saw how Skov rejects traditional software engineering
thinking and has adopted a less formal, Agile way of working. Testing
is the only part of the process where Skov finds it worthwhile to main-
tain a formal work process. The circumstances that allow Skov’s form
of work practice to flourish are unique among the companies studied
here, in that Skov is a company that produces safety critical systems
but operates in an industry that is not regulated by standards.

Another example of a company that escapes standard regulation is
a small company of 25 employees that makes timing analysis software
tools for the automotive industry.9 This company has built its devel-
opment process around Scrum, an Agile methodology.10 Like Skov,
the testing part of the company’s process is given high importance.
But unlike Skov, the automotive industry is not free of regulation; on
the contrary, it is heavily regulated by standards. The reason that
the timing analysis company can escape regulation is that none of its
software ends up in the finished cars: it is used by other companies
as an aid in their own safety regulated processes.

This is a conscious strategy taken by the company, and allows it
to occupy a niche in the automotive industry without following safety
critical standard procedures. Thus both Skov and the timing analy-
sis company find themselves in circumstances where they are free to
follow an informal, Agile work process, but where the absence of regu-
lation in Skov’s case largely depends on factors outside Skov’s control,
in the timing analysis company it is a result of a deliberate choice. Of
course, this choice has consequences: the company is limited in the
range of software it can offer, since it cannot be used directly in safety
critical hardware. Thus while the form of the company’s work process

9Interview 19.
10See section 3.2.2 (Agile software development).

7.2 safety critical case studies and analysis 215

has advantages in some repects, such as the freedom to use an Agile
process, it has disadvantages in others.

Integrasys is a small company of 20 employees that makes signal
monitoring software for satellites and the aerospace industry.11 The
company does not follow any standards: it is preparing itself to use
IEC 61508, but has no experience so far. The company’s work pro-
cess is a traditional software engineering phase-based process. The
company does most of its work in large projects involving as many as
20 larger companies. Coordination with these companies dictates the
working processes, and the planning and communication takes place
mostly via software engineering Gantt charts.12

What makes Integrasys special is that, while it externally appears
to follow formal, bureaucratic phase-based processes, the internal day-
to-day planning is informal. Requirements are written in Microsoft
Excel spreadsheets, and there is no formal evaluation – any expe-
rience that is built up is personal experience. Integrasys is unique
among the studied companies in having a process that externally ap-
pears bureaucratic, but is informal internally.

The reason that this form is possible for the company is probably
twofold. First, the company is quite small; a larger company would
presumably need a more formal bureaucracy. Secondly, the company
is subject only to the relatively lax requirements of ordinary software
engineering processes, rather than the much more strict safety crit-
ical standard processes. In combination, these circumstances allow
the company to have a software engineering process with very little
bureaucracy. Of course, the fundamental principles in the company’s
work processes are still those of software engineering, in contrast with
those companies discussed above, which follow Agile principles.

FCC is a medium-sized company with 700 employees, which pro-
duces simulation and mission planning systems for military and civil
authorities.13 Most of the software is made in the systems and telecom-
munications department, which employs 60 people. The company is

11Interview 11.
12See Figure 3.7 in section 3.2.1.3 (Process thinking).
13Interview 28.

216 chapter 7. cultural form analysis

not normally subject to safety standards; it has recently begun its first
safety critical project. Safety critical development has been found to
be more work than expected, although not particularly difficult. Nor-
mally, FCC’s customers dictate the work processes. The processes are
all software engineering processes and the core of the company’s form
of work are military software engineering standards.

This company is different in one important repect from all the
companies in this study that follow safety critical standards. Compa-
nies that follow safety critical standards are usually very conscious
about their working processes and frequently evaluate and revise
them, but FCC has not changed or proposed improvements to its
methodology in 11 years. Rather, if there are problems, the company
postpones its deadlines and milestones. This is in sharp contrast with
companies following safety critical standards, which are dedicated to
meeting their deadlines meticulously.

Other companies do not have the option to postpone their dead-
lines – so how can this be possible for FCC? Part of the answer is
undoubtedly that the company follows ordinary software engineering
standards. These standards, though strict, are relatively lax compared
to the even stricter safety critical standards. The other part of the an-
swer might be that FCC primarily delivers to the military and civil
authorities, and these kinds of public institutions are well known for
suffering delays and deadline postponements. Indeed, though delays
are generally viewed as the worst kind of problem within software en-
gineering, the origins of software engineering in part lies in attempts
to bring the delays in public institutions’ projects under control.14

The next example is a research company made up of fewer than
100 people, which is part of a larger engineering group that employs
60,000 people.15 The company makes proofs-of-concept, mashups
and demonstrators in order to investigate the feasibility of proposed
new engineering solutions. Some projects are as short as four weeks;
some are longer. The work processes are continually adapted to what-
ever the particular customer or project demands, and so the company

14See section 3.2.1.2 (Brooks).
15Interview 26.

7.2 safety critical case studies and analysis 217

works with a number of different software standards, some of which
are safety critical standards. According to the employee whom I in-
terviewed, the best way of working is that the employees themselves
decide how to do their work. That is both more efficient and more
motivating than safety critical work processes, in which people only
become experienced and efficient in working with the standards after
a long period of time. This employee also expressed that all soft-
ware processes are exactly the same, whether they are Agile or safety
critical.

The research company demonstrates a way of thinking that de-
parts both from common software engineering thinking and from Ag-
ile thinking. Instead, it is much more in line with the thinking that
follows the traditions of computer science, described in section 3.2.3
(Computer science), where there is a marked emphasis on the cre-
ativity and insight of the individual. A work process is not seen as
something shared but more as something private. This style of think-
ing fits the form of the research company exactly, because it is not
overly concerned with long term efficiency and the cost competitive-
ness of production. It has much more in common with the kind of
scientific and experimental mentality that lies behind the computer
science tradition. The company is partially subject to safety critical
standards and is, in many ways, in the same circumstances as com-
panies who follow the safety critical standard tradition. However, the
company pursues research, not cost-effective safety – and this differ-
ence in goals makes a difference in the form of its work processes.

Our final example of a company that does not conform to safety
critical standards is Metso Automation, a company of about 700 peo-
ple that makes automatic valves for the chemical process industries.16

Only four or five people make the software to control the valves.17 Be-
cause the company has non-software solutions for ensuring the safety
of the valves, the certification agency TÜV ranks their software as not
safety critical and thus Metso does not need to follow those standards.

16Interview 22.
17The valve control software is technically firmware, and the company refers to it as

such.

218 chapter 7. cultural form analysis

The software people are trying to follow a traditional software
engineering V-model process, with requirements, reviews of require-
ments, phases, inputs, and outputs. However, they are struggling to
do so. The process is not written down in its entirety anywhere, and
only about 10 percent of the software is covered by tests. Furthermore,
the software architecture does not support module testing, which leads
to problems in the work process. The company is reluctant to spend
time and resources on improving the software because it is not seen
as crucial to product quality. Hence the software process is allowed
to continue to flounder.

What we see in Metso is a software department that tries to use
a form of programming that is not really suited to its circumstances.
The department lacks the necessary company support to build the
bureaucracy that is needed in order to work the way it wants to, but
it is either unwilling or unable to take the consequence and abolish
the V-model way of working altogether. This is perhaps because those
working in the software department do not know of any other tradi-
tion for software development, or perhaps because there are too few
of them to build a new work tradition in the company. The under-
lying problem, however, is that the software department is just a tiny
part of a much larger company that is entirely dominated by hardware
engineering. Since the company views itself as a hardware company,
software is simply not seen as something that can threaten the well-
being of the company, and therefore the process problems are allowed
to persist. For the time being, the company seems to be correct in this
assessment.

Next, we will look at a range of companies that are subject to safety
critical standards and conform to them both in deed and in thought.
We have already discussed Wittenstein Aerospace and Simulation in
section 6.3, page 193, a small company of about 15 employees.18 The
company’s main product is an operating system for use in flight soft-
ware. The company is strictly bureaucratic, conforming to the safety
critical standards. All work is organized around the documents and
phases required by the standards. Another slightly larger company

18Interview 25.

7.2 safety critical case studies and analysis 219

of 90 employees makes an operating system for embedded software
in general.19 Its working process is similarly bureaucratic and strictly
conforming to the standards.

Wittenstein and the larger company have in common that they
produce operating systems, which are pieces of software that cannot
in themselves be certified according to the standards because they do
not constitute a complete safety application in themselves. Accord-
ingly, the certification is actually done by the companies’ customers.
This means that it is important to the companies that their customers
understand the products and how the work processes conform to the
standards. An engineer and project manager from the larger operat-
ing system company says that:

“ . . . they need a certain understanding, the customer,
because they cannot work with it if they do not under-
stand; and if we deliver some artefact – some document
or things like that – the customer needs to understand it
because he has to take these documents and work with
them inside his [own] company . . . ” 20

This emphasis on the need for customers properly to understand the
products is particular to the operating systems companies, because
they cannot themselves complete the certification process. This phe-
nomenon is not only found in software companies, the hardware com-
pany Infineon that produces integrated circuits is faced with the same
challenge.21

In section 6.2.1 (A large avionics company), we saw a detailed ac-
count of the work process of Cassidian, a large aerospace company.
Cassidian works with a large number of standards, and in an attempt
to cut down the ensuing confusion it has developed an internal stan-
dard that combines the elements of all the standards with which it
works. The internal standard is also part of an attempt to streamline
the processes inside the company. Cassidian’s size makes it powerful

19Interview 27.
20Interview 27 ∼00:30:33.
21Interview 31.

220 chapter 7. cultural form analysis

enough to try to influence its customers, and its desire is to impose
its own standard on its customers, in place of the various standards
that the customers demand.

PAJ Systemteknik is a small company of 20 people that works as
a subcontractor and assembles equipment for major companies such
as Siemens, MAN, and Honeywell.22 The company works in the ar-
eas of medical industries, railway, and safety of machinery. PAJ also
deals with a large number of different standards that are dictated by
its customers. Unlike Cassidian, however, PAJ does not have the size
to influence its customers. The company therefore follows another
strategy for trying to reduce confusion: its ambition is to develop a
“self-certifying” platform for its products. That means a set of pro-
cedures that, if they are followed, will guarantee that the resulting
product can be certified. Whether the strategies employed by Cass-
idian and PAJ will work remains to be seen, but it is interesting to
note that differences in circumstances cause the companies to react in
different, yet similar, ways to the same challenge: the proliferation of
standards.

A further example is a small company of 28 people that makes
control software for satellites.23 Like PAJ, this company works as a
subcontractor and has its work processes imposed on it by customers.
The standards in the industry are dictated by the European Space
Agency. The company has growing business in other industries, such
as nuclear, railway, production and medical industries. This part of
the business is becoming more important, and consequently the com-
pany is working with an increasing number of standards in addition
to the space standards. These non-space standards are perceived by
the company as using the same concepts as the space standards, but
applied in a slightly different way. An engineer from the company
explains:

“Our processes are mostly derived from the European space
standards. When we are to work in [non-space] industrial

22Interview 14.
23Interview 13.

7.2 safety critical case studies and analysis 221

applications, well, it is a variation of that. So, it’s not a
completely different story, it’s more or less the same con-
cepts applied in a slightly different way. The names of
some things are different; maybe you do some things be-
fore, some things after; some things more or some things
less – but it’s a variation of what we already know.” 24

Like PAJ, this company is trying to control the challenge of working
with a number of standards; but unlike PAJ, it is not trying to create
a single procedure that fits all kinds of standards. Rather, it identifies
what is common in the standards, and thinks of the different standards
as variations on what they already know: a strategy that presumably
makes it easier to deal with the differences.

PSA Peugeot Citroên is a very large European car manufacturer. It
employs 200,000 people, half of them in France.25 In many respects,
the company operates in circumstances similar to those of Cassidian.
PSA Peugeot Citroên is a large, highly bureaucratic and tightly con-
trolled organisation. The planning that goes into producing a new
model of vehicle is comprehensive and very strict; milestones and
deadlines absolutely have to be obeyed. There are also some inter-
esting differences – where Cassidian tries to streamline and centralize
its working processes by developing an internal standard, PSA instead
allows different parts of the company to have their own processes and
traditions, or, as an engineer from the company puts it, their “histori-
cal reasons to work in a certain way”.26 The reason for this is that “if
they work in a certain manner they also have some good reason.” 27

The company has a department of innovations that makes suggestions
about changes in the work processes of the different departments, in
close cooperation with the departments in question. This process can
take several years and again shows that PSA’s approach is much less
centralized than Cassidian’s.

24Interview 13 ∼00:25:01.
25Interview 23.
26Interview 23 ∼00:30:01.
27Interview 23 ∼00:35:26.

222 chapter 7. cultural form analysis

Cassidian tries to affect the standards to which it is subject by
making its customers accept its own internal standard. PSA also af-
fects the standards, but in a different way. The company is of such
size that it has representatives in the ISO committee that authors the
standards, and PSA can thus influence the standard to make it ac-
cord better with the company’s wishes. The company also uses some
strategies for reducing the complexity of working with the standards.
The main software component of a car28 is consciously kept at a low
level of safety criticality.29 This means that there are important safety
components that must instead be taken care of in other parts of the
car, but it simplifies the work on the software component. Another
strategy is to allow subcontractors to take care of the safety critical
aspects of components. PSA could, in principle, safety engineer the
components itself, but it simplifies the work process to have trusted
subcontractors do this.

The following two examples differ from the others used in this
study in that their work processes do not spring directly from the
safety critical standards, but instead have their origins in general soft-
ware engineering theory that is adapted to fit safety critical purposes.
Delphi Automotive is a global company with around 146,000 employ-
ees.30 It makes, among other things, embedded control systems for
cars. The company’s software processes derive from the SPICE stan-
dard,31 which is a software process standard that is not concerned
with safety: it has been chosen because of customers’ requirements.
The company has a globally defined standard process that is tailored
locally in the individual departments and to each project. The form
of the work process thus mixes a centralized and decentralized ap-
proach. Local departments deal with as many as 30 different safety
critical standards and other legal requirements. The company is large
enough that it is able to influence the standards to which it is subject;

28The Electronic Control Unit (ECU).
29Called ASIL B, the second lowest safety level, excluding components classified as

not safety critical.
30Interview 15.
31Software Process Improvement and Capability Determination, ISO / IEC 15504.

7.2 safety critical case studies and analysis 223

the German part of the company is a member of the German working
group for the ISO standards committee.

Danfoss Power Electronics is a daughter company of Danfoss, a
company of 22,000 people that makes pumps and other hardware.32

Danfoss Power Electronics makes electrical motors and the software to
control them, and has around 100 software developers. The company
follows a work process of its own devising that is an elaborated-upon
version of an ordinary software engineering iterative waterfall model.
The company has a slightly different version of its software process
for each of its three software product lines, because standardizing the
process to have “one-size-fits-all” is not deemed to be worth the effort
it would take. Since the processes have not been made with safety in
mind the company needs to interpret the process steps from the IEC
61508 standard to match its own process steps whenever a product
needs to be certified.

An interesting detail is the way the company keeps track of its
software requirements. Currently, the requirements are linked directly
to the software source code simply by putting comments in the code.
But they are considering adding an intermediate layer of “features”,
such that requirements would be linked to features and features in turn
would be linked to the source code. In that way it is easer to keep track
of functionality that is spread out in the source code. The program-
mers would then arguably have to be more aware of exactly which
feature they are working on. This is an example of how demands
can shape the programming work process; in this case, bureaucratic
demands rather than demands arising from the programming itself.

The following two examples illustrate the inherent conflict be-
tween creativity and the safety standards’ requirements for documen-
tation and control, which was discussed on page 197 in section 6.3.
The two companies simply solve this conflict by keeping creative in-
novation apart from the safety critical process. The first company
employs 800 people and makes software for car controllers33 based

32Interview 10.
33Electronic Control Units (ECUs).

