
Turku Centre for Computer Science

TUCS Dissertations
No 193, March 2015

Yuliya Prokhorova

Rigorous Development of
Safety-Critical Systems

Rigorous Development of
Safety-Critical Systems

Yuliya Prokhorova

To be presented, with the permission of the Faculty of Science and
Engineering of the Åbo Akademi University, for public criticism in

Auditorium Gamma on March 5, 2015, at 12 noon.

Åbo Akademi University
Faculty of Science and Engineering
Joukahaisenkatu 3-5 A, 20520 Turku

Finland

2015

Supervisors

Associate Professor Elena Troubitsyna
Faculty of Science and Engineering
Åbo Akademi University
Joukahaisenkatu 3-5 A, 20520 Turku
Finland

Adjunct Professor Linas Laibinis
Faculty of Science and Engineering
Åbo Akademi University
Joukahaisenkatu 3-5 A, 20520 Turku
Finland

Reviewers

Professor Tim Kelly
Department of Computer Science
University of York
Deramore Lane, York YO10 5GH
United Kingdom

Senior Researcher Doctor Marco Bozzano
Fondazione Bruno Kessler
Via Sommarive 18, Povo, 38123 Trento
Italy

Opponent

Professor Tim Kelly
Department of Computer Science
University of York
Deramore Lane, York YO10 5GH
United Kingdom

ISBN 978-952-12-3174-2
ISSN 1239-1883

To my family

Ìîåé ñåìüå ïîñâÿùàåòñÿ

Abstract

Nowadays, computer-based systems tend to become more complex and con-
trol increasingly critical functions a�ecting di�erent areas of human activ-
ities. Failures of such systems might result in loss of human lives as well
as signi�cant damage to the environment. Therefore, their safety needs to
be ensured. However, the development of safety-critical systems is not a
trivial exercise. Hence, to preclude design faults and guarantee the desired
behaviour, di�erent industrial standards prescribe the use of rigorous tech-
niques for development and veri�cation of such systems. The more critical
the system is, the more rigorous approach should be undertaken.

To ensure safety of a critical computer-based system, satisfaction of the
safety requirements imposed on this system should be demonstrated. This
task involves a number of activities. In particular, a set of the safety require-
ments is usually derived by conducting various safety analysis techniques.
Strong assurance that the system satis�es the safety requirements can be
provided by formal methods, i.e., mathematically-based techniques. At the
same time, the evidence that the system under consideration meets the im-
posed safety requirements might be demonstrated by constructing safety
cases. However, the overall safety assurance process of critical computer-
based systems remains insu�ciently de�ned due to the following reasons.
Firstly, there are semantic di�erences between safety requirements and for-
mal models. Informally represented safety requirements should be translated
into the underlying formal language to enable further veri�cation. Secondly,
the development of formal models of complex systems can be labour-intensive
and time consuming. Thirdly, there are only a few well-de�ned methods for
integration of formal veri�cation results into safety cases.

This thesis proposes an integrated approach to the rigorous development
and veri�cation of safety-critical systems that (1) facilitates elicitation of
safety requirements and their incorporation into formal models, (2) simpli-
�es formal modelling and veri�cation by proposing speci�cation and re�ne-
ment patterns, and (3) assists in the construction of safety cases from the
artefacts generated by formal reasoning. Our chosen formal framework is
Event-B. It allows us to tackle the complexity of safety-critical systems as
well as to structure safety requirements by applying abstraction and step-

i

wise re�nement. The Rodin platform, a tool supporting Event-B, assists in
automatic model transformations and proof-based veri�cation of the desired
system properties. The proposed approach has been validated by several
case studies from di�erent application domains.

ii

Sammanfattning

Nuförtiden tenderar datorbaserade system att bli mer komplexa och kon-
trollera allt mer kritiska funktioner som påverkar olika områden av mänskliga
aktiviteter. Brister i sådana system kan leda till förlust av människoliv eller
stora skador på miljön. Detta innebär att vi måste försäkra oss om säker-
heten hos dessa system, men att utveckla säkerhetskritiska system är ingen
enkel uppgift. För att förhindra designfel och garantera önskvärt beteende
föreskriver olika industriella standarder användning av rigorösa tekniker för
utveckling och veri�ering av sådana system. Ju mer kritiskt systemet är
desto mer rigoröst tillvägagångssätt bör användas.

För att garantera säkerheten hos ett kritiskt datorbaserat system måste
det visas att systemet uppfyller de säkerhetskrav det har ålagts. I denna
uppgift ingår ett �ertal förehavanden, men framför allt kan man genom att
bedriva olika former av säkerhetsanalys erhålla en mängd säkerhetskrav. En
stark försäkran om att systemet uppfyller sina säkerhetskrav kan fås via
formella metoder, dvs. matematiskt baserade tekniker. Samtidigt kan bevis
för att systemet uppfyller sina ålagda säkerhetskrav ges genom att framställa
säkerhetsbevisningar (safety cases). Den övergripande processen för att
garantera säkerhet för kritiska datorbaserade system förblir dock otillräckligt
de�nierad på grund av följande orsaker. För det första �nns det semantiska
skillnader mellan säkerhetskrav och formella modeller. Informellt beskrivna
säkerhetskrav bör översättas till det underläggande formella språket för att
kunna veri�eras. För det andra kan utveckling av formella modeller av kom-
plexa system vara arbets- och tidskrävande. För det tredje �nns det enbart
ett fåtal välde�nierade metoder för att integrera formella veri�kationsresultat
i säkerhetsbevisningar.

I denna avhandling föreslås ett integrerat förhållningssätt till rigorös
utveckling och veri�ering av säkerhetskritiska system, vilket (1) underlättar
insamling av säkerhetskrav och deras inkorporering i formella modeller, (2)
förenklar formell modellering och veri�ering genom att föreslå speci�kations-
och preciseringsmönster, och (3) bistår konstruktionen av säkerhetsbevis-
ningar utgående från materialet skapat av formellt resonemang. Det formella
ramverk vi har valt är Event-B. Detta låter oss hantera komplexiteten hos
säkerhetskritiska system och likaså strukturera säkerhetskraven genom att

iii

utnyttja abstraktion och stegvis precisering. Rodin-plattformen, ett verktyg
som stöder Event-B, hjälper till med automatiska modelltransformationer
och bevisbaserad veri�ering av systemets önskvärda egenskaper. Det föres-
lagna tillvägagångssättet har validerats genom ett �ertal fallstudier från olika
tillämpningsområden.

iv

Acknowledgements

First of all, I would like to express my sincere gratitude to my both super-
visors Associate Professor Elena Troubitsyna and Adjunct Professor Linas
Laibinis for their guidance, expert advice, fruitful scienti�c discussions, and
invaluable comments on this thesis. It has been an honour for me to work un-
der their supervision. Furthermore, I would like to thank Professor
Vyacheslav Kharchenko for guiding and encouraging me in the beginning
of my PhD studies at National Aerospace University "KhAI".

I am very thankful to Professor Tim Kelly and Doctor Marco Bozzano
for reviewing this thesis and for providing valuable comments that improved
the quality of the �nal version of this dissertation. I am also very grateful to
Professor Tim Kelly for kindly agreeing to act as an opponent at my doctoral
defence.

Moreover, I would like to thank my external co-authors, Professor Alexan-
der Romanovsky, Doctor Alexei Iliasov, Doctor Ilya Lopatkin, Doctor Timo
Latvala, Doctor Kimmo Varpaaniemi, Doctor Dubravka Ili¢, and Professor
Vyacheslav Kharchenko, for their valuable contribution to this thesis.

I would like to express my gratitude to the members of the Distributed
Systems Laboratory: Adjunct Professor Marina Waldén, Adjunct Professor
Luigia Petre, Doctor Pontus Boström, Doctor Marta Olszewska, Doctor Mats
Neovius, Doctor Maryam Kamali, Petter Sandvik, and Sergey Ostroumov.
I am especially thankful to Professor Kaisa Sere for her sage advice and
support.

Furthermore, I extend my sincere thanks to the members of the Embed-
ded Systems Laboratory, which I joined in the �nal year of my PhD studies.
In particular, I am thankful to Professor Johan Lilius, Doctor Sébastien
Lafond, Doctor Leonidas Tsiopoulos, Doctor Johan Ersfolk, Doctor Anton
Tarasyuk, Inna Pereverzeva, Wictor Lund, Simon Holmbacka, and Sudeep
Kanur.

Moreover, I would like to acknowledge Professor Ion Petre for his encour-
agement and Professor Ivan Porres for all those interesting discussions we
have had.

I am also thankful to the administrative personnel of TUCS, the Faculty
of Science and Engineering and the Academic O�ce at Åbo Akademi Uni-

v

versity for their continuous assistance. In particular, I would like to thank
Tomi Suovuo, Christel Engblom, Nina Hultholm, Tove Österroos, Susanne
Ramstedt, Solveig Vaherkylä, Pia-Maria Kallio, and Outi Tuohi. I would
also like to express my gratitude to the technical personnel: Marat, Karl,
Joakim, and Niklas.

I would like to thank TUCS � Turku Centre for Computer Science and
the Department of Information Technologies at Åbo Akademi University
for the generous funding of my doctoral studies. I am also very grateful
and honoured to receive research scholarships from Foundation of Nokia
Corporation and Ulla Tuominen Foundation.

The �nal months of my work on the dissertation I spent working at Space
Systems Finland Ltd. I wish to sincerely thank all my new colleagues for
their concern and moral support at this stage.

Last but by not least, I would like to express my true thankfulness to
my family and my friends for being there for me during these recent years.
I wish to thank Magnus, Irum, Charmi and Faezeh for brining so many
positive moments into my life.

I owe my special thanks to Petter Sandvik for being a friend and a great
room-mate as well as for his help with the Swedish version of the abstract.

I would like to express my deep gratitude to my best friends, Marta and
Miki Olszewski, for supporting, inspiring and guiding me from the very �rst
days in Turku. I really appreciate the time spend with you.

I am especially grateful to my parents, Irina and Nikolay, as well as
my grandmother, Galina, for their patience, understanding, support and
unlimited love.

Finally, I would like to thank my dearest husband, Sergey. This thesis
would not have been possible without your love, care and support.

Yuliya Prokhorova
Espoo, January 2015

vi

List of original publications

I Ilya Lopatkin, Alexei Iliasov, Alexander Romanovsky, Yuliya Prokho-
rova, and Elena Troubitsyna. Patterns for Representing FMEA in
Formal Speci�cation of Control Systems, In Ankur Agarwal, Swapna
Gokhale, Taghi M. Khoshgoftaar (Eds.), Proceedings of the 13th IEEE
International High Assurance Systems Engineering Symposium
(HASE 2011), pp. 146�151, IEEE Computer Society, 2011.

II Yuliya Prokhorova, Linas Laibinis, Elena Troubitsyna, Kimmo Varpaa-
niemi, and Timo Latvala. Deriving a Mode Logic Using Failure Modes
and E�ects Analysis, In International Journal of Critical Computer-
Based Systems (IJCCBS), Vol. 3, No. 4, pp. 305�328, Inderscience
Publishers, 2012.

III Yuliya Prokhorova, Elena Troubitsyna, and Linas Laibinis. A Case
Study in Re�nement-Based Modelling of a Resilient Control System,
In Anatoliy Gorbenko, Alexander Romanovsky, Vyacheslav Kharchenko
(Eds.), Proceedings of the 5th International Workshop on Software Engi-
neering for Resilient Systems (SERENE 2013), Lecture Notes in Com-
puter Science Vol. 8166, pp. 79-�93, Springer-Verlag Berlin Heidelberg,
2013.

IV Yuliya Prokhorova, Elena Troubitsyna, Linas Laibinis, Dubravka Ili¢,
and Timo Latvala. Formalisation of an Industrial Approach to Mon-
itoring Critical Data, In Friedemann Bitsch, Jérémie Guiochet, Mo-
hamed Kaâniche (Eds.), Proceedings of the 32nd International Confer-
ence on Computer Safety, Reliability and Security (SAFECOMP 2013),
Lecture Notes in Computer Science Vol. 8153, pp. 57-�69, Springer-
Verlag Berlin Heidelberg, 2013.

V Yuliya Prokhorova and Elena Troubitsyna. Linking Modelling in Event-
B with Safety Cases, In Paris Avgeriou (Ed.), Proceedings of the 4th
International Workshop on Software Engineering for Resilient Systems
(SERENE 2012), Lecture Notes in Computer Science Vol. 7527,
pp. 47-�62, Springer-Verlag Berlin Heidelberg, 2012.

vii

VI Yuliya Prokhorova, Linas Laibinis, and Elena Troubitsyna. Towards
Rigorous Construction of Safety Cases. TUCS Technical Report 1110,
TUCS, May 2014. (Shortened version is available as: Yuliya Prokhorova,
Linas Laibinis, and Elena Troubitsyna. Facilitating Construction of
Safety Cases from Formal Models in Event-B, In Information and Soft-
ware Technology Journal, Vol. 60, pp. 51�76, Elsevier, 2015.)

VII Yuliya Prokhorova and Elena Troubitsyna. A Survey of Safety-Oriented
Model-Driven and Formal Development Approaches, In International
Journal of Critical Computer-Based Systems (IJCCBS), Vol. 4, No. 2,
pp. 93�118, Inderscience Publishers, 2013.

viii

Contents

I Research Summary 1

1 Introduction 3

1.1 Motivation . 3
1.2 Research Objectives . 5
1.3 Organization of the Thesis . 9

2 Background 11

2.1 Dependability and Safety: De�nitions and
Taxonomy . 11

2.2 Techniques for Safety Analysis 12
2.3 Model-Based Development Using Formal

Methods . 15
2.4 Event-B Method . 17
2.5 Safety Cases . 19

3 Safety-Driven Formal Development and Veri�cation

of Critical Systems 25

3.1 Incorporating Safety Requirements from Safety
Analysis into Formal Development 25

3.2 Facilitating Rigorous Development and
Veri�cation of Safety-Critical Systems 31

3.3 Constructing Safety Cases from Artefacts of
Formal Development and Veri�cation 36

3.4 Discussion . 41

4 Summary of the Original Publications 43

5 Related Work 51

5.1 Approaches to Requirements Elicitation and
Formalisation . 51

5.2 Approaches to Model-Based Development and
Veri�cation of Critical Systems 55

ix

5.3 Approaches to Model-Oriented Safety Case
Construction . 57

6 Conclusions and Future Work 59

6.1 Research Conclusions . 59
6.2 Future Work . 60

Bibliography 63

Complete List of Original Publications Related to the Thesis 77

II Original Publications 81

x

Part I

Research Summary

1

Chapter 1

Introduction

1.1 Motivation

Computer-based systems are found in di�erent areas of human life. Examples
of such systems are medical equipment and tra�c control systems, car airbag
and braking systems, nuclear reactor control and cooling systems, aerospace
on-board systems, etc. In recent years, computer-based systems have become
more complex and tend to control more and more critical functions. Failures
of such systems might lead to severe consequences such as loss of human
lives, damage to the environment or high economic losses. Therefore, it is
important to achieve dependability of these systems, i.e., the ability of a
system to deliver services that can be justi�ably trusted [12, 13, 127].

Dependability is a multifaceted concept that has several attributes, e.g.,
safety, reliability, availability, etc. [12, 13]. Depending on the type of a
system under consideration, the emphasis may be put on ensuring one or
several of these attributes. In the context of this thesis, we focus on safety.
Safety is the ability of a system to operate without causing catastrophic
consequences for its users and environment [13, 127]. The critical systems
where the main focus is put on safety are called safety-critical systems [87].

To properly design such systems, the developers should take into account
the interplay between software and hardware as well as the environment in
which the system will be expected to function. Complexity of modern safety-
critical systems has stimulated the growth of model-based development tech-
niques that can be applied at the early stages of System Development Life
Cycle (SDLC). The main goal of these techniques is the development and
analysis of a model of a system rather than inspection of the �nal system
implementation. A model is an abstraction allowing for representation or
approximation of selected features of a system, process or concept. The
model-based development involves construction of a system model, its anal-
ysis, veri�cation, as well as generation of code and test cases.

The model-based development vary in the degree of rigour. On the one
hand, there are model-based approaches that put emphasis on a graphical

3

notation without formally de�ned semantics, e.g., Uni�ed Modelling Lan-
guage (UML) [108]. On the other hand, there are approaches that rely on
formal speci�cation languages, i.e., languages with rigorously de�ned seman-
tics. As recommended by the standards [77, 78], the rigorous techniques such
as formal methods (mathematically-based techniques) are applied to systems
with a high level of criticality to prevent design faults and ensure the correct
system behaviour.

Usually, the model-based development techniques allow us to capture
the nominal system behaviour. However, to attain system safety, we need
to guarantee that, even in the presence of failures of system components or
some adverse changes in the environment, the system will not be put into
a hazardous state. The required mechanisms for failure detection and fault
tolerance further increase complexity of such systems. Hence, we need a
scalable approach to rigorous system development that would consider the
system in its entirety and would support handling of complexity, abstraction,
and proof-based veri�cation. In this thesis, we rely on the Event-B formal-
ism [3] that satis�es these criteria. The development process in Event-B
starts from abstract models and continues to concrete models via a chain
of correctness preserving transformations called re�nements [3, 18]. Re-
�nement allows us to structure complex (safety) requirements by gradually
introducing their representation in the system model as well as reason about
system-level properties at di�erent levels of abstraction.

To ensure safety, we need to demonstrate satisfaction of the safety re-
quirements imposed on the system. A valuable source of safety requirements
is safety analysis. Hence, it can be bene�cial to connect formal develop-
ment with safety analysis techniques such as Fault Tree Analysis (FTA),
Failure Modes and E�ects Analysis (FMEA), etc. However, due to the se-
mantic di�erences between the results of safety analysis and formal models,
establishing this connection remains challenging. Furthermore, certi�cation
of safety-critical systems requires submission of safety assurance documents,
e.g., in the form of safety cases. A safety case justi�es why a system is safe
and whether the design adequately implements the imposed safety require-
ments [25, 45, 85]. The results of formal veri�cation can be used to provide
the required evidence for a system safety case.

To build a rigorous framework spanning from safety requirements and
safety analysis to safety assurance, we need an integrated approach that in-
corporates safety requirements, including those given as the results of safety
analysis, into formal models for veri�cation, facilitates formal development
and veri�cation of safety-critical systems via pre-de�ned patterns, as well as
establishes a link between the results of formal veri�cation and safety cases.
This thesis proposes such an approach. Next we state the research objectives
of this thesis and outline the proposed solutions to achieve them.

4

1.2 Research Objectives

The overall objective of this thesis is to propose an approach to rigorous
development and veri�cation of safety-critical systems that integrates safety
analysis into formal development and facilitates safety assurance. To achieve
this objective, we address the following Research Questions (RQs):

RQ1: How to ensure a seamless integration of safety requirements into for-
mal development?

RQ2: How to facilitate formal development and veri�cation of safety-critical
systems using speci�cation and re�nement patterns?

RQ3: How to support the safety assurance process with the artefacts gener-
ated by formal development and veri�cation?

Next we discuss each research question in detail. We �rst provide the
motivation behind a research question and then justify the approaches taken
in this thesis to address it. A more detailed description of the thesis contri-
butions is presented in Chapter 3.

Integrating Safety Requirements into Formal Development. Usu-
ally, System Development Life Cycle (SDLC) starts from the requirements
phase where the requirements are elicited, analysed and documented. There
exist two commonly recognised types of requirements: functional and non-
functional. The former de�ne the dynamic behaviour of a system, while the
latter impose restrictions on the quality of service delivered by the system.
The examples of non-functional requirements for safety-critical systems are
safety, reliability, performance, security, and usability [106].

Various dedicated techniques are used to elicit and analyse di�erent kinds
of requirements within requirements engineering [142]. They may include
such activities as analysis of existing systems or documentation, prototyp-
ing, development of use cases and scenarios as well as hazard and risk analy-
sis. As a result, system requirements, including safety requirements, can be
represented either textually, graphically or in a tabular form.

In the development of safety-critical systems, safety analysis plays an im-
portant role. For instance, FMEA [58, 93, 127] de�nes a systematic frame-
work to deal with safety requirements. A system under consideration is
analysed component by component in order to obtain a set of failure modes
as well as detection and recovery actions. However, the representation of
the desired (safety) requirements in a formal system model is not a straight-
forward task. Despite the fact that the safety analysis techniques give us
a certain structure of safety requirements, they are still mostly de�ned in
the natural language. Therefore, additional research e�orts are needed to

5

translate informally given requirements into the underlying formal language
for further veri�cation. This leads to our �rst research question RQ1:

How to ensure a seamless integration of safety requirements into formal
development?

Approach: In general, this question can be addressed in several ways. For
example, the safety requirements structured according to a particular used
safety analysis technique can be incorporated into a formal model by estab-
lishing the mapping between the structural blocks imposed by the technique
and the formal model elements. Moreover, safety requirements informally
expressed in the natural language can be translated into a formal language
by de�ning the correspondence between natural language words or phrases
and the respective elements of the formal language.

In this thesis, we �rstly propose an approach to direct representation of
safety analysis results, speci�cally FMEA results, within a formal model.
We achieve it by de�ning a set of patterns, i.e., generic solutions for certain
typical problems, and automate their application. These generic patterns
play the role of an intermediary between the informal description of safety
requirements derived from FMEA and their formal representation. A similar
approach can be applied to di�erent types of computer-based systems. In
particular, since operational modes are a commonly used mechanism for
structuring the system behaviour, we demonstrate how FMEA results can
be used to derive the fault tolerance procedures for mode-rich systems, i.e.,
the systems whose dynamic behaviour is de�ned in terms of modes and
transitions between these modes.

Secondly, we propose an approach to incorporating safety requirements
represented in the natural language into a formal model by classifying them
and de�ning a speci�c mapping function for each class. This function estab-
lishes a link between the given safety requirements and a set of the related
formal model expressions constructed from formal model elements (e.g., ax-
ioms, variables, invariants, etc.). This allows us to give the requirements the
formal semantics of the underlying formal language and also facilitate their
traceability.

We validate the proposed approaches by several case studies, speci�cally,
a sluice gate control system, an attitude and orbit control system, and a
steam boiler control system.

Facilitating Formal Development and Veri�cation. The requirements
phase is followed by the design phase in SDLC. In the context of this thesis,
this phase is associated with the formal development of a system by re�ne-
ment. According to this approach, the system development starts from an
abstract system model, which is then gradually elaborated by unfolding sys-
tem implementation details in a number of model transformation steps. This

6

approach allows us to deal with the system complexity and to develop the
system correct-by-construction. Moreover, re�nement supports an iterative
development and feedback by veri�cation. In this way, contradicting system
requirements can be detected.

Despite clear bene�ts of using formal methods in SDLC as fault pre-
vention techniques, development of formal models is a labour-intensive and
time consuming task. The use of formal development patterns, i.e., generic
reusable models devoted to formalise typical problems [5], may simplify this
task and reduce the overall development time. To enhance formal develop-
ment of safety-critical systems, in our second research question RQ2, we
address the problem of derivation and reuse of patterns:

How to facilitate formal development and veri�cation of safety-critical
systems using speci�cation and re�nement patterns?

Approach: We follow the system approach [69] to model a computer-based
system together with its environment. In addition to relying on stepwise
re�nement to deal with the system complexity, in this thesis we propose
speci�cation and re�nement patterns that cover an abstract model of a sys-
tem as well as speci�c model transformations expressed as generic re�nement
steps. The re�nement steps introduce details of the nominal behaviour as
well as the error detection and error handling procedures needed to improve
safety of the modelled system. The proposed speci�cation and re�nement
patterns have a number of generic parameters (constants, functions, etc.),
which allows us to instantiate the patterns for a class of suitable systems.

Our patterns cover di�erent types of computer system architectures,
namely, centralised and distributed. A centralised system is a system that
runs computations on a single computer, while a distributed system is a sys-
tem where computations are allocated to several computers to be processed.
In this thesis, we consider control and monitoring systems as examples of
such centralised and distributed systems. A control system is a system in
which a controller analyses the state of the environment by reading sensors
and directly a�ects it by commanding actuators. Malfunctioning of the con-
troller may lead to a hazardous situation. A monitoring system is a system
that analyses a state of the environment and provides data to (human) op-
erators. It does not directly command actuators. However, an operator can
make a decision based on incorrect data, which may cause a hazard.

The proposed speci�cation and re�nement patterns have been validated
by the following case studies: a sluice gate control system, a steam boiler
control system, and a temperature monitoring system.

Assuring Safety. Exploitation of safety-critical systems is not possible
without their prior certi�cation. A certi�cate accommodates all the neces-

7

sary information for an independent assessment of the required properties of
a system [46]. Construction of a safety case for assuring safety of a system
with a high level of criticality has become a strongly recommended part of
the certi�cation process [139]. A safety case is a structured argument provid-
ing justi�cation that a system is acceptably safe for a certain application in
a certain environment [25, 85]. To tackle the complexity of building a system
safety case, argument patterns (or safety case patterns) have been proposed.
Argument patterns are commonly used structures intended to assist in con-
struction of a safety case [86]. A safety case aims at demonstrating (relying
on the available evidence) that the system is safe. The evidence may com-
prise the results of analysis, testing, simulation as well as formal veri�cation.
Nonetheless, the use of formal veri�cation results as the evidence in safety
cases is currently limited. A possible reason for this is a small number of
well-de�ned methods for using formal development and veri�cation results
in safety cases. Therefore, our third research question RQ3 is

How to support the safety assurance process with the artefacts generated
by formal development and veri�cation?

Approach: To address this question, we propose an approach to rigorous
construction of structured safety cases from formal models. It guides the de-
velopers starting from the informal representation of safety requirements to
building the corresponding parts of safety cases via formal modelling and ver-
i�cation in Event-B and the accompanying toolsets. The proposed approach
is supported by a set of argument patterns. These patterns are graphically
represented by means of Goal Structuring Notation (GSN) [61, 85]. We base
our argument patterns on our earlier de�ned classi�cation of safety require-
ments and their mapping into the respective elements of formal models.

Additionally, in the scope of this approach, we propose the argument
pattern for demonstrating that the formal system models themselves are
well-de�ned. Speci�cally, one is needed to argue that all the models in the
development do not contain logical inconsistencies and there are no infeasible
mathematical de�nitions of model elements.

We validate the proposed approach and demonstrate instantiation of the
argument patterns by series of small case studies as well as a larger case
study � a steam boiler control system.

Overview of the General Approach. Figure 1.1 gives an overview of the
approach proposed in this thesis. There are several steps associated with
this approach: (1) elicitation and formalisation of informally de�ned safety
requirements of critical systems, (2) formal development of such systems and
formal veri�cation of the associated safety properties, as well as (3) demon-
stration that the imposed safety requirements are met. These steps are

8

Event-B
specification

· constants
· axioms
· variables
· invariants
· theorems
· events

Proof
obligations

Solution

Sn1

Goal
G1

Strategy
S1

Sub-goal
G2

Sub-goal
G3

C1
Context

Safety caseRequirements

Elicitation of
requirements

(RQ1)

Construction of
safety cases

(RQ3)

Formalisation and
verification in Event-B

(RQ2)

Figure 1.1: Overall picture of the approach proposed in the thesis

respectively re�ected by the considered research questions RQ1�RQ3. The
research questions complement each other and result in an integrated ap-
proach to the formal development and veri�cation of safety-critical systems.
Based on the obtained validation results, we can claim that the proposed
approach has demonstrated good scalability, i.e., its capability to rigorously
assure safety of systems with a high degree of complexity.

1.3 Organization of the Thesis

This thesis consists of two parts. In Part I, we overview the research pre-
sented in the thesis. In Part II, we include reprints of the original publi-
cations. The research summary is structured as follows. In Chapter 2, we
overview the dependability concepts, brie�y describe the safety analysis tech-
niques utilised in the thesis, and outline rigorous approaches to development
and veri�cation of critical systems. Moreover, we introduce an adopted for-
malism, the Event-B method, and overview safety cases and their supporting
graphical notation. Chapter 3 elaborates on the main contributions of this
thesis by focusing on our proposed methods for integrating safety require-
ments into formal models of critical systems, approaches that aim at sim-
plifying and guiding formal development and veri�cation of these systems,
as well as techniques towards utilising formal development and veri�cation
results in safety cases. In Chapter 4, we give a detailed description of the
original publications included in the thesis. Chapter 5 contains an overview
of related work in the �eld of formal development of safety-critical systems.
Finally, in Chapter 6, we give the concluding remarks as well as discuss
future research directions.

9

10

Chapter 2

Background

In this chapter, we outline the system dependability concept focusing on
safety aspect. We also overview formal development and veri�cation ap-
proaches and brie�y introduce Event-B. Finally, we describe safety cases
and their graphical notation.

2.1 Dependability and Safety: De�nitions and

Taxonomy

The concept of system dependability was proposed by Laprie [89] and en-
hanced by Aviºienis et al. [12, 13]. They de�ne dependability as the ability
of a system to deliver services that can be justi�ably trusted. This prop-
erty comprises several attributes such as safety, reliability, availability, etc.
Nowadays, dependability has been extended to address openness and in-
evitable changes (both internal and external) that modern systems have to
cope with. The ability of a system to remain dependable despite changes is
called resilience [90, 91]. In this thesis, we focus on safety aspects of critical
computer-based systems. Safety is the ability of a system to operate without
causing catastrophic consequences for its users and environment [13, 127].

The dependability taxonomy introduces threats and means for depend-
ability. The threats are faults, errors and failures. A fault is a defect in a
system. It can be either a software bug (a development fault), a hardware
imperfection (a physical fault), or an incorrect user action (an interaction
fault). A fault may cause an error. An error is a system state deviating from
the correct system state and appearing at runtime. In its turn, an error may
lead to a failure if it has not been detected and handled by a system. A
failure is an event that occurs when a system deviates from its speci�cation.

The means to deal with these threats are fault prevention, fault tolerance,
fault removal, and fault forecasting techniques [12, 13]. More speci�cally, the
fault prevention and fault removal methods aim at avoiding introduction or

11

reducing a number of faults in a system at the stage of its development, i.e.,
before the system is put into operation. Typically, they include various test-
ing techniques as well as the methods for rigorous development, veri�cation
and validation such as formal methods and model checking.

The fault tolerance techniques allow a system to continue its intended
operation in the presence of faults. There are two stages associated with
fault tolerance � error detection and system recovery [13]. Error detection is
a process of identifying the presence of errors in a system. Then, when er-
rors have been detected, the system performs recovery by eliminating errors
from the system state (i.e., error handling) and preventing faults from reap-
pearing (i.e., fault handling). Typically, error handling is performed using
the rollback, rollforward procedures (a system is put either in the previous
or the next state without the detected errors), or compensation procedures
(a system remains in the current state but errors are masked using, e.g.,
redundancy). In its turn, fault handling is achieved by, e.g., isolation (log-
ical exclusion of faulty components) or recon�guration (switching to spare
components). Finally, the fault forecasting techniques aim at estimating the
number of faults and impact of these faults on the system behaviour.

To assure that a critical system provides an acceptable level of safety,
di�erent safety analysis techniques can be conducted. Next, we overview the
techniques we rely upon in this thesis.

2.2 Techniques for Safety Analysis

Safety analysis aims at identifying risks and hazards associated with a sys-
tem, possible causes of these hazards, as well as the methods to cope with
them. The results of safety analysis allow us to de�ne the safety requirements
to be imposed on a system.

There is a wide range of safety analysis techniques adopted in the model-
based development process [84, 130]. Among them, Event Tree Analysis
(ETA) [9], Failure Modes and E�ects Analysis (FMEA) [58, 93, 127], Fault
Tree Analysis (FTA) [127, 136], Functional Hazard Analysis (FHA) [140],
HAZard and OPerability analysis (HAZOP) [127], Preliminary Hazard Anal-
ysis (PHA) [127], etc., should be mentioned. It is often the case that sev-
eral techniques are combined in order to cover di�erent types of safety re-
quirements. For instance, according to the Society of Automotive Engineers
(SAE) International Aerospace Recommended Practice (ARP) 4754A and
4761, FHA is advised to be conducted to identify hazards and classify them
depending on their consequences. This classi�cation typically produces spe-
ci�c kinds of safety requirements, e.g., about avoidance of catastrophic failure
conditions. Safety analysis techniques such as FMEA and FTA can then be
used to derive additional safety requirements.

12

FMEA allows us to analyse complex systems by proceeding hierarchically
over their structure (components). It permits us to perform the analysis of
subsystems as well as of individual system components. FMEA tables are
very useful to describe system and component failures in detail. However,
FMEA is typically limited to consideration of single failures at a time. This
necessitates the use of complementary safety analysis techniques, e.g., FTA,
to identify and analyse combinations of failures and generic (common cause)
failures. The results of FMEA grouped together as single failure modes with
the same failure e�ect correspond to basic events in FTA.

Combined application of a bottom-up safety analysis method, such as
FMEA, and a top-down method, such as FTA, is recommended by the rail-
way domain standard EN 50129 [54]. The goal is to assure that no single
(hardware) component failure mode is hazardous.

In our work, we rely on FMEA and FTA to systematically derive the
safety and fault tolerance requirements for critical computer-based systems.
Therefore, in this section, we overview both FMEA and FTA.

Failure Modes and E�ects Analysis (FMEA) [58, 93, 127] is an in-
ductive, bottom-up safety analysis technique. For each item in a system,
e.g., a system function or a component, it identi�es possible failure modes,
failure causes, local and system e�ects, as well as detection procedures and
recovery actions. The corresponding information is typically collected in a
tabular form.

FMEA is a technique which can be performed at di�erent levels, e.g.,
system level (focusing on global functions) or component level (examining
functions of each component separately). As a result, the content of a FMEA
worksheet may vary. For example, among other things, it may take into
account the probability of failure occurrence, severity, risk level, etc. The
variation of FMEA that takes into account the criticality of a failure mode
is called FMECA. The criticality is a relative measure of the consequences
of a failure mode and the frequency of its occurrence [102]. Since the focus
of our work is logical modelling and veri�cation, we leave the quantitative
system aspects aside. Therefore, we utilise only the core �elds of a FMEA
worksheet for our purposes. These �elds and their descriptions are given in
Figure 2.1.

However, FMEA does not allow us to analyse multiple and common cause
failures and their in�uence on the overall safety of the system. Therefore,
we need to conduct safety analysis of a critical system by relying on several
techniques. For example, we can complement FMEA by FTA.

Fault Tree Analysis (FTA) [127, 136] is a deductive, graphical top-down
method for safety analysis of both hardware and software systems. A fault
tree starts with an event directly related to the identi�ed hazard and works

13

Item (component) Name of a component

Failure mode Potential failure modes

Possible cause The most probable causes associated with the assumed failure mode

Local effects Caused changes in the component behaviour

System effects Caused changes in the system behaviour

Detection A description of the methods by which occurrence of the failure

mode is detected

Remedial action Actions to tolerate the failure

Figure 2.1: FMEA worksheet

backwards to identify the chain of events and their interplay that lead to the
occurrence of the top event. FTA relies on boolean logic to express relations
between events. The FTA results are represented as a tree structure (Fig-
ure 2.2). More details on the graphical representation of tree elements can
be found in [59, 93, 127]. A set of basic events, the simultaneous occurrence
of which would cause the occurrence of the top event, is called a cut set. A
minimal cut set is the least set of basic events that lead to the top event.
Examination of the obtained minimal cut sets allows us to identify the weak
points in the design of a system as well as recognise single point failures, i.e.,
when the occurrence of a single basic event causes the immediate occurrence
of the main hazard.

Top event

AND

Basic event

OR

Intermediate
event

Basic event Basic event

Figure 2.2: Fault tree structure

Analysis of the resulting fault trees determines whether a system is suf-
�ciently safe, i.e., the intended safety criteria are met. If it is not the case,
the system design needs to be improved and the system is analysed again.
This process can be repeated several times until the safety criteria are met
and we can conclude that the system is su�ciently safe.

14

The safety analysis techniques is a valuable source of safety requirements.
To verify that the system ful�ls these requirements, we need rigorous tech-
niques such as formal methods. In the following two sections, we overview
formal development and veri�cation approaches as well as present the Event-
B method adopted in this thesis.

2.3 Model-Based Development Using Formal

Methods

Application of formal methods is an evolving direction in the model-based
engineering [19, 27]. Formal methods are mathematically-based techniques
for system modelling and veri�cation. They rely on formal speci�cation lan-
guages, i.e., languages with rigorously de�ned semantics, to create a model
of a system. Then, the obtained formal model can be used for analysis and
veri�cation of system properties as well as code generation, static veri�ca-
tion of existing code or generation of test cases. In this thesis, we employ a
speci�c formal method (Event-B) to develop a system model which satis�es
the safety requirements imposed on this system.

Abadi and Lamport [1] have distinguished two categories of formal spec-
i�cation methods: state-based and action-based. System models built using
the state-based formalisms are viewed as state transition systems. It means
that a modelled system formally represents an abstract machine that con-
sists of a distinguishable set of states and a set of transitions between these
states. A state typically corresponds to a vector of values assigned to the
model variables. The examples of such formalisms are VDM [135], the Z
notation [126], Action Systems [16, 17], the B Method [2], and Event-B [3],
etc. System models in action-based formalisms can be seen as a sequence
of actions where an action is de�ned as a state change. These formalisms
include process algebraic methods such as Communicating Sequential Pro-
cesses (CSP) [72], π-calculus [103], ambient calculus [124], etc. They are used
for high-level speci�cation of interactions, communications, and synchroni-
sations between independent processes in cryptographic protocols, business
processes and molecular biology.

Availability of tool support plays an important role in the choice of a
formal method to be employed for the system formal development and veri-
�cation. Typically, such tools not only perform syntactical checks of a system
model but also assist in verifying the desired system properties by the means
of theorem proving or model checking.

Theorem proving is a veri�cation technique used to ensure that a model
satis�es the desired system properties by proving the obtained proof obli-
gations without model execution or simulation. As a result, the full model
state space is explored with respect to the speci�ed properties. There are

15

two types of theorem provers: general purpose such as ACL2 [6], HOL [73],
or Isabelle/HOL [105] and specialised (integrated with a speci�c formal de-
velopment framework) such as the integrated theorem provers for Event-B
and VDM.

Model checking [35] is a technique for verifying �nite-state systems. Prop-
erties of such systems are expressed as temporal logic formulas de�ning con-
straints over the system dynamics. Similarly to theorem provers, model
checkers can be either stand-alone, e.g., NuSMV [107], SPIN [74], Uppaal
[22], etc., or provided as a part of a development framework, e.g., a plug-in
for the Rodin platform enabling model checking in Event-B [113].

In our work, we have chosen the Event-B formalism [3] due to several
reasons. First, it supports modelling of a system together with its environ-
ment. Consequently, it allows us to verify the system-level properties such
as safety. Second, modern safety-critical systems are complex, hence their
models are also complex and large in size. To address complexity, Event-B
supports the stepwise re�nement approach. It allows us to gradually in-
troduce the details of system behaviour as well as verify system properties
at di�erent levels of abstraction. Third, the re�nement steps preserve cor-
rectness leading to the correct-by-construction system development. Finally,
Event-B has a mature tool support � the Rodin platform [56]. This tool
allows for automatic model transformations, generation of proof obligations
and has a user-friendly interface for discharging the generated proof obli-
gations utilising both automatic and interactive provers. Additionally, the
platform enables animation, model checking, and code generation with the
help of the accompanying plug-ins.

Industrial applications of formal methods. During the last two decades,
formal methods have been successfully applied to development and veri�ca-
tion of systems from various domains. Experience in the practical use of
formal methods is summarised in [26, 141]. For instance, Woodcock et al.
[141] have surveyed a number of projects and concluded that the use of formal
methods allows the developers to improve quality of the �nal products. The
authors also con�rm scalability of these methods for industrial applications.

The most famous examples from the railway domain are the application
of the B Method by Alstom � Automatic Train Protection for the French
railway company (SNCF) in 1993, Siemens Transportation Systems � Au-
tomatic Train Control for the driverless metro line 14 in Paris (RATP) in
1998, and ClearSy � Section Automatic Pilot for the light driverless shuttle
for Paris-Roissy airport (ADP) in 2006 [36]. Moreover, Alstom and Siemens
are currently reusing their B models to develop new products worldwide.

Another examples from avionics include the application of VDM to mod-
elling and veri�cation of a part of the UK air tra�c management system,
the Central Control Function (CCF) Display Information System, in 1996

16

[67] and more recent use of SCADE Suite [123] to develop the Airbus A380
control and display system [23, 53].

Finally, a success story on the use of formal methods for development
and veri�cation of a medical device, a cardiac pacemaker, is reported in [62].
The adopted formalism in this study is the Z notation.

2.4 Event-B Method

Event-B [3, 56] is a formal method for development and veri�cation of de-
pendable reactive and distributed systems. It has evolved from the Action
Systems formalism [16, 17] and the B Method [2]. The associated Rodin plat-
form [56], together with the accompanying plug-ins [122], provides a mature
tool support for automated modelling and veri�cation of critical computer-
based systems.

