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ABSTRACT 

 

Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying 

properties of wood-based materials. By selecting a proper precursor, wood can be made 

water repellent, decay-, moisture- or UV-resistant. However, to control the barrier 

properties of sol-gel coatings on wood substrates against moisture uptake and weathering, 

an understanding of the surface morphology and chemistry of the deposited sol-gel 

coatings on wood substrates is needed.  

 

Mechanical pulp is used in production of wood-containing printing papers. The physical 

and chemical fiber surface characteristics, as created in the chosen mechanical pulp 

manufacturing process, play a key role in controlling the properties of the end-use 

product. A detailed understanding of how process parameters influence fiber surfaces can 

help improving cost-effectiveness of pulp and paper production.   

 

The current work focuses on physico-chemical characterization of modified wood-based 

materials with surface sensitive analytical tools. The overall objectives were, through 

advanced microscopy and chemical analysis techniques, (i) to collect versatile 

information about the surface structures of Norway spruce thermomechanical pulp fiber 

walls and understand how they are influenced by the selected chemical treatments, and (ii) 

to clarify the effect of various sol-gel coatings on surface structural and chemical 

properties of wood-based substrates. A special emphasis was on understanding the effect 

of sol-gel coatings on the water repellency of modified wood and paper surfaces.  

 

In the first part of the work, effects of chemical treatment on micro- and nano-scale 

surface structure of 1
st
 stage TMP latewood fibers from Norway spruce were investigated. 

The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer 

and the inner fiber wall layers of the untreated and chemically treated fibers were 

separately analyzed by light microscopy, atomic force microscopy and field-emission 

scanning electron microscopy. The selected characterization methods enabled the 

demonstration of the effect of different treatments on the fiber surface structure, both 

visually and quantitatively. The outer fiber wall areas appeared as intact bands 

surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. 

The roughness of the outer fiber wall areas increased most in the sodium oxalate 

treatment. The results indicated formation of more surface pores on the exposed inner 

fiber wall areas than on the corresponding outer fiber wall areas as a result of the 

chemical treatments. The hydrochloric acid treatment seemed to increase the surface 

porosity of the inner wall areas. 
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In the second part of the work, three silane-based sol-gel hybrid coatings were selected in 

order to improve moisture resistance of wood and paper substrates. The coatings differed 

from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon 

(CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were 

deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of sol-

gel coatings on surface structural and chemical properties of wood-based substrates was 

studied by using advanced surface analyzing tools: atomic force microscopy, X-ray 

photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results 

show that the applied sol-gel coatings, deposited as thin films or particulate coatings, 

have different effects on surface characteristics of wood and wood-based materials. The 

coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane 

backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and 

wood-based materials. 

 

Keywords: TMP fiber, pine sapwood, heat-treated spruce, plywood, base paper, 

impregnated paper, surface chemistry, surface morphology, surface roughness, water 

repellence, water absorption, chemical treatment, sol-gel coatings, alkoxysilane, AFM, 

SEM, XPS, ToF-SIMS, CLSM, contact angle 
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SVENSK SAMMANFATTNING 
 

Sol-gel-beläggningar kan användas för förbättring och modifiering av egenskaperna hos 

vedbaserade material. Genom val av den rätta prekursorn kan veden göras 

vattenavstötande eller resistent mot nedbrytning, fukt eller ultraviolett strålning. Innan 

man kan styra barriäregenskaper som fukt- och väderbeständighet hos ett papper, krävs 

det dock att man förstår ytmorfologin och kemin hos sol-gel-beläggningarna. 

 

Mekanisk massa används vid tillverkning av trähaltiga tryckpapper. Fysikaliska och 

kemiska fiberegenskaper som utvecklas under den valda tillverkningsprocessen, spelar en 

avgörande roll när det gäller slutproduktens egenskaper. En detaljerad förståelse av 

inverkan av processparametrarna på fiberytan kan leda till en förbättrad ekonomi hos 

massa- och pappersproduktionen. 