224 chapter 7. cultural form analysis

on a software platform for the car industry called AUTOSAR,34 which
is jointly developed by car manufacturers and others.35 Most of the
requirements for the products come from the specification for AU-
TOSAR, which changes regularly. The work process is heavily sup-
ported by software tools. The company only does certification when
demanded by customers, and only on well-defined components – if
new features are needed, a technical solution is found before safety is
addressed, as one manager explains:

“If we are discussing a new feature which requires a new
technical solution, maybe as an additional product com-
ponent, then at a first stage we are trying to solve the
technical matters, and then we are going to assure that
this will fulfil all the [safety] requirements . . . we are not
happy with doing it the other way around, which means
definition of a big process, then breakdown of require-
ments, and in the end doing a technical solution.” 36

Safe River is a consulting firm of 10 employees in the aeronautics and
railway industries.37 The consultants work and participate in Safe
River’s customers’ work processes where they help the customers to
use formal methods, a collection of very demanding and costly meth-
ods that are only used for the highest levels of safey critical catego-
rization. The founder of Safe River explains that the innovative part
of doing a new product should be kept apart from the work process
that conforms to safety standards:

“Suppose the system is completely new and you don’t have
any experience and so on – you must study and do the
proof of concept before you enter the [safety] process it-
self.” 38

34Automotive Open System Architecture.
35Interview 18.
36Interview 18 ∼00:55:23.
37Interview 21.
38Interview 21 ∼00:55:11.

7.2 safety critical case studies and analysis 225

However, she emphasizes that even if the creative part takes place
before the safety process is engaged, it is necessary to at all times
be aware of the safety requirements that the product must eventually
fulfil:

“You have some phases which are more experimental when
you must do the proof of concept, but some people do
not take into account safety constraints at this stage and
afterwards, when they go to the real development phase,
there are conflicts between the constraints, which have
not been taken into account, and the proof of concept
itself, and in this case it can be very very expensive to go
back to the first phase.” 39

This last comment shows that although it is in principle a feasible
form of practice to separate innovation and fulfilment of the safety
standards, it is not always so easy to do in practice.

The final example given here is an interesting hybrid between
the companies that conform to the safety critical standards and the
companies that avoid or work around them in some way or another.
Kone is a company of 33,000 employees that makes and installs el-
evators worldwide.40 The 85 employees in the software department
makes the controllers for the elevators. Kone uses an Agile method-
ology, Scrum, for projects in which it develops something completely
new. For projects that add features to existing software, and for safety
critical projects, Kone uses a traditional iterative waterfall approach.
The desire to use an Agile process came from the software develop-
ers rather than managers, which is unusual: the company’s software
developers normally do not initiate process changes themselves.

Interestingly, Kone combines two forms of safety programming
that we have otherwise seen used in a mutually exclusive way in sepa-
rate companies: an Agile form that does not conform to safety critical
standards, and a software engineering form that does. In Kone these
forms exist side by side, not only within the same company, but within

39Interview 21 ∼00:55:11.
40Interview 29.

226 chapter 7. cultural form analysis

the same department. This example illustrates a point made by the
economist R.H. Coase in his article “The Nature of the Firm”: that the
exact delineation of which tasks belong within one and the same com-
pany is, in essence, an economic and therefore a cultural question.41

That is: what constitutes “a company” cannot be taken for granted; it
is always possible that some task within the company is better left to
a subcontractor, and conversely it is always possible that two smaller
companies could better be combined into a single entity.

When, in the previous section, we looked at safety critical pro-
gramming as a form in contrast with the game programming within
Tribeflame, we perceived safety critical programming as a fairly ho-
mogenous form of culture with distinct features. In this section we
have taken a closer look at safety critical programming forms and
seen that, even within this specific form of programming, there is am-
ple diversity in approaches. This reveals that while it is possible to
identify some general traits of programming, it is equally important
to be aware of the context, because it is not possible to identify the
form of an example of programming without taking the context into
account.

We have also seen how the same form can appear in vastly dif-
ferent circumstances, such as in Skov and in the small German com-
pany that makes timing analysis software tools; both employ an Agile
form of programming, but while Skov operates in an industry without
safety critical standards, the other company operates in the automo-
tive industry, which is heavily regulated by standards. Also, we have
seen examples of companies that operate in similar circumstances but
choose different forms to survive in those circumstances: Cassidian,
which has a very centralized process form in which one standard is
made to fit all processes, and Danfoss Power Electronics, which con-
siders it inefficient to make one process fit all software product lines.

41Coase 1937.

227

Chapter 8

Rhetorical case study and
analysis

8.1 Rhetorics and programming

In the previous chapters, we have been primarily examining program-
mers’ working processes: that is, how they do their job. In this chap-
ter, which concludes the analysis of programming presented by this
treatise, we take a closer look at the programmers’ primary work
product: program code.

In chapters 5.2 (Analysis) and 6 (Safety critical programming) we
saw how hermeneutical theory can be used to understand program-
ming processes. In chapter 7 (Cultural form analysis) we used cultural
form theory to look at the differences between programming in dif-
ferent situations. As we saw, these forms of theory are well suited to
study programming in order to understand better what happens in the
programming process. However, the ultimate goal of understanding
programming better is that we might be able to program better; and
in order to do that, our understanding of programming needs to be
applied in practice to programming tasks.

228 chapter 8. rhetorical case study and analysis

For that reason, we will in this chapter apply rhetorical theory to an
analysis of program code. Program code is the medium in which pro-
grammers work, and is therefore of interest to a practical approach to
programming tasks. Rhetorical theory is the classical body of learn-
ing about how to formulate and deliver a speech in practice. The
practical element of rhetorics means that it is a more direct route
to practical application than hermeneutics, which is more concerned
with understanding texts than with creating them.

A rhetorical analysis of program code should be seen in contrast to
the conventional forms of analysis that are associated with the think-
ing described in section 3.2 (Mainstream programming theories). We
did not, in that chapter, go into detail about the ways program code
is analyzed, but it is in line with the overall priorities of mainstream
programming theory and usually focuses on mathematical properties,
quantification, efficiency, program organization and modularization,
and business value. As we shall see, rhetorical analysis provides a
perspective on source code that is quite different from all these, yet
is closer to the practical everyday experience that a programmer has
when working with code.

The relationship between rhetorics and hermeneutics is close. Es-
sentially, rhetorics is the practical side of hermeneutics, as the philoso-
pher of hermeneutics Hans-Georg Gadamer has explained in a 1976
lecture about rhetorics and hermeneutics. It is a central principle
of hermeneutics that understanding depends on application – that
is, a cultural phenomenon can only be understood correctly through
understanding its purpose. Corresponding to this principle is, in
rhetorics, the notion that communication should be purposeful. An
act of communication must be judged according to whether it achieves
its intended purpose. The theories of hermeneutics and rhetorics to-
gether constitute a philosophy that is symmetrical around the con-
cepts of application and purpose; whereas hermeneutics is primarily
concerned with understanding, rhetorics is primarily concerned with
applying knowledge.

Applying a rhetoric perspective to programming is a rarity in the
literature. In his 2002 book The Art of Interactive Design, computer

8.1 rhetorics and programming 229

game designer Chris Crawford regards programming as essentially a
matter of interactivity, which he defines as: “a cyclic process in which
two actors alternately listen, think, and speak”.1 He employs addi-
tional perspectives on programming, but his main metaphor is that of
a conversation. The use of conversation as an image of programming,
and its division into three species – listening, thinking, and speaking
– places his work in the domain of rhetorics even though his starting
point is not classical rhetorical theory but rather a non-academic and
very practical approach.

Popular handbooks in practical programming, such as Code Com-
plete, provide much advice that can easily be understood in a rhetori-
cal way. Examples in Code Complete are an explanation of the impor-
tance of metaphors in understanding programming, advice on how to
structure code so that the meaning is clear to a reader, and advice
on how to use layout and indenting in order to communicate the in-
tent of the code better.2 None of this is presented in connection with
rhetorical theory, but rather as things that are self-evidently good to
do. Nevertheless, these topics fall within the domain of rhetorics.

Bryant speaks for an approach that, while not exactly rhetori-
cal, can easily be understood in rhetorical terms: he argues that
metaphors for understanding are a central part of software engineer-
ing.3 Metaphor is a central concept not only to literature but also
to rhetorics, and speaking of metaphors as playing a part in how we
perceive things, as opposed to merely a way of making speeches more
colourful, fits well with the approach of Perelman and Olbechts-Tyteca,
called “new rhetorics”.

1Crawford 2002 p. 5.
2McConnell 1993 chp. 2, chp. 13, chp. 18.
3Bryant 2000.

230 chapter 8. rhetorical case study and analysis

8.2 Audience

A fundamental concern of rhetorics is the audience for an utterance.
This raises the question of who the audience is for a piece of program
code. Ultimately, the audience for a computer program is of course the
intended user. However, much as a playwright does not manipulate a
theater play directly but rather by instructing the play’s actors through
a manuscript, the programmer does not manipulate the program’s
behaviour directly but rather through instructions to the machine that
will be executed later. The theater manuscript and the program code
are both indirect representations of acts of communication that will
be realized later. The theater manuscript is to be read by the actors,
not the theater audience, and therefore it has to be written for the
actors rather than the audience.

Thus although the audience for a program is the eventual user,
the audience for program code is other programmers. Who, then, are
these other programmers? First of all, the programmer needs to write
his code so that it is understandable by his colleagues. It is a very real
possibility that a programmer other than the author will have to make
modifications to the code at some point, perhaps at a time when the
author has left the company and is not available to answer questions;
the recipient colleagues may even be future colleagues, not presently
known to the author. This means that the audience of programmer
colleagues, for whom the author is writing code, is a case of what
Perelman and Olbrechts-Tyteca call “the universal audience”;4 and in
the case of program code we can call the audience “the universal
programmer”. The universal programmer is the author’s idea of what
a reasonable and intelligent programmer would be like – writing code
to be read by the universal programmer means writing code that is
orderly and proper, “the way it should be”.

One more programmer is going to read and understand the pro-
gram code and that is the author himself. Consequently, when the
author writes the program code he thinks not only of how poten-

4Perelman & Olbrechts-Tyteca 1958 §7.

8.2 audience 231

Figure 8.1: Tablet computer game with the working title Flower. Tribe-
flame 2014.

tial future colleagues or the universal programmer might perceive his
code, he also deliberates with himself on how to best understand the
code he is writing. According to Perelman and Olbrechts-Tyteca, the
private deliberations one silently has with oneself is a special case of
general argumentation, and can be understood as yet another address
to the universal audience.5

We notice that the members of the audience for the program
code – the author himself, his colleagues, and the universal program-

5“L’individualisme des auteurs qui accordent une nette prééminence à la façon de
conduire nos propres pensées et la considèrent comme seule digne de l’intérêt du
philosophe – le discours adressé à autrui n’étant qu’apparance et tromperie – a été
pour beaucoup dans le discrédit non seulement de la rhétorique, mais, en général,
de toute théorie de l’argumentation. Il nous semble, par contre, qu’il y a tout intérêt
à considérer la délibération intime comme une espèce particulière d’argumentation.”
Perelman & Olbrechts-Tyteca 1958 [2008] §9, p. 54.

232 chapter 8. rhetorical case study and analysis

mer – all are included because they might modify the program code
in the future. Recalling the analysis in chapter 5.2 (Analysis), this
is because program code is seldom written in one go, never to be
modified again. If this were the case, program code could be written
in any way accepted by the machine, and it would not matter if the
code were neat or understandable. But program code is written to be
modified; and this is because of the hermeneutical process of writing
the code, where adjustments are carried out and errors corrected in
a slowly evolving hermeneutical circle that moves in cycles between
program creation and experience with the program’s behaviour – see
section 5.2.2 (Hermeneutical analysis).

8.3 Programming conventions

Figures 8.2, 8.3, and 8.4 show parts of the program code for a com-
puter game for tablet computers made by the company Tribeflame.
This game, which they worked on during my time observing the com-
pany, had the working title Flower. The game shows a living room in
a house seen from above, as shown in Figure 8.1. The living room is
dark, and in the corner, amidst chairs and tables, stands a neglected,
sad-looking flower. A ray of sunshine falls through the living room
window but does not reach the unfortunate flower. The player’s task
is to place one or more mirrors in the living room and make sure that
they reflect the ray of light in such a way that the sunlight hits the
flower and restores its health and happiness.

The program code file shown in figure 8.2 is named “Game-
Scene.hpp”. It is a so-called header file. A header file does not itself
contain any functional program code; it merely lists the contents of
another file. Technically, a header file is not strictly necessary for the
program to function, but it serves some practical purposes and has
come to be expected in any reasonably-sized program. This means
that the use of a header file has become a rhetorical convention –
much like a list of contents in a book. The mere presence of a header

8.3 programming conventions 233

#ifndef GAME_SCENE2_HPP
#define GAME_SCENE2_HPP

TF_DECLARE_CLASS(Light);
TF_DECLARE_CLASS(Mirror);
TF_DECLARE_CLASS(Room);
TF_DECLARE_CLASS(Flower);

#include "UI/Scene.hpp"
#include "Util/Geometry.hpp"
#include "Levels/LevelInfo.hpp"
#include "Game/Updater.hpp"
#include "Game/RoomDefinitions.hpp"

TF_CLASS(GameScene) : public Scene, public tf::TouchClientMixin {

public:

/**
* Creates an instance of the scene.
*
* @return a new instance.
**/

static sGameScene create (sRoom room, sLevelInfo level_info);

GameScene ();

~GameScene ();

void init ();

/**
* Signal used to tell that the game scene is done, i.e. the

game has finished through the user quitting it manually
**/

boost::signals2::signal<void ()> quitSignal;
boost::signals2::signal<void ()> nextLevelSignal;

protected:

Figure 8.2: Part of the C++ header file “GameScene.hpp” from the tablet
computer game with the working title Flower. Only the start of the file is
shown.

234 chapter 8. rhetorical case study and analysis

file, therefore, does not tell us a lot about the game; but the specific
way it is written, its style and arrangement, can tell us something
about the priorities of the game’s creation.

First of all, the lines:

TF_DECLARE_CLASS(Light);
TF_DECLARE_CLASS(Mirror);
TF_DECLARE_CLASS(Room);
TF_DECLARE_CLASS(Flower);

and

TF_CLASS(GameScene)

are not written in standard C++ code. They are macros written by
Tribeflame’s programmers, as the letters “TF”, standing for “Tribe-
flame”, show. They indicate that not all standard conventions of writ-
ing C++ code are preferred by the programmers.

The line

TF_CLASS(GameScene) : public Scene, public tf::TouchClientMixin {

tells us that the program module GameScene is related to the more
general module Scene, meaning that there is more to the computer
game than just the game itself – there are modules, for example, for
selecting a level, showing the high score, and changing the settings of
the game. The bit

tf::TouchClientMixin

tells us that the game works on a tablet computer (“TouchClient”). It
also tells us that Tribeflame has made its own collection of modules
that can be used for developing tablet computer games – again “tf”
stands for “Tribeflame”. It would be possible to make a game with-
out such a collection of modules. This is a more direct technique,
but it would result in more disorderly program code. Tribeflame has
spent quite a lot of energy on making orderly program modules that
makes it possible for them to run games on different brands of tablet
computers, in addition to the most common, Apple’s iPad. The line

public:

8.3 programming conventions 235

marks the part of the code that is available to other program modules.
This means that the following lines show the most important parts of
this program module in terms of interaction with other parts of the
code. This particular program module is not meant to do more than
to be started and then run the computer game. The lines

GameScene ();

~GameScene ();

are the conventional ways in the programming language C++ of start-
ing and ending a program module. The line

static sGameScene create (sRoom room, sLevelInfo level_info);

is an alternative way of starting a module that Tribeflame has chosen
instead of the C++ convention. This shows us that the design princi-
ples upon which C++ is built, so-called Object-Oriented Programming,
is not in this case attractive to Tribeflame, though the company uses
the principles in other places in the program code. It does not matter
to the machine where in the file this line is placed.6 By placing the
line first in the program code, the programmer emphasizes, for the
benefit of the human reader, that the program deviates from the C++
conventions in this way.