An Event-B model can be de�ned by a tuple (d, c, A, v,Σ, I, Init, E),
where d represents sets, c stands for constants, v corresponds to a vector of
model variables, Σ is a model state space determined by all possible values
of the vector v. A(d, c) is a conjunction of axioms, while I(d, c, v) is a
conjunction of invariants. Init is an non-empty set of model initial states
such that Init ⊆ Σ. Finally, E is a set of model events.

Event-B uses the abstract machine notation [3], which consists of the
static and dynamic parts called CONTEXT and MACHINE respectively.
On the one hand, the sets (d) and constants (c) of a modelled system are
de�ned in the CONTEXT components, where their properties are postu-
lated as axioms (A). On the other hand, the model variables (v), invariants
(I) and events (E), including the initialisation event (Initialisation), are in-
troduced in the MACHINE components. The model variables are strongly
typed by constraining predicates stated as system invariants. A MACHINE
component can be connected to one or several CONTEXT components by
a binding relation called Sees. A generalised representation of the Event-B
components is shown in Figure 2.3.

Each event e ∈ E may have the following form:

e =̂ any lv where g then R end,

where lv is a list of local variables, the guard g is a conjunction of predicates
de�ned over the model variables, and the action R is a parallel composition
of assignments over the model variables.

The guard of an event de�nes when this event is enabled. In case when
several events are enabled simultaneously, any of them can be chosen for
execution non-deterministically. If there is no enabled event, the system
deadlocks. There are two types of assignments over the variables: deter-
ministic and non-deterministic. A deterministic assignment is expressed as
x := Expr(v), where x is a state variable and Expr(v) is an expression over

17

MACHINE M_Name

variables v

invariants I

events

 Initialisation

 e1

 …

 eN

end

CONTEXT C_Name

constants c

sets d

axioms A

Sees

Figure 2.3: General representation of Event-B MACHINE and CONTEXT

the state variables v. A non-deterministic assignment can be denoted as
x :∈ S or x :| Q(v, x′), where S is a set of values and Q(v, x′) is a predicate.
As a result of a non-deterministic assignment, x gets any value from S or it
obtains a value x′ satisfying Q(v, x′).

The Event-B language can also be extended by di�erent kinds of at-
tributes attached to model events, guards, variables, etc. We will use Event-
B attributes to contain formulas or expressions to be used by external tools
or Rodin plug-ins, e.g., Linear Temporal Logic (LTL) formulas to be checked.

Semantically Event-B events are de�ned using before-after predicates
(BAs) [3, 75, 101]. BAs declare the relationships between the system states
before and after execution of events. Hence, the semantic de�nition of an
event presented above can be given as the relation describing the correspond-
ing state transformation from v to v′, such that:

e(v, v′) = ge(v) ∧ I(v) ∧BAe(v, v
′),

where ge is the guard of the event e, BAe is the before-after predicate of
this event, and v, v′ are the system states before and after event execution
respectively.

Re�nement in Event-B. The main development methodology of Event-
B is top-down re�nement (Figure 2.4). It is a process of transforming an
abstract speci�cation of a system (i.e., an abstract model) into a detailed sys-
tem model via stepwise unfolding of implementation details (i.e., re�nement
steps) yet preserving its correctness. We say that a more detailed model
Re�nes a more abstract one.

Abstract

model

The 1
st

refinement

Refines The N
th

refinement

Refines
... ...

Code generation

Figure 2.4: Event-B re�nement

To preserve a validity of a re�nement step, every possible execution of
the re�ned model must correspond to some execution of the abstract model.

18

The re�nement-based development allows us to reduce non-determinism of
an abstract model as well as introduce new concrete variables and events into
the model. This type of a re�nement is known as a superposition re�nement.
Additionally, Event-B supports data re�nement. It allows us to replace some
abstract variables with their concrete counterparts. In this case, a part of
the invariant of a re�ned model, called gluing invariant, formally de�nes the
relationship between the abstract and concrete variables.

Furthermore, the most detailed model obtained during the re�nement-
based development can be used for code generation. Speci�cally, the Rodin
platform [56], a tool supporting Event-B, permits for program code gener-
ation utilising a number of plug-ins. For example, EB2ALL [52], which is
a set of translator plug-ins, allows for automatic generation of a target pro-
gramming language code from an Event-B speci�cation. In particular, EB2C
allows for generation of C code, EB2C++ supports C++ code generation,
using EB2J one can obtain Java code, and using EBC# � C# code.

The consistency (e.g., invariant preservation) and well-de�nedness of
Event-B models as well as correctness of re�nement steps are demonstrated
by discharging the respective proof obligations (POs). The complete list of
POs can be found in [3]. The Rodin platform [56] automatically generates
the required POs and attempts to automatically prove them. Sometimes it
requires user assistance by invoking its interactive prover. In general, the tool
achieves a high level of automation (usually over 80%) in proving. Therefore,
the Event-B method together with its mature tool support is attractive for
both academic and industrial applications.

Event-B is highly suitable for safety assurance of highly critical systems
due to its proof-based veri�cation. However, to justi�ably demonstrate that
such systems can be safely operated, we utilise safety cases. Next, we de-
scribe in detail safety cases, their supporting graphical notation, as well as
provide a small example illustrating the structural representation of a safety
case.

2.5 Safety Cases

To assure dependability, security and safety of critical systems in a structured
way, assurance cases have been proposed. An assurance case is "a body of
evidence organized into an argument demonstrating that some claim about a
system holds, i.e., is assured" [112]. The construction, review and acceptance
of assurance cases are the key elements of safety assurance process for many
industrial applications. Several standards request submission and evaluation
of assurance cases, e.g., the automotive domain standard ISO 26262 [78],
the railway domain standard EN 50128 [55], and the UK Defence Standard
00-56 [45]. We can distinguish three types of widely recognized assurance

19

cases named accordingly to what property or attribute they allow to assure:
dependability cases (D-cases) [40], security cases [112] and safety cases [25,
85].

In this thesis, we use safety cases as justi�cation arguments for safety of
critical computer-based systems. Therefore, here we give a detailed descrip-
tion of the safety cases and essential elements of their supporting graphical
notation. A safety case is "a structured argument, supported by a body of
evidence that provides a convincing and valid case that a system is safe for
a given application in a given operating environment" [25, 45]. Essentially,
a safety case includes the following elements [25]:

• claim � a statement de�ning a property of a system or a subsystem;

• evidence � facts, assumptions or sub-claims founding the basis of the
safety argument;

• argument � a link between the evidence and the claim based on infer-
ence (transformation) rules.

To facilitate construction of safety cases, two main graphical notations
have been proposed: Claims, Arguments and Evidence (CAE) notation [32]
and Goal Structuring Notation (GSN) [61, 85]. In our work, we rely on the
latter one due to its support for argument patterns (or safety case patterns),
i.e., common structures capturing successful argument approaches that can
be reused within a safety case [86].

GSN aims at graphical representation of the safety case elements and the
relationships that declare a link between these elements. Figure 2.5 illus-
trates the elements of the notation. Typically, a safety case constructed us-
ing GSN consists of goals, solutions and strategies that correspond to claims,
evidence and arguments. More speci�cally,

• goals are propositions in an argument that can be said to be true or
false (e.g., claims of requirements to be met by a system);

• solutions contain references to the information obtained from analysis,
testing or simulation of a system, i.e., the evidence used to demonstrate
that goals have been met;

• strategies are reasoning steps describing how goals are decomposed and
addressed by sub-goals.

In other words, a safety case constructed in GSN represents decomposition
of goals into sub-goals following some strategies until the sub-goals can be
supported by the direct evidence. It may also explicitly de�ne relied assump-
tions and the context in which the goals and strategies are declared as well

20

In context of

Is solved by

Goal (G)

Context (C)

Undeveloped
Goal (G)

Strategy (S)

A

Assumption (A)

Solution
(Sn)

Undeveloped
Strategy (S)

A proposition in an argument that can be

said to be true or false

A goal that intentionally left undeveloped in

the argument and needs to be developed

later on

Either a rule to be used in solution of a goal

or a rule to break down a goal into a

number of sub-goals

A strategy that intentionally left

undeveloped in the argument and

needs to be developed later on

Information necessary for an argument to

be understood, i.e., contextual information

A statement whose validity has to be

trusted in order to make an argument

A reference to an evidence demonstrating

that a goal has been met

Relationships that declare a link between

elements of a safety case

J

Justification (J)
A statement of rationale for the use of

particular goal or strategy

n

m-of-n

GSN EXTENSIONS

GSN EXTENSIONS TO SUPPORT ARGUMENT PATTERNS

Model (M)

Undeveloped and Uninstantiated entity

(Entity abstraction)

Uninstantiated entity (Entity abstraction)

PRINCIPAL GSN ELEMENTS AND RELATIONSHIPS

Multiplicity (Structural abstraction)

Optionality (Structural abstraction)

A context symbol which refers to an

information artefact in the form of a model

Figure 2.5: Elements of GSN (detailed description is given in [20, 61, 85, 86])

21

as justi�cation for the use of a particular goal or strategy. If the contextual
information contains a model, a special GSN symbol called model can be
used instead of a regular GSN context element.

There are two types of relationships present in a safety case:

• "Is solved by" � a type of relationships used between goals, strategies
and solutions (evidential relationship);

• "In context of" � a type of relationships that links a goal to a context, a
goal to an assumption, a goal to a justi�cation, a strategy to a context,
a strategy to an assumption, a strategy to a justi�cation (contextual
relationship).

The safety argument can be decomposed into two types of arguments
(and the related evidence): a direct argument and a backing (con�dence)
argument [68, 119, 120]. The direct argument records the arguments and
evidence used to establish direct claims of system safety. The backing argu-
ment justi�es the su�ciency of con�dence in the direct safety argument. The
role of the backing argument is to explicitly address uncertainties present in
the direct argument as well as to explain why there is su�cient con�dence
in this direct argument [68].

To permit construction of argument patterns, GSN has been extended
by a number of elements for structural and entity abstraction [61, 85, 86]. In
this thesis, we adopt the following structural abstractions: multiplicity and
optionality. Multiplicity stands for generalised n-ary relationships between
the GSN elements, while optionality corresponds to optional and alternative
relationships between the GSN elements. Graphically, the former is depicted
as a solid or a hollow ball on an arrow "Is solved by" (Figure 2.5), where
the label n indicates the cardinality of a relationship, while a hollow ball
means zero or one. The latter is represented as a solid diamond (Figure 2.5),
where m-of-n denotes a possible number of alternatives. Additionally, the
multiplicity and optionality relationships can be combined. Thereby, if the
multiplicity symbol is placed in front of the optionality symbol, this corre-
sponds to a multiplicity over all the options.

There exist two extensions to GSN used to represent entity abstraction:
uninstantiated entity and undeveloped and uninstantiated entity. The former
one indicates that the entity needs to be instantiated, i.e., at some later stage
the "abstract" entity needs to be replaced with a more concrete instance. In
Figure 2.5, the corresponding symbol is depicted as a hollow triangle. This
annotation can be used with any GSN element. The latter one speci�es that
the entity requires both further development and instantiation. In Figure 2.5,
it is shown as a hollow diamond with a line in the middle. This can be applied
to GSN goals and strategies only.

22

All hazards have

been identified

A

Formal

verification

Sn1

System is acceptably

safe to operate

G1

Argument

by omission of

each identified

hazard

S1

A1

The list of

identified hazards

C1 Argument

by satisfaction

of each safety

requirement

S2

Hazard H1 has been

eliminated

G2

Hazard H2 has been

eliminated

G3

The list of safety

requirements

C2

Black box

test results

Sn3

Safety requirement SR1

is met

G4

Safety requirement SR2

is met

G5

Fault tree

analysis

Sn2

Figure 2.6: Structural representation of a safety case

Figure 2.6 illustrates a fragment of a safety case of a critical control
system. This example is based on the safety case presented in [61, 66].
The top goal of the given safety case is "G1: System is acceptably safe
to operate". To provide the evidence that this goal holds, two subsequent
strategies are applied: "S1: Argument by omission of each identi�ed hazard"
and "S2: Argument by satisfaction of each safety requirement". They lead
to obtaining a number of sub-goals, e.g., G2 , G3 , etc. The decomposition
of sub-goals into even more detailed sub-goals can be continued until we
derive a statement that can be directly supported by some evidence, e.g.,
formal veri�cation results (Sn1), fault tree analysis results (Sn2), etc. In
Figure 2.6, the sub-goal G5 is left undeveloped meaning that one needs to
further elaborate on it in order to support by the direct evidence.

23

24

Chapter 3

Safety-Driven Formal

Development and Veri�cation

of Critical Systems

In this chapter, we explain how the research questions formulated in Sec-
tion 1.2 are addressed in the thesis. Speci�cally, we present our approach
to integrating safety analysis into rigorous development of safety-critical
computer-based systems. We also discuss how formal development and ver-
i�cation of such systems can be facilitated by using pre-de�ned patterns.
Finally, we describe our approach to constructing safety cases based on the
results of formal veri�cation.

3.1 Incorporating Safety Requirements from Safety

Analysis into Formal Development

Elicitation, i.e., extraction and identi�cation, of safety requirements as well
as their analysis is a complex task. Safety analysis usually associated with
identifying hazards, their causes and measures to be taken to eliminate and
mitigate them [93, 127]. In this thesis, we use FMEA and FTA to ex-
tract safety and fault tolerance requirements. To verify safety of critical
computer-based systems, it should be demonstrated that the system adheres
to the safety requirements. However, the task of faithful representation of
safety requirements in a formal model for veri�cation remains challenging.
Therefore, to address our �rst research question � How to ensure a seamless
integration of safety requirements into formal development?, we propose a
couple of formally based techniques to facilitate this task. First, we show how
to incorporate safety requirements derived from FMEA into formal system
models. Second, for the safety requirements derived using di�erent safety
analysis techniques, e.g., FTA, and represented in the natural language, we

25

introduce a requirements classi�cation and establish a link between the clas-
si�ed requirements and the corresponding elements of formal models. In
this section, we describe in detail the �rst part of the approach, while the
proposed classi�cation will be discussed in Section 3.3.

Incorporating FMEA Results into Formal Development. In general,
safety-critical computer-based systems are heterogeneous systems that con-
tain such basic building blocks as hardware and software components as well
as various mechanisms to ensure their correct functioning and dependabil-
ity. For example, control systems, a broad class of safety-critical systems,
typically have the following building blocks: sensors, controllers, actuators,
as well as the incorporated fault tolerance (e.g., error detection and error
handling) mechanisms.

FMEA (e.g., Figure 3.1) allows us to analyse possible failure modes of the
system components and de�ne the required detection and recovery actions.
The challenge is to �nd a proper way to incorporate the results of such anal-
ysis into formal models. Within Event-B, we represent system components
(sensors and actuators) as well as the fault tolerance mechanisms using cer-
tain model elements, e.g., constants, variables, invariants, and events. Since
the same types of components and the associated fault tolerance actions can
be formalised in similar ways, we are able to identify generic patterns for
their formalisation. We distinguish the following types of patterns:

1. Component patterns: allow for representation of system components
such as sensors and actuators by creating new variables, invariants,
and initialisation actions;

2. Detection patterns: represent generic mechanisms for error detection
by speci�c events and condition checks (guards), e.g., checking for di-
vergence between the actual and expected states of a component or
sensor reading going beyond the working legitimate range;

Component Door 1

Failure mode Door position sensor value is different from the expected range of

values

Possible cause Failure of the position sensor

Local effects Sensor reading is out of the expected range

System effects Switch to degraded or manual mode or shutdown

Detection Comparison of the received value with the predicted range of values

Remedial action Retry. If failure persists then switch to redundant sensor, diagnose

motor failure. If failure still persists, switch to manual mode and

raise the alarm. If no redundant sensor is available then switch to

manual mode and raise the alarm.

Figure 3.1: Example of a FMEA table

26

Component

Failure

mode

Possible

cause

Local

effects

Detection

System

effects

Remedial

action

Component

patterns

Recovery

patterns

Invariant patterns

Detection

patterns

Prediction

patterns

Variables

Constants

Events

FMEA Patterns Event-B model

Invariants

Figure 3.2: FMEA representation patterns

3. Prediction patterns: represent typical computations of the next possi-
ble states of components, e.g., computations based on the underlying
physical system dynamics and evolution of processes;

4. Recovery patterns: include actions to tolerate various failures, e.g., rep-
resenting multiple retries of required actions or computations, switch-
ing to spare components or safe shutdown;

5. Invariant patterns: represent safety and/or gluing invariants. The
safety invariants de�ne safety properties extracted from FMEA re-
sults, while the gluing invariants describe the correspondence between
the states of re�ned and abstract models. These patterns are usually
applied in combination with patterns of other types to de�ne how a
model transformation is related with the model invariant properties.

Each pattern describes how speci�c Event-B model elements are to be created
to represent certain information from FMEA. Often the described patterns
complement or rely on each other. Such interdependency and mapping to
FMEA is schematically shown in Figure 3.2. For example, an application
of a detection pattern can result in creating new constants and variables
(re�ected as a dark grey rectangle in Figure 3.2). Moreover, it may require
an instantiation of a component pattern to create the elements it depends on
(a light grey rectangle in Figure 3.2). To increase usability of the approach,
automated instantiation of the proposed patterns have been implemented as
a plug-in for the Rodin platform.

Let us now brie�y illustrate an application of the proposed approach by
a small example. The example is taken form the sluice gate case study [95].

27

<other recovery events>

event Prediction refines Prediction

where

flag = PRED

door1_fail = FALSE ∧ door2_fail = FALSE ∧
 pressure_fail = FALSE

Stop = FALSE

then

flag ≔ ENV

d1_exp_min ≔
 min_door(door1_position↦door1_motor)

d1_exp_max ≔
 max_door(door1_position↦door1_motor)

<other predictions>

end

variables

 door1_position_sensor

door1_fail

door1_position_sensor_pred

d1_exp_max

d1_exp_min

invariants

flag≠DET ⇒ (Failure=TRUE ⇔ door1_fail=TRUE ∨

 door2_fail=TRUE ∨ pressure_fail=TRUE) // gluing

flag≠CONT ⇒ (door1_fail=TRUE ⇔
 door1_position_sensor_abs=TRUE ∨
 door1_position_sensor_pred=TRUE ∨
 door1_opened_sensor_inconsistent=TRUE ∨
 door1_closed_sensor_inconsistent=TRUE) // gluing

door1_fail=TRUE ∧ flag≠CONT ∧ flag≠DET ⇒

 Stop=TRUE // safety

<other invariants>

<event INITIALISATION>

event Detection_Door1_checks

where

flag = DET

Stop = FALSE

then

door1_position_sensor_pred ≔
 bool((door1_position_sensor < d1_exp_min ∨
 door1_position_sensor > d1_exp_max) ∧
 door1_sensor_disregard = FALSE)

<other checks>

end

event RetryPosition

where

flag = CONT

door1_position_sensor_abs = TRUE ∨
door1_position_sensor_pred = TRUE

retry < 3

then

door1_position_sensor_abs ≔ FALSE

door1_position_sensor_pred ≔ FALSE

door1_fail_masked ≔
 bool(door1_opened_sensor_inconsistent = TRUE ∨
 door1_closed_sensor_inconsistent = TRUE)

retry ≔ retry + 1

end

Figure 3.3: Event-B development of the sluice gate control system with
example of Retry recovery pattern

The sluice system connects areas with dramatically di�erent pressures by op-
erating two doors (Door 1 and Door 2). To guarantee safety, a door can be
open only if the pressure in the locations it connects is equalised. Moreover,
the doors should not be open simultaneously. Figure 3.1 shows the resulting
FMEA table for one of the door components (Door 1). We demonstrate our
formalisation based on a component with a value-type sensor used to deter-
mine the door position. The list of patterns to be instantiated for this table
is as follows: (1) component patterns � Value sensor pattern, (2) detection
patterns � Expected range pattern, (3) prediction patterns � Range prediction
pattern, (4) recovery patterns � Retry recovery pattern, Component redun-
dancy recovery pattern, and Safe stop recovery pattern, (5) invariant patterns
� Safety invariant pattern and Gluing invariant pattern.

In Figure 3.3, we give an excerpt from the Event-B development of the
sluice gate control system obtained by instantiating the listed above patterns.
We highlight the model area a�ected by application of Retry recovery pattern.
Let us also observe that, if two or more patterns a�ect the same variables,
only the �rst pattern to be instantiated creates the required variables. This

28

Mode GMj

Failure mode Unit Ui failure with an available spare

Possible cause Hardware failure

Local effects Reconfiguration between unit branches. Change of unit status

System effects Remain the current global mode

Detection Comparison of received data with the predicted one

Remedial

action

Target

mode
Precondition Action

GMj

A state transition error in the

nominal branch of Ui.

For a nominal branch of

unit Ui, the status is set to

Unlocked, and

reconfiguration between

branches is initiated.

Insufficient usability of a

selected nominal branch of Ui.

Mode GMj

Failure mode Unit Ui failure without an available spare

Possible cause Hardware failure

Local effects Loss of preciseness in unit output data. Change of unit status

System effects Switch to a degraded mode

Detection Comparison of received data with the predicted one

Remedial

action

Target

mode
Precondition Action

GMt,

t < j

A state transition error in the

redundant branch of Ui. No

state transition error in the

redundant branch of Uk.

For unit Ui, any ongoing

unit reconfiguration is

aborted. For each branch in

unit Ui, the status is set to

Unlocked, and a state

transition to non-

operational state is

initiated.

Insufficient usability of a

selected redundant branch of

Ui. No branch state transition

error. No problem on the

redundant branch of Uk.

Figure 3.4: Modi�ed FMEA table

process is not repeated by other patterns. The same rule applies to events,
actions, guards, etc.

A similar approach can be applied to di�erent types of systems. In this
thesis, we have experimented with applying our FMEA-based approach to
mode-rich safety-critical systems, i.e., the systems whose dynamic behaviour
is de�ned in terms of operational modes and transitions between these modes.
Here modes can be understood as mutually exclusive sets of the system
behaviour [92]. Rules for transitioning between modes represent a mode
logic of a system.

In the safety-critical systems, a part of the system mode logic is associ-
ated with speci�c system transitions as reactions on faults. Moreover, for
recon�gurable systems, we cover two cases: (1) when a system recon�gura-
tion is possible due to the availability of spare components; and (2) when
a recon�guration cannot be done due to the absence of spare components.
Then, to implement fault tolerance, we need to de�ne rollback procedures to
the non-erroneous system states where the faulty components are not used.

29

event MM_Error_Handling refines MM_Error_Handling

 any m gp

 where

 m ∈ MODES

 error ≠ No_Error

 prev_targ ↦ m ∈ Mode_Order∼
 m ≠ next_targ

 next_targ ≠ OFF

 m ↦ gp ∈ GPS_mode

 gp ≠ GPS_next_targ

 <guards related to other AOCS units>

 then

 error ≔ No_Error

 prev_targ ≔ next_targ

 last_mode ≔ next_targ

 next_targ ≔ m

 GPS_Status ≔ fun_GPS_status(GPS_Reconfig ↦ GPS_next_targ ↦ gp)

 GPS_prev_targ ≔ GPS_next_targ

 GPS_last_mode ≔ GPS_next_targ

 GPS_next_targ ≔ gp

 GPS_Reconfig ≔ FALSE

 <actions related to other AOCS units>

 end

Figure 3.5: Excerpt from Event-B development of the attitude and orbit
control system (AOCS) with example of system rollback

For this purpose, we analyse system modes rather than physical compo-
nents. To allow for the safety analysis speci�c for mode-rich systems, we
tailor a FMEA table by adding speci�c sub-�elds into the �eld of remedial
actions as shown in Figure 3.4. Speci�cally, the added sub-�elds are tar-
get mode, precondition, and action. These sub-�elds contain the information
about a new target mode, the conditions under which a rollback to this mode
should be started, and the actions to be taken, e.g., lower-level transitions
or recon�guration procedures. The safety analysis performed in such a way
allows us to derive a rollback scenario.

The second example (Figure 3.5) is taken from the resulting Event-B
speci�cation of the AOCS system [116]. AOCS is a typical layered control
system. The main function of the system is to control the attitude and
the orbit of a satellite. Since the orientation of a satellite may change due
to disturbances of the environment, the attitude needs to be continuously
monitored and adjusted. The optimal attitude is required to support the
needs of payload instruments and to ful�l the mission of the satellite [50].
At the top layer of AOCS is Mode Manager (MM). It controls several Unit
Managers (UMs), which are responsible for a number of hardware units.
AOCS has seven units. For brevity, let us consider only one of them, namely,
Global Positioning System (GPS).

We de�ne the rollback procedures according to the results of the per-
formed safety analysis represented in the form of the modi�ed FMEA table
(similar as in Figure 3.4). Let us assume that some error has occurred

30

(error 6= No_Error) but the recon�guration is not possible, i.e., both the
nominal and redundant branches failed. Then, the MM component performs
a rollback to such a global mode where the failed component is not used,
i.e., it is in the mode O�. To perform a rollback transition, all the AOCS
units have to be set into appropriate modes according to the correspondence
relations between the MM modes and each unit modes (e.g., GPS_mode).
All the variables re�ecting the current state of AOCS and all the units (such
as prev_targ, last_mode, next_targ, etc.) have to be assigned new values.
Once the resulting model is fully created according to the applied pattern(s),
the essential mode consistency conditions are veri�ed.

We believe that application of FMEA patterns helps the developers to
elicit safety and fault tolerance requirements and also assists them in in-
corporating these requirements into formal Event-B models. Moreover, the
developed plug-in for the Rodin platform facilitates the automatic instanti-
ation of these patterns.

3.2 Facilitating Rigorous Development and

Veri�cation of Safety-Critical Systems

The use of speci�cation and re�nement patterns is an important technique
in facilitating formal development. It is also know as pattern-driven formal
development [76]. Graphically, the approach can be represented as shown in
Figure 3.6. According to the pattern-driven formal development approach,
the initial (abstract) model is created by instantiating a speci�cation pat-
tern, i.e., a parametrised speci�cation that contains generic (abstract) types,
constants and variables. Then, the obtained model can be re�ned by ap-
plying re�nement patterns, i.e., patterns generalising certain typical model
transformations reoccurring in a particular development method.

To instantiate the given speci�cation and re�nement patterns, the model
parameters need to be replaced by concrete data structures or other model
expressions (e.g., concrete variables, guards, etc.). To show applicability
of patterns for the given concrete values, the model constraints de�ned for
the parameters become theorems to be proved. Successful instantiation of
these patterns allows for obtaining the proved essential system properties
of a generic model (e.g., its invariants) for free, i.e., without any additional
proof e�ort. Therefore, pattern-driven formal development supports reuse
of both models and proofs.

Certain speci�cation and re�nement patterns can be de�ned for partic-
ular types of systems. To address the second research question � How to
facilitate formal development and veri�cation of safety-critical systems using
speci�cation and re�nement patterns?, we consider two widespread types of
safety-critical systems, namely control and monitoring systems, and conse-

31

Abstract

model

The 1
st

refinement

Refines The N
th

refinement

Refines
...

Specification

pattern

The 1
st

refinement

pattern

The K
th

refinement

pattern

Instantiates Instantiates Instantiates

Figure 3.6: Pattern-driven formal development

quently propose a number of patterns to support the corresponding pattern-
driven development of these systems.

Formal Development of Control Systems. Control systems are
computer-based systems that observe the state of the environment by read-
ing sensors and react on the detected changes by commanding actuators.
Safety-critical control systems are in the heart of, e.g., nuclear reactor cool-
ing systems and on-board aircraft systems. Typically, these systems are
cyclic. Each cycle the controller reads sensors values, processes them and
sends commands to the actuators. The mechanisms to detect and tolerate
failures of a system and its components are identi�ed during safety analy-
sis (e.g., FMEA). They should be taken into account while developing the
controller. Therefore, when a failure is detected, the controller attempts to
tolerate it, for example, by managing a system recon�guration to use spare
components or by safe shutdown of the system.

To adequately represent the safety and fault tolerance properties while
modelling the described above systems, we need to consider both the con-
troller and the environment with which it interacts. We achieve this by
relying on the system approach [69] to formal development and veri�cation.
As a result, we propose a number of speci�cation and re�nement patterns
to support pattern-driven development of control systems. Our work has
been also inspired by the work describing re�nement of fault tolerant control
systems in B [88]. We merge the ideas given in [88] and our FMEA pat-
terns presented in Section 3.1. Speci�cally, the FMEA patterns can be used
as separate steps in the proposed pattern-driven development. Therefore,
our approach provides a useful support for formal development as well as
facilitates traceability of the safety and fault tolerance requirements.

The proposed pattern-driven development of control systems consists of
a speci�cation pattern for the most abstract model as well as several re-
�nement patterns for introducing details of the nominal system functional-
ity, error detection and error handling procedures, as shown in Figure 3.7.
According to our speci�cation pattern, the Abstract model implements the
cyclic behaviour of the modelled system. It has dedicated events for di�er-

32

 Environment // modelling behaviour of the environment

 Detection // detecting errors

 Normal_Operation // performing controller reaction in nominal

 conditions

 Error_Handling // indicating the result of error recovery

 Prediction // computing the next expected states of

 system components

 Environment

 Detection_1 // detecting different errors in different

 … combinations

 Detection_n

 Normal_Operation

 Error_Handling

 Prediction // introducing more sophisticated

 computations of the next expected states

 Environment

 Detection_1

 …

 Detection_n

 Normal_Operation_1 // unfolding operational functionality

 … of a system

 Normal_Operation_m

 Error_Handling

 Prediction

Abstract model

Refinement introducing error detection procedures

Refinement elaborating on nominal functionality

 Environment

 Detection_1

 …

 Detection_n

 Normal_Operation_1

 …

 Normal_Operation_m

 Error_Handling_1 // modelling different recovery procedures

 …

 Error_Handling_k

 Prediction

Refinement introducing error handling procedures

re
fi

n
es

re
fi

n
es

re
fi

n
es

re
fi

n
es

re
fi

n
es

re
fi

n
es

Figure 3.7: Pattern-driven development of a control system

ent system phases: modelling the environment, error detection, the nominal
operation of the system, possible error recovery, and error prediction (based
on computations of the next expected states of system components to be
used at the next cycle to detect possible failures of these components). The
control �ow between events is set by the variable �ag. It represents a current
phase of the control cycle, which can be either ENV, DET, CONT, or PRED.
In the model invariant we declare the types of the variables and de�ne the
conditions when the system is operational or shut down.

33

The speci�ed description of the system behaviour given in the initial
model is still very abstract. In particular, the events designating the system
phases are missing many essential details of their implementation. The re-
�nement patterns allow us to elaborate on the system functionality by intro-
ducing concrete details such as system components and their possible failures,
speci�c mechanisms to detect and tolerate these failures, as well as the corre-
sponding invariant properties to be proved. Namely, the pattern Re�nement
introducing error detection procedures (Figure 3.7) introduces more sophis-
ticated error detection procedures, while the pattern Re�nement elaborating
on nominal functionality allows for elaboration on the nominal functionality
of the system and possibly introduces di�erent operational modes. Finally,
the re�nement step based on application of the pattern Re�nement introduc-
ing error handling procedures allows us to represent di�erent error handling
mechanisms. The correctness of model transformations is guaranteed by the
discharged proof obligations.

We have validated the proposed approach by two case studies � a sluice
gate control system [95] and a steam boiler control system [117]. This allowed
us to obtain formal models of the considered systems and verify their essential
functional and safety properties.

Formal Development of Monitoring Systems. Data Monitoring Sys-
tems (DMSs) constitute an important subset of safety-critical systems. They
can be found in nuclear power plants, chemical, oil and gas industrial appli-
cations. DMSs allow for recording operations carried out by these systems in
the corresponding log �les, analysing performance and status of their compo-
nents, as well as displaying the results of such analysis to human operators.
DMSs also supply important information to human operators or other sys-
tems based on which the safety-critical actions are performed. Consequently,
the operators must receive the correct, fresh and consistent information to
be able to make adequate and timely decisions.

In this thesis, we propose pattern-driven development of monitoring sys-
tems to facilitate formal modelling of such systems and verifying their essen-
tial properties: data freshness and data integrity.

To increase fault tolerance, DMSs are typically built as distributed net-
works consisting of a number of modules, calledData Processing Units (DPUs),
connected to sensors and possibly several displays. We consider the displayed
data to be fresh, if the di�erence between the local DPU time and the data
timestamp is less than δ time units. In its turn, data integrity guarantees
that the produced output data are always based on valid, i.e., correct and
fresh, input data. In other words, it ensures that a failure of a sensor, a
failure of a module, or data corruption (occurred while transmitting data
through the network) does not in�uence the displayed output.

34

 Environment // reading sensor values

 Processing // processing (converting) sensor data

 Sending_Packet // broadcasting a data packet to other DPUs

 Displaying // outputting data to a display

 Receiving_Packets // receiving packets from other DPUs

 Time_Progress // modelling progress of the local clock

 Environment

 Pre_Processing // detecting sensor faults (new event)

 Processing_OK // processing sensor data when no fault is detected

 Processing_NOK // processing sensor data when a fault is detected

 Sending_Packet

 Displaying

 Receiving_Packets

 Time_Progress

 Environment_1 // sensor reading without the local clock adjustment

 Environment_2 // sensor reading with synchronization of the local clock

 Pre_Processing

 Processing_OK

 Processing_NOK

 Sending_Packet

 Displaying

 Receiving_Packets

 Time_Progress

Abstract model

Refinement introducing fault detection and handling

Refinement introducing clock synchronization

re
fi

n
es

re
fi

n
es

re
fi

n
es

re
fi

n
es

Figure 3.8: Pattern-driven development of a monitoring system

Due to the highly asynchronous nature and independence of modules in
the proposed architecture, it is possible to reason about the overall system
by modelling a single DPU, thus dramatically reducing modelling and veri�-
cation e�ort. The interactions with other modules present in the system are
de�ned as a part of the environment speci�cation. We show the proposed
speci�cation and re�nement patterns for a single DPU in Figure 3.8.

In the Abstract model (our speci�cation pattern), we de�ne the essential
functional behaviour of the DPU. Similarly to the behaviour of a control
system, the DPU's behaviour is cyclic, yet with several di�erences. At each
cycle, the DPU reads and processes sensor data, broadcasts the processed
data to the other DPUs present in the system, possibly receives data from
them, and �nally produces the value, which is then displayed. We model
these activities by the corresponding dedicated events. Progress of the local
clock is modelled as a separate event. The interaction of the modelled DPU
with other DPUs, is represented by asynchronous reception of data packets
from these modules. Each data packet contains the identi�cation number of
the module that sent it, a timestamp and actual data. At this stage, we are
able to formulate and verify the data freshness and correctness properties as
the respective model invariants.

35

By instantiating the proposed pattern Re�nement introducing fault detec-
tion and handling, we re�ne the abstract model to incorporate fault tolerance
mechanisms into the development (Figure 3.8). Here we explicitly specify
the e�ect of three types of failures: sensor failures, sensor data processing
failures, and communication errors. Additionally, we extend a data packet
structure by the following �elds: a �eld containing the information about the
status (absence or presence of a failure) of a DPU that sent the packet, and
a �eld storing a checksum used to decide whether the packet was corrupted
during the transmission or not. Now we can formulate and verify the data
integrity property by de�ning the corresponding invariants.

The aim of another re�nement pattern called Re�nement introducing
clock synchronization is to re�ne the mechanism of local clock adjustment.
Every k cycles, the DPU receives the reference time signal and adjusts its
local clock according to it. This prevents an unbounded local clock drift and
allows the overall system guarantee the "global" data freshness. We again
verify this by proving the corresponding theorems.

In general, the idea of pattern-driven development is applicable for wide
range of di�erent systems. The presented patterns for control and monitoring
systems can be already used for a class of suitable systems by instantiating
generic parameters (constants, functions, etc.). For instance, a number and
types of sensors, DPUs, displays, etc. may vary depending on a particular
system. The presented collection of patterns can be further extended by
introducing separate patterns for di�erent error detection and handling pro-
cedures of systems with di�erent levels of redundancy, modelling fail-safe or
fail-operational systems, etc.

3.3 Constructing Safety Cases from Artefacts of

Formal Development and Veri�cation

The described above approaches allow us to formally develop safety-critical
systems, verify their safety-related properties and obtain formal proofs that
these properties hold. To exploit the bene�ts of formal methods in the
safety assurance process, we need to demonstrate how the obtained formal
proofs of the required safety-related properties can be used as the evidence
in safety cases. Therefore, to tackle our third research question � How to
support the safety assurance process with the artefacts generated by formal
development and veri�cation?, we propose an approach to construction of
safety cases based on the results of formal veri�cation. To achieve this,
we introduce a classi�cation of safety requirements associated with speci�c
ways these requirements can be mapped into formal system models in Event-
B. Moreover, we propose a set of argument patterns based on the proposed

36

classi�cation to facilitate the construction of safety cases from the associated
Event-B models. The proposed classi�cation also contributes to addressing
the �rst research question of this thesis.

Classi�cation of Safety Requirements. Our classi�cation of safety re-
quirements addresses di�erent aspects of the system behaviour. For instance,
we may consider whether a requirement stipulates a property that needs to
hold during the entire operation of a system or only under speci�c conditions.
In general, we distinguish eight classes of safety requirements (SRs):

• Class 1 : SRs about global properties represent properties that must
hold in all system states;

• Class 2 : SRs about local properties de�ne properties that need to be
true at speci�c system states;

• Class 3 : SRs about control �ow prescribe the required order of some
system events/actions;

• Class 4 : SRs about the absence of system deadlock prohibit an unex-
pected stop of a system, which may lead to a safety-related hazard;

• Class 5 : SRs about system termination are the requirements related to
a certain class of control systems where non-termination of the system
in a speci�c situation may lead to a safety-related hazard;

• Class 6 : Hierarchical SRs are the requirements that are hierarchically
structured to deal with the system complexity, i.e., a more general
requirement may be decomposed into several more detailed ones;

• Class 7 : SRs about temporal properties represent properties related to
reachability of speci�c system states;

• Class 8 : SRs about timing properties prescribe the timing constraints
to be imposed on a system.

Mapping into Formal Development. To map safety requirements of dif-
ferent classes into the formal development in Event-B, we de�ne the function
FM :

FM : SRs→ P(MExpr),

where P(T) stands for a power set on elements of T and MExpr corresponds
to a generalised type for all possible expressions that can be built from the
model elements, i.e., model expressions. Here model elements are elements of
Event-B models such as axioms, variables, invariants, events, and attributes.
MExpr includes such model elements as trivial (basic) expressions. It also

37

may include state predicates de�ning post-conditions and shutdown condi-
tions, as well as event control �ow, Linear Temporal Logic (LTL) and Timed
Computation Tree Logic (TCTL) formulas.

Within Event-B models, most of the constructed expressions can be di-
rectly associated with speci�c proof obligations (theorems). The discharged
proof obligations then may serve as the evidence in a constructed safety case.
For the remaining expressions, we use external tools that can be bridged with
Event-B to verify the corresponding requirements and thus construct the ev-
idence for a safety case. In particular, we propose to use the Usecase/Flow
[57] and ProB [113] plug-ins for the Rodin platform, as well as the exter-
nal model checker for veri�cation of real-time systems Uppaal [22]. As a
result, the obtained veri�cation results either in the form of the discharged
proof obligations in Event-B or model checking results produced by ProB
and Uppaal are used as solutions in safety cases.

One of the main goals of our classi�cation was to facilitate the construc-
tion of safety cases from the associated formal models. Therefore, each class
of safety requirements is a�liated with a separate argument pattern.

Argument Patterns. The proposed argument patterns generalise the
safety arguments for justifying that the safety requirements imposed on a
system hold. The patterns have been developed using the corresponding
GSN extensions (Figure 2.5). Some parts of an argument pattern may re-
main the same for any instance, while others need to be further instantiated
(they are labelled with a speci�c GSN symbol � a hollow triangle). The text
highlighted by braces { } should be replaced by a concrete value.

The generic representation of an argument pattern is shown in Fig-
ure 3.9, a. Here, the goal GX is associated with a safety requirement Re-
quirement of some class Class {X}, where X is a class number.

To obtain the evidence that a speci�c safety requirement is satis�ed, dif-
ferent arguments can be used. Within the proposed approach, a requirement
is veri�ed in a formal Event-B model M referred to in the model element
MX.1. For example, if a safety requirement is mapped into an Event-B
model as a model invariant property, the corresponding theorem for each
event in the model M is required to be proved. Therefore, the number of
subsequent sub-goals depends on the number of events in the model. Corre-
spondingly, the proofs of these theorems (i.e., discharged Proof Obligations
(POs)) are attached as the evidence for the constructed safety case.

The formulated properties and theorems associated with a particular
requirement can be automatically derived from the given formal model.
Nonetheless, to increase clarity of a safety case, we propose to explicitly refer
to any theorem or property whose veri�cation result is used as a solution of
the top goal (CX.2 in Figure 3.9, a.).