 

Detta arbete fokuserar på fysikalisk-kemisk karaktärisering av modifierade vedbaserade 

material med avancerade analysmetoder. Målet var att samla mångsidig information av 

ytstrukturer av termomekanisk massa av nordisk gran (Norway spruce) och dess 

fiberväggar genom avancerade mikroskopiska och kemiska analysmetoder för att (i) 

förstå hur valda kemiska behandlingar påverkar sagda ytstrukturer, och att (ii) klargöra 

effekterna av olika sol-gel-beläggningar på strukturella och kemiska egenskaper hos 

vedbaserade substrat. Sol-gel-beläggningars effekter på de vattenavstötande 

egenskaperna hos modifierade ved- och pappersytor var av speciellt intresse.  

 

I första delen av arbetet undersöktes effekten av kemisk behandling på strukturerna i 

mikro- och nanoskala hos första stegets TMP sommarvedsfibrer av nordisk gran. 

Kemikalier som tillsattes var buffrad natriumoxalat och saltsyra. De yttre och inre 

fiberväggarna hos obehandlade och kemiskt behandlade fibrer analyserades separat med 

hjälp av ljusmikroskopi, atomkraftsmikroskopi samt fältemissions-

svepelektronmikroskopi. Resultaten visar att ytråheten hos den yttre fiberväggen ökade 

mest under natriumoxalatbehandlingen. Det bildades mera porer hos den exponerade inre 

fiberväggen än på den motsvarande yttre fiberväggen som ett resultat av 

kemikaliebehandlingen. Saltsyrabehandlingen verkade öka ytporositeten hos den inre 

fiberväggen. 

 

I andra delen av arbetet användes tre silanbaserade, sol-gel-beläggningar för förbättring 

av fuktbeteende och avstötningsegenskaper hos ved- och papperssubstrat. 

Beläggningarna baserade sig på en silanstruktur med olika organiska kedjor. Sol-gel-

beläggningarna applicerades med hjälp av spray- eller borstbestrykning. 

Atomkraftsmikroskopi (AFM), röntgenfotoelektronspektroskopi (XPS) och 

flygtidsseparerad sekundärjonmasspektrometri (ToF-SIMS) användes för analysering av 
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beläggningarna. Resultaten visade att sol-gel-beläggningarna har olika effekter på 

ytegenskaperna hos ved och vedbaserade material. Beläggningen som har en lång 

kolvätekedja fäst vid silanstrukturen uppvisade de mest hydrofoba egenskaperna hos ved 

och vedbaserade material. 
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1. INTRODUCTION 

 

Wood suffers from a number of disadvantages when used as a construction material. Due 

to its hygroscopicity, it has poor dimensional stability in changing atmospheric conditions 

and it is susceptible to biological attack. Potential end-uses are also restricted by changes 

in appearance that can appear when exposed to weathering. Therefore, wood 

modification is often needed to overcome these disadvantages. The aim of a modification 

may be to bring about improvement in decay resistance or dimensional stability, to 

reduce water sorption, or to improve weathering performance (Rowell 2013, Hill 2006). 

Modification of wood generally includes bulk (chemical, thermal and impregnation 

modification) and surface modification. Bulk modification can be technically problematic 

due to the difficulty of ensuring that the reagent is evenly distributed throughout the 

wood material, and that all reagent and by-products are removed at the end of the reaction. 

The advantage of surface modification is that it can confine the treatment reactions to the 

surface of the substrates, whereby the accessibility of reagent can be controlled and the 

modified material can subsequently be easily cleaned (Hill 2006). Surface modification 

of wood has been used to improve the ultraviolet stability of wood, to change the surface 

energy of wood (to reduce wetting, and/or improve compatibility with coatings or in 

wood-plastic composites), and to improve bonding between wood surfaces. Recently, it 

has been observed that one of the most promising methods to improve wood material 

properties is to surface treat wood using thin coatings with nano-hybrid materials by sol-

gel technology. The mechanisms of sol-gel coatings and their applications on wood and 

paper substrates are described in the following sections.   