The only parts of the programming module that are accessible to
other modules and do not have to do with starting and stopping the
module are the lines

boost::signals2::signal<void ()> quitSignal;
boost::signals2::signal<void ()> nextLevelSignal;

These lines both have to do with the player controlling the game by
quitting it, or moving on to another game level. The prominence
of these lines show that the player’s ability to control the game is
an important part of the design of the whole game. A part of the
entertainment value of the game is that the player should be able to
enjoy it in a way he chooses himself.

6Within some limits.

236 chapter 8. rhetorical case study and analysis

8.4 Tone and purpose

When doing a rhetorical analysis of a text it is often helpful to deter-
mine the exigence of the text. In rhetorics, exigence means a situation
that demands an answer.7 One comparable example of exigence is
a judge’s accusation of a defendant, which demands that he answer
the charge in order to defend himself. The exigence for the program
code as a whole is the company’s decision to develop a game that
can succeed commercially. However, each program module has an
exigence of its own. The exigence for the module GameScene is to
organize the code that has to do with displaying and interacting with
the game, and to provide a starting point for running the game.

Even smaller parts of code inside a module have their own exi-
gence. Frequently, each single line of code has an exigence of its own
and sometimes the programmer records the exigence in comments in
the code. At other times, the programmer records the exigence in
a version control system, a program that keeps track of all changes
made to the code. Examples of comments entered in a version con-
trol system are “bonus items”,8 “linux compat[ibility], do not log if
NDEBUG is defined”,9 and “added some debug code for a single sun
showing up on the first ray every time we update”.10 When using a
version control system, the exigence for a given line of code and for
all changes made to it can be found. This is an important tool for
programmers whenever they try to understand some code, which is
not surprising since exigence is often essential to understanding the
meaning of a text.

In a rhetorical analysis, the matter of concern is how purposeful
program code is – which is determined not by technical criteria, but
by its meaning. Figure 8.3 shows the start of the program file “Game-
Scene.cpp”, the file that containes the functional code which is listed
in the file “GameScene.hpp”, which we examined above. This file,

7Kennedy 1984 p. 35.
8Field diary, 30th August 2011, 15:47.
9Field diary, 31st August 2011, 16:08.
10Field diary, 31st August 2011, 16:22.

8.4 tone and purpose 237

#include <Flower.hpp>

#include "Game/GameScene.hpp"
#include "Game/Mirror.hpp"
#include "Game/Room.hpp"
#include "Game/Light.hpp"
#include "Game/Flowers/Flower.hpp"
#include "Game/Sensor.hpp"
#include "Game/LevelCompletedNode.hpp"
#include "Game/Obstacles/Obstacle.hpp"
#include "Game/Obstacles/Animal.hpp"
#include "Game/Obstacles/Firefly.hpp"
#include "UI/MenuButton.hpp"
#include "Textures/Textures.hpp"
#include "Util/Audio.hpp"

Figure 8.3: Part of the C++ program file GameScene.cpp from the tablet
computer game with the working title Flower. Only the start of the file is
shown.

like the last one and indeed almost all C++ files, starts with a list of
other files to be included (“#include”). Technically, this means that the
contents of the other files are “copied” to this file, so that their con-
tents are accessible to the program code. We could go more in detail
with how this is accomplished and what technical consequences it has.
However, for the purpose of rhetorical analysis it is more interesting
to see what the inclusions can tell us about the program’s meaning.

The first inclusion of the module “Flower” signifies that the file is
part of the Flower game. The rest of the inclusions indicate which
modules and which parts of the game are conceptually most impor-
tant. To analyze them, we can use the concepts called the “three
species of rhetorical expression”. These are simple but effective cat-
egories for classifying the “tone” of an expression.11 The historical

11The rhetorical species are seldom found in pure form.

238 chapter 8. rhetorical case study and analysis

names for the species are judicial speech, epideictic speech, and delib-
erative speech.12

Judicial speech is that which has to do with the past. It is of-
ten concerned with recording and stating what has happened, and
with passing judgment on past actions. It is so named because the
archetype for judicial speech is the speech of accusation or of de-
fence offered in a court of law. Epideictic speech has to do with the
present, and is often concerned with setting the mood and stating val-
ues. Epideictic speech has been a little overlooked in modern times:
its archetype is the speech of praise delivered at a public ceremony,
such as, for example, a graduation speech. Deliberative speech has to
do with the future. It tries to convince the audience to make a choice
or to take a certain action, and its archetype is the political speech
aimed at convincing voters.

Looking at the inclusions, most of them are primarily in the epi-
deictic species. “Mirror”, “Room”, “Light”, “Flowers/Flower”, “Sensor”,
“Obstacle”, “Animal”, “Firefly”, “Textures”, and “Audio” are all mod-
ules that have to do with establishing the “present” of the game, with
setting the right mood for the player and presenting him with a game
that looks interesting. That so many inclusions are in the delibera-
tive species indicate that constructing an interesting “present”, a game
ambience, is a task that demands much work.

Only one inclusion seems to be squarely in the judicial species:
“LevelCompletedNode”. Though the game records certain things – the
“history” of the game in the form of a high score list – the game is not
a program that is primarily oriented toward recording and judging the
past, as for example a database or an accounting system would be.
The primary use of records and judgement in this game is to restrict
what levels the players can access.

The deliberative species is represented by “Mirror” and “Menu-
Button”. These are the things in the game that the player can ma-
nipulate. If the sheer amount of code is counted, these elements do
not seem to be as important as the epideictic elements. However,
while they might not require huge amounts of code, it is important

12See e.g. Kennedy 1984 p. 19, Perelman & Olbrechts-Tyteca 1958 [2008] §4, p. 28.

8.4 tone and purpose 239

that the few lines required are just right. This is because the whole
point of the game is to present the player with a situation that can be
manipulated, an interesting choice. If this dimension is missing in a
game, it becomes less of a game and more of an interactive movie or
animation.

The program code shown in figure 8.4 shows the part of “Game-
Scene.cpp” that is run whenever a new game is started – “init” stands
for “initialization”. The line

Scene::init();

again is a sort of rhetorical convention in C++. The next statement

game_state = State::Playing;

simply records that the game is now playing. The first thing that
happens that is noticeable to the player is that the game music is
started with the line

audio->setMusicType(Audio::GameMusic);

This shows that the music is very important to set the ambience of
the game. Music creation is one of the only creative functions in
Tribeflame that is bought from an external provider. The task is
not big enough to warrant a regular employee, but it is still of such
importance to get music of high quality that it is necessary to hire a
professional.

The next line

//tf::Flurry::get_flurry_instance()->start_timed_event(game_\
mode->getLeaderBoardId());

is supposed to assist with keeping a record of the player’s activities.
However, we notice that the line starts with the characters “//” which
means that it is a comment – from the computer’s perspective it is as
if the line had been deleted. So why has the programmer not simply
deleted the line?

There are several reasons the programmer might like to keep some
code as a comment. A primarily technical reason would be to make
the line a comment for a short time, try out the program, and then

240 chapter 8. rhetorical case study and analysis

void GameScene::init () {
// superclass initialization
Scene::init();

// now we’re again playing
game_state = State::Playing;

// play game music
audio->setMusicType(Audio::GameMusic);

// report it as a statistic too
//tf::Flurry::get_flurry_instance()->start_timed_event(game_\

mode->getLeaderBoardId());

// now we want touch events, this allows the player to immedi\
ately "tap to continue"

set_enable_touch_dispatch(true, 10);

// first add the room
add_child(m_room);

sGameScene self = TF_GET_SHARED_THIS(GameScene);
tf::signal_weak_connect(m_room->obstaclesMoving, boost::bind(

&GameScene::obstaclesMoving, self.get(), _1), self);

// create a button for an in game menu
sMenuButton quit_button = TF_VAL(MenuButton, getMenu(),

tp_game_quit_button, tp_game_quit_button_pressed,
tf::Point2F(0, 0));

quit->button->init();

// left corner
tf::Size2F size = tf::get_screen_native_bounds();
quit_button->set_position(-1024 / 2.0 + 25, 768 / 2.0 - 25);
tf::signal_weak_connect(quit_button->signal_activate,

boost::bind(&GameScene::quit, self.get()), self);

// initial ray
updateLights();

}

Figure 8.4: Part of the C++ program file “GameScene.cpp” from the tablet
computer game with the working title Flower. Only part of the file is
shown.

8.4 tone and purpose 241

uncomment the code again. There are also more rhetorical uses of
code as comments. One is that the programmer has begun to create
some functionality in the code but decided to postpone it to a later
time, when the commented code will serve as a reminder of what
the programmer originally thought up or, if another programmer has
taken over the code, it indicates what the programmer thinks is a good
way to solve the problem. Another use is essentially the opposite: the
code might be kept around as a comment to show that a particular
point has been considered, tried out, and then rejected. This might
save the programmer or his future colleagues some trouble later on.
In both cases, the commented code serves a purely rhetorical purpose
since it has no effect on the program’s behaviour.

The next line

set_enable_touch_dispatch(true, 10);

makes the game responsive to the player’s gestures. That this happens
before the game is even fully prepared for playing suggests that let-
ting the player manipulate the game has high priority, as wmentioned
above.

The line

add_child(m_room);

establishes the “room”, meaning a game level containing a puzzle for
the player to solve.

The lines

sGameScene self = TF_GET_SHARED_THIS(GameScene);
tf::signal_weak_connect(m_room->obstaclesMoving, boost::bind(

&GameScene::obstaclesMoving, self.get(), _1), self);

establish a connection between the game and the room. In the first
line, a variable called “self” is declared with the help of a macro
of the company’s own called “TF_GET_SHARED_THIS”. With this line the
company again circumvents the rhetorical programming conventions
of C++. The programming language has a built-in mechanism called
“this”, but the programmers have chosen not to use it and instead
make their own, similar mechanism called “self”. “Self” does not do

242 chapter 8. rhetorical case study and analysis

exactly the same thing as “this”, but the name seems to be chosen in
order to emphasize the similarities between the two mechanisms.13

The lines

sMenuButton quit_button = TF_VAL(MenuButton, getMenu(),
tp_game_quit_button, tp_game_quit_button_pressed,
tf::Point2F(0, 0));

quit->button->init();

and

tf::signal_weak_connect(quit_button->signal_activate,
boost::bind(&GameScene::quit, self.get()), self);

create a button on the screen that the player can press in order to
control the game. The lines

tf::Size2F size = tf::get_screen_native_bounds();
quit_button->set_position(-1024 / 2.0 + 25, 768 / 2.0 - 25);

determine where on the screen the button is placed. Interestingly, in
the first line a variable called “size” is declared, which is never used.
Instead the calculation “–1024 / 2.0 + 25, 768 / 2.0 – 25” is used to
determine where the button is placed. Apparently, the programmer
first thought of using “size” in this calculation but then for some
reason abandoned this approach. That “size” is left in place in the
code might either be deliberate, as in the case of the commented code
above, or it might be an oversight. In either case the rhetorical effect
on the reader is to indicate that this small piece of code is probably
not completely finished.

The final line of this part of the code is

updateLights();

which has the effect of letting a ray of sunshine shine through the
window in order to begin the game.

13In the programming language Smalltalk, the mechanism that is called “this” in C++
is indeed called “self”. Stroustrup 1985 [1997] p. 231.

8.5 rhetorical understanding 243

8.5 Rhetorical understanding

This chapter provides an example of how to approach a rhetorical
analysis of program code. Several rhetorical concepts have been used
in the analysis and more could be added: The rhetorical concept of
audience.14 The concept of rhetorical convention.15 The importance
of choosing the right unit as a starting point for the analysis: whole
program, program file, program module, or a single line of code.16

The concept of exigence.17 The three rhetorical species: judicial, epi-
deictic, and deliberative rhetorics.18 The rhetorical concepts of style
and arrangement.19

An experienced programmer reading this chapter will have no-
ticed that, apart from using some specific rhetorical terms, what is
going on in the rhetorical analysis above is very much like what is
going one whenever a programmer reads and tries to understand a
unfamiliar piece of program code. This is no coincidence. Classi-
cal rhetorics is, properly understood, the study of what people al-
ready and always do when they express themselves well – whether
or not they have a theoretical understanding of what they are doing.
Gadamer writes:

“Now, rhetorics and hermeneutics are in a certain point
closely connected: the ability to speak and the ability to
understand are natural human abilities that can be fully
developed also without conscious use of learned rules, as
long as a natural talent and the proper care and use of it
coincide.” 20

14Perelman & Olbrechts-Tyteca 1958 §4.
15See e.g. the discussion of rhetorical figures in Perelman & Olbrechts-Tyteca 1958

§41.
16Kennedy 1984 p. 33.
17Ibid. p. 35.
18Ibid. p. 19.
19Kennedy 1984 p. 13. Perelman & Olbrechts-Tyteca 1958 §29.
20“Nun sind in einem Punkte Rhetorik und Hermeneutik zutiefst verwandt: Reden-

können und Verstehenkönnen sind natürliche menschliche Fähigkeiten, die auch ohne

244 chapter 8. rhetorical case study and analysis

The point of learning rhetorical theory is, as a matter of course, to
become more aware of what we are doing and thereby better at it. The
most important lesson from rhetorics is that everything that is written,
in program code or otherwise, must be purposeful – and not only
this, but it furthermore has to serve the right purpose. Deliberations
over what purpose a program has and how best to express it is what
distinguishes an excellent programmer from a merely competent one.

A lesson to take away from the rhetorical analysis above is the
importance of context when analyzing program code. Much of the
discussion above depends on information that is not found in the code
itself. Because I was present during the development of the code, or
at least some of it, it is much easier for me to understand the code
than it would be for someone whose only source of information is the
code. This observation shows the folly of trying to study program
code in isolation, disregarding the context in which it is developed.

The great benefit of using rhetorical concepts in analysis of pro-
gram code is that they are general, so that the analysis can easily be
related also to phenomena outside the code. The advice for program
code layout in a handbook such as Code Complete,21 for example, is
very specific to just program code, which means that it is hard to re-
late to bigger themes in the program creation. In contrast, rhetorical
concepts like exigence and the rhetorical species are not limited to
program code. They can be applied to any form of communication,
and this means that all the parts of the software development effort,
including meetings, discussions, and the like, can be made to relate
to each other within a rhetorical analysis.

bewußte Anwendung von Kunstregeln zu voller Ausbildung zu gelangen vermögen,
wenn natürliche Begabung und die rechte Pflege und Anwendung derselben zusam-
menkommen.” Gadamer 1976 p. 8.

21McConnell 1993.

245

Chapter 9

Conclusion

9.1 Results

This treatise is directed by three research goals, as stated in section
1.4 (Research problem and results). The first is whether the software
development process can be adequately explained by hermeneutical
and rhetorical theory. In section 5.1 (Case study) we saw a real-life
example of a development process at the small computer game com-
pany Tribeflame. In section 5.2.1 (Analysis with mainstream theories),
Tribeflame’s process was analyzed using the theories and concepts
of mainstream programming, and we saw that mainstream program-
ming theories were of limited usefulness. The failure of mainstream
theories to explain a real programming process is easily explained by
remarking that, although the mainstream theories often are taken to
be universally valid, they are in fact of limited perspective and do not
apply without modification outside the range of practices for which
they were developed.

With this in mind, section 5.2.2 (Hermeneutical analysis) presents
a hermeneutical analysis of Tribeflame’s process. We see here that
hermeneutical concepts are able to explain some features of the pro-

246 chapter 9. conclusion

cess that were difficult to understand using only mainstream theory.
First, the process, which initially seemed to be strangely unstructured,
turned out to have a definite structure consisting of a continuous os-
cillation between working alone and working together; between trying
out things and reflecting on experience – and we saw that this struc-
ture could be explained by the concept of the hermeneutical circle.
We also saw how hermeneutical concepts such as authority, tradition,
and prejudice could explain the presence of, and relationship between,
different parts of the process: leadership, the expertise of the devel-
opers, experiences of outsiders trying the game, meetings, and so on.
Finally, we saw that the process is first and foremost driven by its ap-
plication – to make a game that is fun to play – and not so much by
any abstract idea of what the process should be like.