38

{Requirement} of Class {X}

is met

GX

Argument over all

formulated theorems /

properties

{Discharged

PO} / {model

checking

result}

SX.2

SnX.1

The provided theorem

{thmi} is indeed provable / the model

satisfies the property {propertyj}

GX.2

no. of theorems /

properties

Theorem {thmi} /

property {propertyj}

CX.2

Theorem prover /

Model checker

CX.1

Argument over the

involved model

elements

SX.1

Property of the involved

model elements holds

GX.1
Formal model {M}

in Event-B

MX.1

Argument over

formalisation of

{Requirement}

SX.3

Formulated theorems/properties

are the proper formalisation of

{Requirement}

GX.4

Agreement over

inspection

conducted by

domain and

formalisation

experts

SnX.2

{Invariants} / {theorems} /

{properties} are the proper

formalisation of the

requirement

A

AX.1

Formal model {M}

in Event-B

MX.2

{Invariants} / {theorems} /

{properties} are the proper

formalisation of

{Requirement}

GX.3

a. b.

Figure 3.9: Generic argument pattern

In our argument patterns, we assume that the formulated model invari-
ant, theorem or property represents the proper formalisation of the consid-
ered safety requirement (the assumption AX.1). Such an assumption can be
substantiated by arguing over formalisation of the requirements as demon-
strated in Figure 3.9, b. We rely on a joint inspection conducted by the
involved domain and formalisation experts (SnX.2) as the evidence that the
formulated theorems/properties are proper formalisations of the considered
requirement. Such substantiation is applicable to all the classi�cation-based
argument patterns and their instances. This allows for reduction of a seman-
tic gap in the mapping associating an informally speci�ed safety requirement
with the corresponding formal expression that is veri�ed and connected to
evidence.

While instances of the proposed argument patterns serve as inputs to the
�nal direct safety argument, the argument and evidence proposed to sub-
stantiate the assumptions may also form a part of the backing (con�dence)
argument to support the direct argument and evidence.

Moreover, to fully rely on formal modelling and veri�cation, we need to
demonstrate well-de�nedness of each model in the formal development. The
results of this demonstration also become a part of the backing argument. To
verify this (e.g., that a partial function is applied within its domain), Event-B

39

All axioms in

the CONTEXT are

consistent

(i.e., non-contradictory)

GW.2

Discharged

PO

{thm_axm{i}}/

THMC

Argument over

axioms consistency

via defining theorems

about groups of

independent axioms

The theorem about

the group {i} of independent

axioms is proved

SW.2

SnW.1

GW.3

Formal

development of

the {System S} is

well-defined

GW.1

Argument

over well-

definedness of

the model

SW.1

no. of independent

groups of axioms

Theorem

{thm_axm{i}}

about the

group {i}

CW.2

no. of models in

development

Model {M}

MW.2

Formal

development that

consists of a chain of

refinements

in Event-B

MW.1

Rodin

theorem

provers

CW.1

According to the Event-B

semantics, if axioms are

contradictory, the whole

model becomes

fallicious J

JW.1

Figure 3.10: Argument pattern for well-de�nedness of the formal develop-
ment

de�nes a number of proof obligations (well-de�nedness (WD) for theorems,
invariants, guards, actions, etc. and feasibility (FIS) for events [3]), which
are automatically generated by the Rodin platform. We assume here that
all such proof obligations are discharged for models in question. However, if
model axioms are inconsistent (i.e., contradictory), the whole model becomes
fallacious and thus logically meaningless. Demonstrating that this is not
the case is a responsibility of the developer. To handle this problem, we
introduce a speci�c argument pattern shown in Figure 3.10. In Event-B, well-
de�nedness of a CONTEXT can be ensured by proving axiom consistency
(the goal GW.2 in Figure 3.10).

The described above approach allows us to derive formal evidence (either
proofs or model checking results) that the desired system properties stipu-
lated by safety requirements are preserved. Moreover, the proposed set of
classi�cation-based argument patterns facilitate the construction of safety
cases from Event-B models. The approach has been validated [114] by series
of small case studies and a larger case study � a steam boiler control system.

40

To summarise, in this chapter, we elaborated on the approaches proposed
in this thesis to address the raised research questions. First, we presented the
approaches to formalisation of safety requirements obtained as the results of
safety analysis and described in the natural language. Second, we proposed
the formal speci�cation and re�nement patterns for safety-critical computer-
based systems. Third, we presented an approach to rigorous construction of
safety cases from formal models. In conjunction, the discussed approaches
contribute to building an integrated approach to the safety-driven rigorous
development of critical computer-based systems, as illustrated in Figure 1.1.

3.4 Discussion

We evaluate the approach proposed in this thesis by several case studies.
The majority of the chosen case studies has been developed within European
projects such as RODIN [121] and DEPLOY [51] together with the involved
industrial partners. Both requirement classi�cation and proposed rigorous
mappings between requirements and the corresponding model elements have
been strongly in�uenced by cooperation with our industrial partners, thus
giving us a necessary reality check.

In this thesis, we rely on formal modelling techniques, including external
tools that can be bridged together, that are scalable to analyse the entire sys-
tem. Recently, our chosen formal framework, Event-B, has been actively used
within large EU FP7 projects (RODIN [121], DEPLOY [51], ADVANCE [7])
to model and verify complex computer-based systems. Our classi�cation of
safety requirements as well as the developed formal speci�cation and re�ne-
ment patterns have shown to be expressive enough for a number of selected
safety-critical systems from di�erent domains.

Moreover, the obtained Event-B models can be also used as inputs for
various model-based testing and static veri�cation techniques, provided that
the mapping between the corresponding model and code elements is given.
There is a number of works dedicated to this topic, see, e.g., [96, 97, 100].

Despite the fact that a system safety case inevitably becomes larger and
more complex for systems with a higher level of complexity, our approach
does not prohibitively increase the resulting complexity of the constructed
safety case. That is due to orthogonality of the classi�cation of safety require-
ments on which it is based. Within the classi�cation, each class is associated
with an independent procedure for formalising a safety requirement of this
class and constructing a fragment of the safety case demonstrating that this
requirement has been met. This allows us to avoid the exponential growth
of the added complexity while constructing safety cases for safety-critical
systems.

41

The internal completeness of safety cases can be measured by a metric
called the coverage of claims (goals) [49]. The coverage of claims (COV) is
calculated as the proportion of the total number of developed claims (CD)
to the total number of claims (C). Speci�cally,

COV =
CD

C
.

In [115], we provide these calculated metrics for the constructed frag-
ments of safety cases for a number of the selected case studies. Even though
the results are encouraging, building complete safety cases of complex computer-
based systems in the industrial setting is still needed to more extensively
evaluate the proposed approach. This remains one of our future goals.

42

Chapter 4

Summary of the Original

Publications

In this chapter, we present a short summary of the original publications,
which constitute the second part of the thesis.

Paper I: Patterns for Representing FMEA in Formal Speci�cation

of Control Systems

In this work, we explore the problem of integrating safety analysis, namely
FMEA, into the formal development of safety-critical control systems. We
propose a set of generic patterns that help the developers to trace the safety
and fault tolerance requirements from FMEA to formal models. We identify
�ve categories of patterns: component, detection, recovery, prediction and
invariant. To ease instantiation of these patterns, we provide a tool support
in the form of a plug-in for the Rodin platform.

We also demonstrate how formal models can be constructed to support
seamless integration of safety requirements into formal modelling and ver-
i�cation of control computer-based systems. The proposed approach is in-
spired by the work [88]. We merge the ideas presented in [88] and our
proposed FMEA patterns. This allows us to express formal development
of safety-critical control systems as a generic, pattern-driven development
process. We illustrate our approach by a case study � a sluice gate con-
trol system. The abstract model of this system is obtained by instantiating
the abstract speci�cation pattern for modelling a control system in Event-B.
It describes the overall behaviour of the system as an interleaving between
the events modelling the environment and the controller. Then, we re�ne
this abstract speci�cation to introduce the system components, error detec-
tion procedures as well as error masking and recovery actions systematically

43

de�ned by FMEA. To achieve this, we instantiate the proposed FMEA pat-
terns. The corresponding re�nement steps can be done as instances of such
re�nement patterns as Re�nement introducing error detection procedures and
Re�nement introducing error handling procedures. At the subsequent re�ne-
ment step (an instance on the Re�nement elaborating on nominal function-
ality pattern), we introduce a speci�c detailed speci�cation of the nominal
control logic.

Application of FMEA patterns helps the developers to elicit safety and
fault tolerance requirements and assists in incorporating them into formal
models, while application of speci�cation and re�nement patterns facilitates
the formal development of safety-critical control systems.

Author's contribution: This work was initiated by Associate Prof. Elena
Troubitsyna. The initial FMEA patterns were de�ned by Yuliya Prokhorova
and Dr. Ilya Lopatkin under supervision of Associate Prof. Elena Troubit-
syna, Dr. Alexei Iliasov and Prof. Alexander Romanovsky. Yuliya Prokhorova
was also responsible for conducting safety analysis and contributed to the
formal development of the sluice gate control system. The theoretical results
were summarised by Associate Prof. Elena Troubitsyna, Dr. Ilya Lopatkin,
Dr. Alexei Iliasov, Yuliya Prokhorova and Prof. Alexander Romanovsky.

Paper II: Deriving a Mode Logic Using Failure Modes and E�ects

Analysis

Structuring the system architecture and functionality in a layered fashion
helps the developers to deal with the complexity of control systems. The dy-
namic behaviour of such systems is often de�ned in the terms of operational
modes and transitions between these modes (a mode logic). The layered
system structure also implies that the corresponding system components act
as mode managers responsible for particular system layers. One part of the
system mode logic prescribes the nominal system behaviour, while the other
one determines mode transitions in the presence of faults, i.e., it is dedi-
cated to improving fault tolerance of the system. However, derivation and
veri�cation of such a mode logic can be challenging.

In this paper, we propose a systematic approach to deriving the fault
tolerance part of a mode logic. Similarly to Paper I, we utilise the FMEA
technique. However, in Paper II, we propose to conduct FMEA of each
operational mode to identify mode transitions required to implement fault
tolerance. We achieve fault tolerance by two main means � system transitions
to speci�c degraded modes and the system dynamic recon�guration using
redundant components. The former is usually performed by the top-layered
mode manager, while the latter is done by lower-layered unit managers.

44

Formal development of such a layered control system in Event-B is done by
stepwise re�nement according to the following re�nement strategy. Firstly,
in the abstract speci�cation and possibly several subsequent re�nements,
we develop the top level mode manager which implements the global mode
logic. Secondly, at further re�nement steps, we introduce the lower layer
managers (unit managers) together with their mode logics. Finally, in the
last re�nement, we model the redundant branches (components) of each
unit. The essential mode consistency conditions are veri�ed in the re�nement
process.

Therefore, in this paper, we de�ne a rigorous approach to designing lay-
ered mode-rich systems by re�nement while ensuring their fault tolerance.
We exemplify it by the development and veri�cation of a mode-rich layered
control system � an attitude and orbit control system (AOCS).

Author's contribution: This work was initiated by Associate Prof. Elena
Troubitsyna. The informal speci�cation and preliminary safety analysis of
the AOCS were given by the industrial partners � Space Systems Finland,
namely Dr. Kimmo Varpaaniemi and Dr. Timo Latvala. The formal de-
velopment of the AOCS in Event-B was done by Yuliya Prokhorova and
Adjunct Prof. Linas Laibinis. The theoretical results were summarised by
Adjunct Prof. Linas Laibinis, Associate Prof. Elena Troubitsyna and Yuliya
Prokhorova.

Paper III: A Case Study in Re�nement-Based Modelling of a

Resilient Control System

In this paper, we aim at validating our approach to formalising safety re-
quirements as well as our approach to modelling control systems in Event-B.
As an example, we consider a complex control system, namely, a steam boiler
control system. To derive a list of safety requirements of this system, we use
the FTA technique.

Formal development of the steam boiler system is performed by the step-
wise re�nement in Event-B and follows the described below strategy. The
abstract model implements a basic control loop. It is an instance of the
abstract speci�cation pattern for modelling control systems in Event-B. At
the �rst re�nement, we introduce an abstract representation of the activities
performed after the system is powered on and during its operation. At the
second re�nement step (combining instances of the Re�nement introducing
error detection procedures and Re�nement elaborating on nominal function-
ality patterns), we incorporate a detailed representation of the conditions
leading to a system failure. Moreover, we distinguish that the considered
system has several operational modes and one non-operational mode to cover

45

the system behaviour under di�erent execution and fault conditions. At the
third re�nement step (an instance of the pattern Re�nement introducing er-
ror detection procedures), we further elaborate on the physical behaviour of
the steam boiler and re�ne the failure detection procedures. Finally, at the
fourth re�nement step, we explicitly de�ne the system modes. At each re-
�nement step, we de�ne variables that stand for system components, e.g.,
sensors and actuators, necessary to be modelled at a particular level of ab-
straction, as well as represent the functional and safety requirements. As a
result, the application of our previously proposed approaches allows us to
obtain a formal model of the steam boiler control system and verify essential
functional and safety properties.

Author's contribution: This work was initiated by Associate Prof. Elena
Troubitsyna. Yuliya Prokhorova was responsible for conducting safety anal-
ysis. The formal development of the steam boiler control system in Event-B
was done by Yuliya Prokhorova and Adjunct Prof. Linas Laibinis. The
theoretical results were summarised by Associate Prof. Elena Troubitsyna,
Adjunct Prof. Linas Laibinis and Yuliya Prokhorova.

Paper IV: Formalisation of an Industrial Approach to Monitoring

Critical Data

Numerous safety-critical control systems contain monitoring subsystems.
However, they are often not included into the safety kernel and hence are
built from less reliable components. Nonetheless, these subsystems play an
important indirect role in providing safety, i.e., based on the monitored data
(human) operators or other subsystems should make adequate and timely
decisions. In this paper, we take an example of a Data Monitoring System
(DMS) suggested by our industrial partners, namely, a temperature mon-
itoring system, and verify it. Speci�cally, we verify that the proposed ar-
chitectural solution (a networked DMS) ensures data freshness and integrity
despite unreliability of the system components.

The proposed formal speci�cation in Event-B can be seen as a generic
pattern for designing networked DMSs. Such systems are modular and the
behaviour of their modules, namely Data Processing Units (DPUs), follows
the same generic algorithm independently of other such units. Therefore, we
can reason about the overall system by modelling a single DPU. The inter-
actions of this module with the other modules of the system are represented
as a part of the environment speci�cation. The most abstract model (an in-
stance of the abstract speci�cation pattern for modelling monitoring systems
in Event-B) allows us to de�ne the essential functional behaviour of the DPU
and prove the formulated data freshness properties. One of the re�nement

46

steps, which instantiates the proposed re�nement pattern called Re�nement
introducing fault detection and handling, allows us to incorporate and ver-
ify the data integrity properties. Moreover, at another re�nement step (an
instance of the pattern Re�nement introducing clock synchronization), we
re�ne the mechanism of local clock adjustment and prove the corresponding
theorems.

Due to the high level of abstraction, i.e., abstract data structures (con-
stants and functions), arbitrary number of processing units, etc., the pro-
posed patterns can be easily instantiated to verify data monitoring systems
from di�erent domains. As a result of our modelling and veri�cation, we
have received formally grounded assurance of dependability of the proposed
industrial architecture of the temperature monitoring system.

Author's contribution: This work was initiated by Associate Prof. Elena
Troubitsyna. The informal speci�cation of the temperature monitoring sys-
tem was given by the industrial partners � Space Systems Finland, namely
Dr. Dubravka Ili¢ and Dr. Timo Latvala. The formal development of this
system in Event-B was done by Yuliya Prokhorova under supervision of
Adjunct Prof. Linas Laibinis. The theoretical results were summarised by
Associate Prof. Elena Troubitsyna, Adjunct Prof. Linas Laibinis and Yuliya
Prokhorova.

Paper V: Linking Modelling in Event-B with Safety Cases

In this paper, we give preliminary exploration of the problem associated with
the use of formal veri�cation results in safety cases. This paper discusses in-
tegration of two frameworks: formal modelling of a system in Event-B and
constructing a structured safety case of a system using Goal Structuring
Notation (GSN). We aim at contributing to the construction of a su�cient
safety case and propose a fragment of it derived from a formal system spec-
i�cation. Firstly, we classify safety requirements and de�ne how each class
can be represented in a formal speci�cation in Event-B. Secondly, we divide
the safety case construction into two main parts: argumentation over the
whole formal development and argumentation over safety requirements indi-
vidually. Finally, we de�ne a number of invariants and theorems to support
the argumentation. The discharged proof obligations are used in the con-
structed safety case as the evidence that the given requirements hold. We
illustrate the proposed approach by a case study � a sluice gate control sys-
tem. The presented approach was later signi�cantly improved and extended
(see Paper VI).

Author's contribution: This work was initiated by Associate Prof. Elena
Troubitsyna. The proposed fragments of safety cases were constructed by

47

Yuliya Prokhorova under supervision of Associate Prof. Elena Troubitsyna.
The theoretical results were summarised by Associate Prof. Elena Troubit-
syna and Yuliya Prokhorova.

Paper VI: Towards Rigorous Construction of Safety Cases

In this paper, we build up on the work presented in Paper V. We propose
a methodology that covers two main processes: representation of formalised
safety requirements in Event-B models, and derivation of safety cases from
such Event-B models. To connect these processes, we utilise the classi�cation
of safety requirements introduced in Paper V. We modify and extend it to
comprise the broader range of di�erent safety requirements including, e.g.,
requirements about temporal and timing properties of a system. Firstly, the
proposed classi�cation is associated with particular ways the safety require-
ments can be represented in Event-B. We provide a formal mapping of di�er-
ent classes into Event-B model elements (i.e., axioms, variables, invariants,
events, and attributes) and model expressions that can be build from model
elements. Moreover, we show how the corresponding theorems for formal
veri�cation of safety requirements can be constructed out of these expres-
sions. The described above mechanism allows us to derive formal evidence
(either proofs or model checking results) that the desired system properties
stipulated by safety requirements preserved by the modelled system. Sec-
ondly, we derive a set of classi�cation-based argument patterns that allows
us to facilitate the construction of fragments of safety cases from Event-B
models. Additionally, we provide a separate argument pattern used to en-
sure that the formal development of a system in Event-B is well-de�ned. We
validate the proposed methodology by series of small case studies as well as
a larger case study � a steam boiler control system.

Author's contribution: This work was a natural continuation of Paper V.
The proposed argument patterns were developed by Yuliya Prokhorova un-
der supervision of Adjunct Prof. Linas Laibinis. The theoretical results
were summarised by Adjunct Prof. Linas Laibinis, Yuliya Prokhorova and
Associate Prof. Elena Troubitsyna.

Paper VII: A Survey of Safety-Oriented Model-Driven and Formal

Development Approaches

In this paper, we overview the approaches that have been recently proposed
to integrate safety analysis into model-driven and formal development of
critical systems. We aim at guiding industry practitioners to identify the

48

most suitable approaches to ful�l their design objectives as well as identify-
ing promising research directions in the area. To perform a search for the
relevant papers on the topic of our studies, we have used scienti�c paper
databases such as IEEE Xplore, SpringerLink, ACM Digital Library, and
Science Direct. Additionally, we have conducted a manual search of con-
ference and workshop proceedings. We have reviewed over 200 papers and
chosen 14 model-driven and 7 formal safety-oriented approaches for the de-
tailed consideration. In this paper, we classify the approaches according
to seven criteria such as the application domain, the modelling languages
used, the covered phases of the development life cycle, the adopted safety
analysis techniques, the nature of safety analysis (qualitative or quantita-
tive), and the availability of automated tool support. We also de�ne what
are the inputs and outputs of each approach to facilitate a selection of a
suitable technique. The results reveal that there is no single uni�ed model-
based approach that would facilitate achieving di�erent levels of safety (i.e.,
SILs), while addressing various domain aspects and covering all the stages of
system development process. We have also identi�ed that there is the lack
of mature tool support that would allow the safety engineers to adopt the
proposed approaches in the industrial practice.

Author's contribution: This work was initiated by Associate Prof. Elena
Troubitsyna. The literature analysis was performed by Yuliya Prokhorova.
The theoretical results were summarised by Associate Prof. Elena Troubit-
syna and Yuliya Prokhorova.

49

50

Chapter 5

Related Work

Model-based development approaches have been actively used in various do-
mains. However, it is infeasible to overview all the available techniques.
Therefore, in this chapter, we consider only the recent and most prominent
approaches to model-based development and veri�cation of safety-critical
systems. Firstly, we describe the approaches that aim at extracting, iden-
tifying and structuring system requirements as well as consequently formal-
ising them. Secondly, we overview the methods for safety-oriented model-
based development of critical systems. Finally, we consider the approaches to
demonstrating safety assurance and constructing the corresponding model-
oriented safety cases.

5.1 Approaches to Requirements Elicitation and

Formalisation

Various approaches can be undertaken to extract and structure both func-
tional and non-functional requirements from system descriptions in the nat-
ural language, see [64, 80, 133]. Since the functional safety standards such as
IEC 61508 [77] highly recommend the use of formal methods in the safety-
critical domains, a vast amount of research has been dedicated to the re-
quirements formalisation, e.g., [39, 70, 137]. Here we limit ourselves only
to those approaches that have been linked with the Event-B formalism em-
ployed within the thesis. We can distinguish two categories among the con-
sidered approaches: (1) the approaches addressing requirements extraction
and identi�cation from the results of safety analysis for further formalisation
and veri�cation, and (2) the approaches aiming at achieving requirements
traceability within formal models.

Formalising Safety Analysis Results in Event-B. Let us now take a
closer look at the �rst category of the approaches to requirements elicitation,

51

namely, the approaches to requirements extraction and identi�cation from
the results of safety analysis as well as their consequent formalisation in
Event-B and similar formalisms, e.g., Action Systems and the B Method.

In the development of safety-critical computer-based systems, the use of
safety analysis techniques such as FHA, FTA and FMEA at the early stages
of the system development life cycle allows for obtaining lists of hazards
and safety requirements. Moreover, the information collected during these
analyses includes description of the failure detection and recovery procedures
to be performed by the system in order to avoid the occurrence of severe
hazards.

For example, the work [33] aims at investigating how the AltaRica [8,
110] and Event-B formalisms can be associated to perform the operational
safety analysis and validate system safety. The AltaRica language has been
developed to formally specify the behaviour of systems under the presence of
faults and to allow for safety assessment [24]. It utilises FHA to derive safety
requirements and permits, for example, generation of fault trees. However,
the main goal of the work presented in [33] is not to translate an AltaRica
model into an Event-B model but rather to maintain both models. On
the one hand, an AltaRica model is used to analyse and assess the non-
functional system aspects. On the other hand, an Event-B model is used
mostly to specify the functional behaviour of a system. In our approach,
both the system functional behaviour and its behaviour in the presence of
faults are captured by the Event-B formalism. However, our approach does
not support quantitative safety assessment. Therefore, AltaRica can be used
to complement our approach.

In [125, 131], the authors propose approaches to integrating FTA and
FMEA into formal system development within the Action Systems formal-
ism that inspired Event-B. Speci�cally, [125] proposes to formalise fault tree
events as predicates over state variables. These predicates then appear as
guards of the actions that specify the reaction of the system on speci�c
fault occurrences. The gates of a fault tree de�ne logical operations (e.g.,
conjunction or disjunction) between the predicates in the action guards. A
representation of FMEA results in the Action Systems formalism is described
in [131]. This is achieved by using statecharts to structure the information
about the failure modes and remedial actions obtained by FMEA. Finally,
an approach to using statecharts as a middle ground between safety analy-
sis and formal system speci�cations in the B Method is described in [132].
Speci�cally, statecharts assist in deriving the safety invariants to be veri�ed
from the given FTA results. These invariants de�ne the safety conditions to
be maintained to avoid the corresponding hazards.

In this thesis, we rely on the ideas put forward in [131, 132] to de�ne
a general approach to integrating results of FMEA into the formal Event-B
speci�cation and re�nement process. However, we do not use statecharts as

52

an intermediary but rather integrate FMEA into the formal development di-
rectly. In our work, in contrast to [131, 132], we de�ne more strict guidelines
how the results of FMEA can be mapped into the corresponding Event-B
elements (variables, invariants, etc.). We propose a set of FMEA represen-
tation patterns, instantiation of which aims at facilitating the formal system
development of safety-critical systems. The pattern application automati-
cally transforms a model to represent the results of FMEA in a consistent
way. The available automatic tool support for the Event-B modelling as
well as the developed plug-in for FMEA pattern instantiation ensure better
scalability of our approach.

In this thesis, we focus on a speci�c type of requirements � safety re-
quirements. However, there are approaches dealing with the requirements
analysis in general. The aim of these approaches is to extract requirements
from the natural language and represent them in formal models. Next, we
overview some of them.

The ProR Approach. The ProR approach proposed by Jastram et al.
[81, 82] is an approach that establishes traceability between requirements
and system modelling in Event-B. It is based on the WRSPM reference
model [64]. The WRSPM model applies formal analysis to the requirements
engineering process and is based on using two basic notations for describing
artefacts and phenomena. Artefacts depict constraints on the system state
space and state transitions, while phenomena represent the state space and
state transitions of the system and its domain. Phenomena are split into
two disjoint sets. One set contains the phenomena controlled by the system,
while the second one consists of the phenomena controlled by the environ-
ment. There are �ve artefacts in WRSPM: domain knowledge or world
(W), requirements (R), speci�cations (S), program (P), and programming
platform or machine (M). In contrast to WRSPM, where R stands for all
requirements, the authors of the ProR approach di�erentiate between the
functional and non-functional requirements by introducing the artefact N,
corresponding to the non-functional requirements, and keeping R for the
functional ones. Moreover, they introduce a new artefact to represent design
decisions (D).

The ProR approach provides traceability between informally stated sys-
tem requirements and a speci�cation in Event-B by formalising phenomena
for the given artefacts as variables, events and constants, while formalis-
ing the artefacts themselves as either invariants or events. The approach is
supported by a plug-in for the Rodin platform called ProR [118].

ProR is a generic approach, while, in this thesis, we propose an approach
speci�c for safety-critical systems. This allows us to better support incor-
poration of safety and fault tolerance requirements as well as guide formal
development and veri�cation of such systems by providing a set of spec-

53

i�cation and re�nement patterns for introducing speci�c safety and fault
tolerance related mechanisms.

Linking Problem Frames and Event-B. Another approach to require-
ments analysis and structuring is called Problem Frames [80]. It allows for
describing problems rather than solutions to these problems. Semantically,
Problem Frames can be de�ned as the reference model that follows the prin-
ciple of separation between the system (the machine) and its environment
(the problem domains). The model is based on a number of artefacts (i.e.,
the domain knowledge, the requirements and the speci�cation) and a vocab-
ulary (phenomena) to describe the system, the environment and the interface
between them. The Problem Frames approach is supported by the graphi-
cal problem diagrams. There are three types of elements in these diagrams:
machine, problem world, and requirements.

Loesch et al. [94] have proposed an approach that permits for translat-
ing the requirements structured using Problem Frames into formal speci�-
cations in Event-B. The authors propose to model each problem diagram
as an Event-B MACHINE and its associated CONTEXT. The re�nement
principle of Event-B is utilised to represent an elaboration of an abstract
diagram into a more concrete one. Decomposition of a problem into sub-
problems is performed by the shared variables decomposition in Event-B [4].
Each phenomenon can be modelled in Event-B as a constant or a variable.
Evolution of phenomena is modelled as data re�nement in Event-B. Finally,
the requirements stated in problem diagrams are formalised in Event-B by
events and invariants.

The approach proposed in this thesis also facilitates traceability of re-
quirements. However, in contrast to the described above two approaches
(the ProR approach and the linking Problem Frames and Event-B approach),
we widen instruments for representation of requirements. More speci�cally,
requirements are represented by linking them with various expressions of
model elements and then associating them with speci�c theorems, serving as
the evidence that these requirements hold.

Combining KAOS with Event-B. In the area of the requirements en-
gineering, the principle of goal-oriented requirements engineering [133] has
recently received a signi�cant attention. According to this principle, a goal is
de�ned as an objective that the system under consideration should achieve.
It covers both functional and non-functional aspects. Among the exam-
ples of the goal-oriented requirements engineering methods are NFR [34],
i∗/Tropos [60], Goal-Based Requirements Analysis Method (GBRAM) [10],
and the method called KAOS [41, 134], where the abbreviation stands for
"Knowledge Acquisition in autOmated Speci�cation".

54

KAOS is a semi-formal method that allows for capturing requirements as
goals, constraints, objects, operations, actions, and agents [41]. It includes
the following stages:

• identi�cation and re�nement of goals until the speci�c constraints im-
posed on agents are derived,
• identi�cation of objects and actions from goals,
• derivation of requirements on the objects and actions in order to meet
the constraints,
• allocation of these objects, actions and constraints to the agents that
constitute a system.

The method supports such models as a goal model to represent the goals of a
system and its environment, an object model to describe the system objects,
an agent responsibility model to assign the goals to speci�c agents, and an
operational model to represent the behaviour of agents. Moreover, KAOS is
supported by the LTL notation to formalise speci�cation of goals.

Several approaches have been proposed to combine KAOS with Event-B
[15, 98, 99, 111]. To systematically derive Event-B models from KAOS goal
models, the authors of [98, 99] formalise the KAOS re�nement patterns used
to generate the KAOS goal hierarchy. A KAOS goal can be represented
as a postcondition of an event in Event-B, where an action of this event
stands for the achievement of the goal. A decomposition of goals into sub-
goals is re�ected as event re�nement and guaranteed by the corresponding
proof obligations. In contrast, the approach to linking KAOS and Event-B
proposed by Aziz et al. [15] as well as the approach presented by Ponsard
and Devroey [111] do not focus on the level of individual events but deal
with transformation of a KAOS object model into Event-B in general. For
example, the authors of [111] obtain an abstract Event-B MACHINE that
meets the given KAOS requirements. Then, this MACHINE can be re�ned
according to the KAOS agent responsibility model.

The KAOS approach decomposes requirements hierarchically. A similar
mechanism is used within our approach to represent hierarchically structured
safety requirements. However, we also focus on other classes of safety require-
ments (those safety requirements that are not hierarchically structured) and
provide their corresponding mapping into Event-B model expressions.

5.2 Approaches to Model-Based Development and

Veri�cation of Critical Systems

In this section, we brie�y overview several most recent and prominent ap-
proaches to safety-oriented model-based development and veri�cation of crit-
ical computer-based systems. A more detailed analysis of such approaches
can be found in our survey (Paper VII) given in the second part of this thesis.

55

Correctness, Modelling and Performance of Aerospace Systems

(COMPASS). Bozzano et al. [28, 29, 30] propose a methodology to system-
software co-engineering of safety-critical embedded systems, speci�cally
aerospace systems. The approach is based on the AADL modelling frame-
work and supports the safety and dependability analysis of AADL speci�ca-
tions by means of the toolset called COMPASS. To model the heterogeneous
systems that include software and hardware components and their interac-
tions, the authors extend the formal semantics of AADL and propose the
System-Level Integrated Modelling (SLIM) language. A SLIM speci�cation
includes descriptions of both nominal system behaviour and its error be-
haviour as well as fault injections, i.e., descriptions how the error behaviour
in�uences the nominal behaviour. The approach supports such hazard anal-
ysis techniques as FMEA and FTA. Moreover, the toolset assists in symbolic
and probabilistic model checking. It takes as an input a SLIM speci�cation
as well as speci�c patterns for property speci�cations and generates as an
output, in particular, the traces resulting from a simulation of the SLIM
speci�cation. The COMPASS toolset can also generate (probabilistic) fault
trees and FMEA tables.

The COMPASS methodology is comprehensive and well founded. How-
ever, veri�cation of essential properties of safety-critical systems is performed
by model checking. This might lead to the state explosion problem. In this
thesis, we propose approaches to veri�cation of safety-critical systems based
on theorem proving, which allows us to avoid the above mentioned problem.

MeDISIS Methodology. The MeDISIS methodology [38, 42, 43, 44] com-
bines multiple technologies to improve e�ciency of the safety and reliability
analyses. It includes the following steps: (1) the use of FMEA to study the
behaviour of a system in the presence of faults; (2) construction of a model
integrating the functional system behaviour and the system behaviour in the
presence of faults with Altarica Data Flow; (3) analysis and quanti�cation
of the non-functional behaviour and the impact on requirements and timing
constraints with AADL. This can be also considered as a part of a SysML-
centred model-based system engineering process that incorporates safety and
dependability relevant activities into the system development life cycle [44].

The application of the MeDISIS methodology to the development of the
embedded controller of an aircraft system is presented in [38]. The paper
shows how to perform a reliability analysis using AltaRica Data Flow and
timing analysis using AADL as well as how to �nalise the speci�cation stage
with Matlab/Simulink. As a result, the obtained Simulink model, incorpo-
rating the system behaviour in the presence of faults allows the developers
to get information about error propagation at the early stages of the design
process. Even though we do not consider the quantitative system aspects,

56

the formal models obtained by applying our approach also represent both
nominal behaviour and the behaviour of the system in the presence of faults.
Within these models, we are able to verify essential safety-related properties
of critical computer-based systems and justify by proofs that the imposed
safety requirements hold.

Integrating Formal Models and Safety Analysis (ForMoSA). The
ForMoSA approach [109] combines the aspects of fault tolerance, functional
correctness and quantitative analysis to address common problems of safety-
critical systems and ensure a high level of safety. ForMoSA consists of three
di�erent parts: (1) building a formal speci�cation; (2) qualitative analysis;
(3) quantitative analysis. The �rst part includes building a functional model,
a failure-sensitive speci�cation, an independent traditional FTA, a functional
error model, as well as checking correct integration of the failure modes into
the functional model. The result of this step is a functional error model that
de�nes not only functionality but also possible component failures and er-
rors. The second part integrates the traditional FTA and formal methods by
verifying functional correctness of the functional error model and performing
the formal FTA (i.e., a technique that combines the rigorous proof concepts
of formal methods into the reasoning process of FTA). The formal FTA re-
sults in a set of temporal logic formulas. They have to be proved correct
for the functional error model. Then, the discharged proof obligations show
that the fault tree is complete. The result of this part is a precise description
of the qualitative relationship between component failures and hazards. The
�nal, third part is based on applying the quantitative FTA, risk analysis, as
well as mathematical optimisation. It results in a suggestion of the optimal
con�guration of the system.

The approach proposed in this thesis focuses on the logical representation
of faults. We model the system architecture and design and verify that
they comply with the given safety requirements. Moreover, we use FTA
to only derive a list of system safety requirements, which currently do not
involve quantitative characteristics or probabilities. However, it is possible
to complement our approach by combining it with the work presented in
[128]. This is one of the directions of our future work.

5.3 Approaches to Model-Oriented Safety Case

Construction

Recently, model-based development of safety-critical computer-based sys-
tems has been linked to construction of safety cases. The research issues
related to model-based safety cases, e.g., the concerns about justi�cation
of model appropriateness for a safety case, are outlined in [31]. Below we

57

give several examples of existing approaches to model-based construction of
safety cases.

In [14, 83], the authors propose safety case patterns for constructing
arguments over the correctness of implementations developed from timed
automata models. An instantiation of these patterns is shown on the imple-
mentation software of a patient controlled analgesic infusion pump [14] and
a cardiac pacemaker [83].

Another example is the work conducted by Basir et al. [21]. The authors
propose an approach to the construction of a hierarchical safety case for the
generated program code according to the hierarchical structure of a system
within model-based development. To demonstrate safety assurance, the au-
thors perform formal proof-based veri�cation of the annotated code. The
obtained formal proofs serve as the evidence that the generated code con-
forms to the requirements imposed on the system under consideration. The
approach provides independent assurance of both code and system model. It
is validated using the results of the formal veri�cation of safety requirements
for the code generated from a Simulink model of a navigation system.

To reduce the costs of safety-critical systems development in a speci�c
domain, industrial practitioners often adopt a product-line approach [37].
Habli [65] proposes a model-based approach to assuring product-line safety,
e.g., in the automotive domain. The author de�nes a safety metamodel to
capture the dependencies between the safety case construction, the assess-
ment of safety, and the development aspects of a product line. The authors
of [138] propose domain speci�c safety case patterns to construct a safety
case for a cruise control system from automotive domain-speci�c models.

In this thesis, we contribute to a set of safety case patterns and describe
in detail their instantiation process for di�erent classes of safety require-
ments. Our argument patterns facilitate construction of safety cases where
safety requirements are veri�ed formally and the corresponding formal-based
evidence is derived to represent justi�cation for safety assurance.

Currently, all the described above safety case patterns lack a formal se-
mantics to facilitate automated instantiation, composition and manipulation.
In [48], the authors give a formal de�nition for safety case patterns, de�ne a
formal semantics for these patterns, and propose a generic data model as well
as an algorithm for pattern instantiation. Moreover, recent developments in
the area of safety cases include introduction of querying GSN safety case ar-
gument structures, which are used to provide argument structure views [47].
Speci�cally, GSN nodes are semantically enriched by metadata, given as a set
of attributes. Then, the Argument Query Language is used to query safety
case argument structures and create views. The methodology proposed in
[47] can be useful to address stakeholders' concerns about system safety, and
facilitate allocating and displaying the information of interest. We consider
the works described in [47, 48] as complementary to our approach.

58

Chapter 6

Conclusions and Future Work

In this chapter, we summarise the main contributions of this thesis, discuss
the limitations of the proposed approach as well as highlight future research
directions.

6.1 Research Conclusions

Formal methods play an important role in development and veri�cation of
modern critical computer-based systems. Their application is strongly rec-
ommended by various standards for systems with a high level of criticality.
Nonetheless, these methods are mostly used to guarantee the functional cor-
rectness of systems in question. While being an area of active research,
integrating formal methods into engineering of safety-critical systems still
remains a challenging task.

This thesis proposes an integrated approach to rigorous development of
critical computer-based systems taking into account their safety aspects. We
have made contributions to the processes of requirements elicitation, formal
modelling and veri�cation, as well as facilitation of system certi�cation by
showing how to incorporate safety requirements into formal models in Event-
B and use the veri�cation results of these formal models as the evidence for
construction of safety cases.

To be able to represent and verify safety requirements formally in Event-
B, we have proposed an approach to their structuring and precise mapping
into the model elements either by integrating the FMEA technique with for-
mal development or by classifying safety requirements and de�ning a speci�c
mapping function for each class.

This gives us a starting point for formal development of safety-critical
systems. However, formal development can be complex and time-consuming.
Therefore, to support this task and promote the use of this technique in
industrial applications, we have proposed a number of formal speci�cation

59

and re�nement patterns for two types of safety-critical systems, namely,
control and monitoring systems. Correctness of these patterns has been
formally veri�ed. Due to genericity, the patterns can be instantiated for a
broad range of critical computer-based systems, e.g., by assigning concrete
values to constants and instantiating abstract functions.

Finally, to be able to facilitate the safety assurance process of formally
developed safety-critical systems, we have established a link between Event-
B and safety cases. This link is de�ned via the safety requirements class-
i�cation-based argument patterns, where strategies of goal decomposition
rely on formal reasoning in Event-B. The set of proposed argument patterns
allows us to contribute to the construction of safety case fragments assuring
that system safety requirements are met as well as that system models in
Event-B are well-de�ned.

We believe that our integrated approach can facilitate rigorous develop-
ment of safety-critical systems and increase the interest in the application of
formal techniques for industrial practitioners.

Nevertheless, the approach presented in the thesis has several limitations.
The �rst and the main one is the lack of automation. At the moment, only
instantiation of component-oriented FMEA patterns has been automated.
However, neither the FMEA patterns used to derive the fault tolerance part
of a system mode logic nor the proposed speci�cation and re�nement patterns
have a tool support. Automated pattern instantiation would signi�cantly
facilitate their reuse for a class of suitable systems. The second problem
also related to the lack of automation is manual construction of safety cases.
This also decreases the overall impact of the proposed approach. The third
issue is related to the completeness of the proposed classi�cation. Despite
the fact that the proposed classi�cation of safety requirements covers a wide
range of di�erent safety requirements, it could be further extended if needed.
Consequently, the set of argument patterns could be extended as well.

6.2 Future Work

The limitations of the proposed approach discussed above lead to the fol-
lowing possible future research directions. Firstly, a library of automated
FMEA patterns and a set of formal speci�cation and re�nement patterns
could be extended to cover more application domains. Secondly, automated
construction of safety case fragments and their subsequent integration with
the safety cases built using the existing tools, e.g., [11, 63, 79], would result in
more e�cient and scalable application of the proposed approach. Therefore,
one of the future research directions could be dedicated to development of
a plug-in for the Rodin platform, the supporting toolset for Event-B. Such
a tool would allow one to automatically construct a fragment of a safety

60

case and convert it into a format compatible with other tools for safety case
construction.

We also foresee another direction of our future work. In this thesis, we
have not taken into account the quantitative aspects of safety (e.g., failure
rates). However, integration of our approach with quantitative assessment of
safety-critical systems would be bene�cial. There already exist several works
that aim at addressing this problem in Event-B, e.g., [71, 104, 128, 129].
They can serve as a basis for extending our approach with probabilistic
reasoning for representing and verifying requirements involving quantitative
characteristics or constraints.