 

Besides being a construction material, wood is also used to make pulp for paper 

production either in a chemical or a mechanical process. Due to high demands in the 

quality of mechanical printing papers, properties of mechanical pulps have become 

increasingly important. At the same time, the whole manufacturing process needs to be as 

cost-effective as possible. Therefore, process development, including improved 

understanding of the fiber surface characteristics, plays a key role. Both physical and 

chemical surface properties of pulps are very important since they influence fiber charge, 

fiber bonding, wettability, adsorption, adhesion and consumption of papermaking 

chemicals. In mechanical pulping, it has been found that morphologically different fibers 

react in different ways to refining and defibration conditions (Pöhler 2003, Heikkurinen 

1999). Not only the fiber dimensions, wood density and dry solids content influence the 

wood behavior in mechanical processing, but also the fiber structure will contribute to the 

defibration result. On the other hand, the fiber surfaces can be influenced by the refining 

process, e.g. the refining energy input, refining intensity, and a possible pretreatment of 

the wood chips with steam or chemicals prior to refining. In this thesis, the chemicals 

selected for treatment of thermomechanical pulp (TMP) fibers were buffered sodium 
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oxalate and hydrochloric acid.  The buffered sodium oxalate was used for targeting more 

energy-efficient TMP-production. About 25% reduction in the specific energy demand in 

refining was obtained by the oxalate treatment of chips prior to refining. The effect of 

sodium oxalate on the refining response of fibers and fiber chemistry has been reported in 

the literature, but the morphological changes of the fiber surfaces induced by a chemical 

pretreatment prior to refining have not previously been investigated.  

 

The overall aims of this work were, through advanced microscopy and chemical analysis 

techniques, (i) to collect versatile information about the surface structures (inner (S2) and 

outer (ML/P) walls) of Norway spruce TMP fiber walls and understand how they are 

influenced by the selected chemical treatments, and (ii) to clarify the effect of sol-gel 

coatings on surface structural and chemical properties of wood-based substrates. A 

special focus was on understanding the effect of sol-gel coatings on the water repellency 

of modified wood and paper substrates. 
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2. BACKGROUND 

 

Wood can be botanically categorized into softwoods and hardwoods. Softwoods are those 

woods from gymnosperms, which generally have needle-like leaves such as pine (Pinus) 

and spruce (Picea). Hardwoods are those woods from angiosperms such as maple (Acer), 

birch (Betula), and oak (Quercus). Both softwoods and hardwoods contain two distinct 

zones, sapwood and heartwood. Sapwood gives structural support to the living tree and is 

located adjacent to the bark and functions as the conduction of sap and storage and 

synthesis of biochemicals. The primary photosynthates in sapwood are starch and lipids. 

Heartwood is found to the interior of the sapwood with a darker color. Heartwood 

functions as a long-term storage of biochemicals, which are known collectively as 

extractives. The extractives in heartwood protect the tree against biological attack, lower 

the water content and act as fungicides (Wise 1952). In general, wood is heterogeneous 

material with respect to its anatomical, physical, and chemical properties.   

 

In this work, the wood samples are Norway spruce (Picea abies) and Scots pine (Pinus 

sylvestris). They both are softwood species which mainly consists of tracheids, 

parenchyma and epithelial cells. The moisture content and permeability of sapwood is 

generally higher than that of heartwood. The difference between the permeability of 

heartwood and sapwood has been reported to be greater in pine than spruce (Elowson 

2003). 

 

2.1 Wood cell wall structure and chemistry  

 

It is known that the cell walls in wood are of key importance for the performance of 

wood-based products. The cell wall of wood consists of a number of different layers 

shown in Figure 1: the middle lamella (ML), the primary wall (P), and the secondary wall. 