To provide a contrast with the particular example of a small com-
puter game company, chapter 6 (Safety critical programming) de-
scribes the processes used by some companies in safety critical in-
dustries, which make heavy use of mainstream software engineering
theory. The hermeneutical analysis of safety critical development pro-
cesses revealed them to be primarily bureaucratic processes that are as
much about producing documentation as about programming. Again,
hermeneutical concepts such as authority, tradition, and prejudice
proved to be helpful in understanding the processes. The hermeneu-
tical circle is useful for explaining the mutual influence that industry
standards and development practice have on each other. Just as game
programming is driven by the concept of fun, safety critical program-
ming was seen to be driven by the concept of safety, although a very
distinct notion of safety that is deeply connected with the bureaucracy
of safety critical standards.

Chapter 8 (Rhetorical case study and analysis) returns to Tribe-
flame and presents an analysis of a small part of the source code
of a computer game. It is shown that the code is not only instruc-
tions to the machine but is also meant to be read by people and is
therefore amenable to rhetorical analysis. The analysis shows how
rhetorical concepts can be used to understand how the code is con-
structed and how it should be read. Examples of rhetorical aspects

9.1 results 247

of program code that are beyond purely technical analysis include the
use of comments, conventions for code, and the purpose behind code
lines.

In conclusion, chapters 5, 6, and 8 demonstrate that software
development practices can indeed be explained adequately with her-
meneutics and rhetorics, and that these forms of analysis can tell us
things that escape the narrower viewpoints of mainstream program-
ming theories such as software engineering, Agile development, and
computer science.

The second goal of this treatise is to examine whether the dif-
ferences between different kinds of programming practices can be
explained by cultural theory. Chapter 7 (Cultural form analysis) ad-
dresses this question. In section 3.4 (Cultural form theory) the concept
of cultural form is explained. This is a cultural analytical concept that
enables us to carry out a comparative investigation of different forms
of programming practice.

In section 7.1 (Comparative analysis), Tribeflame’s form of game
programming is compared with forms of safety critical programming.
We saw that game programming is a cultural form that is primarily
subject to market constraints. It is a form that satisfies a demand for
creativity and does not demand much communication with outsiders
about the details of the work process. Safety critical programming
is a form that, in its most common manifestations, is also subject
to market constraints, but it is even more pressingly subject to the
constraints of a highly regulated bureaucracy of standards. It is a
form that conserves tradition to a high degree, and creative expression
is carefully regulated by rules. Communication with outsiders plays
an important role and is made easier through standardization of the
process.

Section 7.2 (Safety critical case studies and analysis) compares dif-
ferent forms of safety critical programming to each other. We saw here
that companies in the safety critical industries are far from homoge-
nous. Companies can play many different roles within their respective
industries, and there are variations in the strategies employed to deal
with the demands of the bureaucracy of standards. This shows that

248 chapter 9. conclusion

the context of a programming practice is essential to understanding
the practice, because different forms can appear in similar circum-
stances and similar forms can appear in different circumstances.

Taken together, chapter 7 shows that differences between different
kinds of programming practice can indeed be explained by cultural
theory, and that cultural form is a conceptual tool that can help us
understand differences and similarities between practices.

The third goal of this treatise is to examine what the practical
implications are of a hermeneutical and rhetorical understanding of
programming. This is addresed in the discussion in section 9.2

9.2 Discussion

First, it is important to note that philosophical hermeneutics claims to
be true of all understanding, which means that it is both epistemolog-
ical and ontological. This means that hermeneutics is not a method
or a theory that will produce a certain result; it is a way of describing
what people always do when they understand something, whether they
are conscious of it or not. Thus, we can look hermeneutically at what
programmers do regardless of whether the programmers themselves
know about hermeneutics.

Programming has many different aspects, and we have touched
upon some of them in this treatise: economic aspects, technical as-
pects, management aspects, mathematical aspects, and others. Conse-
quently, there are just as many different ways to approach the study of
programming. These aspects are all cultural, insofar they involve hu-
man perception and human use of computers. Cultural theory there-
fore provides a starting point for the study of programming that can
encompass all the other approaches. Culture itself can, in turn, be
regarded with hermeneutical and rhetorical perspectives – these are
ways of looking at cultural expression, not replacements for cultural
theory.

9.2 discussion 249

Throughout this treatise we have looked at programming phe-
nomena from a hermeneutical perspective. These phenomena include
the mainstream theories of programming, and as such these theories
have implicitly been judged according to hermeneutical criteria. This
means that hermeneutics is used as a kind of “metatheory”: a theory
that provides a certain view of the world, according to which other
theories are judged.

However, it is important to understand that the points made by
hermeneutical theory can to the untrained eye seem obvious. This is
because many hermeneutical insights align with common sense. Her-
meneutics is not some kind of exotic worldview that is incompatible
with analytical thinking. On the contrary – it is a call to return to the
essentials of science: to observe a phenomenon, then seek to under-
stand it, and finally to test the results of that understanding, which
may lead to observing the phenomenon in a new light, and so on.
Science is thus a circular process of experiencing and understanding.

It is essential to hermeneutic theory that understanding and prac-
tice are inescapably linked and conceptually constitute each other.
Likewise, subject and object are inextricably linked and constitute
each other; the subjective perspective cannot be defined without re-
ferring to the objective one, and vice versa. According to hermeneutics,
from the time of Descartes philosophy has been mistaken in believing
that subject and object can be separated and exist independently of
each other. In modernist philosophical thought, subjectivity is typi-
cally regarded as epistemology, and the domain of the subject is said
to be the domain of action, language, and thought. Conversely, objec-
tivity is seen as ontology, and the domain of the object is said to be
the domain of occurrences, observations, and things.

From a hermeneutical point of view, both computer science and
software engineering replicate this mistake by declaring a gap be-
tween subjectivity and objectivity, and focusing on objectivity to the
exclusion of subjectivity.1 In addition, there is a separation between
understanding and practice, because it is thought that true under-

1The converse, focusing on subjectivity to the exclusion of objectivity, is exemplified
by the romanticist movement.

250 chapter 9. conclusion

standing can come about by theoretical speculation that may be in-
formed by practical observations but is not itself intimately connected
to practice.

Latour has warned against this belief, noting that theory cannot be
properly understood in isolation: “Speaking about theories and then
gaping at their ‘application’ has no more sense than talking about
clamps without ever saying what they fasten together, or separating
the knots from the meshes of a net.” 2

To be clear: it is not uncommon within computer science to have
exaggerated ideas about how much theoretical results can accomplish
in industry.3 On the other hand, it is not uncommon within software
engineering to believe that it is possible to control every aspect of
the software development process as long as the right engineering
principles and theories are applied.

From a hermeneutical point of view, both of these ideas are mis-
taken and stem from the schism between subject and object that com-
puter science and software engineering have inherited from modernist
philosophy. The consequence is that computer science and software
engineering thinking has a slightly unreal quality to it, as exemplified
in the software paradox described in section 1.1 (Motivation), in which

2Latour 1987 p. 242. For a hermeneutical treatment of Latour’s insight see section
3.3.8 (Application). Latour’s insight is of course equally applicable to hermeneutic and
ethnological theory as it is to mainstream programming theory. To assess whether the
theories used in this dissertation are suitable to the purpose to which they have been
put it is advisable to look at the practices from which they arise.
Gadamer’s philosophical hermeneutics stems from philological critique. Its purpose

is on the basis of historical studies of academic theology, philology, and history to
determine how it is possible to arrive at true insight – truth not in the sense of truth
about the physical world, but ethical truth.

Ethnology, in the sense it is used in this thesis, is a part of history. The purpose of
ethnology is to preserve knowledge about our forebears’ ways of life in order that the
purpose of their lives and actions may be understood and not reduced to a symbol of
quaint old customs. Ethnological studies of contemporary phenomena have arosen out
of the need to understand our own way of life in order to interpret history, see section
3.3.6 (Effective history).

3Compare with Naur’s viewpoint, discussed in section 3.2.3.5 (Premises of
argumentation).

9.2 discussion 251

academic software research, despite being hugely successful, is never
quite satisfied with its own results.

Agile thinking is different because it preserves a close connec-
tion between understanding and practice, and between subjectivity
and objectivity. For agents in an Agile project, it is only possible to
measure their progress objectively because they have the right sub-
jective approach.4 Thus, Agile thinking is much more in line with
hermeneutical thinking and seems to be an approach whose philo-
sophical foundations are not, in principle, far from the foundations of
hermeneutics. The main shortcomings of Agile thinking from a pro-
gramming research point of view is that, with a few exceptions, it is
primarily concerned only with the management aspects of program-
ming5 and that the movement lacks literature about its philosophical
foundation.6

The critique that research is not intimately connected to pro-
gramming practice is not limited to computer science and software
engineering. In section 2.2.2 several researchers were criticized on
account of their research being speculative: Ihde, Coyne, Manovich,
Kittler, and Haraway. There is of course nothing wrong with taking
a reflective approach to research, indeed it is a prerequisite for true
insight. However, when speculation is not connected to any other
form of practice than perhaps the academic practice of reflection, the
result can tend to become disconnected from the real world. There
is a danger that the technology that is nominally the topic of the re-
search becomes nothing more than a backdrop for musings about the
novelty of technology.

4Hence, if they do not have the right subjective approach, they might use the Agile
rules “wrong”: see section 3.2.2.3 (Scrum as an example) .

5See e.g. Schwaber 2003: Agile Project Management with Scrum, and Coplien &
Harrison 2004: Organizational Patterns of Agile Software Development.

6The so-called “patterns community” is in some way trying to establish a philo-
sophical foundation for Agile thinking, but patterns literature is poorly connected
to mainstream philosophical thinking, taking its main inspiration from the architect
Christopher Alexander, and the concept of patterns has philosophical problems of its
own. Examples of patterns literature are Coplien & Harrison 2004, and Gamma et al.
1994.

252 chapter 9. conclusion

This is related to the discussion of ethical knowledge in section
3.3.9. A possible pitfall is that while researchers’ speculations make
sense in their own practice they neglect to think through what value
the act of publication will have to others and others’ practices. Thus
a necessary ethical deliberation regarding research is omitted. To
take the most extreme of these examples: Haraway’s goal is ostensibly
the promotion of socialist-feminist ideology.7 To this end, she writes
about technology but her approach appears to be cavalier with regard
to the practices in which technology is used. Had she instead applied
socialist-feminist theory to empirical observations she would most
likely have been confronted both with the inherent contradictions in
her ideology and its inability to explain concrete practices. Hence, to
the extent that her writings actually promote socialist-feminist theory
they are in a rhetorical sense technically sound, while being in an
ethical sense unsound.8

So what is the consequence of these theoretical distinctions for
programming practice? The answer is that theory is important for
practice. Good habits follow from good principles, and bad habits
follow from theoretically unsound principles, such as maintaining an
untenable opposition between subjectivity and objectivity. Herme-
neutics tells us that theory is unavoidable, in the form of prejudice. If
one has “no theory”, this does not mean that one has no prejudice –
it means that one has a non-conscious, implicit theory that might be
unsound, which is hard to discover as long as it remains unarticulated.

The argument made in this treatise is essentially an argument
against reductionism. Reductionism is the belief that in every situa-
tion, the important aspects can be reduced to a small set of logical
principles and rules for how to proceed. Hermeneutics tells us that
reductionism is not tenable as a first principle. Reduction is a choice
that must be carefully weighted against other choices in the particu-
lar situation. This does not mean that thinking cannot be stringent:
a true hermeneutic analysis, for example, can never be reductionist,

7See page 41 in section 2.2.2 (Sociology, anthropology, and other).
8See section 3.3.9 for the distinction between ethical and technical knowledge.

9.2 discussion 253

but it must be stringent. It does mean, however, that practice should
always include some form of deliberation over goals and application.

The critical contribution of hermeneutics in this respect is that it
points out how very important tradition is in evaluating the goals of
a practice. Looking at tradition is a way of discovering the original
intentions of the practice, and these original intentions will heavily in-
fluence the theories and assumptions of a practice – as demonstrated,
for example, by the heavy reliance of safety critical programming on
assumptions that stem from the engineering tradition of regulating
practice by standards.

When we look at the hermeneutical analysis of game program-
ming and safety critical programming in chapters 5.2 (Analysis) and
6 (Safety critical programming), we notice that the concept of effec-
tive history is the hermeneutical concept that plays the smallest part
in any of the programming processes. This is no coincidence. Ef-
fective history is a concept that expresses awareness that knowledge
is historical and that the motives for knowledge have consequences.
Since mainstream programming theory is to a large degree based on
modernist philosophy, it is also somewhat ahistorical, which makes it
difficult for its adherents to assess its own history. Software engineer-
ing and computer science in particular are ahistorical to the degree
that they embrace universal principles rather than historical context.

Historical consciousness is important because it underpins the val-
ues that are embodied in a company’s culture. Leslie Perlow’s soci-
ological study of corporate culture among software engineers shows
how short-sighted values can be detrimental both to productivity and
to the employees’ satisfaction with their work.9 In an experiment with
trying to change software engineers’ use of their work time, she has
also shown how changes in routines and behaviour have no lasting
effect unless the underlying values are changed.10

What, then, do programmers need to do in order to be able to
take advantage of the insights of hermeneutical theory? They need
to learn to see themselves as cultural agents: that is, as part of, and

9Perlow 1997.
10Perlow 1999.

254 chapter 9. conclusion

carriers of, historical tradition. They also need to understand that
a large part of their work consists of interpretation – interpretation
of code, requirements, situations, and what it means to be a good
programmer.

The comparative cultural analysis of chapter 7 (Cultural form
analysis) shows us that all understanding of programming has to take
the context into account. This means that there are no universal
principles for programming that are independent of the goals of the
work. Programming involves making trade-offs and choosing what is
best in the current situation; and what is best in a situation cannot
be determined beforehand with the knowledge of only a limited set of
parameters. It follows from this that part of the work as a programmer
is to figure out what the work actually consists of, what the real goals
of it are, and how these are effectively pursued. The programmer’s
ability to do this can be divided into three aspects:

• Technical ability – programming skills.

• Hermenutical ability – ability to interpret and understand.

• Rhetorical ability – ability to express oneself properly.

This begs the question: if programming always has to be seen in a
cultural context and therefore has no universal principles, is it even
possible to say something general about programming, as this treatise
tries to do? It is. The key to this is recognizing that programming
is rhetorical in its essence. Like a speech, a program is a form of
expression, and it is impossible to give a universal method for how to
write a good speech or a good program – it depends on the audience.

However, that does not mean that we cannot learn something
about the general principles that underpin programming expression –
by studying good programs, for example. Hermeneutics and rhetorics
give us some conceptual tools to understand programming practice
and help us discriminate and find out what we can learn from a given
programming example.

A consequence of the conclusions drawn above is that that there
are limits to what research and theory can do for practitioners. A

9.2 discussion 255

scientist who is far removed from actual practice cannot solve every
practical problem – practitioners understand their problems better
than do academics and researchers. With this insight, we have come
full circle to the story of the Tower of Babel that Brooks use as an
explanation in his essays on software engineering.11

Brooks views the Tower of Babel as an engineering project that
failed because of lack of communication. Hermeneutic theory shows
that Brooks is wrong in his interpretation, and that better communica-
tion or engineering principles would not have allowed the “engineer-
ing project” to succeed: the tower fell because mankind is fundamen-
tally limited in our knowledge and abilities, and this is the ontological
aspect of hermeneutics. God’s destruction of the Tower was not re-
venge but a simple acknowledgment of this limitation: man is not God
and therefore cannot hope to have perfect knowledge of anything. We
have only imperfect knowledge.

Imperfect knowledge is the domain of interpretation and herme-
neutics. The goal of this treatise has been to demonstrate the cultural,
hermeneutical, and rhetorical nature of programming. I have made
that demonstration by example: through applying cultural, herme-
neutical, and rhetorical analysis to a range of programming practices.
The idea has been to show how it is done, and in order to do so it is
necessary to know the theory.

9.2.1 Ethnological significance

From an ethnological perspective, there is nothing particularly innova-
tive in the methodological approach of this dissertation. As has been
pointed out in section 4.4 (Ethnological method), both the methods
used and the bulk of the theory are well-established within ethnology
and used within contemporary research. As stated in section 2.2.1
(Ethnology), the dissertation can be seen as a continuation of a long

11See section 3.2.1.2 (Brooks).