61

62

Bibliography

[1] M. Abadi and L. Lamport. Composing Speci�cations. ACM Transac-
tions on Programming Languages and Systems, 15(1):73�132, January
1993.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, New York, NY, USA, 1996.

[3] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, New York, NY, USA, 1st edition, 2010.

[4] J.-R. Abrial and S. Hallerstede. Re�nement, Decomposition, and In-
stantiation of Discrete Models: Application to Event-B. Fundamenta
Informaticae, 77(1-2):1�28, January 2007.

[5] J.-R. Abrial and T.S. Hoang. Using Design Patterns in Formal Meth-
ods: An Event-B Approach. In J.S. Fitzgerald, A.E. Haxthausen, and
H. Yenigun, editors, Theoretical Aspects of Computing (ICTAC'08),
volume 5160 of Lecture Notes in Computer Science, pages 1�2. Springer
Berlin Heidelberg, 2008.

[6] A Computational Logic for Applicative Common Lisp (ACL2).
http://www.cs.utexas.edu/∼moore/best-ideas/acl2/.

[7] ADVANCE � Advanced Design and Veri�cation Environment for
Cyber-physical System Engineering. http://www.advance-ict.eu/,
2011�2014.

[8] Success Story: Siemens RailCom and Model Driven Architecture.
http://altarica.fr/.

[9] J.D. Andrews and S.J. Dunnett. Event-Tree Analysis Using Binary
Decision Diagrams. IEEE Transactions on Reliability, 49(2):230�239,
2000.

[10] A. Anton. Goal Identi�cation and Re�nement in the Speci�cation of
Software-Based Information Systems. PhD Thesis, Georgia Institute
of Technology, Atlanta, GA, USA, June 1997.

63

[11] The Adelard Assurance and Safety Case Environment (ASCE).
http://www.adelard.com/asce/v4.1/download.html.

[12] A. Aviºienis, J.-C. Laprie, and B. Randell. Fundamental Concepts
of Dependability. In Processing of the 3rd Information Survivability
Workshop, pages 7�12, 2000.

[13] A. Aviºienis, J.-C. Laprie, B. Randell, and C. Landwehr. Ba-
sic Concepts and Taxonomy of Dependable and Secure Computing.
IEEE Transactions on Dependable and Secure Computing, 1(1):11�33,
January�March 2004.

[14] A. Ayoub, B.G. Kim, I. Lee, and O. Sokolsky. A Safety Case Pattern
for Model-Based Development Approach. In Proceedings of the 4th
International Conference on NASA Formal Methods (NFM'12), pages
141�146, Berlin, Heidelberg, 2012. Springer-Verlag.

[15] B. Aziz, A. Arenas, J. Bicarregui, C. Ponsard, and P. Massonet. From
Goal-Oriented Requirements to Event-B Speci�cations. In Proceedings
of the 1st Nasa Formal Method Symposium (NFM'09), California, April
2009.

[16] R.J. Back and K. Sere. Stepwise Re�nement of Action Systems. Math-
ematics of Program Construction, 375:115�138, 1989.

[17] R.J. Back and K. Sere. From Action Aystems to Modular Systems.
FME'94: Industrial Bene�t of Formal Methods, 873:1�25, 1994.

[18] R.J. Back and J. von Wright. Re�nement Calculus: A Systematic
Introduction. Springer-Verlag, 1998.

[19] L.M. Barroca and J.A. McDermid. Formal Methods: Use and Rele-
vance for the Development of Safety Critical Systems. The Computer
Journal, 35:579�599, 1992.

[20] N. Basir. Safety Cases for the Formal Veri�cation of Automatically
Generated Code. Doctoral thesis, University of Southampton, 2010.

[21] N. Basir, E. Denney, and B. Fischer. Deriving Safety Cases for Hier-
archical Structure in Model-Based Development. In E. Schoitsch, edi-
tor, Computer Safety, Reliability, and Security, volume 6351 of Lecture
Notes in Computer Science, pages 68�81. Springer Berlin Heidelberg,
2010.

[22] G. Behrmann, A. David, and K.G. Larsen. A Tutorial on Uppaal. In
M. Bernardo and F. Corradini, editors, Formal Methods for the De-
sign of Real-Time Systems, volume 3185 of Lecture Notes in Computer
Science, pages 200�236. Springer Berlin Heidelberg, 2004.

64

[23] G. Berry. Synchronous Design and Veri�cation of Critical Embedded
Systems Using SCADE and Esterel. In S. Leue and P. Merino, editors,
Formal Methods for Industrial Critical Systems, volume 4916 of Lecture
Notes in Computer Science, pages 2�2. Springer Berlin Heidelberg,
2008.

[24] P. Bieber, C. Bougnol, C. Castel, J.-P. Christophe K., Heckmann,
S. Metge, and C. Seguin. Safety Assessment with AltaRica. In
R. Jacquart, editor, Building the Information Society, volume 156
of IFIP International Federation for Information, pages 505�510.
Springer US, 2004.

[25] P. Bishop and R. Bloom�eld. A Methodology for Safety Case De-
velopment. In Safety-Critical Systems Symposium, Birmingham, UK.
Springer-Verlag, 1998.

[26] J. Bowen and M. Hinchey. The Use of Industrial-Strength Formal
Methods. In Proceedings of the 21st Annual International Computer
Software and Applications Conference (COMPSAC'97), pages 332�
337, August 1997.

[27] J. Bowen and V. Stavridou. Safety-Critical Systems, Formal Methods
and Standards. Software Engineering Journal, 8(4):189�209, July 1993.

[28] M. Bozzano, R. Cavada, A. Cimatti, J.-P. Katoen, V.Y. Nguyen,
T. Noll, and X. Olive. Formal Veri�cation and Validation of AADL
Models. In Proceedings of Embedded Real Time Software and Systems
Conference (ERTS'10), pages 1�9, 2010.

[29] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, and
M. Roveri. The COMPASS Approach: Correctness, Modelling and
Performability of Aerospace Systems. In Proceedings of Interna-
tional Conference on Computer Safety, Reliability and Security (SAFE-
COMP'09), pages 173�186, 2009.

[30] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, and
M. Roveri. Safety, Dependability and Performance Analysis of Ex-
tended AADL Models. The Computer Journal, 54(5):754�775, 2010.

[31] P. Braun, J. Philipps, B. Schätz, and S. Wagner. Model-Based Safety-
Cases for Software-Intensive Systems. Electronic Notes in Theoretical
Computer Science, 238(4):71�77, September 2009.

[32] Claims, Arguments and Evidence (CAE).
http://www.adelard.com/asce/choosing-asce/cae.html.

65

[33] J.-C. Chaudemar, E. Bensana, C. Castel, and C. Seguin. AltaRica and
Event-B Models for Operational Safety Analysis: Unmanned Aerial
Vehicle Case Study. In Proceeding of the Workshop on Integration
of Model-Based Formal Methods and Tools, pages 15�19, Düsseldorf,
Germany, February 2009.

[34] L. Chung and J.C.S. Prado Leite. On Non-Functional Requirements
in Software Engineering. In A.T. Borgida, V.K. Chaudhri, P. Giorgini,
and E.S. Yu, editors, Conceptual Modeling: Foundations and Applica-
tions, volume 5600 of Lecture Notes in Computer Science, pages 363�
379. Springer Berlin Heidelberg, 2009.

[35] E. Clarke. 25 Years of Model Checking. chapter The Birth of Model
Checking, pages 1�26. Springer-Verlag, Berlin, Heidelberg, 2008.

[36] Industrial Use of the B Method.
http://www.methode-b.com/documentation_b/ClearSy-
Industrial_Use_of_B.pdf.

[37] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[38] R. Cressent, V. Idasiak, F. Kratz, and P. David. Mastering Safety and
Reliability in a Model Based Process. In Proceedings of Reliability and
Maintainability Symposium (RAMS'11), pages 1�6, 2011.

[39] J. Crow and B. Di Vito. Formalizing Space Shuttle Software Require-
ments: Four Case Studies. ACM Transactions on Software Engineering
and Methodology, 7(3):296�332, July 1998.

[40] Dependability Engineering for Open Systems. D-Case.
http://www.dependable-os.net/osddeos/en/concept.html.

[41] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde.
GRAIL/KAOS: An Environment for Goal-driven Requirements Engi-
neering. In Proceedings of the 19th International Conference on Soft-
ware Engineering (ICSE'97), pages 612�613, New York, NY, USA,
1997. ACM.

[42] P. David, V. Idasiak, and F. Kratz. Towards a Better Interaction
Between Design and Dependability Analysis: FMEA Derived from
UML/SysML Models. In Proceedings of ESREL'08 and the 17th SRA-
EUROPE annual conference, 2008.

[43] P. David, V. Idasiak, and F. Kratz. Automating the synthesis of Al-
taRica Data-Flow models from SysML. In Reliability, Risk, and Safety,

66

Three Volume Set: Theory and Applications; Proceedings of European
Safety and Reliability Conference (ESREL'09), pages 105�112, 2009.

[44] P. David, V. Idasiak, and F. Kratz. Reliability Study of Complex
Physical Systems Using SysML. Reliability Engineering and System
Safety, 95(4):431�450, 2010.

[45] UK Ministry of Defence. 00-56 Safety Management Requirements for
Defence Systems, 2007.

[46] E. Denney and B. Fischer. Software Certi�cation and Software Cer-
ti�cate Management Systems (Position Paper). In Proceedings of ASE
Workshop on Software Certi�cate Management (SCM'05), pages 1�5,
Long Beach, CA, November 2005.

[47] E. Denney, D. Naylor, and G. Pai. Querying Safety Cases. In A. Bon-
davalli and F. Di Giandomenico, editors, Computer Safety, Reliability,
and Security (SAFECOMP'14), volume 8666 of Lecture Notes in Com-
puter Science, pages 294�309. Springer International Publishing, 2014.

[48] E. Denney and G. Pai. A Formal Basis for Safety Case Patterns. In
F. Bitsch, J. Guiochet, and M. Kaâniche, editors, Computer Safety,
Reliability, and Security (SAFECOMP'13), volume 8153 of Lecture
Notes in Computer Science, pages 21�32. Springer Berlin Heidelberg,
2013.

[49] E. Denney, G. Pai, and J. Pohl. Automating the Generation of Hetero-
geneous Aviation Safety Cases. NASA Contractor Report NASA/CR-
2011-215983, 2011.

[50] Industrial Deployment of System Engineering Methods Providing High
Dependability and Productivity (DEPLOY). IST FP7 IP Project.
http://www.deploy-project.eu.

[51] DEPLOY � Industrial deployment of system engineering methods
providing high dependability and productivity. http://www.deploy-
project.eu/index.html, 2008�2012.

[52] EB2ALL - The Event-B to C, C++, Java and C# Code Generator.
http://eb2all.loria.fr/.

[53] ESTEREL - Critical Systems and Software Development Solu-
tions. Success Stories. http://www.esterel-technologies.com/success-
stories/airbus-a380/.

[54] European Committee for Electrotechnical Standardization (CEN-
ELEC). EN 50129 Railway applications � Communication, signalling

67

and processing systems. Safety related electronic systems for signalling.
February 2003.

[55] European Committee for Electrotechnical Standardization (CEN-
ELEC). EN 50128 Railway applications � Communication, signalling
and processing systems � Software for railway control and protection
systems. June 2011.

[56] Event-B and the Rodin Platform. http://www.event-b.org/.

[57] The Flow plug-in. http://iliasov.org/usecase/.

[58] FMEA Info Centre. http://www.fmeainfocentre.com/.

[59] Fault Tree Analysis. http://www.fault-tree.net.

[60] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and
P. Traverso. Specifying and Analyzing Early Requirements in Tropos.
Requirements Engineering, 9(2):132�150, 2004.

[61] Goal Structuring Notation Working Group. Goal Structuring Notation
Standard. http://www.goalstructuringnotation.info/, November 2011.

[62] A. Gomes and M. Oliveira. Formal Development of a Cardiac Pace-
maker: From Speci�cation to Code. In J. Davies, L. Silva, and
A. Simao, editors, Formal Methods: Foundations and Applications,
volume 6527 of Lecture Notes in Computer Science, pages 210�225.
Springer Berlin Heidelberg, 2011.

[63] GSN Editor. http://www.dependablecomputing.com/tools/gsn-
editor/index.html.

[64] C.A. Gunter, E.L. Gunter, M. Jackson, and P. Zave. A Reference
Model for Requirements and Speci�cations. IEEE Software, 17(3):37�
43, May 2000.

[65] I. Habli. Model-Based Assurance of Safety-Critical Product Lines. Doc-
toral thesis, University of York, 2009.

[66] I. Habli and T. Kelly. A Generic Goal-Based Certi�cation Argument
for the Justi�cation of Formal Analysis. Electronic Notes in Theoretical
Computer Science, 238(4):27�39, September 2009.

[67] A. Hall. Using Formal Methods to Develop an ATC Information Sys-
tem. IEEE Software, 13(2):66�76, March 1996.

[68] R. Hawkins, T. Kelly, J. Knight, and P. Graydon. A New Approach
to Creating Clear Safety Arguments. In Advances in Systems Safety,
pages 3�23. Springer London, 2011.

68

[69] I.J. Hayes, M.A. Jackson, and C.B. Jones. Determining the Speci�ca-
tion of a Control System from That of Its Environment. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, Formal Methods (FME 2003),
volume 2805 of Lecture Notes in Computer Science, pages 154�169.
Springer Berlin Heidelberg, 2003.

[70] C. Heitmeyer. Formal Methods for Specifying Validating, and Verifying
Requirements. Journal of Universal Computer Science, pages 607�618,
2007.

[71] T.S. Hoang, Z. Jin, K. Robinson, A. McIver, and C. Morgan. Develop-
ment via Re�nement in Probabilistic B � Foundation and Case Study.
In H. Treharne, S. King, M. Henson, and S. Schneider, editors, ZB
2005: Formal Speci�cation and Development in Z and B, volume 3455
of Lecture Notes in Computer Science, pages 355�373. Springer Berlin
Heidelberg, 2005.

[72] C.A.R. Hoare. Communicating Sequential Processes. ACM Commu-
nications, 21(8):666�677, August 1978.

[73] The HOL System. http://www.cl.cam.ac.uk/research/hvg/HOL/.

[74] G.J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279�295, 1997.

[75] A. Iliasov. Use Case Scenarios as Veri�cation Conditions: Event-
B/Flow Approach. In Proceedings of the 3rd International Workshop
on Software Engineering for Resilient Systems (SERENE'11), pages
9�23, Berlin, Heidelberg, 2011. Springer-Verlag.

[76] A. Iliasov, E. Troubitsyna, L. Laibinis, and A. Romanovsky. Pat-
terns for Re�nement Automation. In F.S. de Boer, M.M. Bonsangue,
S. Hallerstede, and M. Leuschel, editors, Formal Methods for Compo-
nents and Objects, volume 6286 of Lecture Notes in Computer Science,
pages 70�88. Springer Berlin Heidelberg, 2010.

[77] International Electrotechnical Commission. IEC 61508 Func-
tional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems. April 2010.

[78] International Organization for Standardization. ISO 26262 Road Ve-
hicles Functional Safety. November 2011.

[79] ISCaDE (Integrated Safety Case Development Environment).
http://www.iscade.co.uk/.

69

[80] M. Jackson. Problem Frames: Analyzing and Structuring Software De-
velopment Problems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[81] M Jastram. The ProR Approach: Traceability of Requirements and
System Descriptions. Phd thesis, University of Dusseldorf, 2012.

[82] M. Jastram, S. Hallerstede, M. Leuschel, and Jr Russo, A.G. An Ap-
proach of Requirements Tracing in Formal Re�nement. In GaryT.
Leavens, Peter O'Hearn, and SriramK. Rajamani, editors, Veri�ed
Software: Theories, Tools, Experiments, volume 6217 of Lecture Notes
in Computer Science, pages 97�111. Springer Berlin Heidelberg, 2010.

[83] E. Jee, I. Lee, and O. Sokolsky. Assurance Cases in Model-Driven De-
velopment of the Pacemaker Software. In T. Margaria and B. Ste�en,
editors, Leveraging Applications of Formal Methods, Veri�cation, and
Validation, volume 6416 of Lecture Notes in Computer Science, pages
343�356. Springer Berlin Heidelberg, 2010.

[84] A. Joshi, M. Whalen, and M.P.E. Heimdahl. Model-Based Safety Anal-
ysis: Final Report. Technical report, NASA, 2005.

[85] T.P. Kelly. Arguing Safety � A Systematic Approach to Managing
Safety Cases. Doctoral thesis, University of York, September 1998.

[86] T.P. Kelly and J.A. McDermid. Safety Case Construction and Reuse
Using Patterns. In P. Daniel, editor, Proceedings of the 16th Interna-
tional Conference on Computer Safety, Reliability and Security (SAFE-
COMP'97), pages 55�69. Springer-Verlag London, 1997.

[87] J.C. Knight. Safety Critical Systems: Challenges and Directions. In
Proceedings of the 24rd International Conference on Software Engi-
neering (ICSE'02), pages 547�550, May 2002.

[88] L. Laibinis and E. Troubitsyna. Re�nement of Fault Tolerant Con-
trol Systems in B. In M. Heisel, P. Liggesmeyer, and S. Wittmann,
editors, Computer Safety, Reliability, and Security, volume 3219 of
Lecture Notes in Computer Science, pages 254�268. Springer Berlin
Heidelberg, 2004.

[89] J.-C. Laprie, editor. Dependability: Basic Concepts and Terminology.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1992.

[90] J.-C. Laprie. From Dependability to Resilience. In Proceedings of the
38th IEEE/IFIP International Conference on Dependable Systems and
Networks, pages G8�-G9, 2008.

70

[91] N. Leveson, N. Dulac, D. Zipkin, J. Cutcher-Gershenfeld, J. Carroll,
and B. Barrett. Resilience Engineering: Concepts and Precepts, chap-
ter Engineering Resilience into Safety-Critical Systems. Aldershot,
Ashgate, UK, September 2006.

[92] N. Leveson, L. Pinnel, S. Sandys, S. Koga, and J. Reese. Analyzing
Software Speci�cations for Mode Confusion Potential. In Proceedings
of a Workshop on Human Error and System Development, pages 132�
146, 1997.

[93] N.G. Leveson. Safeware: System Safety and Computers. Addison-
Wesley, 1995.

[94] F. Loesch, R. Gmehlich, K. Grau, C. Jones, and M. Mazzara. Report
on Pilot Deployment in Automotive Sector. DEPLOY Deliverable D19,
Project DEPLOY Grant Agreement 214158, January 2010.

[95] I. Lopatkin, Y. Prokhorova, E. Troubitsyna, A. Iliasov, and A. Ro-
manovsky. Patterns for Representing FMEA in Formal Speci�cation
of Control Systems. TUCS Technical Report 1003, 2011.

[96] Q.A. Malik, L. Laibinis, D. Truscan, and J. Lilius. Requirement-Driven
Scenario-Based Testing Using Formal Stepwise Development. Interna-
tional Journal On Advances in Software, 3(1):147�160, 2010.

[97] Q.A. Malik, J. Lilius, and L. Laibinis. Model-Based Testing Using
Scenarios and Event-B Re�nements. In M. Butler, C. Jones, A. Ro-
manovsky, and E. Troubitsyna, editors, Methods, Models and Tools for
Fault Tolerance, volume 5454 of Lecture Notes in Computer Science,
pages 177�195. Springer Berlin Heidelberg, 2009.

[98] A. Matoussi, F. Gervais, and R. Laleau. An Event-B Formal-
ization of KAOS Goal Re�nement Patterns. Technical Report
TR�LACL�2010�1, January 2010.

[99] A. Matoussi, R. Laleau, and D. Petit. Bridging the Gap Between
KAOS Requirements Models and B Speci�cations. Technical Report
TR-LACL-2009-5, September 2009.

[100] D. Méry and R. Monahan. Transforming Event-B Models into Ver-
i�ed C# Implementations. In A. Lisitsa and A. Nemytykh, editors,
International Workshop on Veri�cation and Program Transformation
(VPT'13), volume 16 of EPiC Series, pages 57�73, 2013.

[101] C. Metayer, J.-R. Abrial, and L. Voisin. Event-B Language. Rigorous
Open Development Environment for Complex Systems (RODIN) De-
liverable 3.2. http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, May 2005.

71

[102] Military Standard. MIL-STD-1629A Procedures for performing a Fail-
ure Mode, E�ects, and Criticality Analysis. November 1980.

[103] R. Milner. The Polyadic π-Calculus: a Tutorial. In F. Bauer,
W. Brauer, and H. Schwichtenberg, editors, Logic and Algebra of Spec-
i�cation, volume 94 of NATO ASI Series, pages 203�246. Springer
Berlin Heidelberg, 1993.

[104] C. Morgan, T.S. Hoang, and J.-R. Abrial. The Challenge of Prob-
abilistic Event-B � Extended Abstract �. In H. Treharne, S. King,
M. Henson, and S. Schneider, editors, Formal Speci�cation and Devel-
opment in Z and B (ZB'05), volume 3455 of Lecture Notes in Computer
Science, pages 162�171. Springer Berlin Heidelberg, 2005.

[105] T. Nipkow, M. Wenzel, and L. Paulson. Isabelle/HOL: A Proof Assis-
tant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[106] B. Nuseibeh and S. Easterbrook. Requirements Engineering: A
Roadmap. In Proceedings of the Conference on The Future of Soft-
ware Engineering (ICSE'00), pages 35�46, New York, NY, USA, 2000.
ACM.

[107] NuSMV: a New Symbolic Model Checker. http://nusmv.fbk.eu/.

[108] OMG UML. Uni�ed Modeling Language. http://www.uml.org/.

[109] F. Ortmeier, A. Thums, G. Schellhorn, andW. Reif. Combining Formal
Methods and Safety Analysis � The ForMoSA Approach. In H. Ehrig,
W. Damm, J. Desel, M. Groÿe-Rhode, W. Reif, E. Schnieder, and
E. Westkämper, editors, Integration of Software Speci�cation Tech-
niques for Applications in Engineering, volume 3147 of Lecture Notes
in Computer Science, pages 474�493. Springer Berlin Heidelberg, 2004.

[110] G. Point and A. Rauzy. AltaRica: Constraint Automata as a Descrip-
tion Language. Journal Européen des Systèmes Automatisés, 33(8�
9):1033�1052, 1999.

[111] C. Ponsard and X. Devroey. Generating High-Level Event-B System
Models from KAOS Requirements Models. In Proceedings of INFor-
matique des ORganisations et Systémes d'Information et de Décision
(INFORSID'11), Lille, France, May 2011.

[112] B.R. Poreddy and S. Corns. Arguing Security of Generic Avionic Mis-
sion Control Computer System (MCC) using Assurance Cases. Proce-
dia Computer Science, 6:499�504, 2011.

72

[113] The ProB Animator and Model Checker. http://www.stups.uni-
duesseldorf.de/ ProB/index.php5/Main_Page.

[114] Y. Prokhorova, L. Laibinis, and E. Troubitsyna. Towards Rigorous
Construction of Safety Cases. TUCS Technical Report 1110, 2014.

[115] Y. Prokhorova, L. Laibinis, and E. Troubitsyna. Facilitating Construc-
tion of Safety Cases from Formal Models in Event-B. Information and
Software Technology, 60:51�76, April 2015.

[116] Y. Prokhorova, L. Laibinis, E. Troubitsyna, K. Varpaaniemi, and
T. Latvala. Deriving a mode logic using failure modes and e�ects
analysis. International Journal of Critical Computer-Based Systems,
3(4):305��328, 2012.

[117] Y. Prokhorova, E. Troubitsyna, and L. Laibinis. A Case Study in
Re�nement-Based Modelling of a Resilient Control System. TUCS
Technical Report 1086, 2013.

[118] ProR. Requirements Engineering Platform.
http://www.eclipse.org/rmf/pror/.

[119] F. Redmill and T. Anderson, editors. Developments in Risk-based Ap-
proaches to Safety: Proceedings of the Fourteenth Safety-citical Sys-
tems Symposium, Bristol, UK, 7-9 February 2006. Springer London
Ltd, 2006.

[120] W. Ridderhof, H.-G. Gross, and H. Doerr. Establishing Evidence for
Safety Cases in Automotive Systems � A Case Study. In F. Sagli-
etti and N. Oster, editors, Computer Safety, Reliability, and Security
(SAFECOMP'07), volume 4680 of Lecture Notes in Computer Science,
pages 1�13. Springer Berlin Heidelberg, 2007.

[121] RODIN � Rigorous Open Development Environment for Complex Sys-
tems. http://rodin.cs.ncl.ac.uk/, 2004�2007.

[122] Rodin Plug-ins. http://wiki.event-b.org/index.php/Rodin_Plug-ins.

[123] SCADE Suite. Control and Logic Application Development.
http://www.esterel-technologies.com/products/scade-suite/.

[124] I. Scagnetto and M. Miculan. Ambient Calculus and its Logic in the
Calculus of Inductive Constructions. Electronic Notes in Theoretical
Computer Science, 70(2):76�95, 2002.

73

[125] K. Sere and E. Troubitsyna. Safety Analysis in Formal Speci�cation.
In Proceedings of the Wold Congress on Formal Methods in the Devel-
opment of Computing Systems-Volume II (FM'99), pages 1564�1583,
London, UK, 1999. Springer-Verlag.

[126] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1989.

[127] N. Storey. Safety-Critical Computer Systems. Addison-Wesley, Harlow,
UK, 1996.

[128] A. Tarasyuk. Formal Development and Quantitative Veri�cation of
Dependable Systems. PhD thesis, Turku Centre for Computer Science,
2013.

[129] A. Tarasyuk, E. Troubitsyna, and L. Laibinis. Integrating Stochastic
Reasoning into Event-B Development. Formal Aspects of Computing,
pages 1�25, 2014.

[130] A.C. Tribble, D.L. Lempia, and S.P. Miller. Software Safety Analysis of
a Flight Guidance System. In Proceedings of the 21st Digital Avionics
Systems Conference, volume 2, 2002.

[131] E. Troubitsyna. Integrating Safety Analysis into Formal Speci�cation
of Dependable Systems. In Proceedings of the International Paral-
lel and Distributed Processing Symposium (IPDPS'03), Nice, France,
April 2003.

[132] E. Troubitsyna. Elicitation and Speci�cation of Safety Require-
ments. In Proceedings of the 3rd International Conference on Systems
(ICONS'08), pages 202�207, April 2008.

[133] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A
Guided Tour. In Proceedings of the 5th IEEE International Sympo-
sium on Requirements Engineering, pages 249�262, 2001.

[134] A. van Lamsweerde and E. Letier. From Object Orientation to Goal
Orientation: A Paradigm Shift for Requirements Engineering. In
M. Wirsing, A. Knapp, and S. Balsamo, editors, Radical Innovations
of Software and Systems Engineering in the Future, volume 2941 of
Lecture Notes in Computer Science, pages 325�340. Springer Berlin
Heidelberg, 2004.

[135] VDM. The Vienna Development Method. http://www.vdmportal.org.

[136] W. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick III,
and J. Railsback. Fault Tree Handbook with Aerospace Applications.
NASA Technical Report, 2002.

74

[137] S.A. Vilkomir, J.P. Bowen, and A.K. Ghose. Formalization and assess-
ment of regulatory requirements for safety-critical software. Innova-
tions in Systems and Software Engineering, 2(3-4):165�178, 2006.

[138] S. Wagner, B. Schatz, Stefan Puchner, and P. Kock. A Case Study
on Safety Cases in the Automotive Domain: Modules, Patterns, and
Models. In Proceedings of the IEEE 21st International Symposium on
Software Reliability Engineering (ISSRE'10), pages 269�278, Novem-
ber 2010.

[139] A. Wassyng, T. Maibaum, M. Lawford, and H. Bherer. Software Cer-
ti�cation: Is There a Case against Safety Cases? In R. Calinescu
and E. Jackson, editors, Foundations of Computer Software. Model-
ing, Development, and Veri�cation of Adaptive Systems, volume 6662
of Lecture Notes in Computer Science, pages 206�227. Springer Berlin
Heidelberg, 2011.

[140] P.J. Wilkinson and T.P. Kelly. Functional Hazard Analysis for Highly
Integrated Aerospace Systems. In Certi�cation of Ground/Air Systems
Seminar, pages 4/1�4/6, 1998.

[141] J. Woodcock, P.G. Larsen, J. Bicarregui, and J. Fitzgerald. For-
mal Methods: Practice and Experience. ACM Computing Surveys,
41(4):19:1�19:36, October 2009.

[142] D. Zowghi and C. Coulin. Requirements Elicitation: A Survey of
Techniques, Approaches, and Tools. In A. Aurum and C. Wohlin,
editors, Engineering and Managing Software Requirements, pages 19�
46. Springer Berlin Heidelberg, 2005.

75

76

Complete List of Original

Publications Related

to the Thesis

1. Yuliya Prokhorova, Linas Laibinis, and Elena Troubitsyna. Facilitat-
ing Construction of Safety Cases from Formal Models in Event-B, In
Information and Software Technology Journal, Vol. 60, pp. 51�76,
Elsevier, 2015.

2. Yuliya Prokhorova, Linas Laibinis, and Elena Troubitsyna. Towards
Rigorous Construction of Safety Cases. TUCS Technical Report 1110,
TUCS, May 2014.

3. Yuliya Prokhorova, Elena Troubitsyna, and Linas Laibinis. A Case
Study in Re�nement-Based Modelling of a Resilient Control System, In
Anatoliy Gorbenko, Alexander Romanovsky, Vyacheslav Kharchenko
(Eds.), Proceedings of the 5th International Workshop on Software En-
gineering for Resilient Systems (SERENE 2013), Lecture Notes in
Computer Science Vol. 8166, pp. 79�93, Springer-Verlag Berlin Hei-
delberg, 2013.

4. Yuliya Prokhorova, Elena Troubitsyna, Linas Laibinis, Dubravka Ili¢,
and Timo Latvala. Formalisation of an Industrial Approach to Mon-
itoring Critical Data, In Friedemann Bitsch, Jérémie Guiochet, Mo-
hamed Kaâniche (Eds.), Proceedings of the 32nd International Confer-
ence on Computer Safety, Reliability and Security (SAFECOMP 2013),
Lecture Notes in Computer Science Vol. 8153, pp. 57�69, Springer-
Verlag Berlin Heidelberg, 2013.

5. Yuliya Prokhorova and Elena Troubitsyna. A Survey of Safety-Oriented
Model-Driven and Formal Development Approaches, In International
Journal of Critical Computer-Based Systems (IJCCBS), Vol. 4, No. 2,
pp. 93�118, Inderscience Publishers, 2013.

77

6. Yuliya Prokhorova, Elena Troubitsyna, and Linas Laibinis, Supporting
Formal Modelling in Event-B with Safety Cases. In: Michael Butler,
Stefan Hallerstede, Marina Waldén (Eds.), Proceedings of the 4th Rodin
User and Developer Workshop, TUCS Lecture Notes 18, pp. 8�11,
TUCS, 2013.

7. Yuliya Prokhorova, Elena Troubitsyna, and Linas Laibinis, A Case
Study in Re�nement-Based Modelling of a Resilient Control System.
TUCS Technical Report 1086, TUCS, June 2013.

8. Yuliya Prokhorova, Elena Troubitsyna, Linas Laibinis, Dubravka Ili¢,
and Timo Latvala, Formalisation of an Industrial Approach to Mon-
itoring Critical Data. TUCS Technical Report 1070, TUCS, March
2013.

9. Yuliya Prokhorova, Linas Laibinis, Elena Troubitsyna, Kimmo Varpaa-
niemi, and Timo Latvala. Deriving a Mode Logic Using Failure Modes
and E�ects Analysis, In International Journal of Critical Computer-
Based Systems (IJCCBS), Vol. 3, No. 4, pp. 305�328, Inderscience
Publishers, 2012.

10. Yuliya Prokhorova and Elena Troubitsyna. Linking Modelling in Event-
B with Safety Cases, In Paris Avgeriou (Ed.), Proceedings of the 4th
International Workshop on Software Engineering for Resilient Sys-
tems (SERENE 2012), Lecture Notes in Computer Science Vol. 7527,
pp. 47-�62, Springer-Verlag Berlin Heidelberg, 2012.

11. Yuliya Prokhorova, Linas Laibinis, Elena Troubitsyna, Kimmo Varpaa-
niemi, and Timo Latvala, Derivation and Formal Veri�cation of a Mode
Logic for Layered Control Systems. In: Tran Dan Thu, Karl Leung
(Eds.), Proceedings of the 18th Asia-Paci�c Software Engineering Con-
ference (APSEC 2011), pp. 49�56, IEEE Computer Society, 2011.

12. Ilya Lopatkin, Alexei Iliasov, Alexander Romanovsky, Yuliya Prokho-
rova, and Elena Troubitsyna. Patterns for Representing FMEA in
Formal Speci�cation of Control Systems, In Ankur Agarwal, Swapna
Gokhale, Taghi M. Khoshgoftaar (Eds.), Proceedings of the 13th IEEE
International High Assurance Systems Engineering Symposium (HASE
2011), pp. 146�151, IEEE Computer Society, 2011.

13. Yuliya Prokhorova, Elena Troubitsyna, Linas Laibinis, and Vyach-
eslav Kharchenko, Development of Safety-Critical Control Systems in
Event-B Using FMEA. In: Luigia Petre, Kaisa Sere, Elena Troubit-
syna (Eds.), Dependability and Computer Engineering: Concepts for
Software-Intensive Systems, pp. 75�91, IGI Global, 2011.

78

14. Yuliya Prokhorova, Elena Troubitsyna, Linas Laibinis, Kimmo Varpaa-
niemi, and Timo Latvala, Deriving Mode Logic for Fault-Tolerant Con-
trol Systems. In: Naveed Ahmed, Daniele Quercia, Christian D. Jensen
(Eds.), Workshop Proceedings of the 5th IFIP WG 11.11 International
Conference on Trust Management (IFIPTM 2011), pp. 309�323, Tech-
nical University of Denmark, 2011.

15. Ilya Lopatkin, Alexei Iliasov, Alexander Romanovsky, Yuliya Prokho-
rova, and Elena Troubitsyna, Patterns for Representing FMEA in For-
mal Speci�cation of Control Systems. TECHNICAL REPORT SE-
RIES CS-TR-1261, Newcastle University, 2011.

16. Ilya Lopatkin, Yuliya Prokhorova, Elena Troubitsyna, Alexei Iliasov,
and Alexander Romanovsky, Patterns for Representing FMEA in For-
mal Speci�cation of Control Systems. TUCS Technical Report 1003,
TUCS, March 2011.

17. Yuliya Prokhorova, Elena Troubitsyna, and Linas Laibinis, Integrating
FMEA into Event-B Development of Safety-Critical Control Systems.
TUCS Technical Report 986, TUCS, October 2010.

79

80

Part II

Original Publications

81

Paper I

Patterns for Representing FMEA in Formal
Speci�cation of Control Systems

Ilya Lopatkin, Alexei Iliasov, Alexander Romanovsky,
Yuliya Prokhorova, and Elena Troubitsyna

Originally published in: Ankur Agarwal, Swapna Gokhale, Taghi M.
Khoshgoftaar (Eds.), Proceedings of the 13th IEEE International High
Assurance Systems Engineering Symposium (HASE 2011),
pp. 146�151, IEEE Computer Society, 2011.

Extended version is available as:

Ilya Lopatkin, Yuliya Prokhorova, Elena Troubitsyna, Alexei Iliasov, and
Alexander Romanovsky. Patterns for Representing FMEA in Formal Speci-
�cation of Control Systems, TUCS Technical Report 1003, TUCS, 2011.

c©2011 IEEE. Reprinted with kind permission of IEEE.

Patterns for Representing FMEA in Formal Specification of Control Systems

Ilya Lopatkin, Alexei Iliasov,
Alexander Romanovsky

School of Computing Science
Newcastle University

Newcastle upon Tyne, UK
{Ilya.Lopatkin, Alexei.Iliasov,

Alexander.Romanovsky}@ncl.ac.uk

Yuliya Prokhorova, Elena Troubitsyna
Turku Centre for Computer Science

Department of Information Technologies
Åbo Akademi University

Turku, Finland
{Yuliya.Prokhorova, Elena.Troubitsyna}@abo.fi

Abstract — Failure Modes and Effects analysis (FMEA) is a
widely used technique for inductive safety analysis. FMEA
provides engineers with valuable information about failure
modes of system components as well as procedures for error
detection and recovery. In this paper we propose an approach
that facilitates representation of FMEA results in formal
Event-B specifications of control systems. We define a number
of patterns for representing requirements derived from FMEA
in formal system model specified in Event-B. The patterns help
the developers to trace the requirements from safety analysis
to formal specification. Moreover, they allow them to increase
automation of formal system development by refinement. Our
approach is illustrated by an example - a sluice control system.

Keywords - formal specification; Event-B; FMEA; patterns;
safety; control systems

I. INTRODUCTION

A. Motivation and Overview of an Approach
Formal modelling and verification are valuable for

ensuring system dependability. However, often formal
development process is perceived as being too complex to be
deployed in the industrial engineering process. Hence, there
is a clear need for methods that facilitate adopting of formal
modelling techniques and increase productivity of their use.

Reliance on patterns – the generic solutions for certain
typical problems – facilitates system engineering. Indeed, it
allows the developers to document the best practices and
reuse previous knowledge.

In this paper we propose an approach to automating
formal system development by refinement. We connect
formal modelling and refinement with Failure Modes and
Effects Analysis (FMEA) via a set of patterns.

FMEA is a widely-used inductive technique for safety
analysis [5,13,16]. We define a set of patterns formalising
the requirements derived from FMEA and automate their
integration into the formal specification. Our formal
modelling framework is Event-B – a state-based formalism
for formal system development by refinement and proof-
based verification [1]. Currently, the framework is actively
used by several industrial partners of EU FP7 project Deploy
[2] for developing dependable systems from various
domains.

The approach proposed in this paper allows us to
automate the formal development process via two main
steps: choice of suitable patterns that generically define
FMEA result, and instantiation of chosen patterns with
model-specific information. We illustrate this process with
excerpts from the automated development of a sluice gate
system [7].

Our approach allows the developers to verify (by proofs)
that safety invariants are preserved in spite of identified
component failures. Hence we believe that it provides a
useful support for formal development and improves
traceability of safety requirements.

B. Related Work
Over the last few years integration of the safety analysis

techniques into formal system modelling has attracted a
significant research attention. There are a number of
approaches that aim at direct integration of the safety
analysis techniques into formal system development. For
instance, the work of Ortmeier et al. [15] focuses on using
statecharts to formally represent the system behaviour. It
aims at combining the results of FMEA and FTA to model
the system behaviour and reason about component failures
as well as overall system safety. Our approach is different –
we aim at automating the formal system development with
the set of patterns instantiated by FMEA results. The
application of instantiated patterns automatically transforms
a model to represent the results of FMEA in a coherent and
complete way. The available automatic tool support for the
Event-B modelling as well as for plug-in instantiation and
application ensures better scalability of our approach.

In our previous work, we have proposed an approach to
integrating safety analysis into formal system development
within Action Systems [18]. Since Event-B incorporates the
ideas of Action Systems into the B Method, the current
work is a natural extension of our previous results.

The research conducted by Troubitsyna [19] aims at
demonstrating how to use statecharts as a middle ground
between safety analysis and formal system specifications in
the B Method. This work has inspired our idea of deriving
Event-B patterns.

Patterns defined for formal system development by
Hoang et al. [17] focus on describing model manipulations
only and do not provide the insight on how to derive a

2011 IEEE 13th International Symposium on High-Assurance Systems Engineering

1530-2059/11 $26.00 © 2011 IEEE

DOI 10.1109/HASE.2011.10

146

formal model from a textual requirements description that
has a negative impact on requirements traceability.

Another strand of research aims at defining general
guidelines for ensuring dependability of software-intensive
systems. For example, Hatebur and Heisel [6] have derived
patterns for representing dependability requirements and
ensuring their traceability in the system development. In our
approach we rely on specific safety analysis techniques
rather than on the requirements analysis in general to derive
guidelines for modelling dependable systems.

II. MODELLING CONTROL SYSTEMS IN EVENT-B

A. Event-B Overview
Event-B [1] is a specialisation of the B Method aimed at

facilitating modelling of parallel, distributed and reactive
systems [9]. The Rodin Platform provides an automated
support for modelling and verification in Event-B [4].

In Event-B system models are defined using the Abstract
Machine Notation. An abstract machine encapsulates the
state (the variables) of a model and defines operations on its
state. The machine is uniquely identified by its name. The
state variables of the machine are declared in the
VARIABLES clause and initialized in the
INITIALISATION event. The variables are strongly typed by
constraining predicates of invariants given in the
INVARIANTS clause. Usually the invariants also define
the properties of the system that should be preserved during
system execution. The data types and constants of the model
are defined in a separate component called CONTEXT. The
behaviour of the system is defined by a number of atomic
events specified in the EVENTS clause. An event is defined
as follows:

 E = ANY lv WHERE g THEN S END

where lv is a list of new local variables, the guard g is a
conjunction of predicates defined over the state variables,
and the action S is an assignment to the state variables.