256 chapter 9. conclusion

tradition of ethnological work studies. This thesis is thus essentially
a piece of classical ethnology that brings no innovation in terms of
method or theory.

The ethnological significance of the dissertation, then, is the light
it sheds on the work of computer programmers. It is obvious that
increased knowledge of programming is useful to programmers them-
selves. However, it is also useful to ethnologists. As explained in
section 1.1 (Motivation), computer programming is an important part
of contemporary society. Ethnology seeks to understand people’s lives
and consequently it is important to understand the professions of con-
temporary society.

Another and more theoretical contribution of this dissertation to
ethnology is the perspective that is applied to programming. As ex-
plained in section 2.2 (Cultural research), a large amount of cultural
research on programming focuses more on the end users perspective
and on perceptions of programming than on the work itself. Even
when the work is addressed, it is often in terms of economical or
organizational significance rather than the practice of work. This dis-
sertation provides a model for studying work practice that has the
potential to be useful in general in cultural studies of new technology.

9.3 Validity and generalization

It is not the aim to quantify or study what is typical within program-
ming. The aim has been for a certain amount of cultural variation
in the situations studied, but it has not been attempted to cover the
range of possibilities in a systematic way. Every cultural situation is
unique in the sense that what happens depends on the free will of the
persons involved. This means that it is not possible to make general
rules that can say with certainty what people will do in a given situ-
ation – not even probabilistic rules are very useful. In other words,
cultural studies are historical studies, even if they are only concerned
with the present.

9.3 validity and generalization 257

Another reason to avoid quantification at this stage is that quantifi-
cation presupposes a notion of what counts as a significant difference.
It is impossible to count situations without an idea of what makes a
situation different from the next. The trouble is that every cultural
situation is different from the next in myriad ways, and the question
of which ways are significant depends on the observer as well as his
purpose with the observation.

Construct validity is the extent to which “the operational measures
that are studied really represent what the researcher have in mind
and what is investigated according to the research questions.” 12 In
other words: do the researcher’s concepts actually reflect reality as
represented by the data? The point of interpretive research such as
this dissertation is to apply concepts as an interpretation in order to
arrive at an perspective that brings new insight. The construct validity
is therefore predicated on two questions: is the insight new, and does
it agree with the data? That the interpretation agrees with the data
is demonstrated in the various analyses of the dissertation in sections
5.2.2 and 6.3, and in chapters 7 and 8. That it is new is demonstrated
by comparison with the analysis carried out with mainstream theories
in section 5.2.1. The comparison with the mainstream theory analyses
further supports that the concepts agree with the data and thus the
construct validity of the dissertation.

Internal validity is the question of whether causal relations and
confounding factors are understood correctly in a study.13 This di-
mension of validity is not applicable since this dissertation is con-
cerned not with causal relations but with hermeneutical and cultural
relations.

The external validity is the extent to which it is possible to gen-
eralize the findings to situations outside the study.14 The insights into
specific traits of the studies processes, e.g. the exact forms of the
processes of Tribeflame, Cassidian, and Skov, are of course not gen-
eralizable. The insights into the workings and forms of the game and

12Runeson & Höst 2009 p. 153.
13Ibid. p. 154.
14Ibid.

258 chapter 9. conclusion

safety critical industries are generalizable to the respective industries,
however, with research into a larger number of relevant case studies
the findings could be made more precise. The insight into program-
ming in general is presented in the from of application of the general
concepts of hermeneutics, cultural form theory, and rhetorics. These
concepts and their application are generalizable by design. Thus, by
following the example of this dissertation it is possible to apply the
theories to other case studies in programming. This of course neces-
sitates knowing the theories in question as well as having the ability
to accomodate unforeseen phenomena and findings – in short, the
ability to perform independent, critical scienctific studies.

Reliability is the extent to which a study can be repeated by other
researchers and still give the same result.15 This kind of validity ap-
plies to controlled experiments, but it is not applicable to explorative
and interpretive research since the latter by its nature generates new
knowledge. A hypothetical study replicating that knowledge would
therefore not achieve construct validity according to the criteria of
bringing new insight (see above).

Triangulation has been employed in various ways to increase the
validity of the research. Runeson and Höst list four types of trian-
gulation: data triangulation, observer triangulation, methodological
triangulation, and theory triangulation.16 Of these, three has been
employed. Data triangulation has been employed by collecting data
from both game programming and safety critical programming; also
by collecting data from a range of companies in the safety critical sec-
tor. Methodological triangulation has been acheived by utilizing both
participant observation, semi-structured interviews, and also collec-
tion of work documents, primarily source code. Theory triangulation
has been employed extensively by using multiple theories for analysis:
hermeneutics, cultural form theory, and rhetorics, as well as analysis
with mainstream programming theories.

15Ibid.
16Ibid. p. 136.

259

Bibliography

Abrahamsson, Pekka, Outi Salo, Jussi Ronkainen, and Juhani Warsta 2002.
Agile Software Development Methods: Review and Analysis. VTT
Publications 478. VTT Technical Research Centre of Finland. Espoo.
ISBN 951-38-6010-8.

Agile Alliance 2001. Manifesto for Agile Software Development.
http://agilemanifesto.org.

Aiken, Howard H. 1964 [1975]. “Proposed Automatic Calculating Machine.”
Previously unpublished memorandum. IEEE Spectrum 62-69. In: Brian
Randell (editor) 1975. The Origins of Digital Computers: Selected Papers.
Second edition. Springer-Verlag Berlin Heidelberg New York.
ISBN 3-540-07114-8.

Alexander, Christopher 1964. Notes on the Synthesis of Form. Harvard
University Press. Cambridge, Massachusetts.

Aranda, Jorge 2010. A Theory of Shared Understanding for Software
Organizations. PhD thesis. Graduate Department of Computer Science,
University of Toronto.

Auvinen, Jussi, Rasmus Back, Jeanette Heidenberg, Piia Hirkman, and Luka
Milovanov 2006. “Software Process Improvement with Agile Practices in a
Large Telecom Company.” In: Jürgen Münch, Matias Vierimaa (editors).
Product-Focused Software Process Improvement. Proceedings of the 7th
International Conference on Product Focused Software Process
Improvement. Lecture Notes in Computer Science vol. 4034.
Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-34683-8.

260 bibliography

Beck, Kent 1999. “Embracing Change with Extreme Programming.”
Computer vol. 32, issue 10. IEEE computer Society Press. Los Alamitos,
California.

Begel, Andrew, and Beth Simon 2008. “Struggles of New College Graduates
in Their First Software Development Job.” SIGCSE Bulletin 40.

Bergquist, Magnus 2003. “Open Source Software Development as Gift
Culture: Work and Identity Formation in an Internet Community.” In:
Garsten & Wulff.

Boehm, Barry W. 1988. “A Spiral Model of Software Development and
Enhancement.” Computer vol. 21, issue 5. IEEE Computer Society.

Boehm, Barry W. 2006. “A View of 20th and 21st Century Software
Engineering.” In: Proceedings of the 28th International Conference on
Software Engineering (ICSE ’06). ACM. New York. ISBN 1-59593-375-1.

Boehm, Barry W., and Richard Turner 2003. “Using Risk to Balance Agile
and Plan-Driven Methods.” Computer vol. 36, issue 6. IEEE Computer
Society Press. Los Alamitos, California.

Bolter, Jay David, and Richard Grusin 1998 [2000]. Remediation:
Understanding New Media. First MIT Press paperback edition 2000. The
MIT Press. Cambridge, Massachusetts, and London.
ISBN 978-0-262-52279-3.

Borda, Beatriz 1989. “Mellan medvetande och text.” Nord Nytt no. 37.
Nordisk Etnologisk Folkloristisk Arbejdsgruppe.

Brooks, Frederick P., Jr. 1975 [1995]. The Mythical Man-Month: Essays on
Software Engineering. Anniversary edition 1995. Addison-Wesley.
ISBN 0-201-83595-9.

Brooks, Frederick P., Jr. 1986 [1995]. “No Silver Bullet—Essence and
Accidents of Software Engineering.” Information Processing, IFIP. Elsevier.
Reprinted 1987 in IEEE Computer magazine. In: Brooks 1975 [1995].

Bruegge, Bernd, and Allen H. Dutoit 2000 [2010]. Object-Oriented Software
Engineering: Using UML, Patterns, and Java. Third edition, International
edition 2010. Pearson Education publishing as Prentice Hall.
ISBN 978-0-13-815221-5.

bibliography 261

Bryant, Antony 2000. “It’s Engineering Jim . . . But Not as We Know It:
Software Engineering – Solution To the Software Crisis, Or Part of the
Problem?” In: Proceedings of the 22nd International conference on
Software engineering (ICSE ’00). ACM. New York. ISBN 1-58113-206-9.

Buxton, J.N., and B. Randell (editors) 1970. Software Engineering Techniques.
Report on a conference sponsored by the NATO Science Committee
Rome, Italy, 27th to 31st October 1969. NATO Science Committee.

Cardwell, Donald 1994. The Fontana History of Technology. FontanaPress.
London. ISBN 0-00-686176-8.

Christensen, Lone Rahbek 1987. Hver vore veje: Livsformer, familietyper &
kvindeliv. Museum Tusculanums Forlag. Københavns Universitet.
ISBN 87-7289-243-9.

von Clausewitz, Carl 1832-1834 [2007]. Vom Kriege. Translated by Michael
Howard and Peter Paret. On War. Princeton University Press 1976.
Abridged by Beatrice Heuser. Oxford University Press 2007.
ISBN 978-0-19-954002-0.

Coase, Ronald H. 1937. “The Nature of the Firm.” Economica 4 (November):
386-405.

Cockburn, Alistair 2001. Agile Software Development. Addison-Wesley
Professional. ISBN 0-201-69969-9. Draft version: 3b.

Cole, Melissa, and Davis Avison 2007. “The Potential of Hermeneutics in
Information Systems Research.” European Journal of Information Systems,
vol 16: 820-833.

Coleman, E. Gabriella 2005. The Social Construction of Freedom in Free and
Open Source Software: Hackers, Ethics, and the Liberal Tradition. PhD thesis.
Department of Anthropology, University of Chicago.

Coplien, James O., and Neil B. Harrison 2004. Organizational Patterns of
Agile Software Development. Pearson Prentice Hall. Upper Saddle River,
New Jersey. ISBN 0-13-146740-9.

Coyne, Richard 1995. Designing Information Technology in the Postmodern Age:
From Method to Metaphor. The MIT Press. Cambridge, Massachusetts, and
London. ISBN 0-262-03228-7.

262 bibliography

Crawford, Chris 2002. The Art of Interactive Design: A Euphonious and
Illuminating Guide to Building Successful Software. No Starch Press. San
Fransisco. ISBN 1-886411-84-0.

Curtis, Bill, and Diane Walz 1990. “The Psychology of Programming in the
Large: Team and Organizational Behaviour.” In: Jean-Michel Hoc, T.
Green, R. Samurçay, and D.J. Gilmore (editors). Psychology of Programming.
Academic Press. ISBN 0-12-350772-3.

Czarnecki, Krysztof, and Ulrich W. Eisenecker 2000. Generative
Programming: Methods, Tools, and Applications. Addison-Wesley
Professional. ISBN: 978-0-2013-0977-5.

DeMarco, Tom, and Timothy Lister 1987 [1999]. Peopleware: Productive
Projects and Teams. Second edition 1999. Dorset House Publishing.
ISBN 978-0-932633-43-9.

Dijkstra, Edsger W. 1975. Homo Cogitans: A Small Study of the Art of
Thinking. Unpublished manuscript no. EWD533. The Center for
American History, The University of Texas at Austin.

Dybå, Tore, and Torgeir Dingsøyr 2008. “Empirical Studies of Agile
Software Development: A Systematic Review.” Information and Software
Technology vol. 50, issues 9-10. Elsevier.

Easterbrook, Steve, Janice Singer, Margaret-Anne Storey, and Daniela
Damian 2008. “Selecting Empirical Methods for Software Engineering
Research.” In: Shull et al.

Ehn, Billy 1981. Arbetets flytande gränser: En fabriksstudie. Bokförlaget
Prisma. Stockholm. ISBN 91-518-1434-X.

Ekman, Susanne 2010. Authority and Autonomy: Paradoxes of Modern
Knowledge Work. PhD thesis. Doctoral School of Organisation and
Management Studies, Handelshøjskolen i København.
ISBN 87-593-8435-0.

Fein, Louis 1959. “The Role of the University in Computers, Data
Processing, and Related Fields.” Communications of the ACM 2(9): 7-14.

Filinski, Andrzej, Robert Glück, and Neil Jones (editors) 2005. Noter i
Datalogi V – Programmeringssprog. HCØ Tryk. Datalogisk Institut,
Københavns Universitet. ISBN 87-7834-663-0. In English.

bibliography 263

Fishman, Charles 1997. “They Write the Right Stuff.” Fast Company issue 6,
Dec 1996 / Jan 1997. Fast Company, Inc.

Fowler, Martin, and Jim Highsmith 2001. “The Agile Manifesto.” Dr. Dobb’s
Journal.
http://www.drdobbs.com/open-source/the-agile-manifesto/184414755.

Fägerborg, Eva 1999. “Intervjuer.” In: Kaijser & Öhlander.

Gadamer, Hans-Georg 1960 [1965]. Wahrheit und Methode: Grundzüge einer
philosophischen Hermeneutik. J.C.B. Mohr (Paul Siebeck). Tübingen. Second
edition 1965.

Gadamer, Hans-Georg 1976. Rhetorik und Hermeneutik: Als öffentlicher
Vortrag der Jungius-Gesellschaft der Wissenschaften gehalten am 22. 6. 1976 in
Hamburg. Joachim Jungius-Gesellschaft der Wissenschaften. Vandenhoeck
& Ruprecht. Göttingen. ISBN 3-525-85553-2.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides 1994.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison-Wesley.
ISBN 0-201-63361-2.

Garsten, Christina, and Helena Wulff (editors) 2003. New Technologies at
Work: People, Screens and Social Virtuality. Berg. Oxford, New York.
ISBN 1-85973-649-1.

Glass, Robert L. 2002. Facts and Fallacies of Software Engineering.
Addison-Wesley. ISBN 0-321-11742-5.

Gormsen, Gudrun 1982. “Hedebonden: Studier i gårdmand Peder Knudsens
dagbog 1829–1857.” Folk og Kultur. Offprint in the series IEF småskrifter.
With an English summary.

Grady, Robert B. 1997. Successful Software Process Improvement.
Hewlett-Packard Professional Books. Prentice Hall PTR. Upper Saddle
River, New Jersey. ISBN 0-13-626623-1.

Haraway, Donna J. 1991. Simians, Cyborgs and Women: The Reinvention of
Nature. Routledge. New York. ISBN 978-0-415-90387-5.

Heidenberg, Jeanette 2011. Towards Increased Productivity and Quality in
Software Development Using Agile, Lean and Collaborative Approaches.
PhD Thesis. Department of Information Technologies, Åbo Akademi.
ISBN 978-952-12-2533-8.

264 bibliography

Henderson, Kathryn 1998. On Line and On Paper: Visual Representations,
Visual Culture, and Computer Graphics in Design Engineering. The MIT
Press. Cambridge, Massachusetts, and London. ISBN 0-262-08269-1.

Herbsleb, James D., Daniel J. Paulish, and Matthew Bass 2005. “Global
Software Development at Siemens: Experience from Nine Projects.” In:
Proceedings of the 27th International Conference on Software Engineering.
IEEE Computer Society.

Highsmith, Jim 2002. “What is Agile Software Development?” CrossTalk, The
Journal of Defense Software Engineering.

Hoare, C.A.R. 1980 [1981]. “ACM Turing Award Lecture.” Communications of
the ACM 1981.

Hunt, Andrew, and David Thomas 1999. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley. ISBN 0-201-61622-X.

Huth, Michael, and Mark Ryan 2000 [2004]. Logic in Computer Science:
Modelling and Reasoning About Systems. Second edition 2004. Cambridge
University Press. ISBN 0-521-54310-X.

Højrup, Ole 1967. Landbokvinden: Rok og kærne. Grovbrød og vadmel.
Nationalmuseet. København.

Højrup, Thomas 1995. Omkring livsformsanalysens udvikling. Museum
Tusculanums Forlag. Københavns Universitet. ISBN 87-7289-337-0. With
an English summary.

Højrup, Thomas 2002. Dannelsens dialektik: Etnologiske udfordringer til det
glemte folk. Museum Tusculanums Forlag. Københavns Universitet.
ISBN 87-7289-785-6.

Højrup, Thomas 2003. Livsformer og velfærdsstat ved en korsvej? Introduktion
til et kulturteoretisk og kulturhistorisk bidrag. Stats- og livsformer vol. 5.
Museum Tusculanums Forlag. Københavns Universitet.
ISBN 87-7289-858-5.

Ihde, Don 1979. Technics and Praxis. Boston Studies in the Philosophy of
Science vol. XXIV. Pallas edition. D. Reidel Publishing Company.
Dordrecht, Boston, and London. ISBN 90-277-0954-8.

Institute of Electrical and Electronics Engineers 1985. Computer. Theme:
“Visual Programming.” Vol. 18, no. 8. IEEE Computer Society.

bibliography 265

Institute of Electrical and Electronics Engineers 1990. IEEE Standard
Glossary of Software Engineering Terms. IEEE Std 610-12.1990.
ISBN 1-55937-067-X.

International Electrotechnical Commission 2009. Functional safety of
electrical / electronic /programmable electronic safety-related systems. IEC
61508-(1–7) Ed. 2.0. 65A/548/FDIS Final Draft International Standard,
distributed on 2009-12-18.

Jacobson, Ivar, Shihong Huang, Mira Kajko-Matsson, Paul McMahon, and
Ed Seymour 2012. “Semat – Three Year Vision.” Programming and
Computer Software vol. 38, no. 1. Pleiades Publishing, Ltd.

Jensen, Charlotte 2008. “Gevinster og udfordringer i tværvidenskabelig
forskning.” Nord Nytt no. 103. Nordisk Etnologisk Folkloristisk
Arbejdsgruppe. Syddansk Universitetsforlag. ISBN 987-87-91714-10-8.

Jones, Neil D., and David A. Schmidt 1980. “Compiler Generation from
Denotational Semantics.” In: Neil D. Jones (editor). Semantics-Directed
Compiler Generation, Proceedings of a Workshop. Springer-Verlag London.
ISBN 3-540-10250-7.

Kaijser, Lars, and Magnus Öhlander (editors) 1999. Etnologiskt fältarbete.
Studentlitteratur. ISBN 91-44-00944-5.

Kennedy, George A. 1984. New Testament Interpretation through Rhetorical
Criticism. The University pf North Carolina Press. Chapel Hill and
London. ISBN 978-0-8078-4120-4.

Kernighan, Brian W., and Dennis M. Ritchie 1978 [1988]. The C Programming
Language. Second edition 1988. Prentice Hall PTR. Englewood Cliffs, New
Jersey. ISBN 0-13-110362-8.

Kittler, Friedrich 2009. “Towards an Ontology of Media.” Theory, Culture &
Society vol. 26. Sage.

Knuth, Donald E. 1968-2011. The Art of Computer Programming. Vol. 1, 1968
[1997]. Fundamental Algorithms. Vol. 2, 1969 [1997]. Seminumerical
Algorithms. Vol. 3, 1973 [1998]. Sorting and Searching. Vol. 4A, 2011.
Combinatorial Algorithms. Addison-Wesley. Reading, Massachusetts, and
Upper Saddle River, New Jersey. ISBN 0-201-89683-4; 0-201-89684-2;
0-201-89685-0; 0-201-03804-8.

266 bibliography

Knuth, Donald E., 1989 [1990]. “The Errors of TEX.” Journal of Software:
Practice & Experience vol. 19, no. 7. John Wiley & Sons, Ltd. In: Tom
DeMarco and Timothy Lister (editors) 1990. Software State-Of-The-Art:
Selected Papers. Dorset House Publishing. New York. ISBN 0-932633-14-5.

Ko, Andrew J., Robert DeLine, and Gina Venolia 2007. “Information Needs
in Collocated Software Development Teams.” In: Proceedings of the 29th
International Conference on Software Engineering. IEEE Computer
Society.

Kraft, Philip 1979. “The Industrialization of Computer Programming: From
Programming to ‘Software Production’.” In: Andrew Zimbalist (editor).
Case Studies on the Labor Process. Monthly Review Press. New York and
London. ISBN 0-85345-518-X.

Kuhn, Sarah 1989 [1992]. “The Limits to Industrialization: Computer
Software Development in a Large Commercial Bank.” In: Stephen Wood
(editor). The Transformation of Work? Skill, Flexibility and the Labour
Process. Unwin Hyman Ltd. Second impression 1992. Routledge. London
and New York. ISBN 0-415-07869-5.

Kunda, Gideon 1992. Engineering Culture: Control and Commitment in a
High-Tech Corporation. Temple University Press. Philadelphia.
ISBN 0-87722-845-0.

Lammers, Susan 1986. Programmers at Work. Microsoft Press. Redmond,
Washington. ISBN 0-914845-71-3.

Lange, Martin 2012. “Integration nicht-sicherer Software in
sicherheitsgerichtete Systeme.” 10th International TÜV Rheinland
Symposium, May 15-16. Cologne.

Larsson, Marianne 2008. “Numeral Symbols on the Uniform Collar: Post
Office Constitution of Subordinated Masculinity.” Ethnologia Scandinavica
vol. 38.

Latour, Bruno 1987. Science in Action: How to Follow Scientists and Engineers
Through Society. Harvard University Press. Cambridge, Massachusetts.
ISBN 0-674-79291-2.

Latour, Bruno, and Steve Woolgar 1979 [1986]. Laboratory Life: The
Construction of Scientific Facts. Sage Publications, Inc. Second edition 1986.
Princeton University Press. Princeton, New Jersey. ISBN 0-691-02832-X.

bibliography 267

Lauesen, Søren (Soren) 2002. Software Requirements: Styles and Techniques.
Addison-Wesley. ISBN 978-0-201-74570-2.

Liddell, Henry George, and Robert Scott 1940. A Greek-English Lexicon.
Revised and augmented throughout by Sir Henry Stuart Jones with the
assistance of Roderick McKenzie. Clarendon Press. Oxford.

Mahoney, Michael S. 1990. “The Roots of Software Engineering.” CWI
Quarterly vol. 3, no. 4: 325-334.

Mallery, John C., Roger Hurwitz, and Gavan Duffy 1987. “Hermeneutics:
From Textual Explication to Computer Understanding?” Massachusetts
Institute of Technology Artificial Intelligence Laboratory. In: Stuart C.
Shapiro (editor). The Encyclopedia of Artificial Intelligence. John Wiley &
Sons. New York.

Mancy, Rebecca, and Norman Reid 2004. “Aspects of Cognitive Style and
Programming.” In: E. Dunican and T.R.G. Green (editors). Proceedings of
the 16th Workshop of the Psychology of Programming Interest Group, pp.
1-9. Carlow, Ireland.

Manovich, Lev 2013. Software Takes Command. Bloomsbury Academic. New
York and London. ISBN 978-1-6235-6672-2.

McCloskey, Donald (Deirdre) N. 1985 [1998]. The Rhetorics of Economics.
Second edition 1998. The University of Wisconsin Press. Madison,
Wisconsin, and London. ISBN 0-299-15814-4.

McConnell, Steven C. 1993. Code Complete: A Practical Handbook of Software
Construction. Microsoft Press. Redmond, Washington. ISBN 1-55615-484-4.

Medoff, Michael D., and Rainer I. Faller 2010. Functional Safety: An IEC
61508 SIL 3 Compliant Development Process. Exida.com L.L.C. Sellersville,
Pennsylvania. ISBN 978-0-9727234-8-0.

Miller, Daniel, and Don Slater 2000. The Internet: An Ethnographic Approach.
Berg. Oxford, New York. ISBN 1-85973-389-1.

Naur, Peter 1985 [2001]. “Programming as Theory Building.” Reprinted in
Computing: A Human Activity. In: Cockburn 2001.

Naur, Peter 1995. Datalogi som videnskab. DIKU Rapport no. 95/4. DIKU
Tryk. Datalogisk Institut, Københavns Universitet. ISSN 0107-8283.

268 bibliography

Naur, Peter, and Brian Randell (editors) 1969. Software Engineering. Report
on a conference sponsored by the NATO Science Committee. Garmisch,
Germany, 7th to 11th October 1968. NATO Science Committee.

Nielsen, Niels Jul 2004. Mellem storpolitik og værkstedsgulv. Den danske
arbejder – før, under og efter Den kolde krig. Stats- og livsformer vol. 6.
Museum Tusculanums Forlag. Københavns Universitet.
ISBN 87-7289-862-3.

Ó Riain, Seán 1997. “An Offshore Silicon Valley? The Emerging Irish
Software Industry.” The Journal of Global Business and Political Economy
2:175-212.

Ó Riain, Seán 2000. “Net-Working for a Living: Irish Software Developers in
the Global Workplace.” In: M. Burawoy et al. (editors) Global Ethnography.
University of California Press.

Paaskoski, Leena 2008. “Brothers and Sisters of the Forest: Gender in the
Forester Profession.” Ethnologia Scandinavica vol. 38.

Pane, John F., and Brad A. Myers 2000. “The Influence of the Psychology of
Programming on a Language Design: Project Status Report.” In: A. F.
Blackwell and E. Bilotta (editors). Proceedings of the 12th Annual Meeting
of the Psychology of Programmers Interest Group. Corigliano Calabro,
Italy: Edizioni Memoria. pp. 193-205.

Patterson, David A., and John L. Hennessy 1997. Computer Organization and
Design: The Hardware / Software Interface. Second edition. Morgan
Kaufmann Publishers, Inc. San Fransisco. ISBN 1-55860-491-X.

Paulson, Lawrence C. 1991 [1996]. ML for the Working Programmer. Second
edition 1996. Cambridge University Press. ISBN 0-521-56543-X.

Pedersen, Mikkel Venborg 2005. Hertuger: At synes og at være i Augustenborg
1700-1850. Etnologiske Studier vol. 12. Museum Tusculanums Forlag.
København. ISBN 978-87-635-0191-0.

Peirce, Charles Sanders 1905 [1931-1958]. Collected Papers of Charles Sanders
Peirce. Vols. 1-6 edited by Charles Hartshorne and Paul Weiss. Vols. 7-8
edited by Arthur W. Burks. 1931-1958. Harvard University Press.
Cambridge, Massachusetts.

Perelman, Chaïm, and Lucie Olbrechts-Tyteca 1958 [2008]. Traité de
l’argumentation: La nouvelle rhétorique. Sixth edition 2008. Editions de
l’Université de Bruxelles. ISBN 978-2-8004-1398-3.

bibliography 269

Perlow, Leslie A. 1997. Finding Time: How Corporations, Individuals, and
Families Can Benefit from New Work Practices. Cornell University Press.
Ithaca and London. ISBN 978-0-8014-8445-2.

Perlow, Leslie A. 1999. “The Time Famine: Toward a Sociology of Work
Time.” Administrative Science Quarterly vol. 44, no. 1. Sage Journals.

Peterson, Tina 2009. “The Zapper and the Zapped: Microwave Ovens and
the People Who Use Them.” In: Phillip Vannini (editor). Material Culture
and Technology in Everyday Life. Intersections in Communications and
Culture vol. 25. Peter Lang Publishing Inc. New York.

Pierce, Benjamin C. 2002. Types and Programming Languages. The MIT Press.
Cambridge, Massachusetts, and London. ISBN 0-262-16209-1.

Reynolds, Carl H. 1970. “What’s Wrong with Computer Programming
Management?” In: Weinwurm.

Robinson, Hugh M., and Helen Sharp 2003. “XP Culture: Why The Twelve
Practices Both Are and Are Not The Most Significant Thing.” In:
Proceedings of the Conference on Agile Development. IEEE Computer
Society.

Robinson, Hugh M., and Helen Sharp 2005 (I). “The Social Side of Technical
Practices.” In: Proceedings of the Sixth International Conference on
Extreme Programming and Agile Processes in Software Engineering.
Springer Verlag.

Robinson, Hugh M., and Helen Sharp 2005 (II). “Organisational Culture and
XP: Three Case Studies.” In: Proceedings of the Agile Development
Conference. IEEE Computer Society.

Rorty, Amelie Oksenberg 1983. “Experiments in Philosophical Genre:
Descartes’ Meditations.” Critical Inquiry 9: 545-65.

Royce, Winston W. 1970. “Managing the Development of Large Software
Systems.” Proc. IEEE WESCON. IEEE Press.

Runeson, Per, and Martin Höst 2009. “Guidelines for Conducting and
Reporting Case Study Research in Software Engineering.” Empirical
Software Engineering vol. 14, issue 2: 131-164. Springer.

Rönkkö, Mikko, and Juhana Peltonen 2012. Software Industry Survey 2012.
School of Science, Aalto University. Espoo. ISBN 978-952-60-3614-4.

270 bibliography

Sach, Rien, Helen Sharp, and Marian Petre 2011. “What makes software
engineers go that extra mile?” In: Proceedings of the 23rd Annual
Psychology of Programming Interest Group. York, UK.

Scanlon, Leo J. 1981. The 68000: Principles and Programming. Howard W.
Sams & Co., Inc. Indianapolis, Indiana. ISBN 0-672-21853-4.

Schein, Edgar H. 1985. Organizational Culture and Leadership: A Dynamic
View. Jossey-Bass Publishers. San Fransisco, Washington, and London.
ISBN 0-87589-639-1.

Schön, Donald A. 1983. The Reflective Practitioner: How Professionals Think
in Action. Basic Books. United States of America. ISBN 0-465-06878-2.

Schwaber, Ken 2003. Agile Project Management with Scrum. Microsoft Press.
Redmond, Washington. ISBN 0-7356-1993-X.

Schwaber, Ken, and Jeff Sutherland 2010. Scrum Guide.
http://www.scrum.org.

Seaman, Carolyn B. 2008. “Qualitative Methods.” In: Shull et al. Based on:
“Qualitative Methods in Empirical Studies of Software Engineering.” IEEE
Transactions on Software Engineering 25(4):557-572, 1999.

Shull, Forrest, Janice Singer, and Dag I.K. Sjøberg (editors) 2008. Guide to
Advanced Empirical Software Engineering. Springer-Verlag London Limited.
ISBN 978-1-84800-043-8.

Singer, Janice, Susan E. Sim, and Timothy C. Lethbridge 2008. “Software
Engineering Data Collection for Field Studies.” In: Shull et al. Based on:
Lethbridge, T., S. Sim, and J. Singer 2005. “Studying Software Engineers:
Data Collection Techniques for Software Field Studies.” Empirical Software
Engineering, 10(3), 311-341.

Solin, Ulla 1992. Animation of Parallel Algorithms. PhD thesis. Department
of Computer Science, Åbo Akademi. Acta Academia Aboensis, Ser. B,
Mathematica et physica, vol. 52, no. 2. Åbo Akademis förlag.
ISBN 952-9616-03-1.

Spolsky, Joel 2004. Joel on Software: And on Diverse and Occasionally Related
Matters That Will Prove of Interest to Software Developers, Designers, and
Managers, and to Those Who, Whether by Good Fortune or Ill Luck, Work
with Them in Some Capacity. Apress. ISBN 978-1-59-059-389-9.

bibliography 271

Star, Susan Leigh, and James R. Griesemer 1989. “Institutional Ecology,
‘Translations’ and Boundary Objects: Amateurs and Professionals in
Berkeley’s Museum of Vertebrate Zoology, 1907-39.” Social Studies of
Science vol. 19, issue 3. Sage Publications, Ltd.

Star, Susan Leigh, and Karen Ruhleder 1996. “Steps Toward an Ecology of
Infrastructure: Design and Access for Large Information Spaces.”
Information Systems Research vol. 7, issue 1.