The guard defines when the event is enabled. If several
events are enabled simultaneously then any of them can be
chosen for execution non-deterministically. If none of the
events is enabled then the system deadlocks.

In general, the action of an event is a composition of
variable assignments executed simultaneously. Variable
assignments can be either deterministic or non-
deterministic. The deterministic assignment is denoted as
x := E(v), where x is a state variable and E(v) is an
expression over the state variables v. The non-deterministic
assignment can be denoted as x :� S or x :| Q(v, x�), where S
is a set of values and Q(v, x�) is a predicate. As a result of
the non-deterministic assignment, x gets any value from S or
it obtains such a value x� that Q(v, x�) is satisfied.

The main development methodology of Event-B is
refinement. Refinement formalises model-driven
development and allows us to develop systems correct-by-
construction. Each refinement transforms the abstract
specification to gradually introduce implementation details.
For a refinement step to be valid, every possible execution

of the refined machine must correspond to some execution
of the abstract machine.

Next we describe specification and refinement of control
systems in Event-B. It follows the specification pattern
proposed earlier [11].

B. Modelling Control Systems
The control systems are usually cyclic, i.e., at periodic

intervals they get input from sensors, process it and output
the new values to the actuators. In our specification the
sensors and actuators are represented by the corresponding
state variables. We follow the systems approach, i.e., model
the controller together with its environment – plant. This
allows us to explicitly state the assumptions about
environment behaviour. At each cycle the plant assigns the
variables modelling the sensor readings. They depend on the
physical processes of the plant and the current state of the
actuators. In its turn, the controller reads the variables
modelling sensors and assigns the variables modelling the
actuators. We assume the controller reaction takes
negligible amount of time and hence the controller can react
properly on changes of the plant state.

In this paper, we focus on modelling failsafe control
systems. A system is failsafe if it can be put into a safe but
non-operational state to preclude an occurrence of a hazard.

The general specification pattern Abs_M for modelling a
failsafe control system in Event-B is presented in [14]. It
represents the overall behaviour of the system as an
interleaving between the events modelling the plant and the
controller. The behaviour of the controller has the following
stages: Detection; Control (Normal Operation or Error
Handling); Prediction. The variable flag of type
PHASE:{ENV, DET, CONT, PRED} models the current
stage.

In the model invariant we declare the types of the
variables and define the operational conditions. The system
is operational if it has not failed. However, it must be
stopped at the end of the current cycle if a failure occurred.

The events Environment, Normal_Operation and
Prediction abstractly model environment behaviour,
controller reaction and computation of the next expected
states of system components correspondingly. The event
Detection non-deterministically models the outcome of the
error detection. A result of error recovery is abstractly
modelled by the event Error_Handling.

In the next section we demonstrate how to arrive at a
detailed specification of a control system by refinement in
Event-B. We use the sluice gate control system to exemplify
the refinement process.

III. REFINEMENT OF CONTROL SYSTEMS IN EVENT-B

A. The Sluice Gate Control System
The general specification pattern Abs_M given in [14]

defines the initial abstract specification for any typical
control system. The sluice gate control system shown in
Fig. 1 is among them. The system is a sluice connecting
areas with dramatically different pressures [7]. The purpose
of the system is to adjust the pressure in the sluice area. The

147

sluice gate system consists of two doors - door1 and door2
that can be operated independently of each other and a
pressure chamber pump that changes the pressure in the
sluice area. To guarantee safety, a door may be opened only
if the pressure in the locations it connects is equalized.
Moreover, at most one door can be opened at any moment
and the pressure chamber pump can only be switched on
when both doors are closed.

Figure 1. Sluice gate system.

The sluice gate system is equipped with the sensors and
actuators shown in Fig.1. The system has physical
redundancy - the door position sensors have spares; and
information redundancy - when the doors are fully opened
or closed, the door position sensor readings should match
the readings of the switch sensors.

B. Introducing Error Detection and Recovery by
Refinement
At the first refinement step we aim at introducing

models of system components, error detection procedures as
well as error masking and recovery actions.

To systematically define failure modes, detection and
recovery procedures, for each component, we conduct
Failure Modes and Effects Analysis. FMEA [5,13,16] is a
well-known inductive safety analysis technique. For each
system component it defines its possible failure modes,
local and system effects of a failure as well as detection and
recovery procedures. Fig. 2 shows an excerpt from FMEA
of the Door1 component of our sluice system.

The Door1 component is composed of several hardware
units. Their failures correspond to the failure modes of the
Door1 component. Next we discuss how to specify error
detection and recovery for the failure mode described in the
FMEA table in Fig. 2.

Component Door1
Failure mode Door position sensor value is different from the

door closed sensor value
Possible cause Failure of position sensor or closed sensor
Local effects Sensor readings are not equal in corresponding

states
System effects Switch to degraded or manual mode or shut down
Detection Comparison of the values received from position

and closed sensors
Remedial action Retry. If failure persists then switch to redundant

sensor, diagnose motor failure. If failure still
persists, switch to manual mode and raise the
alarm. If no redundant sensor is available then
switch to manual mode and raise the alarm.

Figure 2. FMEA table

In the refined specification we introduce the variables
representing the units of Door1: door position
sensor - door1_position_sensor, motor - door1_motor and
door opened and closed sensors - door1_opened_sensor,
door1_closed_sensor. In the event Environment we
introduce the actions that change the values of
door1_position_sensor, door1_closed_sensor and
door1_opened_sensor. The event Normal_Operation
defines the action that non-deterministically changes the
value of door1_motor.

We refine the event Detection by splitting it into a group
of events responsible for the detection of each failure mode
of all system components. We introduce the variable
door1_fail to designate a failure of the door component.
This failure is assigned TRUE when any failure mode of
Door1 component is detected. The event
Detection_door1_checks included in this group contains
the actual checks for the value ranges and consistency. The
variables d1_exp_min and d1_exp_max are the new
variables introduced to model the next expected sensor
readings. These variables are updated in the Prediction
event. The event Detection_Door1 combines the results of
the checks of the status of the door1 component.

event Detection_Door1_checks
 where
 flag = DET /\ Stop = FALSE
 then
 door1_position_sensor_pred � bool((door1_position_sensor <
 d1_exp_min � door1_position_sensor > d1_exp_max) ��
���������������door1_sensor_disregard=FALSE)
 door1_closed_sensor_inconsistent �
 bool(¬(door1_closed_sensor=TRUE �
 (door1_position=0 � door1_sensor_disregard=TRUE)))
 <other checks>
end

The failure of the component Door1 is detected if any

check of the error detection events for any of its failure
modes finds a discrepancy between a fault free and the
observed states. In a similar manner, the system failure is
detected if a failure of any of the system components –
Door1, Door2 or PressurePump is detected, as specified in
the event Detection_Fault.

event Detection_Door1
 where
 flag = DET /\ Stop = FALSE
 then door1_fail � bool(door1_position_sensor_pred=TRUE ��
������������������� door1_closed_sensor_inconsistent=TRUE �
 <other check statuses>)
end
event Detection_Fault refines Detection
 where
 flag = DET /\ Stop = FALSE
 door1_fail=TRUE � door2_fail=TRUE � pressure_fail = TRUE
 with Failure' Failure'=TRUE
 then flag � CONT
end

Observe that by performing FMEA of each system

component we obtain a systematic textual description of all
procedures required to detect component errors and perform

148

Component Door1
Failure mode Door position sensor value is different from the

expected range of values
Possible cause Failure of the position sensor
Local effects Sensor reading is out of expected range
System effects Switch to degraded or manual mode or shut down
Detection Comparison of the received value with the

predicted range of values
Remedial action The same as for Fig. 2

Figure 3. FMEA table for “out of predicted range” failure mode of a
positioning sensor

their recovery. We gradually (by refinement) introduce the
specification of these requirements into the system model.

While analysing the refined specification, it is easy to
note that there are several typical specification solutions
called patterns that represent certain groups of requirements.
This observation prompts the idea of creating an automated
tool support that would automatically transform a
specification by applying the patterns chosen and instantiated
by the developer. In the next section we describe the essence
of such a tool.

IV. PATTERNS AND TOOL FOR REPRESENTING RESULTS
OF FMEA IN EVENT-B

A. Patterns for Representing FMEA Results
Our approach aims at structuring and formalising FMEA

results via a set of generic patterns. These patterns serve as a
middle hand between informal requirements description and
their formal Event-B model.

While deriving the patterns we assume that the abstract
system specification adheres to the generic pattern given in
[14]. Moreover, we also assume that components can be
represented by the corresponding state variables. Our patterns
establish a correspondence between the results of FMEA and
the Event-B terms.

We distinguish four groups of patterns: detection,
recovery, prediction and invariants. The detection patterns
reflect such generic mechanisms for error detection as
discrepancy between the actual and expected component
state, sensor reading outside of the feasible range etc. The
recovery patterns include retry of actions or computations,
switch to redundant components and safe shutdown. The
prediction patterns represent the typical solutions for
computing estimated states of components, e.g., using the
underlying physical system dynamics or timing constraints.
Finally, the invariant patterns are usually used in
combination with other types of patterns to postulate how a
model transformation affects the model invariant. This type
contains safety and gluing invariant patterns. The safety
invariant patterns define how safety conditions can be
introduced into the model. The gluing invariant patterns
depict the correspondence between the states of refined and
abstract model.

A pattern is a model transformation that upon
instantiation adds or modifies certain elements of Event-B
model. By elements we mean the terms of Event-B
mathematical language such as variables, constants,
invariants, events, guards etc. A pattern can add or modify

several elements at once. Moreover, it can be composed of
several other patterns.

To illustrate how to match FMEA results with the
proposed patterns, let us consider FMEA of a door1 position
sensor shown in Fig. 3.

To simplify illustration, the patterns are shown in a
declarative form. The identifiers shown in brackets should
be substituted by those given by a user during the pattern
instantiation (see next sections).

Our sensor is a value type sensor. Hence we can apply
the Value sensor pattern to introduce the model of the
sensor into our specification:

variables [sensor]_value
invariants
 [sensor]_value : NAT
events
 event INITIALISATION
 then
 [sensor]_value := 0
 end
end

An application of the value sensor pattern leads to

creating a new variable, its typing invariant, and an
initialisation action. To model identified detection of the
failure mode, we use the Expected range pattern:

variables
 [component]_[sensor]_[error], [component]_fail, [sensor]_exp_min,
 [sensor]_exp_max
invariants
 [component]_[sensor]_[error] : BOOL
 [component]_fail : BOOL
 [sensor]_exp_min : NAT
 [sensor]_exp_max : NAT
events
 event Detection_[component]_checks
 where flag = DET /\ Stop = FALSE then
 [component]_[sensor]_[error] � bool(
 [sensor]_value<[sensor]_exp_min�[sensor]_value>[sensor]_exp_max)
 <other checks>
 end
 event Detection_[component]
 where flag = DET /\ Stop = FALSE then
 [component]_fail � bool([component]_[sensor]_[error] ��
 <other check statuses>)
 end
end

This pattern adds the detection events and the variables

required to model error detection: expected minimal and
maximal values. The pattern ensures that the detection
checks added previously by other patterns are preserved (this
is informally shown in the angle brackets). The expected
range of values used by this pattern must be assigned by
some event in the previous control cycle. To ensure that such
assignment exists in the model, the Expected range pattern
instantiates the Range prediction pattern. An application of
this pattern results in a non-deterministic specification of
prediction. It can be further refined to take into account the
specific functionality of the system under development.

Let us observe that the Expected range pattern and
Range prediction pattern affect the same variables. To avoid
conflicts and inconsistencies, only the first pattern to be

149

instantiated actually creates the required variables. The same
rule applies to events, actions, guards etc.

To establish refinement between the model created using
patterns and the abstract model, we use the Gluing invariant
pattern, which links the sensor failure with the component
failure:

variables
 [component]_fail
invariants
 flag�DET � (Failure=TRUE � [component]_fail=TRUE ��
��	
��
���
��
�
���������
����
 flag�CONT � ([component]_fail=TRUE �
 [component]_[sensor]_[error]=TRUE �
��	
��
���
��
��
��
���)

In our example, the remedial action can be divided into

three actions. The first action retries reading the sensor for a
specified number of times (Retry recovery pattern). The
second action deactivates the faulty component and activates
its spare (Component redundancy recovery pattern). The
third action is enabled when the spare component has also
failed. It switches the system from the operational state to the
non-operational one (Safe stop recovery pattern). The system
effect can be represented as a safety property (Safety
invariant pattern). We omit showing all the patterns due to
the lack of space.

As shown in the example, each FMEA field is mapped to
one or more patterns. The patterns have interdependencies.
Moreover, they are composable. For instance, the recovery
patterns reference the variables set by the sensor, and thus
depend on the results of the Value sensor pattern. The
Expected value detection pattern needs to instantiate the
Range prediction pattern to rely on the values predicted at
the previous control cycle. Each pattern creates Event-B
elements specific to the pattern, and requires elements
created by other patterns. Such interdependency and
mapping to FMEA is schematically shown in Fig. 4.

Figure 4. FMEA representation patterns

Let us note that the Expected range pattern creates new
constants and variables (dark grey rectangle, variable
[sensor]_exp_min from the example) and instantiates the
Value sensor pattern to create the elements it depends on
(light grey rectangle, variable [sensor]_value from the
example).

B. Automation of Patterns Implementation
The automation of the pattern instantiation is

implemented as a tool plug-in for the Rodin Platform [4].
Technically, each pattern is a program written in a
simplified Eclipse Object Language (EOL). It is a general
purpose programming language in the family of languages
of the Epsilon framework [10] which operates on EMF [3]
objects. It is a natural choice for automating model
transformations since Event-B is interoperable with EMF.

The tool extends the application of EOL to Event-B
models: it adds simple user interface features for
instantiation, extends the Epsilon user input facility with
discovery of the Event-B elements, and provides a library of
Event-B and FMEA-specific transformations.

To apply a pattern, a user chooses a target model and a
pattern to instantiate. A pattern application may require user
input: variable names or types, references to existing
elements of the model etc. The input is performed through a
series of simple dialogs.

The requested input comprises the applicability
conditions of the pattern. In many cases it is known that
instantiation of a pattern depends primarily on the results of
a more basic pattern. In those cases the former directly
instantiates the latter and reuses the user input. Also more
generally, if several patterns require the same unit of user
input then the composition of such patterns will ask for such
input only once. Typically, a single pattern instantiation
requires up to 3-4 inputs.

If a pattern only requires user input and creates new
elements then its imperative form is close to declarative as
shown in the example below:

var flag: Variable=
chooseOrCreateVariable("Phase variable");
createTypingInvariant(flag, "PHASE");
var failure: Variable =
chooseOrCreateVariable("Failure variable");
createTypingInvariant(failure, "BOOL");
newEvent("Detection")
.addGuard("phase_grd", flag.name+" = DET")
.addGuard("failure_grd", failure.name+"=FALSE")
.addAction("phase_act", flag.name+":=CONT")
.addAction("failure_act",failure.name+"::BOOL");

Here the tool will ask the user to select two variables (or
create new ones). It will create typing invariants and a new
model event with several guards and actions. We have used
the tool to automate the first refinement of the sluice gate
control system. The complete specification can be found in
[14].

C. Ensuring Safety by Refinement
In the second refinement step we introduce the detailed
specification of the normal control logic. This refinement
step leads to refining the event Normal_Operation into a

150

group of events that model the actual control algorithm.
These events model opening and closing the doors as well
as activation of the pressure chamber pump.

Refinement of the normal control operation results in
restricting non-determinism. This allows us to formulate
safety invariants that our system guarantees:

failure = FALSE � door1_position = door1_position ��
����door1_position = 0

failure = FALSE � (door1_position > 0 ��
����door1_motor=MOTOR_OPEN) � pressure_value =
 PRESSURE_OUTSIDE

failure = FALSE � (door2_position > 0 ��
����door2_motor=MOTOR_OPEN) � pressure_value =
 PRESSURE_INSIDE

failure = FALSE � pressure_value � PRESSURE_INSIDE ��
����pressure_value � PRESSURE_OUTSIDE � door1_position=0 ��
����door2_position=0

failure = FALSE � pump�PUMP_OFF � (door1_position=0 �
����door2_position=0)

These invariants formally define the safety requirements

informally described in subsection III.A. While verifying
the correctness of this refinement step, we formally ensure
(by proofs) that safety is preserved while the system is
operational.

At the consequent refinement steps we introduce the
error recovery procedures. This allows us to distinguish
between criticality of failures and ensure that if a non-
critical failure occurs then the system can still remain
operational.

V. CONCLUSIONS
In this paper we have made two main technical

contributions. Firstly, we derived a set of generic patterns
for elicitation and structuring of safety and fault tolerance
requirements from FMEA. Secondly, we created an
automatic tool support that enables interactive pattern
instantiation and automatic model transformation to capture
these requirements in formal system development. Our
methodology facilitates requirements elicitation as well as
supports traceability of safety and fault tolerance
requirements within the formal development process.

Our approach enables guided formal development
process. It supports the reuse of knowledge obtained during
formal system development and verification. For instance,
while deriving the patterns we have analysed and
generalised our previous work on specifying various control
systems [8,11,12].

We believe that the proposed approach and tool support
provide a valuable support for formal modelling that is
traditionally perceived as too cumbersome for engineers.
Firstly, we define a generic specification structure.
Secondly, we automate specification of a large part of
modelling decisions. We believe that our work can
potentially enhance productivity of system development and
improve completeness of formal models.

As a future work we are planning to create a library of
domain-specific patterns and automate their application.
This would result in achieving even greater degree of
development automation and knowledge reuse.

ACKNOWLEDGMENT
The work reported in this paper is supported by FP7 ICT

DEPLOY.

REFERENCES
[1] J.-R. Abrial, “Modeling in Event-B: system and software

engineering”, Cambridge University Press, 2010.
[2] Deploy project, www.deploy-project.eu.
[3] Eclipse GMT – Generative Modeling Technology,

http://www.eclipse.org/gmt.
[4] Event-B and the Rodin Platform, http://www.event-b.org/, 2010.
[5] FMEA Info Centre, http://www.fmeainfocentre.com/.
[6] D. Hatebur and M. Heisel, “A foundation for requirements analysis of

dependable software”, Proceedings of the International Conference on
Computer Safety, Reliability and Security (SAFECOMP), Springer,
2009, pp. 311-325.

[7] I. Lopatkin, A. Iliasov, A. Romanovsky, “On Fault Tolerance Reuse
during Re�nement”. In Proc. Of the 2nd International Workshop on
Software Engineering for Resilient Systems (SERENE), April 13-16,
2010.

[8] D. Ilic and E. Troubitsyna, “Formal development of software for
tolerating transient faults”. In Proc. of the 11th IEEE Pacific Rim
International Symposium on Dependable Computing, IEEE Computer
Society, Changsha, China, December 2005.

[9] ClearSy, Safety critical systems engineering,
http://www.clearsy.com/.

[10] D. S. Kolovos, “Extensible platform for specification of integrated
languages for model management (Epsilon)”, Official web-site:
http://www.cs.york.ac.uk/~dkolovos/epsilon.

[11] L. Laibinis and E. Troubitsyna, “Refinement of fault tolerant control
systems in B”, SAFECOMP 2004, Springer, Potsdam, Germany,
2004.

[12] L. Laibinis and E. Troubitsyna, “Fault tolerance in a layered
architecture: a general specification pattern in B”, In Proc. of
International Conference on Software Engineering and Formal
Methods SEFM’2004, IEEE Computer Society Press, pp.346-355,
Beijing, China, September 2004.

[13] N.G. Leveson, “Safeware: system safety and computers”, Addison-
Wesley, 1995.

[14] I. Lopatkin, Y. Prokhorova, E. Troubitsyna, A. Iliasov and
A. Romanovsky, “Patterns for Representing FMEA in Formal
Specification of Control Systems”, Technical Report 1003, TUCS,
March 2011.

[15] F. Ortmeier, M. Guedemann and W. Reif, “Formal failure models”,
Proceedings of the IFAC Workshop on Dependable Control of
Discrete Systems (DCDS 07), Elsevier, 2007.

[16] N. Storey, “Safety-critical computer systems”, Addison-Wesley,
1996.

[17] Thai Son Hoang, A, Furst and J.-R. Abrial, “Event-B patterns and
their tool support”, SEFM 2009, IEEE Computer Press, 2009,
pp. 210-219.

[18] E. Troubitsyna, “Elicitation and specification of safety requirements”,
Proceedings of the Third International Conference on Systems
(ICONS 2008), 2008, pp. 202-207.

[19] E. Troubitsyna, “Integrating safety analysis into formal specification
of dependable systems”, Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’03), 2003, p. 215b.

151

Paper II

Deriving a Mode Logic Using Failure Modes and
E�ects Analysis

Yuliya Prokhorova, Linas Laibinis, Elena Troubitsyna,
Kimmo Varpaaniemi, and Timo Latvala

Originally published in: International Journal of Critical Computer-
Based Systems (IJCCBS), Vol. 3, No. 4, pp. 305�328, Inderscience
Publishers, 2012.

Paper III

A Case Study in Re�nement-Based Modelling of a
Resilient Control System

Yuliya Prokhorova, Elena Troubitsyna, and Linas Laibinis

Originally published in: Anatoliy Gorbenko, Alexander Romanovsky,
Vyacheslav Kharchenko (Eds.), Proceedings of the 5th International
Workshop on Software Engineering for Resilient Systems (SERENE
2013), Lecture Notes in Computer Science Vol. 8166, pp. 79-�93,
Springer-Verlag Berlin Heidelberg, 2013.

Extended version is available as:

Yuliya Prokhorova, Elena Troubitsyna, and Linas Laibinis. A Case Study in
Re�nement-Based Modelling of a Resilient Control System, TUCS Technical
Report 1086, TUCS, 2013.

Paper IV

Formalisation of an Industrial Approach to
Monitoring Critical Data

Yuliya Prokhorova, Elena Troubitsyna, Linas Laibinis,
Dubravka Ili¢, and Timo Latvala

Originally published in: Friedemann Bitsch, Jérémie Guiochet, Mo-
hamed Kaâniche (Eds.), Proceedings of the 32nd International Confer-
ence on Computer Safety, Reliability and Security (SAFECOMP 2013),
Lecture Notes in Computer Science Vol. 8153, pp. 57-�69, Springer-
Verlag Berlin Heidelberg, 2013.

Extended version is available as:

Yuliya Prokhorova, Elena Troubitsyna, Linas Laibinis, Dubravka Ili¢, and
Timo Latvala. Formalisation of an Industrial Approach to Monitoring Crit-
ical Data, TUCS Technical Report 1070, TUCS, 2013.

Paper V

Linking Modelling in Event-B with Safety Cases

Yuliya Prokhorova and Elena Troubitsyna

Originally published in: Paris Avgeriou (Ed.), Proceedings of the 4th
International Workshop on Software Engineering for Resilient Systems
(SERENE 2012), Lecture Notes in Computer Science Vol. 7527,
pp. 47-�62, Springer-Verlag Berlin Heidelberg, 2012.

Paper VI

Towards Rigorous Construction of Safety Cases

Yuliya Prokhorova, Linas Laibinis, and Elena Troubitsyna

Originally published in: TUCS Technical Report 1110, TUCS,
May 2014.

Shortened version is available as:

Yuliya Prokhorova, Linas Laibinis, and Elena Troubitsyna. Facilitating Con-
struction of Safety Cases from Formal Models in Event-B, In Information and
Software Technology Journal, Vol. 60, pp. 51�76, Elsevier, 2015.

Towards Rigorous Construction of
Safety Cases

Yuliya Prokhorova
TUCS – Turku Centre for Computer Science,
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
yuliya.prokhorova@abo.fi

Linas Laibinis
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
linas.laibinis@abo.fi

Elena Troubitsyna
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
elena.troubitsyna@abo.fi

TUCS Technical Report

No 1110, May 2014

Abstract

Certification of safety-critical software systems requires submission of safety assurance
documents, e.g., in the form of safety cases. A safety case is a justification argument used to
show that a system is safe for a particular application in a particular environment. Different
argumentation strategies are applied to determine the evidence for a safety case. They allow
us to support a safety case with such evidence as results of hazard analysis, testing, simula-
tion, etc. On the other hand, application of formal methods for development and verification
of critical software systems is highly recommended for their certification. In this paper, we
propose a methodology that combines these two activities. Firstly, it allows us to map the
given system safety requirements into elements of the formal model to be constructed, which
is then used for verification of these requirements. Secondly, it guides the construction of
a safety case demonstrating that the safety requirements are indeed met. Consequently, the
argumentation used in such a safety case allows us to support the safety case with formal
proofs and model checking results as the safety evidence. Moreover, we propose a set of
argument patterns that aim at facilitating the construction of (a part of) a safety case from
a formal model. In this work, we utilise the Event-B formalism due to its scalability and
mature tool support. We illustrate the proposed methodology by numerous small examples
as well as validate it by a larger case study – a steam boiler control system.

Keywords: safety-critical software systems, safety requirements, formal development,
formal verification, Event-B, safety cases, argument patterns.

TUCS Laboratory
Embedded Systems Laboratory

1 Introduction

Safety-critical software systems are subject to certification. More and more standards in
different domains require construction of safety cases as a part of the safety assurance pro-
cess of such systems, e.g., ISO 26262 [40], EN 50128 [25], and UK Defence Standard [19].
Safety cases are justification arguments for safety. They justify why a system is safe and
whether the design adequately incorporates the safety requirements defined in a system re-
quirement specification to comply with the safety standards. To facilitate the construction of
safety cases, two main graphical notations have been proposed: Claims, Arguments and Ev-
idence (CAE) notation [17] and Goal Structuring Notation (GSN) [44]. In our work, we rely
on the latter one due to its support for argument patterns, i.e., common structures capturing
successful argument approaches that can be reused within a safety case [45]. To demon-
strate the compliance with the safety standards, different types of evidence can be used [51].
Among them are results of hazard analysis, testing, simulation, formal verification, manual
inspection, etc.

At the same time, the use of formal methods is highly recommended for certification of
safety-critical software systems [36]. Safety cases constructed using formal methods give us
extra assurance that the desired safety requirements are satisfied. There are several works
dedicated to show how formal proofs can contribute to a safety case, e.g., [8–10, 21, 43].
For instance, such approaches as [8, 10] apply formal methods to ensure that different types
of safety properties of critical systems hold while focusing on particular blocks of software
system implementation (C code). The authors of [21] propose a generic approach to auto-
matic transformation of the formal verification output into a software safety assurance case.
Similarly to [8, 10], a formalised safety requirement in [21] is verified to hold at a specific
location (a specific line number for code, a file, etc.).

In our work, we deal with formal system models rather than the code. A high level of
abstraction allows us to cope with complexity of systems yet ensuring the desired safety
properties. We rely on formal modelling techniques, including external tools that can be
used together, that are scalable to analyse the entire system. Our chosen formal framework
is Event-B [4] – a state-based formal method for system level modelling and verification.
Event-B aims at facilitating modelling of parallel, distributed and reactive systems. Scala-
bility in Event-B can be achieved via abstraction, proof and decomposition. Moreover, this
formalism has strictly defined semantics and mature tool support – the Rodin platform [26]
accompanied by various plug-ins, including the ones for program code generation, e.g, C,
Java, etc. This allows us to model and verify a wide range of different safety-related proper-
ties stipulated by the given system safety requirements. Those requirements may include the
safety requirements about global and local system properties, the absence of system dead-
locks, temporal and timing properties, etc.

In this paper, we significantly extend and exemplify with a large case study our approach
to linking modelling in Event-B with safety cases presented in [54]. More specifically, we
further elaborate on the classification of safety requirements and define how each class can
be treated formally to allow for verification of the given safety requirements, i.e., we define
mapping of the classified safety requirements into the corresponding elements of Event-B.

1

The Event-B semantics then allows us to associate them with particular theorems (proof obli-
gations) to be proved when verifying the system. The employed formal framework assists
the developers in automatic generation of the respective proof obligations. This allows us to
use the obtained proofs as the evidence in safety cases, demonstrating that the given safety
requirements have been met. Finally, to facilitate the construction of safety cases, we define
a set of argument patterns where the argumentation and goal decomposition in safety cases
are based on the results obtained from the associated formal reasoning.

Therefore, the overall contribution of this paper is a developed methodology that covers
two main processes: (1) integration of formalised safety requirements into formal models of
software systems, and (2) construction of structured safety cases 1 from such formal models.

The remainder of the paper is organised as follows. In Section 2, we briefly introduce our
modelling framework – Event-B, its refinement-based approach to modelling software sys-
tems as well as the Event-B verification capabilities based on theorem proving. Additionally,
we overview the notion of safety cases and their supporting graphical notation. In Section 3,
we describe our methodology and provide the proposed classification of safety requirements.
We elaborate on the proposed methodology in Section 4, where we define a set of argument
patterns and their verification support. In Section 5, we illustrate application of the proposed
patterns on a larger case study – a steam boiler control system. In Section 6, we overview
the related work. Finally, in Section 7, we give concluding remarks as well as discuss our
future work.

2 Preliminaries
In this section, we briefly outline the Event-B formalism that we use to derive models of
safety-critical systems. In addition, we briefly describe the notion of safety cases and their
supporting notation that we will rely on in this paper.

2.1 Overview of Event-B
Event-B language. Event-B [4, 26] is a state-based formal method for system level mod-
elling and verification. It is a variation of the B Method [2]. Automated support for modelling
and verification in Event-B is provided by the Rodin platform [26].

Formally, an Event-B model is defined by a tuple (d, c, A, v,Σ, I, Init, E), where d
stands for sets (data types), c are constants, v is a vector of model variables, Σ corresponds
to a model state space defined by all possible values of the vector v. A(d, c) is a conjunc-
tion of axioms defining properties of model data structures, while I(d, c, v) is a conjunction
of invariants defining model properties to be preserved. Init is an non-empty set of model
initial states, Init ⊆ Σ. Finally, E is a set of model events where each event e is a relation
of the form e ⊆ Σ× Σ.

The sets and constants of the model are stated in a separate component called CONTEXT,
where their properties are postulated as axioms. The model variables, invariants and events,

1From now on, by safety cases we mean structured safety cases.

2

including initialisation event, are introduced in the component called MACHINE. The model
variables are strongly typed by the constraining predicates in terms of invariants.

In general, an event e has the following form:

e =̂ any lv where g then R end,

where lv is a list of local variables, the guard g is a conjunction of predicates defined over the
model variables, and the action R is a parallel composition of assignments over the variables.

The event guard defines when an event is enabled. If several events are enabled si-
multaneously then any of them can be chosen for execution non-deterministically. If none
of the events is enabled then the system deadlocks. In general, the action of an event is a
composition of assignments executed simultaneously. Variable assignments can be either de-
terministic or non-deterministic. The deterministic assignment is denoted as x := Expr(v),
where x is a state variable and Expr(v) is an expression over the state variables v. The
non-deterministic assignment can be denoted as x :∈ S or x :| Q(v, x′), where S is a set of
values and Q(v, x′) is a predicate. As a result of the non-deterministic assignment, x gets
any value from S or it obtains a value x′ such that Q(v, x′) is satisfied.

The Event-B language can also be extended by different kinds of attributes attached to
model events, guards, variables, etc. We will use Event-B attributes to contain formulas or
expressions to be used by external tools or Rodin plug-ins, e.g., Linear Temporal Logic (LTL)
formulas to be checked.

Event-B semantics. The semantics of Event-B events is defined using before-after predi-
cates [50]. A before-after predicate (BA) describes a relationship between the system states
before and after execution of an event. Hence, the definition of an event presented above can
be given as the relation describing the corresponding state transformation from v to v′, such
that:

e(v, v′) = ge(v) ∧ I(v) ∧BAe(v, v
′),

where ge is the guard of the event e, BAe is the before-after predicate of this event, and v, v′

are the system states before and after event execution respectively.
Sometimes, we need to explicitly reason about possible model states before or after some

particular event. For this purpose, we introduce two sets – before(e) and after(e). Specif-
ically, before(e) represents a set of all possible pre-states defined by the guard of the event
e, while after(e) is a set of all possible post-states of the event e, i.e., before(e) ⊆ Σ and
after(e) ⊆ Σ denote the domain and range of the relation e [37]:

before(e) = {v ∈ Σ | I(v) ∧ ge(v)},
after(e) = {v′ ∈ Σ | I(v′) ∧ (∃v ∈ Σ · I(v) ∧ ge(v) ∧ BAe(v, v

′))}.
To verify correctness of an Event-B model, we generate a number of proof obligations

(POs). More precisely, for an initial (i.e., abstract) model, we prove that its initialisation and
all events preserve the invariant:

A(d, c), I(d, c, v), ge(d, c, v), BAe(d, c, v, v
′) ⊢ I(d, c, v′). (INV)

Since the initialisation event has no initial state and guard, its proof obligation is simpler:

3

A(d, c), BAInit(d, c, v
′) ⊢ I(d, c, v′). (INIT)

On the other hand, we verify event feasibility. Formally, for each event e of the model,
its feasibility means that, whenever the event is enabled, its before-after predicate is well-
defined, i.e., there exists some reachable after-state:

A(d, c), I(d, c, v), ge(d, c, v) ⊢ ∃ v′ · BAe(d, c, v, v
′). (FIS)

Refinement in Event-B. Event-B employs a top-down refinement-based approach to formal
development of a system. The development starts from an abstract specification of the sys-
tem (i.e., an abstract machine) and continues with stepwise unfolding of system properties
by introducing new variables and events into the model (i.e., refinements). This type of a
refinement is known as a superposition refinement. Moreover, Event-B formal development
supports data refinement allowing us to replace some abstract variables with their concrete
counterparts. In this case, the invariant of a refined model formally defines the relation-
ship between the abstract and concrete variables; this type of invariants is called a gluing
invariant.

To verify correctness of a refinement step, one needs to discharge a number of POs for
a refined model. For brevity, here we show only essential ones. The full list of POs can be
found in [4].

Let us introduce a shorthand H(d, c, v, w) that stands for the hypotheses A(d, c), I(d, c, v)
and I ′(d, c, v, w), where I and I ′ are respectively the abstract and the refined invariants, while
v, w are respectively the abstract and concrete variables.

When refining an event, its guard can only be strengthened:

H(d, c, v, w), g′e(d, c, w) ⊢ ge(d, c, v), (GRD)

where ge, g
′
e are respectively the abstract and concrete guards of the event e.

The simulation proof obligation (SIM) requires to show that the action (i.e., the modelled
state transition) of a refined event is not contradictory to its abstract version:

H(d, c, v, w), g′e(d, c, w), BA′
e(d, c, w, w

′) ⊢ ∃v′.BAe(d, c, v, v
′) ∧ I ′(d, c, v′, w′), (SIM)

where BAe, BA′
e are respectively the abstract and concrete before-after predicates of the

same event e, w and w′ are the concrete variable values before and after this event execution.
All the described above proof obligations are automatically generated by the Rodin plat-

form [26] that supports Event-B. Additionally, the tool attempts to automatically prove them.
Sometimes it requires user assistance by invoking its interactive prover. However, in general
the tool achieves high level of automation in proving (usually over 80% of POs are proved
automatically).

Verification via theorem proving. Additionally, the Event-B formalism allows the develop-
ers to formulate theorems either in the model CONTEXT or MACHINE components. In the

4

first case, theorems are logical statements about model static data structures that are prov-
able (derivable) from the model axioms given in the CONTEXT component. In the latter
case, these are logical statements about model dynamic properties that follow from the given
formal definitions of the model events and invariants.

The theorem proof obligation (THM) indicates that this is a theorem proposed by the
developers. Depending whether a theorem is defined in the CONTEXT or MACHINE com-
ponents, it has a slightly different form. To highlight this difference, we use indexes C and
M in this paper. The first variant of a proof obligation is defined for a theorem T (d, c) in the
CONTEXT component:

A(d, c) ⊢ T (d, c). (THMC)

The second variant is defined for a theorem T (d, c, v) in the MACHINE component:

A(d, c), I(d, c, v) ⊢ T (d, c, v). (THMM)

2.2 Safety cases
A safety case is “a structured argument, supported by a body of evidence that provides a
convincing and valid case that a system is safe for a given application in a given operating
environment” [13,19]. The construction, review and acceptance of safety cases are the valu-
able steps in safety assurance process of critical software systems. Several standards, e.g.,
ISO 26262 [40] for the automotive domain, EN 50128 [25] for the railway domain, and the
UK Defence Standard [19], prescribe production and evaluation of safety (or more generally
assurance) cases for certification of such critical systems [31].

In general, safety cases can be documented either textually or graphically. However, a
growing number of industrial companies working with safety-critical systems adopt a graph-
ical notation, namely Goal Structuring Notation (GSN) proposed by Kelly [44], in order to
present safety arguments within safety cases [30]. GSN aims at graphical representation of
safety case elements as well as the relationships that exist between these elements. The prin-
cipal building blocks of the GSN notation are shown in Figure 1. Essentially, a safety case
constructed using GSN consists of goals, strategies and solutions. Here goals are proposi-
tions in an argument that can be said to be true or false (e.g., claims of requirements to be
met by a system). Solutions contain the information extracted from analysis, testing or sim-
ulation of a system (i.e., evidence) to show that the goals have been met. Finally, strategies
are reasoning steps describing how goals are decomposed and addressed by sub-goals.

Thus, a safety case constructed in the GSN notation presents decomposition of the given
safety case goals into sub-goals until they can be supported by the direct evidence (a solu-
tion). It also explicitly defines the argument strategies, relied assumptions, the context in
which goals are declared, as well as justification for the use of a particular goal or strategy.
If the contextual information contains a model, a special GSN symbol called model can be
used instead of a regular GSN context element.

The elements of a safety case can be in two types of relationships: “Is solved by” and
“In context of”. The former is used between goals, strategies and solutions, while the latter

5

In context of

Is solved by

A proposition in an

argument that can be

said to be true or false

Goal (G)

Information necessary

for an argument to be

understood

Context (C)

A goal that needs to be

developed later on

Undeveloped Goal

Either a rule to be

used in solution of

a goal or a rule to

break down a goal

into a number

of sub-goals

Strategy (S)

A statement whose

validity has to be relied

upon in order to make

an argument
A

Assumption (A)

Provides

evidence to

show that a goal

has been met

Solution

(Sn)
n

A strategy that

needs to be

developed

later on

Undeveloped Strategy

m-of-n

A statement of rationale

for the use of particular

goal or strategy

J

Justification (J)

Principal GSN Elements and Relationships GSN Extensions

Structural Abstraction

Entity Abstraction

A context symbol

which refers to an information

artefact in the form of

a model

Model (M)

Undeveloped and

Uninstantiated Entity

Uninstantiated Entity

Figure 1: Elements of GSN (detailed description is given in [7, 28, 44, 45])

links a goal to a context, a goal to an assumption, a goal to a justification, a strategy to a
context, a strategy to an assumption, a strategy to a justification.

To allow for construction of argument patterns, GSN has been extended to represent
generalised elements [44, 45]. We utilise the following elements from the extended GSN
for structural abstraction of our argument patterns: multiplicity and optionality. Multiplicity
is a generalised n-ary relationship between the GSN elements, while optionality stands for
optional and alternative relationship between the GSN elements. Graphically, the former is
represented as a solid ball or a hollow ball on an arrow “Is solved by” shown in Figure 1,
where the label n indicates the cardinality of a relationship, while a hollow ball means zero
or one. The latter is depicted as a solid diamond in Figure 1, where m-of-n denotes a possible
number of alternatives. The multiplicity and the optionality relationships can be combined. If
a multiplicity symbol is placed in front of the optionality symbol, this stands for a multiplicity
over all the options.

There are two extensions for entity abstraction in GSN: (1) uninstantiated entity, and (2)
undeveloped and uninstantiated entity. The former one specifies that the entity requires to
be instantiated, i.e., the “abstract” entity needs to be replaced with a more concrete instance
later on. In Figure 1, the corresponding annotation is depicted as a hollow triangle. It can
be used with any GSN element. The latter one indicates that the entity needs both further
development and instantiation. In Figure 1, it is shown as a hollow diamond with a line in
the middle. This annotation can be applied to GSN goals and strategies only.

3 Methodology

In this section, we describe our methodology that aims at establishing a link between formal
verification of safety requirements in Event-B and the construction of safety cases.

6

3.1 General methodology
In this work, we contribute to the process of development, verification and certification of
software systems by showing how to proceed from the given safety requirements to safety
cases via formal modelling and verification in Event-B (Figure 2). We distinguish two main
processes: (1) representation of formalised safety requirements in Event-B models, and (2)
derivation of safety cases from the associated Event-B specifications. Let us point out that
these activities are tightly connected to each other. Accuracy of the safety requirements for-
malisation influences whether we are able to construct a safety case sufficient to demonstrate
safety of a system. This dependence is highlighted in Figure 2 as a dashed line. If a formal
specification is not good enough, we need to return and improve it.