Stroustrup, Bjarne 1985 [1997]. The C++ Programming Language. Third
edition 1997. Addison-Wesley. ISBN 0-201-88954-4.

Suchman, Lucy A. 1987 [2007]. Human-Machine Reconfigurations: Plans and
Situated Actions. Second edition 2007. Cambridge University Press.
ISBN 978-0-521-67588-8.

Suenson, Espen 2005. “Kritik af den enkle vareproduktion – en
begrebslogisk analyse.” Nord Nytt no. 96. Nordisk Etnologisk Folkloristisk
Arbejdsgruppe. ISBN 87-91714-03-6.

Suenson, Espen 2013. “Method and Fieldwork in a Hermeneutical
Perspective.” In: Frog and Pauliina Latvala (editors).Approaching
Methodology. Humaniora 368. Finnish Academy of Science and Letters.
ISBN 978-951-41-1085-6.

Suenson, Thomas 2008. “Begrebet FOLK i bibelsk-kristen forståelse.”
Tidehverv vol. 82, no. 5/6.

Sundt, Eilert 1862 [1976]. Om Bygnings-Skikken paa Landet i Norge.
Christiania. Reprinted by Gyldendals Norske Forlag 1976.

Szymanski, Margaret H., and Jack Whalen (editors) 2011. Making Work
Visible: Ethnographically Grounded Case Studies of Work Practice. Cambridge
University Press. ISBN 978-0-521-17665-1.

Turkle, Sherry 1984 [2005]. The Second Self: Computers and the Human Spirit.
Simon & Schuster, Inc. New York. Twentieth Anniversary edition 2005.
MIT Press. Cambridge, Massachusetts, and London.
ISBN 978-0-262-70111-2.

U.S. Defense Science Board 1987. Report of the Defense Science Board Task
Force on Military Software. Office of the Under Secretary of Defense for
Acquisition. Washington, D.C.

272 bibliography

U.S. Department of Commerce 2011. GDP by Industry. Tables of Value
Added by Industry. Bureau of Economic Analysis.

U.S. Department of Defense 1985. Military Standard: Defense System Software
Development. DOD-STD-2167. Washington, D.C.

Vincenti, Walter Guido 1990 [1993]. What Engineers Know and How They
Know It: Analytical Studies from Aeronautical History. Johns Hopkins
Paperbacks edition 1993. The Johns Hopkins University Press. Baltimore
and London. ISBN 0-8018-4588-2.

van Vliet, Hans 2008. Software Engineering: Principles and Practice. Third
edition. John Wiley & Sons, Ltd. ISBN 978-0-470-03146-9.

Weber, Max 1922 [2003]. “Kapitel IX. Soziologie der Herrschaft. 2.
Abschnitt. Wesen, Voraussetzungen und Entfaltung der büreaukratischen
Herrschaft.” First published in: Wirtschaft und Gesellschaft. Dritter Teil.
Typen der Herrschaft. J.C.B. Mohr (Paul Siebeck). Tübingen. Translated
from: Marianne Weber and Johannes Winckelmann (editors) 1990.
Wirtschaft und Gesellschaft. Grundriss der verstehenden Soziologie. Zweiter
Teil. J.C.B. Mohr (Paul Siebeck). Tübingen. In: Heine Andersen, Hans
Henrik Bruun, and Lars Bo Kaspersen (editors) 2003. Max Weber: Udvalgte
tekster. Bind 2. Translated by Ole Bjerg. Hans Reitzels Forlag. København.
ISBN 87-412-2554-6.

Weinwurm, George F. (editor) 1970. On the Management of Computer
Programming. Auerbach Publishers Inc. United States of America.
Standard Book Number 87769-044-8.

Willim, Robert 2002. Framtid.nu: Flyt och friktion i ett snabbt företag. Brutus
Östlings Bokförlag Symposion. Stockholm and Stehag.
ISBN 91-7139-549-0. With an English summary.

Willim, Robert 2003. “Claiming the Future: Speed, Business Rhetoric and
Computer Practice.” In: Garsten & Wulff.

Wilson, Kax 1979 [1982]. A History of Textiles. Paberback edition 1982.
Westview Press. Boulder, Colorado. ISBN 0-86531-368-7.

Winskel, Glynn 1993. The Formal Semantics of Programming Languages: An
Introduction. Foundation of Computing Series. The MIT Press. Cambridge,
Massachusetts, and London. ISBN 0-262-73103-7.

Öhlander, Magnus 1999. “Deltagande observation.” In: Kaijser & Öhlander.

bibliography 273

274

275

Appendix A

Method and Fieldwork in
a Hermeneutical
Perspective

Espen Suenson, Åbo Akademi

Published in: Frog and Pauliina Latvala (editors) 2013. Approach-
ing Methodology. Humaniora 368. Finnish Academy of Science
and Letters.

The background of the present text is my ongoing work on a doctoral
dissertation at Åbo Akademi, a dissertation that is jointly in ethnol-
ogy and computer engineering. My academic background is simi-
larly partly ethnology and partly computer science. My professional
experience as a programmer, along with my interest in ethnology,
prompted me to begin an ethnological study of computer program-
ming.

This text is a reflection on the fieldwork I have done to collect data
for my dissertation. The fieldwork consists of interviews with and
observations of computer programmers collected during the spring

276 appendix a

and autumn of 2011. I discuss my method along with an example
of an ethnological historical study and I put it all in perspective by
arguing for a hermeneutical understanding of scientific method.

The purpose of this text is to show how hermeneutics can help in
understanding what happens during the scientific process. Hermeneu-
tics is the classical study of what requisites there are to understanding.
It has been particularly developed within Bible Studies – biblical ex-
egesis – but has also been applied to other fields such as law and,
increasingly since the 19th century, to texts in general. Ethnology is
the study of folk culture and as a discipline has always been informed
and inspired by other traditions, not least by the hermeneutical tra-
dition and by anthropology.

The hermeneutical influence can be found in the works of eth-
nological figures such as Troels-Lund and H.F. Feilberg in Denmark,
and Helmer Tegengren in Finland. The anthropological influence in
ethnology can be felt especially in the discussions on fieldwork, and is
connected with authors such as, for example, Bronislaw Malinowski,
Franz Boas and Clifford Geertz. The discussion of the influence of
anthropology on fieldwork will in this text be limited to the work of
Bruno Latour and Steve Woolgar.

Science as Persuasion

Science is, at its heart, a persuasive activity. Any given research result
will at some point be presented either in written form, as a book,
article or report, or in oral form, as a talk at a conference or even as
a remark during an informal chat between colleagues. The purpose
of presenting scientific results is of course to convince the audience
of the scientific truth of said result. The ideal of scientific practice
is that through free and frank discussion and exchange of arguments
between scholars, scientific truth will eventually prevail. The real test
of scientific validity lies not in citation count but in the ability to
convince educated and informed colleagues of the truth of the matter

method and fieldwork in a hermeneutical perspective 277

on the basis of the given scientific evidence. Since argument is the
form of all persuasion, this means that scientific activity is a form of
argumentative activity. Certainly, a scientific insight may be ever so
true, but, if it cannot be presented convincingly, that is, if it cannot
be argued, then it will have no impact on science.

We might ask of ourselves now whether argumentation is really an
essential part of the scientific process as such. After all, it is possi-
ble to imagine that the scientist first reaches his scientific conclusions
without giving any thought at all to how they are to be presented
and only later constructs the arguments with which to present them.
According to this way of thinking, argumentation is added to scien-
tific results almost as an afterthought – as something that is certainly
necessary to the spread of scientific knowledge but which is not an
intimate part of how the scientist comes to the knowledge. Argumen-
tation is seen as something external to science. This view, however,
is not defendable in light of 20th century philosophical knowledge of
argumentation and of science.

Chaïm Perelman and Lucie Olbrechts-Tyteca published in 1958
their Traité de l’argumentation, which was the result of ten years of
intensive studies of argumentation. In their work, they present what
is called “the new rhetorics”, a modern theory of argumentation that
rehabilitates Aristotle’s classical thinking on rhetoric and connected it
with present day thinking on argumentation. They compare the way
a person addresses an audience with the way he considers a matter in
the privacy of his own mind:

L’individualisme des auteurs qui accordent une nette pré-
éminence à la façon de conduire nos propres pensées et
la considèrent comme seule digne de l’intérêt du philo-
sophe – le discours adressé à autrui n’étant qu’apparance
et tromperie – a été pour beaucoup dans le discrédit non
seulement de la rhétorique, mais, en général, de toute
théorie de l’argumentation. Il nous semble, par contre,
qu’il y a tout intérêt à considérer la délibération intime
comme une espèce particulière d’argumentation.
(Perelman & Olbrechts-Tyteca 1958 : §9, p. 54.)

278 appendix a

That is to say that to consider a person’s deliberation with himself
and his private convictions to be the primary object of philosophical
and scientific thought, and to consider that arguments directed to an
audience are but an afterthought, is both wrong and harmful to the
theory of argumentation. Instead, private convictions are a special
case of argumentation in general. This view is clearly at odds with
the idea that scientific discovery should be independent of subsequent
presentation. Accordingly:

Aussi, de notre point de vue, c’est l’analyse de l’argumentation
adressée à autrui qui nous fera comprendre mieux la dé-
libération avec soi-même, et non l’inverse.
(Perelman & Olbrechts-Tyteca 1958 : §9, p. 54.)

That is, the analysis of arguments directed to others informs the study
of private conviction and not the other way around. Perelman and
Olbrechts-Tyteca point out that this way of understanding argumen-
tation allows an explanation of how a person can be convinced of
something and yet not be able to express his conviction in a way that
can persuade others. This is because the argumentation that suffices
to convince himself can be based on arguments that are valid to him
alone. But, such arguments, though they may be true and valid as
far as the individual is concerned, are not scientific arguments, since
they are not held by the general scientific community to be valid.
The practice of science requires the uncovering of arguments that are
more generally accepted than personal conviction or opinion. We see
thus that, in the light of argumentation theory, we cannot completely
separate scientific discovery from the way it is to be presented to a
scholarly audience.

Such is the judgment of argumentation theory on the matter at
hand. We turn now to philosophical thought on the subject. Hans-
Georg Gadamer published in 1960 his magnum opus Wahrheit und
Methode in which he practically founded the field of philosophical
hermeneutics and summed up the preceding centuries’ thoughts on
the essence of scientific interpretation and scientific understanding.
Gadamer points out that understanding is inescapably linked to appli-

method and fieldwork in a hermeneutical perspective 279

cation. Application is not something that comes after understanding,
but is given in advance and determines the whole of understanding.
An interpreter of history seeks to apply his interpretation, and the use
of it is not something that comes strictly after a general understanding
of the text:

Auch wir hatten uns davon überzeugt, daß die Anwen-
dung nicht ein nachträglicher und gelegentlicher Teil des
Verstehens-phänomens ist, sondern es von vornherein und
im ganzen mitbestimmt. . . . Der Interpret, der es mit ei-
ner Überlieferung zu tun hat, sucht sich dieselbe zu ap-
plizieren. Aber auch hier heißt das nicht, daß der über-
lieferte Text für ihn als ein Allgemeines gegeben und ver-
standen und danach erst für besondere Anwendung in
Gebrauch genommen würde.
(Gadamer 1960: II.II.2.b, p. 307.)

Gadamer gives an example of what this means in the practice of
judicial hermeneutics. In judicial hermeneutics, the application of un-
derstanding is the action of passing judgment. In order to understand
the original intent of a law, the interpreter must understand how the
law is used for passing judgment. This means that he must undergo
the same process of mental reasoning, of thinking through the con-
sequences of the law, as the judge who is actually passing judgment
according to the law. On the other hand, a judge passing judgment
in the present situation must understand the intent of the law. That
means setting aside the matter at hand for a moment, in order to un-
derstand what the original circumstances were in which the law was
to be used. Since circumstances always change over time, the letter of
the law alone is not enough in passing just judgment. The concept of
application of the law is what links the judge of the present with the
lawgiver of the past. (Gadamer 1960: II.II.2.c.)

In law, the application of a text is obvious. Regarding history,
it seems less immediate. In history, the essential application is to
interpret texts and other sources in order to obtain a coherent and
meaningful understanding of the past:

280 appendix a

Für den Historiker tritt jedoch der einzelne Text mit an-
deren Quellen und Zeugnissen zur Einheit des Überlie-
ferungsganzen zusammen. Die Einheit dieses Ganzen der
Überlieferung ist sein wahrer hermeneutische Gegenstand.
(Gadamer 1960: II.II.2.c, p. 322.)

That is, for the historian, each single text that he studies joins with
other texts and sources and forms a whole that expresses the under-
standing of our past. The unity of this whole is the true hermeneutical
purpose of history.

What is of special interest to us in this is that, accordingly, scien-
tific understanding must be understood in terms of scientific applica-
tion. For a scholar, the immediate application of research is not the
eventual practical usefulness of the results, but rather the necessity
of persuading other scholars and, as we understand from the above,
oneself. An example of this that should be familiar to many is what
we experience when we teach a difficult subject for the first time. Even
though we feel that we have mastered the subject ourselves, we find
that the fullest understanding comes to us only when we try to teach
it to others.

We have argued that, both from a communicative and a philo-
sophical perspective, science is best understood as a persuasive activ-
ity. However, though Gadamer’s thoughts apply to all understanding
in general, he is first and foremost concerned with the phenomenon of
understanding within Geisteswissenschaft, a term that can be somewhat
imprecisely translated as “the humanities”, but one that really means
something like “the sciences concerned with free human thought”.
Nevertheless, this does not mean that the persuasive aspect can some-
how be avoided in certain fields of science.

The exact sciences are argumentative in exactly the same way as
all other sciences. Indeed, Perelman and Olbrechts-Tyteca (1958: §6,
p. 37f.) point out that there is no such thing as pure objectivity. This
is not to say that objectivity does not exist. Rather, objectivity must
always be understood in terms of a subject that regards the object.
Without subject there is no object. It is because of this that application
has such a central place in Gadamer’s explanation of understanding,

method and fieldwork in a hermeneutical perspective 281

for it is precisely application that establishes the relationship between
subject and object, in that the subject performs some action on the
object in order to reach a goal. (Højrup 1995: 65–69.)

In 1979, Bruno Latour and Steve Woolgar published the book Lab-
oratory Life, an anthropological study of how science is done in a
neuroendocrinological laboratory based on two years of observation.
Neuro-endocrinology as a field is at the very heart of exact sciences
and the book has since become a modern classic in the field of sci-
ence and technology studies. Latour and Woolgar show how science
is indeed a highly rhetorical, persuasive activity. Facts and findings
are constantly being argued for, questioned and recast in new formu-
lations, with the scientists’ credibility and rhetorical skills being im-
portant factors in the eventual acceptance or dismissal of their ideas.
The rhetorical persuasion is so effective that in the end, the scientists
are not even aware that they have been persuaded, but come to re-
gard the accepted arguments as objective, immutable facts. (Latour &
Woolgar 1979: 240.) As Latour and Woolgar show conclusively, not
even in the exact sciences are the bare facts in themselves enough to
make up a scientific finding.1

The Scientific Argument

As shown above, science is an argumentative activity. In other words,
science is persuasion – though not “mere” persuasion, but a special
form of persuasion that is especially convincing. It is therefore of
interest to examine what a scientific argument consists of in more de-
tail. In the classical theory of rhetoric, Aristotle divides the means
of demonstration that can be used in an argument into two classes:
the non-technical and the technical, where “technical” is to be under-
stood as rhetorical.2 (Aristotle: 1355b, A.II.2.) Non-technical means

1Compare with the quotation from Gadamer in the end of the next section.
2Since Aristotle considers rhetorics to be a technique, τέχνη, which means something

like an art or a craft – something that can be taught. (Aristotle: 1354a, A.I.2.)

282 appendix a

are here to be understood as the evidence that is given and available
to the argument in the form of documents, witness explanations and
the like. It is non-technical (not rhetorical) because it is not common
to argumentation in general as such, but is particular to the matter
being debated. Put another way, when we argue scientifically, we need
both something to speak about, which is the scientific evidence, and a
way of forming our speech. Scientific evidence is not the same thing
as proof. Rather, evidence is the means of proof. A piece of evidence
can be interpreted in different ways, yielding different conclusions.

The problem of obtaining the scientific evidence, the data, is the
subject of much scientific method. Sometimes the evidence is more
or less given, as in an archive of collected material that is just waiting
to be analysed. However, in most cases there are some specific ques-
tions that we want to answer and our first problem is how to get any
evidence at all. At first glance, it would seem that the situations are
very different for historical and contemporary research. In historical
research, the material available is that which is preserved. We can
never hope to get more, short of an unexpected discovery of previ-
ously unknown sources. In contemporary research, on the other hand,
our informants are still available; the life we are studying is unfurling
around us. We can generate as much data as we want to.

A closer examination, however, reveals that this depiction is not
entirely accurate. True, the past is the past and in that sense more
historical evidence cannot be produced; it is limited to what has been
preserved. However, the decision of how much of the preserved
evidence should be included in a scientific argument is left to the
scholar’s discretion.

To take an example: When studying a Danish peasant doing con-
struction works on his fields in the poor moorlands of Vestjylland
in 1834, it is evidently useful to know something about which fields
were considered of high quality at that time and in that area. (Gorm-
sen 1982: 13.) Perhaps it would also be relevant to know about the
general economic conditions in Vestjylland at the time. Perhaps in
all of Denmark. Maybe it would be informative to know about the
earlier history of farming techniques, to find out from where the peas-

method and fieldwork in a hermeneutical perspective 283

ant got his knowledge of construction works. The construction works
were not particularly successful, so perhaps it would also be useful to
have some knowledge of farming techniques in later times in order to
interpret the lack of success – not to speak of comparing similar con-
struction works in the area at the time. Also, the construction works
were just a small aspect of the peasant’s activities.

As we see, the limited availability of historical evidence is only ap-
parent, since much more historical evidence has been preserved than
a single person can possibly process in its entirety. The real limit
on the availability of evidence is that the evidence does not always
speak about the things that we want to know about. The peasant’s di-
ary speaks mostly of farming tasks, of construction works and money
loans, when what we are really interested in is the farmer’s percep-
tion of his existence, a classic ethnological subject. Any historical
research involves a selection of the relevant historical evidence. This
selection is a limitation that the historian imposes on herself in order
to be able to make an interpretation; see for example Jill Bradley’s
discussion of how to select material for image research in this volume
of RMN Newsletter. Thus, the fundamental limits on the availability
of historical evidence is in essence a problem of interpretation rather
than quantity.

Let us now examine the case of contemporary research. My cur-
rent research involves conducting interviews by phone with engineers
in other countries, transcribing those interviews and finally analysing
what the engineers tell me. It is often quite difficult to make out what
the engineers say over a bad phone connection and in a language that
is foreign to both of us. Even if I can understand what they are saying,
it does not always make sense to me. Of course, since the research is
contemporary, I can always collect more evidence, either by talking to
the engineers again or by finding some other engineers to ask. There
is, though, a limit to how much evidence I can process – I cannot
talk to every single engineer in the world. And even if I could, the
problems of understanding the engineers are still there. If there is
something I do not understand, I can ask the engineers again, but it
is perfectly possible that I will still not understand the answer.

284 appendix a

The essential problem of the availability of contemporary scien-
tific evidence is, as in the case of historical research, one of interpre-
tation. This is, of course, assuming that the people I am studying
want to let me interview them in the first place. People have their
reasons for wanting to talk to me or not, and that is a factor outside
my control. The access to the field of study is a fundamental limita-
tion in contemporary research. This is akin to historical research in
that, for some reason or other, the people of the past chose to write
some things down and not others, as in the diary mentioned above
where the peasant chose to write about his work, not his emotions.
That cannot be changed. This limitation evidently does not preclude
contemporary studies of a field that is difficult to access or historical
studies of a sparsely documented subject, but the available evidence
will be more indirect and the task of interpretation accordingly more
difficult.

This discussion of the availability of evidence reveals that it is
of crucial importance when talking about scientific method to know
what it is that we want to know something about – the research goal.
We mentioned that the scientific argument has to have something to
speak about and a way of saying it, and a final requirement is of
course that there is something we want to say. This something, which
is the research goal, is determining for the interpretation of evidence,
and this is the reason that Gadamer devotes so much effort to the
relationship between interpretation and application in Wahrheit und
Methode. Gadamer puts it this way:

Der Historiker verhält sich zu seinen Texten wie der Un-
tersuchungsrichter beim Verhör von Zeugen. Indessen macht
die bloße Feststellung von Tatsachen, die er etwa der Vor-
eingenommenheit der Zeugen ablistet, noch nicht wirklich
den Historiker, sondern erst das Verständnis der Bedeu-
tung, die er in seinen Feststellungen findet.
(Gadamer 1960: II.II.2.c, p. 321.)

That is, the historian’s relationship to the historical document is like
that of a judge to a witness being interrogated. The raw facts in

method and fieldwork in a hermeneutical perspective 285

themselves, stripped of the bias of the witness, are not interesting but
for the understanding of meaning that the historian finds during the
discovery of facts.

Examples of Method in Fieldwork

As argued above, availability of evidence and research goals are fac-
tors that are important in forming scientific method. I will now give
some examples from my ongoing research of how scientific method is
influenced by these factors and how it in turn influences them.

My research is concerned with the work practices of computer pro-
grammers. The goal is to present a characterization of programming
work based on my observations and on an ethnological perspective on
culture, and to compare this characterization with the programmers’
own understanding of their work practice. The focus on work practice
and its connection to cultural context makes my research comparable
to studies such as Arbetets flytande gränser by Billy Ehn from 1981, in
which Ehn presents the results of the seven months he spent as a fac-
tory worker in the medical industry. Gudrun Gormsen’s 1982 study
of the diary of a moorland peasant in the years 1829-1857 is also an
inspiration for my research, since Gormsen’s work can be perceived
as a historical work study.

The data I have collected for my research falls in two parts. The
first part consists of interviews conducted by telephone with software
engineers from about twenty companies from all over Europe. The
companies all work with safety-critical systems, that is, they make au-
tomobiles, airplanes, medical equipment and so forth. The second
part consists of notes from four weeks I spent as an observer in a
small company that makes computer games. I was present during
work hours: ordinary office hours, usually nine to five. The time was
spent predominantly in observation and taking notes, without inter-
acting with the people concerned. This is supplemented by interviews

286 appendix a

with the employees and a collection of some photographs and written
material.

The collection of the first part of the data is a prime example of
how the availability of evidence can influence method. I was offered,
as part of another research project, to participate in making the in-
terview series. The interviews were to be focused on how software
engineers describe their work, as that was the focus of the other re-
search project. My original intent was to perform observations on site
in companies. However, it is time consuming to find informants who
are willing to be studied. Moreover, from my contacts in academia, I
knew that it could be difficult to get access to companies in this par-
ticular branch of the software industry because they are sometimes
secretive about their detailed operations. Thus, when it became pos-
sible to gain access to informants from all these companies with whom
it might otherwise have been difficult to establish contact, I chose to
collect data with the prescribed method of the other research project –
telephone interviews – instead of my original preference, observation
on site.

This, on the other hand, also offers an example of how method
can influence research goals. The telephone interview method and
the focus on the informants’ descriptions of their work practices was
not as well suited as the observation method for my prime research
interest at the time, the concrete day to day work practice. With the
telephone interview material, I have to infer the work practices from
the conversations with the engineers instead of observing it directly.
This could be seen as a deviation from my original intent; however,
I realized that the material offers other possibilities. Specifically, the
telephone interview material shows in a much more direct way than
observations of practice how the programmers describe their work
and thus how they understand their work. The programmers’ under-
standing of their work and the relation it has to their work practice
thus became a much more important aspect of my research goals than
previously. This also goes to illustrate the point of the preceding sec-
tion, that availability of evidence is more a question of interpretation
than of quantity.

method and fieldwork in a hermeneutical perspective 287

The influence of research goals on method is in many cases imme-
diately obvious: a method is chosen for its ability to generate evidence
that can reveal something about that which we want to investigate.
This influence also applies to the collection of the second part of my
data. To observe work practice as directly as possible, I chose to use
immediate, direct observation. This choice may perhaps seem obvi-
ous, but it is not the only option available. I could have chosen to rely
exclusively on interviews, to do a pure academic literature study or to
collect written evidence from the internet. All of these methods have
their merit. However, as I seek to investigate programming not only
as it is understood but also at is it concretely practiced, I chose the
method that has the most immediate connection to concrete practice,
namely to be present during the work. Or rather, there exists an even
more immediate method – which is to actually do the work, as Ehn
did in his factory study. I decided not to do the latter, partly because
it would take longer than I was prepared to spend on the study and
partly because I already have years of practice as a programmer and
thus judge myself capable of understanding the practice that I observe
without carrying out the practice myself.

The influence of method on the availability of evidence is also ex-
emplified by the second part of my data collection. Choosing on-site
observations as my method limited the availability of companies to
study. Having an observer present affects the workplace and this can
be seen as an unnecessary burden on the company. I was thus turned
down by one company on this ground. Even within the observation
situation, the choice of method can be felt. Because I was more in-
terested in the programmers’ interaction with each other than with
me, I sought to minimize my interaction with them. This meant that
explanatory comments and casual remarks directed to me, evidence
in their own right, became much scarcer. The relative availability of
two kinds of evidence that to a degree exclude each other was affected
by my choice of method.

288 appendix a

The Role of Scientific Theory

Let us now take a look at how we can understand the role of scientific
theory in the scientific argument. At a very general level, a theory
explains what is relevant about the subject matter and how the rel-
evant parts relate to each other. It is a point of departure for our
understanding. Thus, theory ideally tells us how we expect things to
be before we start an investigation into the matter.

The question of prerequisites to understanding is treated in depth
by Gadamer. What he arrives at is that there can be no understand-
ing without prejudice (Vorurteil). (Gadamer 1960: II.II.1.a.α.) Prej-
udices are perspectives and opinions, and we all always hold some
prejudices. No mind is a blank slate. Without prejudice we cannot
even begin to comprehend. For example, if I try to read a Greek play
without knowing Classical Greek, the text will just appear to me as
incomprehensible scribblings. A first prerequisite is to have a basic
understanding of facts, e.g. to know the letters and the words. This
basic understanding (Vorverständnis) is a part of prejudice. (Gadamer
1960: II.II.1.c, p. 278.) When this is present, the actual process of un-
derstanding can begin. Here prejudice is crucial. Prior to reading the
text, I will have formed an idea, accurate or not, of whether the author
is to be trusted to tell the truth or whether he for some reason lies.
If I read Aristophanes’ plays as a literal description of ancient Greek
society, my understanding will falter. To make sense of the plays, I
need to have the proper prejudicial view that they do not literally tell
the truth – that they exaggerate and distort it in order to amuse, and
to criticize society. The task of hermeneutics is to distinguish between
true and false prejudice. (Gadamer 1960: II.II.1.c, p. 282f.)

We can thus understand scientific theory as a part of our preju-
dices in the sense of Gadamer. We always have prejudices, whether
we acknowledge them or not. Scientific theory is a form of prejudice
that we are conscious of, have made explicit and have written down.
What makes it prejudice – as opposed to simply judgment – is that
we take the theory as a starting point whenever we encounter new ev-

method and fieldwork in a hermeneutical perspective 289

idence. Exactly because this explicit prejudice is not unconscious and
taken for granted, we are able to have a scientific discussion about it.
We need to keep in mind, though, that understanding is a continuous
process. (Gadamer 1960: II.II.1.d.) In good scientific practice, theory
is constantly confronted with evidence and revised. As understanding
deepens, theory changes.

Science as Dialogue

Choosing good metaphors is an essential part of science. A metaphor
for scientific understanding itself is that it is a dialogue with the ev-
idence, the field. The scientist poses a question by looking at the
evidence in a certain way. The ‘answer’ is the new understanding
that the scientist gains, in turn leading to more questions, and more
answers. The process of understanding is described in this way as an
ongoing dialogue between scientist and evidence.

Is this metaphor justified? Gadamer himself points out that ques-
tions play a central role in understanding (Gadamer 1960: II.II.1.c,
p. 283) and the entire last third of Wahrheit und Methode is devoted
to examining the relationship between language and understanding.
As we have seen earlier in this article, Perelman and Olbrechts-Tyteca
consider private deliberation to be a special case of argumentation,
which means that it can also be considered a special kind of dialogue.

s McCloskey writes in a treatise on the scientific rhetoric of the
field of economics, science is not a privileged way of knowing, it is
a way of speaking about things (McCloskey 1985: ch. 4, p. 67).
This fits well with our characterization of science as a persuasive
activity and as dialogue. We can then ask what characterizes scientific
speech, what is the prototypical form of scientific argument. Here we
can find a model in the classic rhetorical concept of epicheireme.
Ordinarily, an argument3 does not state fully and completely all of its

3In rhetorical terminology: enthymeme.

290 appendix a

premises; something is left out and meant to be tacitly understood.
The epicheireme is the fully elaborated argument where the major
premises, minor premises and conclusion are stated in their entirety.
(Kennedy 1984: ch. 1, p. 17.) This, then, is the ideal model for the
scientific argument where everything is laid bare for other scholars
to examine. Of course, in practice, most scientific writing is not
composed of epicheiremes and most scientific investigations are not
even epicheiremes in themselves; instead, they build upon each other.
As an ideal though, the epicheireme is the rhetorical concept that best
characterizes science.

If we view scientific understanding as a dialogue with the field,
then method becomes the way of engaging in the dialogue, of posing
questions and listening to answers. Good method, then, is to let the
dialogue guide the method in such a way that we always engage in
the dialogue in the most fruitful manner. Bad method is to choose
once and for all to fix a method and let it impose arbitrary and un-
warranted restrictions on the dialogue with no regard to how the said
dialogue is evolving. In other words, both the subject of scientific
research and the increasing scientific understanding need to be both
the determinant for and to be above method. “Wie man sieht, ist
das Problem der Methode ganz von dem Gegenstand bestimmt . . . ”
(Gadamer 1960: II.II.2.b, p. 297.)

Acknowledgements: This research is graciously funded by a grant from Svenska
Kulturfonden. Thanks to my reviewers Frog and Sonja Peterson-Lewis for their
insightful comments.

method and fieldwork in a hermeneutical perspective 291

Works Cited

Aristotle. Rhetoric. Here cited according to: Retorik. Trans. Thure Hastrup.
København: Museum Tusculanums Forlag, 2002.

Ehn, Billy 1981. Arbetets flytande gränser: En fabriksstudie. Stockholm: Prisma.

Gadamer, Hans-Georg 1960 [1965]. Wahrheit und Methode. 2nd edn.
Tübingen: J.C.B. Mohr (Paul Siebeck).

Gormsen, Gudrun 1982. “Hedebonden: Studier i gårdmand Peder Knudsens
dagbog 1829–1857”. Folk og Kultur 1982: 58–101. Here cited according to:
Offprint in the series Ief småskrifter.†

Højrup, Thomas 1995. Omkring livsformsanalysens udvikling. København:
Museum Tusculanums Forlag.†

Kennedy, George A. 1984. New Testament Interpretation through Rhetorical
Criticism. Chapel Hill: University of North Carolina Press.

Latour, Bruno, & Steve Woolgar 1979 [1986]. Laboratory Life: The
Construction of Scientific Facts. 2nd edn. Princeton: Princeton University
Press (1st edn.: Sage Publications).

McCloskey, Donald (Deirdre) N. 1985 [1998]. The Rhetoric of Economics. 2nd
edn. Madison: University of Wisconsin Press.

Perelman, Chaïm, & Lucie Olbrechts-Tyteca 1958 [2008]. Traité de
l’argumentation: La nouvelle rhétorique. 6th edn. Bruxelles: Editions de
l’Université de Bruxelles.

† With an English summary.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3226-8
ISSN 1239-1883

Espen Suenson

Espen Suenson

Espen Suenson
H

ow
 C

om
puter Program

m
ers W

ork

H
ow

 C
om

puter Program
m

ers W
ork

H
ow

 C
om

puter Program
m

ers W
ork