Safety requirements

representation in Event-B

Derivation of safety cases

from Event-B specifications

Formal specification

in Event-B

· constants

· axioms

· variables

· invariants

· theorems

· events

Proof

obligations

Hazard analysis:

HAZOP, PHA,

FMEA, etc.
Solution

Sn1

Goal

G1

Strategy
S1

Sub-goal

G2

Sub-goal

G3

C1
Context

Safety case

Requirements

Figure 2: High-level representation of the overall approach

We connect these two processes via classification of safety requirements. On the one
hand, we propose a specific classification associated with particular ways these requirements
can be represented in Event-B. On the other hand, we propose a set of classification-based
argument patterns to facilitate the construction of safety cases from the associated Event-B
models. The classification includes separate classes for safety requirements about global and
local system properties, the absence of system deadlock, temporal and timing properties, etc.
We are going to present this classification in detail in Section 3.2.

In this paper, we leave out of the scope the process of elicitation of system safety re-
quirements. We assume that the given list of these requirements is completed beforehand by
applying well-known hazard analysis techniques such as HAZard and OPerability (HAZOP)
analysis, Preliminary Hazard Analysis (PHA), Failure Modes and Effects Analysis (FMEA),
etc.

Incorporating safety requirements into formal models. Each class of safety requirements
can be treated differently in an Event-B specification (model). In other words, various model
expressions based on model elements, e.g., axioms, variables, invariants, events, etc., can

7

be used to formalise a considered safety requirement. Consequently, the argument strategies
and resulting evidence in a safety case built based on such a formal model may also vary.
Using the defined classification, we provide the reader with the precise guidelines on how to
map safety requirements of some class into a particular subset of model elements. Moreover,
we define how to construct from these model elements a specific theorem to be verified.
Later on, we will show how the verification results (e.g., discharged proof obligations and
model checking results) can be used as the evidence in the associated safety cases.

Our methodology allows us to cope with two cases: (1) when a formal Event-B spec-
ification of the system under consideration has been already developed, and (2) when it is
performed simultaneously with the safety case construction. In the first case, we assume that
adequate models are constructed and linked with the classification we propose. In the sec-
ond case, the formal development is guided by our proposed classification and methodology.
Consequently, both ways allow us to contribute towards obtaining adequate safety cases.

Constructing safety cases from formal models. Model-based development in general and
development using formal methods in particular typically require additional argumentation
about model correctness and well-definedness [6]. In this paper, we address this challenge
and provide the corresponding argument pattern as shown in Section 4.1.

Having a well-defined classification of safety requirements benefits both stages of the
proposed methodology, i.e., while incorporating safety requirements into formal models and
while deriving safety cases from such formal models. To simplify the task of linking the
formalised safety requirements with the safety case to be constructed, we propose a set of
classification-based argument patterns (Sections 4.2-4.9). The patterns have been developed
using the corresponding GSN extensions (Figure 1). Some parts of an argument pattern
may remain the same for any instance, while others need to be further instantiated (they are
labelled with a specific GSN symbol – a hollow triangle). The text highlighted by braces { }
should be replaced by a concrete value.

The generic representation of a classification-based argument pattern is given in Figure 3.
Here, a safety requirement Requirement of some class Class {X} is reflected in the goal GX,
where X is a class number (see the next section for the reference). According to the proposed
approach, the requirement is verified within a formal model M in Event-B (the model element
MX.1).

In order to obtain the evidence that a specific safety requirement is met, different con-
struction techniques might be undertaken. The choice of a particular technique influences
the argumentation strategies to be used in each pattern. For example, if a safety requirement
can be associated with a model invariant property, the corresponding theorem for each event
in the model M is required to be proved. Correspondingly, the proofs of these theorems are
attached as the evidence for the constructed safety case.

The formulated properties and theorems associated with a particular requirement can be
automatically derived from the given formal model. Nonetheless, to increase clarity of a
safety case, any theorem or property whose verification result is provided as a solution of the
top goal needs to be referred to in the GSN context element (CX.2 in Figure 3).

To bridge a semantic gap in the mapping associating an informally specified safety re-

8

{Requirement} of Class {X}

is met

GX

Argument over all

formulated theorems /

properties

{Discharged

PO} / {model

checking

result}

SX.3

SnX.1

The provided theorem

{thm} is indeed provable / the model

satisfies the property {propertyi}

GX.3

no. of theorems /

properties

Theorem {thm} /

property {propertyi}

CX.2

Theorem prover /

Model checker

CX.1

Argument over the

involved model

elements

SX.1

Property of the involved

model elements holds

GX.1

Formal model {M}

in Event-B

MX.1 Argument over

formalisation of

{Requirement}

SX.2

Formulated theorems/properties

are the proper formalisation of

{Requirement}

GX.2

Agreement over

inspection

conducted by

domain and

formalisation

experts

SnX.2

Figure 3: Generic argument pattern

quirement with the corresponding formal expression that is verified and connected to evi-
dence, we need to argue over a correct formalisation of the requirement (SX.2 in Figure 3).
We rely on a joint inspection conducted by domain and formalisation experts (SnX.2) as the
evidence that the formulated theorems/properties are proper formalisations of the require-
ment.

Generating code. Additionally, the most detailed (concrete) specification obtained during
the refinement-based development can be used for code generation. The Rodin platform,
Event-B tool support, allows for program code generation utilising a number of plug-ins.
One of these plug-ins, EB2ALL [24], automatically generates a target programming lan-
guage code from an Event-B formal specification. In particular, EB2C allows for generation
of C code, EB2C++ supports C++ code generation, using EB2J one can obtain Java code,
and using EBC# – C# code. The alternative solution is to use the constructed formal spec-
ification for verification of an already existing implementation code. Then, if the code has
successfully passed such a verification, the existing safety case derived from the formal spec-
ification implies the code safety for the verified safety properties. Nonetheless, in both cases
a safety case based on formal analysis cannot be used solely. It requires additional argumen-
tation, for example, over the correctness of the code generation process itself [30, 43].

9

3.2 Requirements classification and its mapping into Event-B elements
To classify safety requirements, we have firstly adopted the taxonomy proposed by Bitsch
[15] as presented in our previous work [54]. However, the Bitsch’s approach uses Computa-
tional Tree Logic (CTL) to specify the requirements and relies on model checking as a formal
verification technique. The differences between the semantics of CTL and Event-B signif-
icantly restrict the use of the Bitsch’s classification in the Event-B framework. As a result,
we extensively modified the original classification. In this paper, we propose the following
classification of safety requirements, as shown in Figure 4.

Safety Requirements

(SRs)

SRs about global

properties (Class 1)

Hierarchical SRs

(Class 6)

SRs about local

properties (Class 2)

SRs about temporal

properties (Class 7)

SRs about the absence

of system deadlock

(Class 4)

SRs about control flow

(Class 3)

SRs about timing

properties (Class 8)

SRs about system

termination (Class 5)

Figure 4: Classification of safety requirements

We divide safety requirements (SRs) into eight classes:
• Class 1: SRs about global properties are the requirements stipulating the system safety

properties that must be always maintained by the modelled system;

• Class 2: SRs about local properties are the requirements that reflect the necessity of
some property to be true at a specific system state;

• Class 3: SRs about control flow are the requirements that define the necessary flow
(order) in occurrences of some system events;

• Class 4: SRs about the absence of system deadlock are the requirements related to a
certain class of control systems where an unexpected stop of the system may lead to a
safety-related hazard;

• Class 5: SRs about system termination are the requirements related to a certain class of
control systems where non-termination of the system in a specific situation may lead
to a safety-related hazard;

• Class 6: Hierarchical SRs are the requirements that are hierarchically structured to
deal with the complexity of the system, i.e., a more general requirement may be de-
composed into several more detailed ones;

10

• Class 7: SRs about temporal properties are the requirements that describe the proper-
ties related to reachability of specific system states;

• Class 8: SRs about timing properties are the requirements that establish timing con-
straints of a system, for example, of a safety-critical real-time system where the re-
sponse time is crucial.

The given classes of SRs are represented differently in a formal model. For instance, SRs
of Class 1 are modelled as invariants in the MACHINE component, while SRs of Class 2 are
modelled by defining a theorem about the required post-state of a specific Event-B model
event. However, in some cases requirements of Class 2 can be also formalised as require-
ments of Class 1 by defining implicative invariants, i.e., invariants that hold in specific system
states. The SRs about control flow (Class 3) can be expressed as event-flow properties (e.g.,
by using Event-B extension – the graphical Usecase/Flow language [37]). The SRs about the
absence of system deadlock (Class 4) are represented as deadlock freedom conditions, while
the SRs of Class 5 are modelled as shutdown conditions. In both cases, these conditions are
turned into specific model theorems to be proved. The class of hierarchical SRs (Class 6) is
expressed within Even-B based on refinement between the corresponding Event-B models.
Finally, the associated ProB tool for the Rodin platform [52] allows us to support the SRs of
Class 7 by model checking.

Let us note however that the representation of timing properties (Class 8) in the Event-B
framework is a challenging task. There are several works dedicated to address this issue
[12, 18, 39, 58]. In this paper, we adopt the approach that establishes a link between timing
constraints defined in Event-B and verification of real-time properties in Uppaal [39].

Formally, the described above relationships can be defined as a function FM mapping
safety requirements (SRs) into a set of the related model expressions:

SRs → P(MExpr),

where P(T) corresponds to a power set on elements of T and MExpr stands for a gen-
eralised type for all possible expressions that can be built from the model elements, i.e.,
model expressions. Here model elements are elements of Event-B models such as axioms,
variables, invariants, events, and attributes. MExpr includes such model elements as triv-
ial (basic) expressions. Among other possible expressions of this type are state predicates
defining post-conditions and shutdown conditions, event control flow expressions as well as
Linear Temporal Logic (LTL) and Timed Computation Tree Logic (TCTL) formulas based on
elements of the associated Event-B model.

The defined strict mapping allows us to trace the safety requirements given in an infor-
mal manner into formal specifications in Event-B as well as into the accompanying means
for verification, i.e., the Flow and ProB plug-ins and Uppaal. In Figure 5, we illustrate the
steps of evidence construction in our proposed approach. Firstly, we map a safety require-
ment into a set of model expressions. Secondly, we construct a specific theorem or a set
of theorems out of these model expressions, thus essentially defining the semantics of the
formalised requirement. Finally, we prove each theorem using the theorem provers of Event-
B or perform model checking using, e.g., Event-B extension ProB. As a result, we obtain

11

either a discharged proof obligation or a result of model checking. We include such results
into the fragment of a safety case corresponding to the considered safety requirement as the
evidence that this requirement holds. Table 1 illustrates the correspondence between safety
requirements of different classes, model expressions and constructed theorems.

Safety

requirement

(SR)

Model

expressions

(MExpr)

Theorem

Proof /

Result of model

checking

mapping building

proving /

model

checking

Figure 5: Steps of evidence construction

Table 1: Formalisation of safety requirements
Safety Model element Theorem
requirement expressions
SR of Cl. 1 invariants group of theorems for each event

Eventk/safetyi/INV
SR of Cl. 2 event, theorem about a specific post-state of

state predicate an event thm ap/THM
SR of Cl. 3 pairs of events, group of theorems about enabling

event control flow relationships between events,
e.g., Eventi/Eventj/FENA

SR of Cl. 4 all events theorem about the deadlock freedom
thm dlf/THM

SR of Cl. 5 state predicate, theorem about a shutdown condition
all events thm shd/THM

SR of Cl. 6 abstract event, theorem about guard strengthening
concrete event(s) Event′k/grd/GRD,

theorem about action simulation
Event′k/act/SIM

SR of Cl. 7 LTL formula LTL propertyi
SR of Cl. 8 TCTL formula TCTL propertyj

As soon as all safety requirements are assigned to their respective classes and their map-
ping into Event-B elements is performed, we can construct the part of a safety case corre-
sponding to assurance of these requirements. We utilise GSN to graphically represent such
a safety case.

4 Argument patterns

In this section, we present the argument patterns corresponding to each of the introduced
classes. In addition, to obtain an adequate safety case, we need to demonstrate well-
definedness of the formal models we rely on. Therefore, we start this section by present-
ing a specific argument pattern to address this issue.

12

4.1 Argumentation that formal development of a system is well-defined
We propose the argument pattern shown in Figure 6 in order to provide evidence that the
proposed formal development of a system is well-defined. To verify this (e.g., that a partial
function is applied within its domain), Event-B defines a number of proof obligations (well-
definedness (WD) for theorems, invariants, guards, actions, etc. and feasibility (FIS) for
events [4]), which are automatically generated by the Rodin platform. We assume here that
all such proof obligations are discharged for models in question. However, if model axioms
are inconsistent (i.e., contradictory), the whole model becomes fallacious and thus logically
meaningless. Demonstrating that this is not the case is a responsibility of the developer. To
handle this problem, we introduce a specific argument pattern shown in Figure 6. In Event-
B, well-definedness of a CONTEXT can be ensured by proving axiom consistency (the goal
G1.2 in Figure 6).

We propose to construct a theorem showing axiom consistency and prove it. However,

All axioms in

the CONTEXT are

consistent

(i.e., non-contradictory)

G1.2

Discharged

PO

{thm_axm{i}}/

THMC

Argument over

axioms consistency

via defining theorems

about groups of

independent axioms

The theorem about

the group {i} of independent

axioms is proved

S1.2

Sn1.1

G1.3

Formal

development of

the {System S} is

well-defined

G1.1

Argument

over well-

definedness of

the model

S1.1

no. of independent

groups of axioms

Theorem

{thm_axm{i}}

about the

group {i}

C1.2

no. of models in

development

Model {M}

M1.2

Formal

development that

consists of a chain of

refinements

in Event-B

M1.1

Rodin

theorem

provers

C1.1

According to the Event-B

semantics, if axioms are

contradictory, the whole

model becomes

fallicious J

J1.1

Figure 6: Argument pattern for well-definedness of formal development

13

such a theorem could be very large in size. Thus, for simplicity, we suggest to divide axioms
into groups, where each group consists of axioms that use shared constants and sets. In
other words, each group of axioms is independent from each other. Consequently, we define
theorems for all groups of independent axioms (the strategy S1.2) as shown below:

thm axm{i}: A(d, c) ⊢ ∃ d, c · A1(d, c) ∧ ... ∧ AN (d, c),

where i stands for i-th group of axioms such that i ∈ 1 .. K and K is the number of indepen-
dent groups of axioms. The number of axioms in a group is represented by N . The generated
proof obligation (Sn1.1) shown in Figure 6 is an instance of the (THMC) proof obligation
given in Section 2.1.

In order to instantiate this pattern for each model in the development,
• a formal development that consists of a chain of refinements in Event-B should be

defined in a GSN model element;
• a formal model M, for which a particular fragment of the safety case is constructed,

should be referred to in a GSN model element;
• theorems about the defined groups of independent axioms should be formulated using

the Event-B formal language and referred to in GSN context elements;
• the proof obligations of the type THMC discharged by the Rodin platform should be

included as solutions of the goal ensuring consistency of model axioms.
The instantiation example for this fragment of the safety case can be found in Section 5.3.1.

In the remaining part of Section 4, we introduce the argument patterns that correspond to
each class of safety requirements proposed in Section 3.2. It is not necessarily the case that
the final safety case of the modelled system will include SRs of all the classes. Moreover, it
is very common for the Event-B practitioners to limit the requirements model representation
to invariants, theorems and operation refinement [41, 49, 59]. However, to achieve a strong
safety case, the developers need to provide the evidence that all the safety requirements listed
in the requirements document hold. The proposed argument patterns cover a broader range of
safety requirements, including also those that specify temporal and timing properties which
cannot be formalised in Event-B directly.

4.2 Argument pattern for SRs about global properties (Class 1)
In this section, we propose an argument pattern for the safety requirements stipulating global
safety properties, i.e., properties that must be maintained by the modelled system during its
operation (Figure 7).

We assume that there is a model M, which is a part of the formal development of a system
in Event-B, where a safety requirement of Class 1 is verified to hold (M2.1.1). In addition,
we assume that the model invariant I(d, c, v) contains the conjuncts safety1, ..., safetyN ,
where N is the number of safety invariants, which together represent a proper formalisation
of the considered safety requirement (A2.1.1) 2. Then, for each safety invariant safetyi, i ∈

2Such an assumption can be substantiated by arguing over formalisation of the requirements as demon-
strated in Figure 3 (the strategy SX.2). It is applicable to all the classification-based argument patterns and
their instances.

14

Invariant

{safetyi}

Argument over all

formulated invariants

S2.1.1
Invariants

{safety1,�, safetyN}

are the proper

formalisation of the

requirement
A

The invariant {safetyi}

holds for all events
G2.1.1

Sn2.1.1

Discharged PO

{Eventk}/

{safetyi}/INV

Argument over each

event individually

S2.1.2

The invariant {safetyi}

holds for the event {Eventk}
G2.1.2

{Requirement} of Class 1

is met

G2.1

A2.1.1

no. of events

C2.1.1

no. of invariants

Model {M}

M2.1.1

Rodin

theorem

provers

C2.1.2

Figure 7: Argument pattern for safety requirements of Class 1

1..N, the event Eventk, k ∈ 1..K, where K is the number of all model events, represents some
event for which this invariant must hold.

We build the evidence for the safety case in the way illustrated in Figure 5. Thus, for each
model expression, in this case, an invariant, formalising the safety requirement, we construct
a separate fragment of the safety case. Then, a separate theorem is defined for each event
where a particular invariant should hold. In other words, we define a group of theorems, one
per each event. The number of model events influences the number of branches into which
the goal G2.1.1 is split. In a special case when the set of variables referred in an invariant
is mutually exclusive with the set of variables modified by an event, such an event can be
excluded from the list of events because the theorem generated for such an event is trivially
true.

According to our approach, the generic mapping function FM is of the form SRs →
P(MExpr). In general case, for each requirement of this class the function returns a set of
invariants {safety1, ..., safetyN} that can be represented as a conjunction. Due to this fact,
each such an invariant can be verified independently. The theorem for verification that the
safety invariant safetyi (denoted by I(d, c, v′)) holds for the event Eventk is as follows:

A(d, c), I(d, c, v), gEventk(d, c, v), BAEventk(d, c, v, v
′) ⊢ I(d, c, v′). (INV)

The Rodin platform allows us to prove this theorem using the integrated theorem provers
and explicitly support the safety case to be built with the discharged proof obligations of the
type INV for each event where the safety invariant has been verified to hold.

15

The key elements of the pattern to be instantiated are as follows:
• a requirement Requirement should be replaced with a particular safety requirement;
• a formal model M should be referred to in a GSN model element;
• the concrete mapping between the requirement and the corresponding model invariants

should be provided, while the invariants safety1, ..., safetyN formalising the require-
ment from this mapping should be referred to in GSN context elements;

• the proof obligations of the type INV discharged by the Rodin platform should be
included in the safety case as the respective solutions.

Let us consider instantiation of the proposed pattern by an example – a sluice gate control
system [46]. The system is a sluice connecting areas with dramatically different pressures.
The purpose of the system is to adjust the pressure in the sluice area and operate two doors
(door1 and door2) connecting outside and inside areas with the sluice area. To guarantee
safety, a door may be opened only if the pressure in the locations it connects is equalized,
namely

SR-cl1-ex1: When the door1 is open, the pressure in the sluice area
is equal to the pressure outside;

SR-cl1-ex2: When the door2 is open, the pressure in the sluice area
is equal to the pressure inside.

These safety requirements are formalised in the Event-B model (available from Appendix
C, Refinement 2 of [46]) as the invariants inv cl1 ex1 and inv cl1 ex2 such that

SR-cl1-ex1 7→ {inv cl1 ex1},
SR-cl1-ex2 7→ {inv cl1 ex2},

where:
inv cl1 ex1: failure = FALSE ∧ (door1 position > 0 ∨

door1 motor = MOTOR OPEN)⇒
pressure value = PRESSURE OUTSIDE,

inv cl1 ex2: failure = FALSE ∧ (door2 position > 0 ∨
door2 motor = MOTOR OPEN)⇒
pressure value = PRESSURE INSIDE.

The expressions doorX position > 0 and doorX motor = MOTOR OPEN indicate that the
corresponding door X (where X = 1 or X = 2) is open. The variable door1 models a door
that connects the sluice area with the outside area and the variable door2 models a door that
connects the sluice area with inside area. The variable pressure value stands for the pressure
in the sluice area.

Then, according to the proposed approach, we show that these invariants hold for all
events in the model. Due to the space limit, we give only an excerpt of the safety case that
corresponds to the safety requirement SR-cl1-ex1 (Figure 8). The associated invariant affects
a number of model events, including such as pressure high (changing pressure to high) and
closed2 (closing the door 2). From now on, we will hide a part of the safety case by three
dots to avoid unnecessary big figures in the paper. We assume that the given part of the safety
case is clear and can be easily repeated for the hidden items.

16

Invariant

inv_cl1_ex1

Argument over all

formulated invariants

S2.1.1 Invariant

inv_cl1_ex1 is the

proper formalisation of

the requirement
A

The invariant inv_cl1_ex1

holds for all events
G2.1.1

Sn2.1.1

Discharged PO

pressure_high/

inv_cl1_

ex1/INV

Argument over each

event individually

S2.1.2

The invariant inv_cl1_ex1

holds for the event pressure_high
G2.1.2

SR-cl1_ex1 of Class 1

is met

G2.1

A2.1.1

C2.1.1

Sn2.1.n

Discharged PO

closed2/

inv_cl1_

ex1/INV

The invariant inv_cl1_ex1

holds for the event closed2
G2.1.n...

Model: the

second refinement

(MACHINE m2 and

CONTEXT c1)

M2.1.1

Rodin

theorem

provers

C2.1.2

Figure 8: The pattern instantiation example

4.3 Argument pattern for SRs about local properties (Class 2)

Safety requirements of Class 2 describe local properties, i.e., the properties that need to be
true at specific system states. For example, in case of a control system relying on the notion
of operational modes, a safety requirement of Class 2 may define a (safety) mode which
the system enters after the execution of some transition. In terms of Event-B, the particular
system states we are interested in are usually associated with some desired post-states of
specific model events.

Figure 9 shows the argument pattern for justification of a safety requirement of Class 2.
As for Class 1, the key argumentation strategy here (S2.2.1) is defined by the steps of ev-
idence construction illustrated in Figure 5. However, in contrast to the invariant theorems
established and proved for each event in the model, the theorem formalising the safety re-
quirement of Class 2 is formulated and proved only once for the whole model M.

As mentioned above, local properties are usually expressed in Event-B in terms of post-
states of specific model events. This suggests the mapping function FM for Class 2 to be of
the form:

Requirement 7→ {(e1, q1), ..., (eK , qS)},

where the events e1,..., eK and the state predicates q1,..., qS are model expressions based on
which the corresponding theorems are constructed. The number of such theorems reflects
the number of branches of a safety case for the goal G2.2 (Figure 9). Specifically, we can
verify a safety requirement of Class 2 by proving the following theorem for each pair (ei,qj),
where i ∈ 1..K and j ∈ 1..S:

17

{Requirement} of Class 2

is met

G2.2

Discharged

PO

{thm_ap}/

THMM

Argument by providing

theorems for events

where post-conditions

are required to hold

S2.2.1

Sn2.2.1

The provided theorem

{thm_ap} is indeed provable

G2.2.1
Theorem

{thm_ap}

C2.2.2

no. of theorems

Formulated

theorems are the

proper formalisation

of the requirement

A

A2.2.1

Model {M}

M2.2.1

Rodin

theorem

provers

C2.2.1

Figure 9: Argument pattern for safety requirements of Class 2

thm ap : A(d, c), I(d, c, v) ⊢ ∀v′ · v′ ∈ after(ei) ⇒ qj(v
′).

Here after(ei) is the set of all possible post-states of the event ei as defined in Section 2.1.
This argument pattern (Figure 9) can be instantiated as follows:
• a requirement Requirement should be replaced with a particular safety requirement;
• a formal model M should be referred to in a GSN model element;
• the concrete mapping between the requirement and event-post-condition pairs should

be supplied, while the theorems thm ap obtained from this mapping should be referred
to in GSN context elements;

• the proof obligations of the type THMM discharged by the Rodin platform should be
included in the safety case as the evidence supporting that the top-level claim (i.e.,
G2.2) holds.

In order to demonstrate application of this pattern, let us introduce another case study
– Attitude and Orbit Control System (AOCS) [53]. The AOCS is a typical layered control
system. The main function of this system is to control the attitude and the orbit of a satellite.
Since the orientation of a satellite may change due to disturbances of the environment, the
attitude needs to be continuously monitored and adjusted. At the top layer of the system
there is a mode manager (MM). The transitions between modes can be performed either to
fulfil the predefined mission of the satellite (forward transitions) or to perform error recov-
ery (backward transitions). Correspondingly, the MM component might be in either stable,
increasing (i.e., in forward transition) or decreasing (i.e., in backward transition) state. As
an example, let us consider the safety requirement

SR-cl2: When a mode transition is completed,
the state of the MM shall be stable.

18

To verify this property on model events and variables, we need to prove that the corre-
sponding condition q, namely

last mode = prev target ∧ next target = prev target,

holds after the execution of the event Mode Reached. Here prev target is the previous mode
that a component was in transition to, last mode is the last successfully reached mode, and
next target is the target mode that a component is currently in transition to. The event is
enabled only when there is no critical error in the system, i.e., when the condition error =
No Error holds.

We represent the mapping of the shown safety requirement on Event-B as FM such that
SR-cl2 7→ {(Mode Reached, q)}. According to thm ap and the definition of after(e) given in
Section 2.1, we can construct the theorem to be verified as follows:

thm cl2 ex: ∀last mode′, prev targ′, next targ′ ·
(∃ next targ, error, prev targ·
(next targ 6= prev targ ∧ error = No Error) ∧
(last mode′ = next targ ∧ prev targ′ = next targ∧
next targ′ = next targ))
⇒
last mode′ = next targ ∧ prev targ′ = next targ.

Here, for simplicity, we omit showing types of the involved variables. The corresponding
instance of the argument pattern is illustrated in Figure 10.

SR-cl2 of Class 2

is met

G2.2

Discharged

PO

thm_cl2_ex/

THM

Argument by providing

theorems for events

where post-conditions

are required to hold

S2.2.1

Sn2.2.1

The provided theorem

thm_cl2_ex is indeed provable

G2.2.1
Theorem

thm_cl2_ex

C2.2.2

Theorem

thm_cl2_ex is the

proper formalisation

of the requirement

A

A2.2.1
Model: the first

refinement (MACHINE

MM_Ref1_M and CONTEXT

MM_Ref1_C)

M2.2.1

Rodin

theorem

provers

C2.2.1

Figure 10: The pattern instantiation example

4.4 Argument pattern for SRs about control flow (Class 3)
In this section, we propose an argument pattern for the requirements that define the flow in
occurrences of some system events, i.e., safety requirements about control flow. For instance,

19

this class may include certain requirements that define fault-tolerance procedures. Since fault
detection, isolation and recovery actions are strictly ordered, we also need to preserve this
order in a formal model of the system.

Formally, the ordering between system events can be expressed as a particular relation-
ship amongst possible pre- and post-states of the corresponding model events. We consider
three types of relationships proposed by Iliasov [37]: enabling (ena), disabling (dis) and
possibly enabling (fis). In detail, enabling relationship between two events means that, when
one event occurs, it is always true that the other one may occur next (i.e., the set of pre-states
of the second event is included in the set of post-states of the first event). An event disables
another event if the guard of the second event is always false after the first event occurs (i.e.,
the set of pre-states of the second event is excluded from the set of post-states of the first
event). Finally, an event possibly enables another event if, after its occurrence, the guard of
the second event is potentially enabled (i.e., there is a non-empty intersection of the set of
pre-states of the second event with the set of post-states of the first event).

Let em and en be some events. Then, according to the usecase/flow approach [37], the
proof obligations that support the relationships between these events can be defined as fol-
lows:

em ena en ⇔ after(em) ⊆ before(en)
⇔ ∀v, v′ · I(v) ∧ gem(v) ∧ BAem(v, v

′) ⇒ gen(v
′),

(FENA)

em dis en ⇔ after(em) ∩ before(en) = ∅
⇔ ∀v, v′ · I(v) ∧ gem(v) ∧ BAem(v, v

′) ⇒ ¬gen(v′),
(FDIS)

em fis en ⇔ after(em) ∩ before(en) 6= ∅
⇔ ∃v, v′ · I(v) ∧ gem(v) ∧ BAem(v, v

′) ∧ gen(v
′).

(FFIS)

The flow approach and its supporting plug-in for the Rodin platform, called Usecase/Flow
plug-in [27], allows us to derive these proof obligations automatically.

The argument pattern shown in Figure 11 pertains to the required events order (C2.3.2)
which is proved to be preserved by the respective events of a model M. As explained above,
each event Eventi′ can be either enabled (ena), or disabled (dis), or possibly enabled (fis)
by some other event Eventi. This suggests that the mapping function FM is of the form:

Requirement 7→ {(Eventi, ena, Eventi′),
(Eventj , dis, Eventj′),
(Eventk, fis, Eventk′), ... }.

The corresponding theorem is constructed according to the definition of either (FENA), or
(FDIS), or (FFIS). Then, the discharged proof obligations for each such a pair of events are
provided as the evidence in a safety case, e.g., Sn2.3.1 in Figure 11.

The instantiation of the proposed argument pattern can be achieved by preserving a num-
ber of the following steps:
• a requirement Requirement should be replaced with a particular safety requirement;
• a formal model M should be referred to in a GSN model element;

20

{Requirement} of Class 3

is met

G2.3

Discharged PO

{Eventi}/

{Eventi�}/

FENA

Argument over

required events order

S2.3.1

Sn2.3.1

The required

events order is preserved

G2.3.1

Argument over

each pair of events

S2.3.2

{Eventi} enables {Eventi�}
G2.3.2

{Eventi} disables {Eventi�}
G2.3.3 {Eventi} possibly

enables {Eventi�}

G2.3.4

Discharged PO

{Eventi}/

{Eventi�}/

FDIS

Sn2.3.2

Discharged PO

{Eventi}/

{Eventi�}/

FFIS

Sn2.3.3

Required events

order

C2.3.2

no. of pairs of events

1-of-3

Flow plug-in for the

Rodin platform

C2.3.1

Events order

expression is the

proper formalisation

of the requirement

A2.3.1

A

Model {M}

M2.3.1

Rodin

theorem

provers

C2.3.3

Figure 11: Argument pattern for safety requirements of Class 3

• the concrete mapping between the requirement and the corresponding pairs of events
and relationships between them should be provided, while the required events order
based on this mapping should be referred to in a GSN context element;

• a separate goal for each pair should be introduced in the safety case;
• each goal that claims the enabling relationship between events should be supported by

the proof obligation of the type FENA in a GSN solution element;
• each goal that claims the disabling relationship between events should be supported by

the proof obligation of the type FDIS in a GSN solution element;
• each goal that claims the possibly enabling relationship between events should be sup-

ported by the proof obligation of the type FFIS in a GSN solution element.
In the already introduced case study AOCS (Section 4.3), there is a set of requirements
regulating the order of actions to take place in the system control flow. These requirements
define the desired rules of transitions between modes, e.g.,

SR-cl3: The system shall perform its (normal or failure handling) operation
only when there are no currently running transitions between
modes at any level.

This means that once a transition is initiated either by the high-level mode manager or lower
level managers, it has to be completed before system operation continues.

21

As an example, we consider a formalisation of the requirement SR-cl3 at the most ab-
stract level, i.e., the MACHINE MM Abs M and the CONTEXT MM Abs C, where the
essential behaviour of the high-level mode manager is introduced.

The required events order (C2.3.2) is depicted by the usecase/flow diagram in Figure 12.
This flow diagram can be seen as a use case scenario specification attached to the MA-
CHINE MM Abs M. The presented flow diagram is drawn in the graphical editor for the
Usecase/Flow plug-in for the Rodin platform. While defining the desired relationships be-
tween events using this editor, the corresponding proof obligations are generated automati-
cally by the Rodin platform.

Event

Enabling relationship

Disabling relationship

A symbol indicating that the

corresponding proof obligation

has been discharged

Figure 12: The partial flow diagram of the abstract machine of AOCS

In terms of the usecase/flow approach, the requirement SR-cl3 states that the event
Advance partial enables the event Advance complete and disables operation events Nor-
mal Operation and Failure Operation. In its turn, the event Advance complete disables the
event Advance partial and enables system (normal or failure handling) operation events.
Then, the mapping function FM is instantiated as follows:

SR-cl3 7→ {(Advance partial, ena, Advance complete),
(Advance partial, dis, Normal Operation),
(Advance partial, dis, Failure Operation),
(Advance complete, dis, Advance partial),
(Advance complete, ena, Normal Operation),
(Advance complete, ena, Failure Operation)}.

The instance of the argument pattern for the safety requirement SR-cl3 is shown in Fig-
ure 13.

4.5 Argument pattern for SRs about the absence of system deadlock
(Class 4)

In this section, we propose an argument pattern for the safety requirements stipulating the
absence of the unexpected stop of the system (Figure 14). We formalise requirements of
Class 4 within an Event-B model M as the deadlock freedom theorem. Similarly to the SRs
of Class 2, this theorem has to be proved only once for the whole model M. The theorem is
reflected in the argument strategy that is used to develop the main goal of the pattern (S2.4.1
in Figure 14).

22

SR-cl3 of Class 3

is met

G2.3

Discharged PO

Advance_

partial/Advance

_complete/

FENA

Argument over

required events order

S2.3.1

Sn2.3.1

The required

events order is preserved

G2.3.1

Argument over

each pair of events

S2.3.2

Advance_partial

enables

Advance_complete

G2.3.2

Required events

order

C2.3.2

Discharged PO

Advance_

partial/Normal

_Operation/

FDIS

Sn2.3.2

Advance_partial

disables

Normal_Operation

G2.3.3

Discharged PO

Advance_com-

plete/Advance

_partial/

FDIS

Sn2.3.5

Advance_complete

disables

Advance_partial

G2.3.6

Discharged PO

Advance_com-

plete/Normal_

Operation/

FENA

Sn2.3.6

Advance_complete

enables

Normal_Operation

G2.3.7

...

Flow plug-in for the Rodin

platform

C2.3.1

Events order

expression is the

proper formalisation

of the requirement

A2.3.1

A

Model: the abstract

model (MACHINE

MM_Abs_M and CONTEXT

MM_Abs_C)

M2.3.1

Rodin

theorem

provers

C2.3.3

Figure 13: The pattern instantiation example

Formally, the deadlock freedom theorem is formulated as the disjunction of guards of all
model events g1(d, c, v) ∨ ... ∨ gK(d, c, v), where K is the total number of model events:

thm dlf : A(d, c), I(d, c, v) ⊢ g1(d, c, v) ∨ ... ∨ gK(d, c, v).

The corresponding mapping function FM for this argument pattern is defined as
Requirement 7→ {event1, ... , eventK}. Then, the instance of the (THMM) proof obliga-
tion given in Section 2.1 provides the evidence for the safety case (Sn2.4.1 in Figure 14).

The argument pattern presented in Figure 14 can be instantiated as follows:
• a requirement Requirement should be replaced with a particular safety requirement;
• a formal model M should be referred to in a GSN model element;
• the concrete mapping between the requirement and the corresponding model events

should be supplied, while the theorem thm dlf formalising the requirement from this
mapping should be referred to in a GSN context element;

• the proof obligation of the type THMM discharged by the Rodin platform should be
included in the safety case as the evidence supporting that the top-level claim (i.e.,
G2.4 in Figure 14) holds.

We illustrate the instantiation of this argument pattern by a simple example presented by
Abrial in Chapter 2 of [4]. The considered system performs controlling cars on a bridge. The
bridge connects the mainland with an island. Cars can always either enter the compound or
leave it. Therefore, the absence of the system deadlock should be guaranteed, i.e.,

SR-cl4: Once started, the system should work for ever.

23

{Requirement} of Class 4

is met

G2.4

Discharged

PO

{thm_dlf}/

THMM

Argument by

providing the

deadlock freedom

theorem

S2.4.1

Sn2.4.1

The provided theorem

{thm_dlf} is indeed provable

G2.4.1
Theorem

{thm_dlf}

C2.4.2

Formulated

theorem is the proper

formalisation

of the requirement

A2.4.1

A

Model {M}

M2.4.1

Rodin

theorem

provers

C2.4.1

Figure 14: Argument pattern for safety requirements of Class 4

The semantics of Event-B allows us to chose the most abstract specification to argue over
the deadlock freedom of a system. According to the notion of the relative deadlock freedom,
which is a part of the Event-B semantics, new deadlocks cannot be introduced in a refinement
step 3. As a consequence, once the model is proved to be deadlock free, no new refinement
step can introduce a deadlock.

The abstract model of the system has three events: Initialisation, ML out and ML in.
Thus, the concrete mapping function FM is as follows:

SR-cl4 7→ {Initialisation,ML out,ML in}.

Here ML out models leaving the mainland, while ML in models entering the mainland. The
former event has the guard n < d, where n is a number of cars on the bridge and d is
a maximum number of cars that can enter the bridge. The latter event is guarded by the
condition n > 0, which allows this event to be enabled only when some car is on the island
or the bridge. Therefore, the corresponding deadlock freedom theorem thm cl4 ex can be
defined as follows:

thm cl4 ex: n > 0 ∨ n < d.

The event Initialisation does not have a guard and therefore is not reflected in the theorem.
The instantiated fragment of the safety case for this example is shown in Figure 15.

The details on the considered formal development in Event-B (Controlling cars on a
bridge) as well as the derived proof obligation of the deadlock freedom can be found in [3,4].

3This may be enforced by the corresponding generated theorem to be proved for the respective model.

24

SR-cl4 of Class 4

is met

G2.4

Discharged

PO

thm_cl4_ex/

THM

Argument by

providing the

deadlock freedom

theorem

S2.4.1

Sn2.4.1

The provided theorem

thm_cl4_ex is indeed provable

G2.4.1
Theorem

thm_cl4_ex

C2.4.2

Theorem

thm_cl4_ex is the

proper formalisation

of the requirement

A2.4.1

A

Model: the

abstract

model

M2.4.1

Rodin

theorem

provers

C2.4.1

Figure 15: The pattern instantiation example

4.6 Argument pattern for SRs about system termination (Class 5)
In contrast to Class 4, Class 5 contains the safety requirements stipulating the system ter-
mination in particular cases. For instance, it corresponds to failsafe systems (i.e., systems
which need to be put into a safe but non-operational state to prevent an occurrence of a haz-
ard). Despite the fact that the argument pattern is quite similar to the one about the absence
of system deadlock, this class of safety requirements can be considered as essentially op-
posite to the previous one. Here the requirements define the conditions when the system
must terminate. More specifically, the system is required to have a deadlock either (1) in a
specific state of the model M, i.e., after the execution of some event ei (where i ∈ 1 .. K and
K is the total number of model events), or (2) once a shutdown condition (shutdown cond)
is satisfied:

(1) after(ei) ∩ before(E) = ∅,
(2) shutdown cond ∩ before(E) = ∅,

where shutdown cond is a predicate formalising a condition when the system terminates and
before(E) is defined as a union of pre-states of all the model events:

before(E) =
⋃

e∈E
before(e).

Correspondingly, the mapping function FM for Class 5 can be either of the form

(1) Requirement 7→ {ei, e1, ..., eK}, or
(2) Requirement 7→ {state predicate, e1, ..., eK},

where state predicate is a formally defined shutdown condition.
Then, for the first case, the theorem about a shutdown condition has the following form:

thm shd : A(d, c), I(d, c, v) ⊢ after(ei)⇒ ¬before(E),

25

while, for the second case, it is defined as:

thm shd : A(d, c), I(d, c, v) ⊢ shutdown cond ⇒ ¬before(E).

The argument pattern presented in Figure 16 can be instantiated as follows:
• a requirement Requirement should be replaced with a particular safety requirement;
• a formal model M should be referred to in a GSN model element;
• the concrete mapping between the requirement and the corresponding model events

(and state predicates) should be provided, while the theorem thm shd formalising the
requirement from this mapping should be referred to in a GSN context element;

• the proof obligation of the type THMM discharged by the Rodin platform should be
included in the safety case as the evidence supporting that the top-level claim (i.e.,
G2.5) holds.

{Requirement} of Class 5

is met

G2.5

Discharged

PO

{thm_shd}/

THMM

Argument by

providing the

theorem about a

shutdown condition

S2.5.1

Sn2.5.1

The provided theorem

{thm_shd} is indeed provable

G2.5.1
Theorem

{thm_shd}

C2.5.2

Formulated

theorem is the proper

formalisation

of the requirement

A2.5.1

A

Model {M}

M2.5.1

Rodin

theorem

provers

C2.5.1

Figure 16: Argument pattern for safety requirements of Class 5

To show an example of the pattern instantiation, let us consider the sluice gate control
system [46] described in detail in Section 4.2. This system is a failsafe system. To handle
critical failures, it is required to raise an alarm and terminate:

SR-cl5: When a critical failure is detected, an alarm shall be raised
and the system shall be stopped.

Thus, we need to assure that our model also terminates after the execution of the event
which sets the alarm on (i.e., the event SafeStop in the model). This suggests the concrete
instance of the mapping function FM to be of the form:

SR-cl5 7→ {SafeStop,Environment,Detection door1, ..., close2, closed2}.

26

Then, the corresponding theorem thm cl5 ex, which formalises the safety requirement SR-
cl5, can be formulated as follows:

thm cl5 ex: ∀flag′, Stop′ ·
(∃ flag, door1 fail, door2 fail, pressure fail, Stop ·
flag = CONT ∧ (door1 fail = TRUE ∨
door2 fail = TRUE ∨ pressure fail = TRUE) ∧
Stop = FALSE ∧ flag′ = PRED ∧ Stop′ = TRUE)
⇒
¬(before(Environment) ∨ before(Detection door1) ∨ ...∨
before(close2) ∨ before(closed2)),

where the variable flag indicates the current phase of the sluice gate controller, while the
variables door1 fail, door2 fail and pressure fail stand for failures of the system components
(the doors and the pressure pump respectively). The variable Stop models an alarm and
a signal to stop the physical operation of the system components. Finally, Environment,
Detection door1, ..., closed2 are model events. The corresponding instance of the argument
pattern is given in Figure 17.

SR-cl5 of Class 5

is met

G2.5

Discharged

PO

thm_cl5_ex/

THM

Argument by

providing the

theorem about a

shutdown condition

S2.5.1

Sn2.5.1

The provided theorem

thm_cl5_ex is indeed provable

G2.5.1
Theorem

thm_cl5_ex

C2.5.2

Theorem

thm_cl5_ex is the

proper formalisation

of the requirement

A2.5.1

A

Model: the first

refinement (MACHINE m1

and CONTEXT c1)

M2.5.1

Rodin

theorem

provers

C2.5.1

Figure 17: The pattern instantiation example

4.7 Argument pattern for Hierarchical SRs (Class 6)
Sometimes a whole requirements document or some particular requirements (either func-
tional or safety) of a system may be structured in a hierarchical way. For example, a general
safety requirement may stipulate actions to be taken in the case of a system failure, while
more specific safety requirements elaborate on the general requirement by defining how the
failures of different system components may contribute to such a failure of the system as well
as regulate the actions to mitigate these failures. Often, the numbering of requirements may

27

indicate such intended hierarchical relationships. A more general requirement can be num-
bered REQ X, while its more specific versions – REQ X.1, REQ X.2, etc. In our classification,
we call such requirements Hierarchical SRs.

The class of Hierarchical SRs (Class 6) differs from the previously described classes
since it involves several, possibly quite different yet hierarchically linked requirements. To
create the corresponding argument patterns for such cases, we apply a composite approach.
This means that the involved individual requirements (a more general requirement and its
more detailed counterparts) can be shown to hold separately in different models of the sys-
tem development in Event-B, by instantiating suitable argument patterns from the described
classes 1-5. Moreover, to ensure the consistency of their hierarchical link, an additional
fragment in a safety case is needed. This fragment illustrates that the formalisation of the in-
volved requirements is consistent, even if it is done in separate models of the Event-B formal
development. To address the class of hierarchical requirements, in this section we propose
an argument pattern that facilitates the task of construction of such an additional fragment of
a safety case.

Since the main property of the employed refinement approach is the preservation of con-
sistency between the models, it is sufficient for us to show that the involved models are
valid refinements of one another. In Event-B, to guarantee consistency of model transforma-
tions, we need to show that the concrete events refine their abstract versions by discharging
the corresponding proof obligations to verify guard strengthening (GRD) and action sim-
ulation (SIM), as given in Section 2.1. This procedure may involve the whole set of the
refined events. However, to simplify the construction of the corresponding fragment of a
safety case, we limit the number of events by choosing only those events that are affected
by the requirements under consideration. To achieve this, we rely on the given mappings
for higher-level and lower-level requirements, returning the sets of the involved model ex-
pressions Reqh ⇒ {Expr1, ..., ExprN} and Reql ⇒ {Expr1, ..., ExprP}. Making a step
further, we can always obtain the set of affected model events:

Reqh ⇒ {Expr1, ..., ExprN} ⇒ {Eventh1 , ..., EventhK},
Reql ⇒ {Expr1, ..., ExprP } ⇒ {Event′l1 , ..., Event′lL}.

As a result, we attach proofs only for those events from {Event′l1 , ..., Event′lL} that refine
some events from {Eventh1 , ..., EventhK}.

Each higher-level requirement may be linked with a set of more detailed requirements
in the requirements document. Nevertheless, to simplify the task, let us consider the case
where there is only one such a lower-level requirement. If there are more than one such a
requirement, one could reiterate the proposed approach by building a separate fragment of a
safety case for each pair of linked requirements.

In Figure 18, Higher-level req. stands for some higher-level requirement, while Lower-
level req. is a requirement that is a more detailed version of the higher-level one. The higher-
level requirement is mapped onto a formal model Mabs and the lower-level requirement is
mapped onto a formal model Mconcr (where Mconcr is a refinement of Mabs) using one of the
mapping functions defined for the classes 1-5.

Following the procedure described above, we can associate Higher-level req. with the set

28

Action

{act} simulation in

refinement of the event

{Event} is correct

G2.6.2

Discharged

PO

{Event�}/{act}/

SIM

Guard {grd}

of the event {Event}

is strengthened in

refinement

G2.6.1

Discharged

PO

{Event�}/{grd}/

GRD

Sn2.6.1 Sn2.6.2

{Lower-level req.}

is a proper elaboration of

{Higher-level req.}

G2.6

Argument over the

abstract {Event} and

refined {Event�} events

S2.6.1
Abstract event

{Event}

C2.6.1

Refined event

{Event�}

C2.6.2

no. of events Model {Mconcr} is a

refinement of

model {Mabs}

A2.6.1

A

More abstract model

{Mabs}, more concrete

model {Mconcr}

M2.6.1

Rodin

theorem

provers

C2.6.3

Figure 18: Argument pattern for safety requirements of Class 6

of affected events {Eventh1 , ..., EventhK}. Similarly, Lower-level req. is associated with its
own set of affected events {Event′l1 , ..., Event′lL}.

For each pair of events Event and Event′ from the obtained sets, the following two gen-
erated proof obligations (GRD) and (SIM) are needed to be proved to establish correctness
of model refinement (Section 2.1):

H(d, c, v, w), g′Event′(d, c, w) ⊢ gEvent(d, c, v),
H(d, c, v, w), g′Event′(d, c, w), BA′

Event′(d, c, w,w
′) ⊢

∃v′.BAEvent(d, c, v, v
′) ∧ I ′(d, c, v′, w′).

The established proofs of the types GRD and SIM serve as solutions in our pattern, Sn2.6.1
and Sn2.6.2 in Figure 18 respectively.

The instantiation of the pattern proceeds as shown below:
• requirements Higher-level req. and Lower-level req. should be replaced with specific

requirements;
• a more abstract formal model Mabs and a more concrete formal model Mconcr should

be referred to in a GSN model element;
• the pairs of the associated events of the respective abstract and concrete system models

should be referred to in GSN context elements;
• the proof obligations of the types GRD and SIM discharged by the Rodin platform

should be included in the safety case as solutions.
Moreover, there can be several hierarchical levels of requirements specification. To cope
with this case, we propose to instantiate patterns for each such a level separately.

To illustrate the construction of a safety case fragment for this class of requirements, we
refer to the sluice gate control system [46] described in Sections 4.2 and 4.6. Some safety

29

requirements of this system are hierarchically structured. Thus, there is a more generic safety
requirement SR-cl6-higher-level:

SR-cl6-higher-level: The system shall be able to handle a critical failure
by either initiating a shutdown or a recovery procedure

stipulating that some actions should take place in order to tolerate any critical failure. How-
ever, it does not define the precise procedures associated with this failure handling. In
contrast, there is a more detailed counterpart SR-cl6-lower-level of the requirement SR-
cl6-higher-level (it was presented in the previous section as the requirement SR-cl5). It
regulates precisely that an alarm should be raised and the system should stop its operation
(the system should terminate):

SR-cl6-lower-level: When a critical failure is detected, an alarm shall be raised
and the system shall be stopped.

These safety requirements are shown to hold in different models of the system devel-
opment. The requirement SR-cl6-higher-level is formalised as two invariants at the most
abstract level of the formal specification in Event-B, the MACHINE m0, while the require-
ment SR-cl6-lower-level is formalised as a theorem in the MACHINE m1. Note that the
MACHINE m1 is the refinement of the MACHINE m0.

The instance of the mapping function FM for the requirement SR-cl6-higher-level is as
follows:

SR-cl6-higher-level 7→ {inv 1 cl6, inv 2 cl6},

where:

inv 1 cl6: Failure = FALSE ⇒ Stop = FALSE,
inv 2 cl6: Failure = TRUE ∧ flag 6= CONT ⇒ Stop = TRUE.

The handling of critical failures is non-deterministically modelled in the event ErrorHan-
dling of the abstract model (Figure 19). The local variable res is of the type BOOL and can
be either TRUE or FALSE. It means that, if a successful error handling procedure that does
not lead to the system termination has been performed, both variables standing for a critical
failure (Failure) and for the system shutdown (Stop) are assigned the values FALSE and the
system continues its operation. Otherwise, they are assigned the values TRUE leading to the
system termination.

The fragment of a safety case for the safety requirement SR-cl6-higher-level can be
constructed preserving the instructions determined in Section 4.2, while the fragment of a
safety case for the requirement SR-cl6-lower-level can be found in Section 4.6.

Now let us focus on ensuring the hierarchical link between these requirements by instan-
tiating the argument pattern for Class 6. Following the proposed approach, we define a set of
the affected model events for the higher-level safety requirement: {Environment, Detection,
ErrorHandling, Prediction, NormalOperation}, and for the lower-level safety requirement:
{Environment, Detection NoFault, Detection Fault, SafeStop, Prediction, NormalSkip}. For

30

// Event in the MACHINE m0

 event ErrorHandling

 any res

 where

 @grd1 flag = CONT

 @grd2 Failure = TRUE

 @grd3 Stop = FALSE

 @grd4 res BOOL

 then

 @act1 flag PRED

 @act2 Stop res

 @act3 Failure res

 end

// Event in the refined MACHINE m1

 event SafeStop

 refines ErrorHandling

 where

 @grd1 flag = CONT

 @grd2 door1_fail = TRUE !

 door2_fail = TRUE !

 pressure_fail = TRUE

 @grd3 Stop = FALSE

 with

 @res res = TRUE

 then

 @act1 flag PRED

 @act2 Stop TRUE

 end

Figure 19: Events ErrorHandling and SafeStop

simplicity, here we consider only one pair of events ErrorHandling and SafeStop shown in
Figure 19.

In the Event-B development of the sluice gate system, the non-determinism modelled by
the local variable res is eliminated via introduction of a specific situation leading to the sys-
tem shutdown. All other fault tolerance procedures are left out of the scope of the presented
development.

Additionally to the introduction of the deterministic procedures for error handling, the
variable Failure is data refined in the first refinement m1. Now, the system failure may occur
either if the component door1 fails (door1 fail = TRUE), or door2 fails (door2 fail = TRUE),
or the pressure pump fails (pressure fail = TRUE). This relationship between the old abstract
variable and new concrete ones is defined by the corresponding gluing invariant.

The corresponding instance of the argument pattern is presented in Figure 20. To ensure
that the requirement SR-cl6-lower-level is a proper elaboration of the requirement SR-cl6-
higher-level (the goal G2.6 in Figure 20), we argue over the abstract event ErrorHandling
and the refined event SafeStop. We show that the guard grd2 is strengthened in the refine-
ment (the discharged proof obligation (GRD)) and the action act2 is not contradictory to the
abstract version (SIM). The corresponding proof obligations are shown in Figure 21.

4.8 Argument pattern for SRs about temporal properties (Class 7)
So far, we have considered the argument patterns of safety requirements classes where the
evidence that the top goal of the pattern holds is constructed based on the proof obliga-
tions generated by the Rodin platform. Not all types of safety requirements can be formally
demonstrated in this way, however. In particular, the Event-B framework lacks direct support
of temporal system properties such as reachability, liveness, existence, etc. Nevertheless, the
Rodin platform has an accompanying plug-in, called ProB [47], which allows for model
checking of temporal properties.

Therefore, in this section, we propose an argument pattern for the class of safety require-

31

Action act2

simulation in refinement of

the event ErrorHandling is

correct

G2.6.2

Discharged PO

SafeStop/act2/

SIM

Guard grd2 of the

event ErrorHandling is

strengthened in

refinement

G2.6.1

Discharged PO

SafeStop/grd2/

GRD

Sn2.6.1 Sn2.6.2

SR-cl6-lower-level is a proper

elaboration of

SR-cl6-higher-level

G2.6

Argument over

the abstract event

ErrorHandling and the

refined event SafeStop

S2.6.1

Abstract event

ErrorHandling

C2.6.1

Refined event

SafeStop

C2.6.2

Model (MACHINE m1 and

CONTEXT c1)
is a refinement of model

(MACHINE m0 and

CONTEXT c0)

A2.6.1

A

The abstract model

(MACHINE m0 and CONTEXT

c0), the first refinement

(MACHINE m1 and

CONTEXT c1)

M2.6.1

Rodin

theorem

provers

C2.6.3

Figure 20: The pattern instantiation example

flag = CONT

door1_fail = TRUE

 door2_fail = TRUE

 pressure_fail = TRUE

Stop = FALSE

|-

Failure = TRUE

flag = CONT

door1_fail = TRUE

 door2_fail = TRUE

 pressure_fail = TRUE

Stop = FALSE

|-

TRUE = TRUE

 SafeStop/grd2/GRD

 SafeStop/act2/SIM

Figure 21: The proof obligations of the types GRD and SIM

ments that can be expressed as temporal properties. The pattern is graphically shown in
Figure 22. Here propertyi stands for some temporal property to be verified, for i ∈ 1 .. N,
where N is the number of temporal properties of the system.

The property to be verified should be formulated as an LTL formula in the LTL Model
Checking wizard of the ProB plug-in for some particular model M. This suggests the mapping
function FM for Class 7 to be of the form

32

Requirement 7→ {LTL formula}.

Each such a temporal property should be well-defined according to restrictions imposed
on LTL in ProB. The tool can generate three possible results: (1) the given LTL formula is
true for all valid paths (no counter-example has been found, all nodes have been visited); (2)
there is a path that does not satisfy the formula (a counter-example has been found and it is
shown in a separate view); (3) no counter-example has been found, but the temporal property
in question cannot be guaranteed because the state space was not fully explored.

To instantiate this pattern, one needs to proceed as follows:
• a requirement Requirement should be replaced with a particular safety requirement;
• a formal model M should be referred to in a GSN model element;
• the concrete mapping between the requirement and the corresponding LTL formula

should be supplied, while each temporal property propertyi from this mapping should
be referred to in a GSN context element;

• model checking results on an instantiated property that have been generated by ProB
should be included as the evidence that this property is satisfied.

There are several alternative ways to reason over temporal properties in Event-B [5, 29,
34,48]. The most recent of them is that of Hoang and Abrial [34]. The authors propose a set
of proof rules for reasoning about such temporal properties as liveness properties (existence,
progress and persistence). The main drawback of this approach is that, even though it does
not require extensions of the proving support of the Rodin platform, it necessitates extension
of the Event-B language by special clauses (annotations) corresponding to different types of
temporal properties. Alternatively, in the cases when a temporal property can be expressed
as a condition on the system control flow, the usecase/flow approach [37] described in Sec-
tion 4.4 can be used.

{Requirement} of Class 7

is met

G2.7

Argument over

all formulated

requirement properties

Model checking

result on

{propertyi}

S2.7.1

Sn2.7.1

The model

satisfies the property {propertyi}

G2.7.1

no. of

properties

Property

{propertyi}

C2.7.3

ProB tool for the

Rodin platform

C2.7.1

Formulated

properties are the

proper formalisation

of the requirement

A2.7.1

A

Model {M}

M2.7.1

ProB model

checker

C2.7.2

Figure 22: Argument pattern for safety requirements of Class 7

33

To exemplify the instantiation of the argument pattern for safety requirements of Class 7,
we consider a distributed monitoring system – Temperature Monitoring System (TMS). The
full system formal specification in Event-B is presented in [56]. In brief, the TMS consists
of three data processing units (DPUs) connected to operator displays in the control room. At
each cycle, the system performs readings of the temperature sensors, distributes preprocessed
data among DPUs where they are analysed (processed), and finally displays the output to the
operator. The system model is developed in such a way that it allows for ensuring integrity
of the temperature data as well as its freshness.

A safety requirement about a temporal property of this system, which we consider here,
is as follows:

SR-cl7: Each cycle the system shall display fresh and correct data.

We leave out of the scope of this paper the mechanism of ensuring data freshness, cor-
rectness and integrity, while focusing on the fact of displaying data at each cycle. In the
given Event-B specification, a new cycle starts when the event Environment is executed. To
verify that the system will eventually display the data to the operator (i.e., the corresponding
event Displaying will be enabled), we formulate an LTL formula for the abstract model of
the system (temp pr ex). Then, the instance of the mapping function FM is defined as

SR-cl7 7→ {temp pr ex},

where

temp pr ex: � (after(Environment) → ♦ before(Displaying)).

Here � is an operator “always” and ♦ stands for “eventually”.
The formula temp pr ex has the following representation in ProB:

G ({∀main phase′, temp sensor′, curr time′ ·
main phase′ ∈ MAIN PHASES ∧ temp sensor′ ∈ N ∧ curr time′ ∈ N ∧
(∃main phase, sync t · main phase ∈ MAIN PHASES ∧ sync t ∈ N ∧
main phase′ = PROC ∧ temp sensor′ ∈ N ∧ curr time′ = sync t)}
⇒
F {∃ ss, TEMP SET ·main phase = DISP ∧ packet sent flag = TRUE ∧
TEMP SET ⊆ N ∧ time progressed = TRUE ∧
ss = {x 7→ y | ∃ i · i ∈ dom(timestamp) ∧ x = timestamp(i) ∧
y = temperature(i)}[curr time− Fresh Delta · · curr time] ∧
(ss 6= ∅⇒ TEMP SET = ss) ∧ (ss = ∅⇒ TEMP SET = {ERR VAL})}),

where G stands for the temporal operator “globally” and F is the temporal operator “fi-
nally”. These operators correspond to the standard LTL constructs “always” and “eventu-
ally” respectively. For the detailed explanation of the used variables, constants and language
constructs, see [56].

In this case, the result of the model checking of this property in ProB is “no counter-
example has been found, all nodes have been visited”. Figure 23 illustrates the corresponding
instance of the argument pattern.

34

SR-cl7 of Class 7

is met

G2.7

Argument over all

formulated

requirement properties

Model checking

result on

temp_pr_ex

S2.7.1

Sn2.7.1

The model

satisfies the property temp_pr_ex

G2.7.1 Property

temp_pr_ex

C2.7.3

Property

temp_pr_ex is the

proper formalisation

of the requirement

A2.7.1

A

ProB tool for the

Rodin platform

C2.7.1

Model: the abstract

model (MACHINE M0

and CONTEXT C0)

M2.7.1

ProB model

checker

C2.7.2

Figure 23: The pattern instantiation example

4.9 Argument pattern for SRs about timing properties (Class 8)

Another class of safety requirements that requires to be treated in a different way is Class 8
containing timing properties of the considered system. As we have already mentioned, the
representation of timing properties in Event-B has not been explicitly defined yet. Nonethe-
less, the majority of safety-critical systems rely on timing constraints for critical functions.
Obviously, the preservation of such requirements must be verified. To address this, we pro-
pose to bridge Event-B modelling with model checking of timing properties in Uppaal.

Figure 24 shows our argument pattern for the safety requirements about timing proper-
ties. In our pattern, propertyj stands for some timing property to be verified, for j ∈ 1 .. N,
where N is the number of timing properties.

Following the approach proposed by Iliasov et al. [39], we rely on the Uppaal toolset for
obtaining model checking results that further can be used as the evidence in a safety case. The
timing property in question can be formulated using the TCTL language. A timed automata
model (an input model of Uppaal) is obtained from a process-based view extracted from an
Event-B model as well as additionally introduced clocks and timing constraints. The generic
mapping function FM for this class is then of the form Requirement 7→ {TCTL formula}.

Uppaal uses a subset of TCTL to specify properties to be checked [11]. The results
of the property verification can be of three types: (1) a trace is found, i.e., a property is
satisfied (user can then import the trace into the simulator); (2) a property is violated; (3) the
verification is inconclusive with the approximation used.

We propose the following steps in order to instantiate this pattern:
• a requirement Requirement should be replaced with a particular safety requirement;
• a formal development that consists of a chain of refinements in Event-B and the corre-

sponding Uppaal model should be referred to in GSN model elements;
• the concrete mapping between the requirement and the corresponding TCTL formula

35

{Requirement} of Class 8

is met

G2.8

Argument over all

formulated

requirement properties

Model checking

result on

{propertyj}

S2.8.1

Sn2.8.1

The model

satisfies the property {propertyj}

G2.8.1

Uppaal toolset
C2.8.1

no. of

properties

Property

{propertyj}

C2.8.3

Formulated

properties are the

proper formalisation

of the requirement

A2.8.2

A

Formal development

that consists of a chain of

refinements

in Event-B

M2.8.1

Corresponding model

in Uppaal

M2.8.2

Uppaal

model

checker

C2.8.2

The Uppaal model is

consistent with the

Event-B model

A2.8.1

A

Figure 24: Argument pattern for safety requirements of Class 8

should be provided, while each timing property propertyj from this mapping should
be referred to in a GSN context element;

• model checking results on an instantiated property that have been generated by Uppaal
should be included as the evidence that this property is satisfied.

We adopt a case study considered in [38, 39] in order to show the instantiation of the
proposed argument pattern for a safety requirement of Class 8. The case study is the Data
Processing Unit (DPU) – a module of Mercury Planetary Orbiter of the BepiColombo Mis-
sion. The DPU consists of the core software and software of two scientific instruments. The
core software communicates with the BepiColombo spacecraft via interfaces, which are used
to receive telecommands (TCs) from the spacecraft and transmit science and housekeeping
telemetry data (TMs) back to it. In this paper, we omit showing the detailed specification
of the DPU in Event-B as well as we do not explain how the corresponding Uppaal model
was obtained. We rather illustrate how the verified liveness and time-bounded reachability
properties of the system can be reflected in the resulting safety case (Figure 25).

The DPU is required to eventually return a TM for any received TC and must respond
within a predefined time bound:

SR-cl8: The DPU shall eventually return a TM for any received TC and
shall respond no later than the maximal response time.

We consider two timing properties associated with this requirement, i.e.,

time pr ex1: (new tc == id) → (last tm == id),
time pr ex2: A[](last tm == id && Obs1.stop) imply (Obs1 c < upper bound),

36

SR-cl8 of Class 8

is met

G2.8

Argument over all

formulated

requirement properties

Model checking

result on

time_pr_ex2

S2.8.1

Sn2.8.2

The model

satisfies the property time_pr_ex2

G2.8.2

Uppaal toolset
C2.8.1

Property

time_pr_ex2

C2.8.4

Model checking

result on

time_pr_ex1

Sn2.8.1

The model

satisfies the property time_pr_ex1

G2.8.1Property

time_pr_ex1

C2.8.3

Properties

time_pr_ex1 and

time_pr_ex2 are the proper

formalisation

of the requirement

A2.8.2

A

Formal development

that consists of a chain of

refinements

in Event-B

M2.8.1

Corresponding model

in Uppaal

M2.8.2

Uppaal

model

checker

C2.8.2

The Uppaal model is

consistent with the

Event-B model

A2.8.1

A

Figure 25: The pattern instantiation example

such that the concrete instance of the generic mapping function FM is as follows:

SR-cl8 7→ {time pr ex1, time pr ex2}.

The symbol → stands for the TCTL “leads-to” operator, and id is some TC identification
number. A[] stands for “Always, for any execution path” and Obs1 is a special observer
process that starts the clock Obs1 c, whenever a TC command with id is received, and stops
it, once the corresponding TM is returned. The variable upper bound corresponds to the
maximal response time. The corresponding instance of the argument pattern is given in
Figure 25.

4.10 Summary of the proposed argument patterns
To facilitate the construction of safety cases, we have defined a set of argument patterns
graphically represented using GSN. The argumentation and goal decomposition in these pat-
terns were influenced by the formal reasoning in Event-B.

However, since the development utilising formal methods typically require additional
reasoning about model correctness and well-definedness, we firstly proposed an argument
pattern for assuring well-definedness of the system development in Event-B. Secondly, we
proposed a number of argument patterns for assuring safety requirements of a system. We
associated these argument patterns with the classification of safety requirements presented

37

in Section 3.2. Therefore, we distinguished eight classification-based argument patterns.
Despite the fact that the proposed classification of safety requirements covers a wide range of
different safety requirements, the classification and subsequently the set of argument patterns
can be further extended if needed.

Unfortunately, at the meantime not all the introduced classes of safety requirements can
be formally demonstrated utilising Event-B solely. Therefore, among the proposed argument
patterns there are several patterns where the evidence was constructed using accompanying
toolsets – the Usecase/Flow and ProB plug-ins for the Rodin platform, as well as the external
model checker for verification of real-time systems Uppaal.

In this section, we exemplified the instantiation of the proposed argument patterns for
assuring safety requirements on several case studies. Among them are the sluice gate control
system [46], the attitude and orbit control system [53], the system for controlling cars on a
bridge [4], the temperature monitoring system [56], and the data processing unit of Mercury
planetary orbiter of the BepiColombo mission [38, 39].

The instantiation of the proposed argument patterns is a trivial task. Nonetheless, the
application of the overall approach requires basic knowledge of principles of safety case
construction as well as a certain level of expertise in formal modelling. Therefore, experience
in formal modelling and verification using state-based formalisms would be beneficial for
safety and software engineers.

Currently, the proposed approach is restricted by the lack of the tool support. Indeed,
manual construction of safety cases especially of large-scale safety-critical systems may be
error-prone. We believe that the well-defined steps of evidence construction and the detailed
guidelines on the pattern instantiation given in this paper will contribute to the development
of the corresponding plug-in for the Rodin platform.

5 Case study – steam boiler
In this section, we demonstrate our proposed methodology (based on argument patterns) for
building safety cases on a bigger case study. The considered case study is a steam boiler con-
trol system. It is a well-known safety-critical system widely used in industrial applications.
Due to the large number of safety requirements of different types imposed on it, this system
is highly suitable for demonstration of our methodology.

5.1 System description

The steam boiler (Figure 26) is a safety-critical control system that produces steam and
adjusts the quantity of water in the steam boiler chamber to maintain it within the predefined
safety boundaries [1]. The situations when the water level is too low or too high might result
in loss of personnel life, significant equipment damage (the steam boiler itself or the turbine
placed in front of it), or damage to the environment.

The system consists of the following units: a chamber, a pump, a valve, a sensor to
measure the quantity of water in the chamber, a sensor to measure the quantity of steam

38

Steam exit

Steam output

sensor

M1

M2

N1

N2

Water output

sensor

Water level

sensor

Valve

Water input sensor

(pump sensor)

Pump

Chamber

Figure 26: Steam boiler

Table 2: Parameters of the steam boiler
Label Description Unit
C the total capacity of the steam boiler chamber litre
P the maximal capacity of the pump litre/sec
W the maximal quantity of steam produced litre/sec
M1 the minimal quantity of water, i.e., the lower safety boundary litre
M2 the maximal quantity of water, i.e., the upper safety boundary litre
N1 the minimal normal quantity of water to be maintained during litre

regular operation
N2 the maximal normal quantity of water to be maintained during litre

regular operation

which comes out of the steam boiler chamber, a sensor to measure water input through
the pump, and a sensor to measure water output through the valve. The essential system
parameters are given in Table 2.

The considered system has several modes. After being powered on, the system enters the
Initialisation mode. At each control cycle, the system reads sensors and performs failure
detection. Then, depending on the detection result, the system may enter either one of its
operational modes or the non-operational mode. There are three operational modes in the
system: Normal, Degraded, Rescue. In the Normal mode, the system attempts to maintain
the water level in the chamber between the normal boundaries N1 and N2 (such that N1 <
N2) providing that no failures of the system units have occurred. In the Degraded mode,
the system tries to maintain the water level within the normal boundaries despite failures of
some physical non-critical units. In the Rescue mode, the system attempts to maintain the
normal water level in the presence of a failure of the critical unit – the water level sensor.
If failures of the system units and the water level sensor occur simultaneously or the water
level is outside of the predefined safety boundaries M1 and M2 (such that M1 < M2), the
system enters the non-operational mode Emergency Stop.

In our development, we consider the following failures of the system and its units. The
failure of the steam boiler control system is detected if either the water level in the chamber
is outside of the safety boundaries (i.e., if it is lower than M1 or higher than M2) or the

39

combination of a water level sensor failure and a failure of any other system unit (the pump
or the steam output sensor) is detected. The water level sensor is considered as failed if it
returns a value which is outside of the nominal sensor range or the estimated range predicted
in the last cycle. Analogously, a steam output sensor failure is detected. The pump fails if it
does not change its state when required.

A water level sensor failure by itself does not lead to a system failure. The steam boiler
contains the information redundancy, i.e., the controller is able to estimate the water level
in the chamber based on the amount of water produced by the pump and the amount of the
released steam. Similarly, the controller is able to maintain the acceptable level of efficiency
based on the water level sensor readings if either the pump or the steam output sensor fail.
The detailed description of the system, its functional and safety requirements as well as the
models of our formal development in Event-B can be found in [55].

5.2 Brief overview of the development

Our Event-B development of the steam boiler case study consists of an abstract specifica-
tion and its four refinements [55]. The abstract model (MACHINE M0) implements a basic
control loop. The first refinement (MACHINE M1) introduces an abstract representation of
the activities performed after the system is powered on and during system operation (under
both nominal and failure conditions). The second refinement (MACHINE M2) introduces
a detailed representation of the conditions leading to a system failure. The third refinement
(MACHINE M3) models the physical environment of the system as well as elaborates on
more advanced failure detection procedures. Finally, the fourth refinement (MACHINE M4)
introduces a representation of the required execution modes. Each MACHINE has the as-
sociated CONTEXT where the necessary data structures are introduced and their properties
are postulated as axioms.

Let us now give a short overview of the basic model elements (i.e., constants, variables
and events). The parameters of the steam boiler system presented in Table 2 are defined as
constants in one of the CONTEXT components. Moreover, several abstract functions are
defined there to formalise, for example, the critical water level (WL critical).

The dynamic behaviour of the system is modelled in the corresponding MACHINE com-
ponents. Some essential variables and events are listed below:

• The variables modelling the steam boiler actuators – the pump and the valve:
– pump ctrl: the value of this variable equals to ON if the pump is switched on,

and OFF otherwise;

– valve ctrl: the value of this variable equals to OPEN if the valve is open, and
CLOSED otherwise.

• The variables representing the amount of water passing through the pump and the
valve:

– pump stands for the amount of water incoming into the chamber through the
pump;

40

– water output models the amount of water coming out of the chamber through the
valve.

• The variables representing the water level in the chamber:
– water level models the latest water level sensor readings;

– min water level and max water level represent the estimated interval for the
sensed water level.

• The variables representing the amount of the steam coming out of the chamber:
– steam output models the latest steam output sensor readings;

– min steam output and max steam output represent the estimated interval for the
sensed amount of steam.

• The variables representing failures of the system and its components:
– failure is an abstract boolean variable modelling occurrence of a system failure;

– wl sensor failure represents a failure of the water level sensor;

– pump failure models a failure of the pump actuator;

– so sensor failure represents a failure of the steam output sensor.

• The variables modelling phases of the control cycle and the system modes:
– phase: the value of this variable can be equal either to ENV, DET, CONT, PRED

corresponding to the current controller stage (i.e., reading environment, detecting
system failures, performing routing control, or predicting the system state in the
next cycle);

– preop flag is a flag which indicates whether the system is in the pre-operational
stage or not;

– mode models the current mode of the system, i.e., Initialisation, Normal, De-
graded, Rescue, or Emergency Stop.

• The variable stop abstractly models system shutdown and raising an alarm.
• Essential events of the modelled system:

– Environment, modelling the behaviour of the environment;

– Detection, representing detection of errors;

– PreOperational1 and PreOperational2, modelling the initial system procedures
to establish the amount of water in the chamber within the safety boundaries;

– Operational, performing controller actions under the nominal conditions;

– EmergencyStop, modelling error handling;

– Prediction, computing the next estimated states of the system.

In the refinement process, such events as Detection and Operational are split into a num-
ber of more concrete events modelling detection of failures of different system components
as well as different system operational modes.

41

5.3 Application of the proposed approach
In this section, we follow our proposed approach to constructing a safety case of a system
from its formal model in Event-B. More specifically, firstly we show that our formal devel-
opment of the steam boiler control system is well-defined by instantiating the corresponding
argument pattern (introduced in Section 4.1). Secondly, we apply the classification-based
argument patterns (presented in Sections 4.2 – 4.9) to construct the corresponding fragments
of the safety case related to specific safety requirements of the considered system.

The steam boiler control system is a complex system, which has a rich functionality and
adheres to a large number of safety requirements. The accomplished formal development of
this system as well as its safety case are also complex and large in size. Therefore, we will
not show the system in its entirety but rather demonstrate application of our methodology on
selected system fragments.

5.3.1 Instantiation of the argument pattern for well-definedness of the development

Due to a significant size of the system safety case, here we show only a part of the in-
stantiated pattern for demonstrating well-definedness of a formal development (Section 4.1).
Figure 27 presents the resulting fragment of the safety case concerning the first refinement
model (MACHINE M1 and the associated CONTEXT C1).

Let us remind that, to apply the well-definedness argument pattern, we have to formally
demonstrate axiom consistency in the CONTEXT C1. To argue over axiom consistency, we
define two groups of axioms. The first group includes axioms defining generic parameters of
the system, e.g., the constants associated with the criticality of the water level, which is based
on the pre-defined safety boundaries. The second group consists of the axioms defining
the abstract function Stable needed to model the failure stability property. Here stability
means that, once a failure occurred, the value of the variable representing this failure remains
unchanged until the whole system is restarted. These groups are independent because they
refer to distinct Event-B constants and sets. The corresponding theorems thm axm1 and
thm axm2 are shown below. The first theorem verifies that the parameters of the steam
boiler are introduced in the model correctly:

thm axm1: ∃ N1, N2, M1, M2, C, WL critical · N1 ∈ N1 ∧ N2 ∈ N1 ∧
M1 ∈ N1 ∧M2 ∈ N1 ∧ C ∈ N1 ∧WL critical ∈ N× N→ BOOL ∧
0 < M1 ∧ M1 < N1 ∧ N1 < N2 ∧ N2 < M2 ∧ M2 < C ∧
(∀ x, y · x ∈ N ∧ y ∈ N ∧
((x < M1 ∨ y > M2)⇔WL critical(x 7→ y) = TRUE)) ∧
(∀ x, y · x ∈ N ∧ y ∈ N ∧
((x ≥ M1 ∧ y ≤ M2)⇔WL critical(x 7→ y) = FALSE)).

The second theorem verifies that the group of axioms introduced to define a function about
the failure stability is consistent:

thm axm2: ∃ Stable · Stable ∈ BOOL×BOOL→ BOOL ∧
(∀ x, y · x ∈ BOOL ∧ y ∈ BOOL ⇒
(Stable(x 7→ y) = TRUE ⇔ (x = TRUE ⇒ y = TRUE))).

42

All axioms in

the CONTEXT of the model the

first refinement

(MACHINE M1 and CONTEXT C1)

are consistent

(i.e., non-contradictory)

G1.2

Discharged

PO

thm_axm1/

THM

Argument over

axioms consistency

via defining

theorems about

groups of

independent axioms

The theorem about

the group 1 of independent

axioms is proved

S1.2

Sn1.1

G1.3

Formal development of the

steam boiler control system

is well-defined

G1.1

Argument over

well-definedness

of all models in

the development

S1.1

Theorem

thm_axm1

about the

group 1

C1.2

Discharged

PO

thm_axm2/

THM

The theorem

about the group 2

of independent

axioms is proved

Sn1.2

G1.4

Theorem

thm_axm2

about the

group 2

C1.3

Formal

development that

consists of a chain of

refinements

in Event-B

M1.1

Model: the first refinement

(MACHINE M1 and

CONTEXT C1)

M1.2

Rodin

theorem

provers

C1.1

According to the Event-B

semantics, if axioms are

contradictory, the whole

model becomes

fallicious J

J1.1

All axioms in

the CONTEXT of the model the

second refinement

(MACHINE M2 and CONTEXT C1)

are consistent

(i.e., non-contradictory)

G1.6 All axioms in

the CONTEXT of the model the

third refinement

(MACHINE M3 and CONTEXT C2)

are consistent

(i.e., non-contradictory)

G1.7All axioms in

the CONTEXT of the model the

abstract model

(MACHINE M0 and CONTEXT C0)

are consistent

(i.e., non-contradictory)

G1.5

All axioms in

the CONTEXT of the model the

fourth refinement

(MACHINE M4 and CONTEXT C3)

are consistent

(i.e., non-contradictory)

G1.8

Figure 27: A fragment of the safety case corresponding to well-definedness of the develop-
ment

The obtained proofs of these theorems are included in the safety case as the solutions Sn1.1
and Sn1.2 correspondingly.

5.3.2 Instantiation of the argument pattern for Class 1

The steam boiler control system has a large number of safety requirements [55]. Among
them there are several requirements that can be classified as SRs belonging to Class 1. Let
us demonstrate the instantiation of the corresponding argument pattern by the example of
one such a safety requirement:

SR-02 : During the system operation the water level shall not exceed
the predefined safety boundaries.

We formalise it as the invariant inv1.2 at the first refinement step of the Event-B development
(MACHINE M1):

43

inv1.2: failure = FALSE ∧ phase 6= ENV ∧ phase 6= DET ⇒
min water level ≥M1 ∧ max water level ≤M2,

where the variable failure represents a system failure, the variable phase models the stages
of the steam boiler controller behaviour (i.e., the stages of its control loop), and finally the
variables min water level and max water level represent the estimated interval for the sensed
water level.

The mapping function FM for this case is

SR-02 7→ {inv1.2},

which is a concrete instance of its general form Requirement 7→ {safety1, ..., safetyN} for
Class 1 given in Section 4.2.

To provide evidence that this safety requirement is met by the system, we instantiate the
argument pattern for Class 1 as shown in Figure 28.

Invariant

inv1.2

Argument over all

formulated invariants

S2.1.1
Invariant inv1.2 is the

proper formalisation of

the requirement
A

The invariant inv1.2

holds for all events

G2.1.1

Sn2.1.1

Discharged PO

Environment/

inv1.2/INV

Argument over each

event individually
S2.1.2

The invariant inv1.2

holds for the event

Environment

G2.1.2

SR-02 of Class 1

is met

G2.1

A2.1.1

C2.1.1

Sn2.1.2

Discharged PO

Detection_OK/

inv1.2/INV

The invariant inv1.2

holds for the event

Detection_OK

G2.1.3

Sn2.1.3
Discharged PO

Detec-

tion_NOK1/

inv1.2/INV

The invariant inv1.2

holds for the event

Detection_NOK1

G2.1.4

Sn2.1.8

Discharged PO

Prediction/

inv1.2/INV

The invariant inv1.2

holds for the event

Prediction

G2.1.9
...

Model: the first

refinement (MACHINE

M1 and CONTEXT

C1)

M2.1.1

Rodin

theorem

provers

C2.1.2

Figure 28: A fragment of the safety case corresponding to assurance of SR-02

The list of affected model events where this invariant must hold is the following: En-
vironment, Detection OK, Detection NOK1, Detection NOK2, PreOperational1, PreOpera-
tional2, Operational, Prediction. To support the claim that inv1.2 holds for all these events,
we attach the discharged proof obligations as the evidence. For brevity, we present only
the supporting evidence Sn2.1.2 of the goal G2.1.3 as shown in Figure 29. This discharged
proof obligation ensures that inv1.2 holds for the event Detection OK modelling detection
of no failures.

44

failure = FALSE phase !"ENV phase !"DET #

min_water_level $"M1 max_water_level %"M2

phase = DET

failure = FALSE

stop = FALSE

min_water_level $"M1 max_water_level %"M2

phase�"="CONT

|-

failure=FALSE

CONT!ENV"

CONT!DET #

min_water_level$M1" max_water_level%M2

 I(d, c, v)

 ge(d, c, v)

 BAe(d, c, v, v�)

 I(d, c, v�)

Figure 29: The proof obligation of the type INV for the event Detection OK in M1

5.3.3 Instantiation of the argument pattern for Class 2

Since the steam boiler system is a failsafe system (i.e., it has to be put into a safe but non-
operational state to prevent an occurrence of a hazard), whenever a system failure occurs,
the system should be stopped. However, we abstractly model such failsafe procedures by
assuming that, when the corresponding flag stop is raised thus indicating a system failure,
the system is shut down and an alarm is activated. This condition is defined by the safety
requirement SR-01:

SR-01 : When a system failure is detected, the steam boiler control
system shall be shut down and an alarm shall be activated.

The stipulated property does not rely on a detailed representation of the steam boiler
system and therefore can be incorporated at early stages of the development in Event-B, e.g.,
at the first refinement step (MACHINE M1). Since the property needs to be true at a specific
state of the model, we classify this safety requirement as a SR belonging to Class 2 and
formalise it as the following theorem:

thm1.1: ∀stop′ · stop′ ∈ BOOL ∧
(∃phase, stop · phase ∈ PHASE ∧ stop ∈ BOOL ∧
phase = CONT ∧ stop = FALSE ∧ stop′ = TRUE)
⇒
stop′ = TRUE,

where stop′ = TRUE is a predicate defining the required post-condition of the event Emer-
gencyStop.

The corresponding instance of the mapping function FM for this class of safety require-
ments in this case is

SR-01 7→ {(EmergencyStop, stop′ = TRUE)}.

45

The instantiated fragment of the safety case is presented in Figure 30. The proof obliga-
tion (thm1.1/THM) serves as the evidence that this requirement holds.

SR-01 of Class 2

is met

G2.2

Discharged

PO

thm1.1/THM

Argument by providing

theorems for events

where post-conditions

are required to hold

S2.2.1

Sn2.2.1

The provided theorem

thm1.1 is indeed provable

G2.2.1
Theorem

thm1.1

C2.2.2

Theorem

thm1.1 is the proper

formalisation of the

requirement

A2.2.1

A

Model: the first

refinement (MACHINE

M1 and CONTEXT

C1)

M2.2.1

Rodin

theorem

provers

C2.2.1

Figure 30: A fragment of the safety case corresponding to assurance of SR-01

5.3.4 Instantiation of the argument pattern for Class 3

Another safety-related property of the system under consideration is its cyclic behaviour.
At each cycle the controller reads the sensors, performs computations and sets the actuators
accordingly. Thus, the described control flow needs to be preserved by the Event-B model
of the system as well. The safety requirement SR-12 reflects the desired order in the control
flow, associated with the corresponding order of the events in the Event-B model.

SR-12 : The system shall operate cyclically. Each cycle it shall read
the sensors, detect failures, perform either normal or degraded
or rescue operation, or, in case of a critical system failure,
stop the system, as well as compute the next values of variables
to be used for failure detection at the next cycle if no critical
system failure is detected.

For the sake of simplicity, here we consider only the abstract model of the system (MA-
CHINE M0). The refinement-based semantics of Event-B allows us to abstract away from
detailed representation of the operational modes of the system (i.e., normal, degraded and
rescue), ensuring nevertheless that the control flow properties proved at this step will be
preserved by more detailed models.

We represent the required events order (C2.3.2) using the flow diagram (Figure 31). The
generic mapping function Requirement 7→ {(eventi, relationship, eventj)} for Class 3 can be
instantiated in this case as

46

Event

Enabling relationship

Disabling relationship

A symbol indicating that the
corresponding proof obligation

has been discharged

Start

Stop

Figure 31: The flow diagram of the abstract MACHINE M0

SR-12 7→ {(Environment, ena, Detection), (Detection, ena, Operational),
(Detection, ena, EmergencyStop), (Operational, ena, Prediction),
(Prediction, ena, Environment), (EmergencyStop, dis, Prediction)}.

The instance of the pattern that ensures the order of the events in the MACHINE M0 is
presented in Figure 32. Due to the lack of space, we show only two proof obligations (Fig-
ure 33) discharged to support this branch of the safety case – Environment/Detection/FENA
(Sn2.3.1) and EmergencyStop/Prediction/ FDIS (Sn2.3.6).

5.3.5 Instantiation of the argument pattern for Class 4

As we have already mentioned in Section 5.3.3, the steam boiler control system is a failsafe
system. This means that it does contain a deadlock and therefore we do not need to construct
the system safety case based on the argumentation defined by the pattern for SRs about
the absence of system deadlock (Class 4). Quite opposite, we need to ensure that when
the required sutdown condition is satisfied, the system terminates. Thus, we instantiate the
pattern for Class 5 instead.

5.3.6 Instantiation of the argument pattern for Class 5

Let us consider again the safety requirement SR-01 given in Section 5.3.3:

SR-01 : When a system failure is detected, the steam boiler control
system shall be shut down and an alarm shall be activated.

47

SR-12 of Class 3

is met

G2.3

Discharged PO

Environment/

Detection/

FENA

Argument over

required events order

S2.3.1

Sn2.3.1

The required

events order is preserved

G2.3.1

Argument over

each pair of events

S2.3.2

Environment

enables Detection

G2.3.2 Detection

enables Operational

G2.3.3 Prediction

enables Environment

G2.3.6

Discharged PO

Detection/

Operational/

FENA

Sn2.3.2
Discharged PO

Prediction/

Environment/

FENA

Sn2.3.5

Required events

order

C2.3.2

... EmergencyStop

disables Prediction

G2.3.7

Discharged PO

EmergencyStop/

Prediction/

FDIS

Sn2.3.6

Flow plug-in for the

Rodin platform

C2.3.1

Events order

expression is the

proper formalisation

of the requirement

A2.3.1

A

Model: the abstract

model (MACHINE M0

and CONTEXT

C0)

M2.3.1

Rodin

theorem

provers

C2.3.3

Figure 32: A fragment of the safety case corresponding to assurance of SR-12

phase !PHASE

failure !BOOL

stop !BOOL

failure = FALSE " stop = FALSE

failure = TRUE # phase!$!CONT!"!stop=TRUE

phase=ENV

stop=FALSE

|-

DET=DET #

failure=FALSE #

stop=FALSE

failure !BOOL

stop !BOOL

failure = FALSE " stop = FALSE

failure = TRUE # phase!$!CONT!" stop = TRUE

phase = CONT

failure = TRUE

stop = FALSE

|-

¬ (phase = PRED # TRUE = FALSE)

 Environment/Detection/FENA

 EmergencyStop/Prediction/FDIS

Figure 33: The proof obligations of the types FENA and FDIS

The corresponding model theorem thm1.1 (see Section 5.3.3) guarantees that the system
variables are updated accordingly to prepare for a system shutdown, e.g., the stop flag is

48

raised. However, it does not ensure that the system indeed terminates, i.e., there are no
enabled system events anymore. This should be done separately. Therefore, this safety
requirement can be classified as a requirement belonging to both Class 2 and Class 5. To
show that our system definitely meets this requirement, we instantiate the argument pattern
for Class 5 as well (Figure 34).

SR-01 of Class 5

is met

G2.5

Discharged

PO

thm4.1/THM

Argument by

providing the

theorem about a

shutdown condition

S2.5.1

Sn2.5.1

The provided theorem

thm4.1 is indeed provable

G2.5.1
Theorem

thm4.1

C2.5.2

Theorem

thm4.1 is the proper

formalisation of the

requirement

A2.5.1

A

Model: the fourth

refinement (MACHINE

M4 and CONTEXT

C3)

M2.5.1

Rodin

theorem

provers

C2.5.1

Figure 34: A fragment of the safety case corresponding to assurance of SR-01

In this case, the corresponding instance of the generic mapping function FM for Class 5
is

SR-01 7→ {stop = TRUE,Environment,Detection OK no F, ...,
EmergencyStop,Prediction},

where stop = TRUE stands for the required shutdown condition.
Then, the corresponding theorem thm4.1 is formulated as follows:

thm4.1: stop = TRUE ⇒ ¬(before(Environment) ∨ before(Detection OK no F)
∨ .. ∨ before(EmergencyStop) ∨ before(Prediction)),

which in turn can be rewritten (by expanding the definition of before(e) described in detail
in Section 2.1) as:

thm4.1: stop = TRUE ⇒ ¬((stop = FALSE ∧ phase = ENV ∧ ..) ∨
(stop = FALSE ∧ phase = DET ∧ ..) ∨ .. ∨
(stop = FALSE ∧ phase = CONT ∧ ..) ∨
(stop = FALSE ∧ phase = PRED ∧ ..));

stop = TRUE ⇒ ¬(stop = FALSE ∧ ((phase = ENV ∧ ..) ∨
(phase = DET ∧ ..) ∨ .. ∨
(phase = CONT ∧ ..) ∨ (phase = PRED ∧ ..)));

49

stop = TRUE ⇒ ¬stop = FALSE ∨ ¬((phase = ENV ∧ ..) ∨
(phase = DET ∧ ..) ∨ .. ∨
(phase = CONT ∧ ..) ∨ (phase = PRED ∧ ..));

stop = TRUE ⇒ stop = TRUE ∨ ¬((phase = ENV ∧ ..) ∨
(phase = DET ∧ ..) ∨ .. ∨
(phase = CONT ∧ ..) ∨ (phase = PRED ∧ ..)).

The discharged proof obligation (thm4.1/THM) provides the evidence for validity of the
claim G2.5 (see Figure 34).

5.3.7 Instantiation of the argument pattern for Class 6

We demonstrate an application of the argument pattern for Class 6 on a pair of hierarchically
linked requirements for the steam boiler system.

The requirement R-09-higher-level describes general behaviour of the pump actuator in
the operational system phase, which concerns safety of the system only implicitly:

R-09-higher-level : In the operational phase of the system execution, the pump actuator
can be switched on or off (based on the water level estimations),
or stay in the same mode,

while its more detailed counterpart (SR-09-lower-level) does this explicitly. It stipulates the
behaviour of the system and the pump actuator in the presence of a pump actuator failure:

SR-09-lower-level : When the pump actuator fails, it shall stay in its current mode.

In our formal development, these requirements are also introduced gradually at differ-
ent refinement steps. More specifically, the first one is formalised at the first refinement
step (MACHINE M1), while the second one is incorporated at the second refinement step
(MACHINE M2).

We consider both requirements as requirements belonging to Class 2. Therefore, their
verification is done by proving the corresponding theorems about post-states of specific
events. Here we assume that the corresponding separate fragments of the safety case have
been constructed using the argument pattern for Class 2 to guarantee that the requirements
R-09-higher-level and SR-09-lower-level hold. However, in this section we leave out these
fragments of the safety case while focusing on ensuring the hierarchical consistency be-
tween these requirements. In other words, we focus on application of the argument pattern
for Class 6.

The correctness of the hierarchical link between the requirements R-09-higher-level and
SR-09-lower-level is guaranteed via operation refinement of the affected events belonging
to MACHINE M1 and MACHINE M2 correspondingly. In this particular case, these are the
abstract event Operational in M1 and its refinement – the event Degraded Operational in
M2. The events are presented in Figure 35.

50

// Event in the MACHINE M1

event Operational refines Operational

 where

 @grd1 phase = CONT

 @grd2 failure = FALSE

 @grd3 stop = FALSE

 @grd4 preop_flag = FALSE

 @grd5 min_water_level ! M1 "

 max_water_level # M2

 then

 @act1 phase $ PRED

 @act2 pump_ctrl :% pump_ctrl' & PUMP_MODE "

 (pump_ctrl' = pump_ctrl '

 ((min_water_level ! M1 " max_water_level < N1)

 pump_ctrl' = ON) "

 (min_water_level > N2 " max_water_level # M2)

 pump_ctrl' = OFF) "

 (min_water_level ! N1 " max_water_level # N2)

 pump_ctrl' = pump_ctrl)))

 end

// Event in the refined MACHINE M2

 event Degraded_Operational refines Operational

 where

 @grd1 phase = CONT

 @grd3 stop = FALSE

 @grd4 preop_flag = FALSE

 @grd6 wl_sensor_failure = FALSE "

 (pump_failure = TRUE ' so_sensor_failure = TRUE)

 @grd7 valve_ctrl = CLOSED

 @grd8 WL_critical(min_water_level *

 max_water_level) = FALSE

 then

 @act1 phase $ PRED

 @act2 pump_ctrl :% pump_ctrl' & PUMP_MODE "

 (pump_failure = TRUE) pump_ctrl' = pump_ctrl) "

 (pump_failure = FALSE " min_water_level ! M1 "

 max_water_level < N1) pump_ctrl' = ON) "

 (pump_failure = FALSE " min_water_level > N2 "

 max_water_level # M2) pump_ctrl' = OFF) "

 (pump_failure = FALSE " min_water_level ! N1 "

 max_water_level # N2) pump_ctrl' = pump_ctrl)

 end

Figure 35: Events Operational and Degraded Operatinal

In the MACHINE M1, we abstractly model a system failure by the variable failure.
Then, in the MACHINE M2, we substitute this abstract variable and introduce the variables
standing for failures of the system components, namely, the water level sensor failure – the
variable wl sensor failure, the pump failure – the variable pump failure, and the steam output
sensor failure – the variable so sensor failure. The precise formal relationships between
these new variables and the old one is depicted by the respective gluing invariant. In other
words, the gluing invariant added to the MACHINE M2 relates these concrete variables with
the variable failure modelling an abstract failure.

The described data refinement directly affects the considered events Operational and
Degraded Operational. To guarantee that the refinement of the variable failure in the event
Degraded Operational does not weaken the corresponding guard of the event Operational,
i.e., grd2, the proof obligation of the type GRD is discharged (see Section 4.7). Moreover, to
satisfy the requirement SR-09-lower-level, we modify the action act2 as shown in Figure 35.
The correctness of this kind of simulation is guaranteed by the proof obligation of the type
SIM. This pair of discharged proof obligations serves as the evidence that the consistency
relationship between the corresponding hierarchically linked requirements is preserved by
refinement.

The resulting instance of the argument pattern is shown in Figure 36. Here the mentioned
proof obligations are attached as the safety case evidence – Sn2.6.1 and Sn2.6.2 respectively.
Due to the large size, we do not show the details of these proof obligations in this paper.

5.3.8 Instantiation of the argument pattern for Class 7

To demonstrate an instantiation of the argument pattern for Class 7 (i.e., a class representing
safety requirements about temporal properties), we consider the following safety requirement

51

Action act2 simulation in

refinement of the event

Operational is correct

G2.6.2

Discharged PO

Degraded_Op-

erational/act2/

SIM

Guard grd2 of the

event Operational is

strengthened in

refinement

G2.6.1

Discharged PO

Degraded_Op-

erational/grd2/

GRD

Sn2.6.1 Sn2.6.2

SR-09-lower-level

is a proper elaboration of

R-09-higher-level

G2.6

Argument over

the abstract event

Operational and the

refined event

Degraded_Operational

S2.6.1

Abstract event

Operational

C2.6.1

Refined event

Degraded_Operational

C2.6.2

The first refinement

(MACHINE M1 and CONTEXT

C1), the second refinement

(MACHINE M2 and

CONTEXT C1)

M2.6.1

Rodin

theorem

provers

C2.6.3

Model (MACHINE M2 and

CONTEXT C1)
is a refinement of model

(MACHINE M1 and

CONTEXT C1)

A2.6.1

A

Figure 36: A fragment of the safety case corresponding to assurance of hierarchical require-
ments R-09-higher-level and SR-09-lower-level

of the steam boiler system:

SR-13 : If there is no system failure, the system shall continue
its operation in a new cycle.

In our Event-B specification of the steam boiler system, the new cycle starts when the sys-
tem enables the event Environment (Figure 31). Therefore, we have to show that, whenever
no failure is detected in the detection phase, the system will start a new cycle by eventually
reaching the event Environment. According to our pattern, we associate the requirement SR-
13 with a temporal reachability property. The corresponding instance of the generic mapping
function FM for Class 7 in this case is

SR-13 7→ {temp property},

where temp property is an LTL formula defined as

temp property: � (after(Detection) ∧ failure = FALSE →
♦ before(Environment)).

This formula has the following representation in the ProB plug-in:

G ({(∀phase′, failure′ · phase′ ∈ PHASE ∧ failure′ ∈ BOOL ∧
(∃ phase, stop, failure · phase ∈ PHASE ∧ stop ∈ BOOL ∧
failure ∈ BOOL ∧ phase = DET ∧ failure = FALSE ∧
stop = FALSE) ∧ phase′ = CONT ∧ failure′ ∈ BOOL) ∧
failure = FALSE}
⇒
F {phase = ENV ∧ stop = FALSE}).

52

As a result of the model checking on this property, ProB yields the following outcome:
“no counter-example has been found, all nodes have been visited”. Therefore, we can attach
this result as the evidence for the corresponding fragment of our safety case (Sn2.7.1). The
resulting instance of the argument pattern is shown in Figure 37.

SR-13 of Class 7

is met

G2.7

Argument over all

formulated

requirement properties

Model checking

result on

temp_pro-

perty

S2.7.1

Sn2.7.1

The model

satisfies the property

temp_property

G2.7.1 Property

temp_property

C2.7.3

ProB tool for the

Rodin platform

C2.7.1

Property

temp_property is the

proper formalisation of

the requirement

A2.7.1

A

Model: the abstract

model (MACHINE M0

and CONTEXT

C0)

M2.7.1

ProB model

checker

C2.7.2

Figure 37: A fragment of the safety case corresponding to assurance of SR-13

5.3.9 Instantiation of the argument pattern for Class 8

We did not take into account timing constraints imposed on the steam boiler control system
while developing the formal system specification in Event-B. Therefore, we could not sup-
port the system safety case with a fragment associated with the safety requirements about
timing properties (Class 8).

5.4 Discussion on the application of the approach
Despite the fact that the accomplished Event-B development of the steam boiler control
system is quite complicated and, as a result, a significant number of proof obligations has
been discharged, we have not been able to instantiate two argument patterns, namely the
patterns for Class 4 and Class 8. First of all, the steam boiler control system is a failsafe
system, which means that there is a deadlock in its execution. Consequently, there are no re-
quirements about the absence of system deadlock (Class 4). Second of all, timing properties
(Class 8) were not a part of the given system requirements either. Nevertheless, the presented
guidelines on the instantiation of the argument patterns have allowed us to easily construct
the corresponding fragments of the system safety case for the remaining safety requirements
as well as to demonstrate well-definedness of the overall development of the system.

The use of the Rodin platform and accompanying plug-ins has facilitated derivation of
the proof- and model checking-based evidence that the given safety requirements hold for
the modelled system. The proof-based semantics of Event-B (a strong relationship between

53

model elements and the associated proof obligations) has given us a direct access to the
corresponding proof obligations. It has allowed us to not just claim that the verified theorems
were proved but also explicitly include the obtained proof obligations into the resulting safety
case.

6 Related work

In this section, we overview related contributions according to the following three directions:
firstly, we consider the publications on the use of formal methods for safety cases; secondly,
we overview the works that aim at formalising safety requirements; and thirdly, we take a
closer look at the approaches focusing on argument patterns.

Formal methods in safety cases. There are two main research directions in utilising
formal methods for safety cases. On the one hand, a safety case argument itself can be
formally defined and verified. On the other hand, safety requirements can be formalised and
formally verified allowing us to determine the safety evidence such as the obtained results of
static analysis, model checking or theorem proving. Note that such evidence corresponds to
the class of safety evidence called formal verification results defined in the safety evidence
taxonomy proposed by Nair et al. in [51].

In the former case, soundness of a safety argument can be proved by means of theo-
rem proving in the classical or higher order logic, e.g., using the interactive theorem prover
PVS [33, 57]. In particular, Rushby [57] formalises a top-level safety argument to support
automated checking of soundness of a safety argument. He proposes to represent a safety
case argument in the classical logic as a theorem where antecedents are the assumptions un-
der which a system (or design) satisfies the consequent, whereas the consequent is a specific
claim in the safety case that has to be assured. Then, such a theorem can be verified by an
automated interactive theorem prover or a model checker.

In the latter case, soundness of an overall safety case is not formally examined. The fo-
cus is rather put on the evidence derived from formal analysis to show that the specific goals
reflecting safety requirements are met. For example, to support the claim that the source
code of a program module does not contain potentially hazardous errors, the authors of [32]
use as the evidence the results of static analysis of program code. In [8,9], the authors assure
safety of automatically generated code by providing formal proofs as the evidence. They
ensure that safety requirements hold in specific locations of software system implementa-
tions. In [22, 23], the authors automate generation of heterogeneous safety cases including
a manually developed top-level system safety case, and lower-level fragments automatically
generated from the formal verification of safety requirements. According to this approach,
the implementation is formally verified against a mathematical specification within a logi-
cal domain theory. This approach is developed for the aviation domain and illustrated by
an unmanned aircraft system. To ensure that a model derived during model-driven devel-
opment of a safety critical system, namely pacemaker, satisfies all the required properties,
the authors of [43] use the obtained model checking results. Our approach proposed in this
paper also belongs to this category. Formalisation and verification of safety requirements of

54

a critical system allows us to obtain the proof- and model checking-based evidence that these
requirements hold.

Formalisation of safety requirements. Incorporation of requirements in general, and
safety requirements in particular, into formal specifications is considered to be a challenging
task. We overview some recent approaches that address this problem dividing them into two
categories: those that aim at utilising model checking for verification of critical properties,
and those that employ theorem proving for this purpose.

For example, a formalisation of safety requirements using the Computation Tree Logic
(CTL) and then verification of them using a model checker is presented in [14]. The author
classifies the given requirements associating them with the corresponding CTL formulas. A
similar approach is presented in [35]. Here safety properties defined as LTL formulas are
verified by using the SPIN model checker.

In contrast, the authors of [16] perform a systematic transformation of a Petri net model
into an abstract B model for verification of safety properties by theorem proving. Another
work that aims at verifying safety requirements by means of theorem proving is presented
in [46]. The authors incorporate the given requirements into an Event-B model via applying
a set of automated patterns, which are based on Failure Modes and Effects Analysis (FMEA).

Similarly to these works, we take an advantage of using theorem proving and a
refinement-based approach to formal development of a system. We gradually introduce the
required safety properties into an Event-B model and verify them in the refinement process.
This allows us to avoid the state explosion problem commonly associated with model check-
ing, thus making our approach more scalable for systems with higher levels of complexity.
Nonetheless, in this paper, we also rely on model checking for those properties that cannot
be verified by our framework directly.

Furthermore, there are other works that aim at formalising safety requirements, specifi-
cally in Event-B [41, 42, 49, 59]. Some of them propose to incorporate safety requirements
as invariants and before-after predicates of events [41, 59], while others, e.g., [49], represent
them as invariants or theorems only. Moreover, all these works show the correspondence
between some particular requirements and the associated elements of the Event-B structure.
However, they neither classify the safety requirements nor give precise guidelines for formal
verification of those requirements that cannot be directly verified by the Event-B framework.
In contrast, to be able to argue over each given safety requirement by relying on its formal
representation, we propose a classification of safety requirements and define a precise map-
ping of each class onto a set of the corresponding model expressions. Moreover, for some of
these classes, we propose bridging Event-B with other tools (model checkers).

Argument patterns. In general, argument patterns (or safety case patterns) facilitate
construction of a safety case by capturing commonly used structures and allowing for sim-
plified instantiation. Safety case patterns have been introduced by Kelly and McDermid [45]
and received recognition among safety case developers. In [20], the authors give a formal
definition for safety case patterns, define formal semantics of patterns, and propose a generic
data model and algorithm for pattern instantiation. For example, a safety case pattern for
arguing the correctness of implementations developed from a timed automata model using a
model-based development approach has been presented in [6]. An instantiation of this pattern

55

has been illustrated on the implementation software of a patient controlled analgesic infu-
sion pump. In [7], the author proposes a set of property-oriented and requirement-oriented
safety case patterns for arguing safe execution of automatically generated program code with
respect to the given safety properties as well as safety requirements. Additionally, the author
defines architecture-oriented patterns for safety-critical systems developed using a model-
based development approach.

An approach to automatically integrating the output generated by a formal method or tool
into a software safety assurance case as an evidence argument is described in [21]. To cap-
ture the reasoning underlying a tool-based formal verification, the authors propose specific
safety case patterns. The approach is software-oriented. A formalised requirement is verified
to hold at a specific location of code. The proposed patterns allow formal reasoning and evi-
dence to be integrated into the language of assurance arguments. Our approach is similar to
the approach presented in [21]. However, we focus on formal system models rather that the
code. Moreover, the way system safety requirements are formalised and verified in Event-
B varies according to the proposed classification of safety requirements. Consequently, the
resulting evidence arguments are also different. Nevertheless, we believe that the approach
given in [21] can be used to complement our approach.

In this paper, we contribute to a set of existing safety case patterns and describe in detail
their instantiation process for different classes of safety requirements. Moreover, our pro-
posed patterns facilitate construction of safety cases where safety requirements are verified
formally and the corresponding formal-based evidence is derived to represent justification of
safety assurance. The evidence arguments obtained by applying our approach explicitly re-
flect the formal reasoning instead of just references to the corresponding proofs or the model
checking results.

7 Conclusions

In this paper, we propose a methodology supporting rigorous construction of safety cases
from formal Event-B models. It guides the developers starting from informal representa-
tion of safety requirements to building the corresponding parts of safety cases via formal
modelling and verification in Event-B and the accompanying toolsets.

We believe that the proposed methodology has shown good scalability. In this paper,
we have illustrated the application of our methodology both by small examples and a larger
case study without major difficulties. Moreover, we have applied the methodology in two
different situations: when formal models of systems were developed beforehand, and when
the development was performed in parallel with the construction of the associated safety
case. Specifically, all the formal models for illustrating the argument patterns in Section 4
were taken as given, while the formal development of the steam boiler system (presented
in our previous work [55] and partially in Section 5.3) was done taking into account the
proposed classification of safety requirements and the need to produce a safety case of the
system. We have additionally observed the fact that, to construct an adequate safety case
of a system based on its formal model, a feedback loop between two processes, namely,

56

the process of formal system development and construction of safety cases, is required. It
means that, if construction of a safety case indicates that the associated formal model is
“weak”, i.e., it does not contain an adequate formalisation of some safety requirements that
need to be demonstrated in the safety case, the developers should be able to react on that by
improving the model.

Our main contribution, namely, the proposed methodology for rigorous construction of
safety cases, has led us to achieving the following two sub-contributions. Firstly, we have
classified safety requirements and shown how they can be formalised in Event-B. To attain
this, we have proposed a strict mapping between the given safety requirements and the asso-
ciated elements of formal models, thus establishing a clear traceability of those requirements.
Secondly, we have proposed a set of argument patterns based on the proposed classification,
the use of which facilitates the construction of safety cases. Due to the strong relationship
between model elements and the associated proof obligations provided by the proof-based
semantics of Event-B, we have been able to formally verify the mapped safety requirements
and derive the corresponding proofs. Moreover, via developing the argument strategies based
on formal reasoning and using the resulting proofs as the evidence for a safety case, we have
achieved additional assurance that the desired safety requirements hold.

Furthermore, application of the well-defined Event-B theory for formal verification of
safety requirements and formal-based construction of safety cases has clarified the use of
particular safety case goals or strategies. It has allowed us to omit the additional explanations
why the defined strategies are needed and why the proposed evidence is relevant. Otherwise,
we would have needed to extend each proposed argument pattern with multiple instances
of a specific GSN element called justification [28]. Consequently, this would have led to a
significant growth of already large safety cases.

In this work, we have focused on safety aspects however the proposed approach can be
extended to cover other dependability attributes, e.g., reliability and availability. We also
believe that the generic principles described in this paper by the example of the Event-B
formalism are applicable to any other formalism defined as a state transition system, e.g., B,
Z, VDM, refinement calculus, etc.

So far, all the proposed patterns and their instantiation examples have been developed
manually. However, the larger a system under consideration is, the more difficult this proce-
dure becomes. Therefore, the necessity of automated tool support is obvious. We consider
development of a dedicated plug-in for the Rodin platform as a part of our future work.
Moreover, the proposed classification of the safety requirements is by no means complete.
Consequently, it could be further extended with some new classes and the corresponding
argument patterns.

Acknowledgements

Yuliya Prokhorova’s work is partially supported by the Foundation of Nokia Corporation.
Additionally, the authors would like to thank Prof. Michael Butler for the valuable feedback
on the requirements classification.

57

References
[1] J.-R. Abrial. Steam-Boiler Control Specification Problem. In Formal Methods for

Industrial Applications, Specifying and Programming the Steam Boiler Control (the
book grow out of a Dagstuhl Seminar, June 1995), pages 500–509, London, UK, 1996.
Springer-Verlag.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA, 1996.

[3] J.-R. Abrial. Controlling Cars on a Bridge. http://deploy-eprints. ecs.soton.ac.uk/112/,
April 2010.

[4] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

[5] J.-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In D. Bert, editor,
B’98: Recent Advances in the Development and Use of the B Method, volume 1393 of
Lecture Notes in Computer Science, pages 83–128. Springer Berlin Heidelberg, 1998.

[6] A. Ayoub, B.G. Kim, I. Lee, and O. Sokolsky. A Safety Case Pattern for Model-Based
Development Approach. In Proceedings of the 4th International Conference on NASA
Formal Methods (NFM’12), pages 141–146, Berlin, Heidelberg, 2012. Springer-Verlag.

[7] N. Basir. Safety Cases for the Formal Verification of Automatically Generated Code.
Doctoral thesis, University of Southampton, 2010.

[8] N. Basir, E. Denney, and B. Fischer. Constructing a Safety Case for Automatically
Generated Code from Formal Program Verification Information. In M.D. Harrison
and M.-A. Sujan, editors, Computer Safety, Reliability, and Security, volume 5219 of
Lecture Notes in Computer Science, pages 249–262. Springer Berlin Heidelberg, 2008.

[9] N. Basir, E. Denney, and B. Fischer. Deriving Safety Cases from Automatically Con-
structed Proofs. In Systems Safety 2009. Incorporating the SaRS Annual Conference,
4th IET International Conference on, pages 1–6, 2009.

[10] N. Basir, E. Denney, and B. Fischer. Deriving Safety Cases for Hierarchical Structure in
Model-Based Development. In E. Schoitsch, editor, Computer Safety, Reliability, and
Security, volume 6351 of Lecture Notes in Computer Science, pages 68–81. Springer
Berlin Heidelberg, 2010.

[11] G. Behrmann, A. David, and K.G. Larsen. A Tutorial on Uppaal. In M. Bernardo and
F. Corradini, editors, Formal Methods for the Design of Real-Time Systems, volume
3185 of Lecture Notes in Computer Science, pages 200–236. Springer Berlin Heidel-
berg, 2004.

58

[12] J. Berthing, P. Boström, K. Sere, L. Tsiopoulos, and J. Vain. Refinement-Based Devel-
opment of Timed Systems. In J. Derrick, S. Gnesi, D. Latella, and H. Treharne, editors,
Integrated Formal Methods, volume 7321 of Lecture Notes in Computer Science, pages
69–83. Springer Berlin Heidelberg, 2012.

[13] P. Bishop and R. Bloomfield. A Methodology for Safety Case Development. In Safety-
Critical Systems Symposium, Birmingham, UK. Springer-Verlag, 1998.

[14] F. Bitsch. Classification of Safety Requirements for Formal Verification of Software
Models of Industrial Automation Systems. In Proceedings of 13th International Con-
ference on Software and Systems Engineering and their Applications (ICSSEA’00),
Paris, France, 2000. CNAM.

[15] F. Bitsch. Safety Patterns - The Key to Formal Specification of Safety Requirements. In
Proceedings of the 20th International Conference on Computer Safety, Reliability and
Security (SAFECOMP’01), pages 176–189, London, UK, UK, 2001. Springer-Verlag.

[16] P. Bon and S. Collart-Dutilleul. From a Solution Model to a B Model for Verification
of Safety Properties. Journal of Universal Computer Science, 19(1):2–24, 2013.

[17] Claims, Arguments and Evidence (CAE). http://www.adelard.com/ asce/choosing-
asce/cae.html, 2014.

[18] D. Cansell, D. Méry, and J. Rehm. Time Constraint Patterns for Event-B Development.
In J. Julliand and O. Kouchnarenko, editors, B 2007: Formal Specification and De-
velopment in B, volume 4355 of Lecture Notes in Computer Science, pages 140–154.
Springer Berlin Heidelberg, 2007.

[19] UK Ministry of Defence. 00-56 Safety Management Requirements for Defence Sys-
tems, 2007.

[20] E. Denney and G. Pai. A Formal Basis for Safety Case Patterns. In F. Bitsch, J. Guio-
chet, and M. Kaâniche, editors, Computer Safety, Reliability, and Security, volume
8153 of Lecture Notes in Computer Science, pages 21–32. Springer Berlin Heidelberg,
2013.

[21] E. Denney and G. Pai. Evidence Arguments for Using Formal Methods in Software
Certification. In Proceedings of IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW’13), pages 375–380, 2013.

[22] E. Denney, G. Pai, and J. Pohl. Heterogeneous Aviation Safety Cases: Integrating
the Formal and the Non-formal. In Proceedings of the 2012 IEEE 17th International
Conference on Engineering of Complex Computer Systems (ICECCS 2012), pages 199–
208, Washington, DC, USA, 2012. IEEE Computer Society.

59

[23] E.W. Denney, G.J. Pai, and J.M. Pohl. Automating the Generation of Heterogeneous
Aviation Safety Cases. NASA Contractor Report NASA/CR-2011-215983, August
2011.

[24] EB2ALL - The Event-B to C, C++, Java and C# Code Generator. http://eb2all.loria.fr/,
October 2013.

[25] European Committee for Electrotechnical Standardization (CENELEC). EN 50128
Railway applications – Communication, signalling and processing systems – Software
for railway control and protection systems. June 2011.

[26] Event-B and the Rodin Platform. http://www.event-b.org/, 2014.

[27] The Flow plug-in. http://iliasov.org/usecase/, 2014.

[28] Goal Structuring Notation Working Group. Goal Structuring Notation Standard.
http://www.goalstructuringnotation.info/, November 2011.

[29] J. Groslambert. Verification of LTL on B Event Systems. In J. Julliand and
O. Kouchnarenko, editors, B 2007: Formal Specification and Development in B, vol-
ume 4355 of Lecture Notes in Computer Science, pages 109–124. Springer Berlin Hei-
delberg, 2006.

[30] I. Habli and T. Kelly. A Generic Goal-Based Certification Argument for the Justifica-
tion of Formal Analysis. Electronic Notes in Theoretical Computer Science, 238(4):27–
39, September 2009.

[31] J. Hatcliff, A. Wassyng, T. Kelly, C. Comar, and P. Jones. Certifiably Safe Software-
dependent Systems: Challenges and Directions. In Proceedings of the Track on Fu-
ture of Software Engineering (FOSE’14), pages 182–200, New York, NY, USA, 2014.
ACM.

[32] R. Hawkins, I. Habli, T. Kelly, and J. McDermid. Assurance cases and prescriptive
software safety certification: A comparative study. Safety Science, 59:55–71, 2013.

[33] H. Herencia-Zapana, G. Hagen, and A. Narkawicz. Formalizing Probabilistic Safety
Claims. In M. Bobaru, K. Havelund, G.J. Holzmann, and R. Joshi, editors, NASA
Formal Methods, volume 6617 of Lecture Notes in Computer Science, pages 162–176.
Springer Berlin Heidelberg, 2011.

[34] T.S. Hoang and J.-R. Abrial. Reasoning about Liveness Properties in Event-B. In
S. Qin and Z. Qiu, editors, Formal Methods and Software Engineering, volume 6991 of
Lecture Notes in Computer Science, pages 456–471. Springer Berlin Heidelberg, 2011.

[35] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-
ing, 23(5):279–295, 1997.

60

[36] IEC61508. International Electrotechnical Commission. IEC 61508, functional safety
of electrical/electronic/programmable electronic safety-related systems. April 2010.

[37] A. Iliasov. Use Case Scenarios as Verification Conditions: Event-B/Flow Approach. In
Proceedings of the 3rd International Workshop on Software Engineering for Resilient
Systems (SERENE’11), pages 9–23, Berlin, Heidelberg, 2011. Springer-Verlag.

[38] A. Iliasov, L. Laibinis, E. Troubitsyna, A. Romanovsky, and T. Latvala. Augmenting
Event B Modelling with Real-Time Verification. TUCS Technical Report 1006, 2011.

[39] A. Iliasov, L. Laibinis, E. Troubitsyna, A. Romanovsky, and T. Latvala. Augment-
ing Event-B Modelling with Real-Time Verification. In Proceedings of Workshop on
Formal Methods in Software Engineering: Rigorous and Agile Approaches (Form-
SERA’12), pages 51–57, 2012.

[40] International Organization for Standardization. ISO 26262 Road Vehicles Functional
Safety. November 2011.

[41] M. Jastram, S. Hallerstede, and L. Ladenberger. Mixing Formal and Informal Model
Elements for Tracing Requirements. In Electronic Communications of the EASST, vol-
ume 46, 2011.

[42] M. Jastram, S. Hallerstede, M. Leuschel, and A.G. Russo Jr. An Approach of Re-
quirements Tracing in Formal Refinement. In Proceedings of the Third International
Conference on Verified Software: Theories, Tools, Experiments (VSTTE’10), pages 97–
111, Berlin, Heidelberg, 2010. Springer-Verlag.

[43] E. Jee, I. Lee, and O. Sokolsky. Assurance Cases in Model-Driven Development of
the Pacemaker Software. In T. Margaria and B. Steffen, editors, Leveraging Applica-
tions of Formal Methods, Verification, and Validation, volume 6416 of Lecture Notes
in Computer Science, pages 343–356. Springer Berlin Heidelberg, 2010.

[44] T.P. Kelly. Arguing Safety – A Systematic Approach to Managing Safety Cases. Doc-
toral thesis, University of York, September 1998.

[45] T.P. Kelly and J.A. McDermid. Safety Case Construction and Reuse Using Patterns.
In P. Daniel, editor, Proceedings of the 16th International Conference on Computer
Safety, Reliability and Security (SAFECOMP’97), pages 55–69. Springer-Verlag Lon-
don, 1997.

[46] I. Lopatkin, Y. Prokhorova, E. Troubitsyna, A. Iliasov, and A. Romanovsky. Patterns
for Representing FMEA in Formal Specification of Control Systems. TUCS Technical
Report 1003, 2011.

[47] The ProB Animator and Model Checker. http://www.stups.uni-
duesseldorf.de/ProB/index.php5/LTL Model Checking, 2014.

61

[48] D. Méry. Requirements for a Temporal B Assigning Temporal Meaning to Abstract
Machines ... and to Abstract Systems. In K. Araki, A. Galloway, and K. Taguchi,
editors, Integrated Formal Methods, pages 395–414. Springer London, 1999.

[49] D. Méry and N.K. Singh. Technical Report on Interpretation of the Electrocardiogram
(ECG) Signal using Formal Methods. Technical Report INRIA-00584177, 2011.

[50] C. Metayer, J.-R. Abrial, and L. Voisin. Event-B Language. Rigorous
Open Development Environment for Complex Systems (RODIN) Deliverable 3.2.
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, May 2005.

[51] S. Nair, J.L. de la Vara, M. Sabetzadeh, and L. Briand. Classification, Structuring, and
Assessment of Evidence for Safety – A Systematic Literature Review. In Proceedings
of IEEE Sixth International Conference on Software Testing, Verification and Validation
(ICST’13), pages 94–103, 2013.

[52] The ProB Animator and Model Checker. http://www.stups.uni-duesseldorf.de/
ProB/index.php5/Main Page, 2014.

[53] Y. Prokhorova, L. Laibinis, E. Troubitsyna, K. Varpaaniemi, and T. Latvala. Deriving a
mode logic using failure modes and effects analysis. International Journal of Critical
Computer-Based Systems, 3(4):305––328, 2012.

[54] Y. Prokhorova and E. Troubitsyna. Linking Modelling in Event-B with Safety Cases.
In P. Avgeriou, editor, Software Engineering for Resilient Systems, volume 7527 of
Lecture Notes in Computer Science, pages 47–62. Springer Berlin Heidelberg, 2012.

[55] Y. Prokhorova, E. Troubitsyna, and L. Laibinis. A Case Study in Refinement-Based
Modelling of a Resilient Control System. TUCS Technical Report 1086, 2013.

[56] Y. Prokhorova, E. Troubitsyna, L. Laibinis, D. Ilić, and T. Latvala. Formalisation of an
Industrial Approach to Monitoring Critical Data. TUCS Technical Report 1070, 2013.

[57] J. Rushby. Formalism in Safety Cases. In C. Dale and T. Anderson, editors, Mak-
ing Systems Safer: Proceedings of the Eighteenth Safety-Critical Systems Symposium,
pages 3–17, Bristol, UK, 2010. Springer.

[58] M.R. Sarshogh and M. Butler. Specification and Refinement of Discrete Timing Prop-
erties in Event-B. In Electronic Communications of the EASST, volume 46, 2011.

[59] S. Yeganefard and M. Butler. Structuring Functional Requirements of Control Systems
to Facilitate Refinement-based Formalisation. In Electronic Communications of the
EASST, volume 46, 2011.

62

Paper VII

A Survey of Safety-Oriented Model-Driven and
Formal Development Approaches

Yuliya Prokhorova and Elena Troubitsyna

Originally published in: International Journal of Critical Computer-
Based Systems (IJCCBS), Vol. 4, No. 2, pp. 93�118, Inderscience
Publishers, 2013.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3174-2
ISSN 1239-1883

Yuliya Prokhorova

Yuliya Prokhorova
R
igorous D

evelopm
ent of S

afety-C
ritical System

s

R
igorous D

evelopm
ent of S

afety-C
ritical System

s