The ML is located between the P walls of adjacent cells and binds the cells together. This 

layer is the outermost layer of the cell wall and lignified. The P wall is a thin and elastic 

layer composed of randomly orientated (microfibril angle from 0º to 90º relative to the 

long axis of the cell) cellulose microfibrils. The secondary layer can be divided into three 

sub-layers: the outer layer of the secondary wall (S1), the middle layer of the secondary 

wall (S2), and the inner layer of the secondary (S3). The S3 layer is sometimes also 

referred to as the tertiary wall (T). These cell layers differ from one another with respect 

to their structure as well as their chemical composition. The outer layer, S1, is a thin layer 

(consists of 3–4 lamellae) and is characterized by a large microfibril angle (50º–70º). The 

S2 layer is the thickest secondary cell wall layer (30–150 lamellae) and has the greatest 

influence on many properties of the cell wall and the macroscopic properties of the wood 

(Panshin 1980, Rowell 2013).  It has a lower lignin percentage and a low microfibril 

angle (5º–30º). The S3 layer is a relatively thin layer with several lamellae of microfibrils. 
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The microfibril angle of this layer is >70º. It has the lowest percentage of lignin among 

the secondary layers.  In certain cases, for example, conifer tracheids and some hardwood 

cells, the inside of the S3 layer is covered with a thin membrane called the warty layer 

(W).  

 

The wood cell wall mainly consists of cellulose, hemicellulose, lignin and extractives. 

There are many excellent descriptions about the structure and function of these 

components. Only a brief introduction will be given here.  

 

Cellulose is homopolysaccharide composed of glucose chains. The average degree of 

polymerization for wood cellulose is 9000–15,000. It constitutes approximately 40%–45% 

of both softwoods and hardwoods. A number of cellulose chains are closely associated 

through extensive hydrogen bonding networks to form the microfibrils. Due to the high 

crystalline nature of the microfibrils, the cellulose component is relatively unreactive and 

thermally stable.  

 

Hemicelluloses are polysaccharides composed of a number of different sugar units, 

mainly of glucose, xylose, galactose, mannose and arabinose (Fengel 1989). The typical 

content of hemicelluloses in softwoods and hardwoods is 25%–30% and 30%–35% of the 

wood dry solids, respectively. The structures of the different types of hemicelluloses vary 

with the plant species. The chemical and thermal stability of hemicelluloses is generally 

lower than that of cellulose, presumably due to their amorphous nature and lower degree 

of polymerization (100–200). Hemicellulose contains the highest proportion of the 

accessible OH groups in the cell wall.  

 

Lignin is an amorphous phenolic polymer with an irregular complex chemical structure. 

The structural building blocks of lignin are joined together by C–O–C and C–C linkages. 

The lignin content of softwoods and hardwoods is typically in the range of 25%–30%, 

20%–25%, respectively. Compared to cellulose and hemicellulose, lignin has a lower 

concentration of OH groups. 

 

Extractives are extractable chemicals in the wood mainly consisting of fats, fatty alcohols, 

terpenes, fatty acids, phenols, steroids, resin acids, rosin and waxes. The contents of 

extractives in the wood vary from 0.5% to 20% depending on the species. In wood 

chemical modification processes, extractives can be problematic due to their leachability 

to the medium. Also, migration of extractives can occur during the heat treatment of 

wood.  

 

The three main structural wood constituents, cellulose, hemicellulose, and lignin, are not 

uniformly distributed in wood cells, and their relative mass proportions can vary widely 
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depending on the morphological region and age of the wood. The different wood cell 

wall layers can be identified for instance with light microscopy, atomic force microscopy, 

scanning electron microscopy, and transmission electron microscopy (Molin 2004, 

Fromm 2003, Duchesne 1999, Bardage 2004). 

 

 
 

Figure 1. Model of the cell wall structure of softwood tracheids and hardwood libriform 

cells. ML: middle lamella (0.1–1 µm), P: primary wall (0.1–0.3 µm), S1: outer secondary 

wall (0.1–0.2 µm), S2: secondary wall (1–5 µm), T: tertiary wall or inner secondary wall 

(S3) (0.1 µm), W: warty layer (Fengel 1989).  

 

In terms of wood modification, in wood cell wall the main sites of reaction are hydroxyl 

groups of the cell wall polymers (cellulose, hemicellulose and lignin). For successful 

modification, deposition of the modifying agent in the cell wall is crucial.  

 

2.2 Thermomechanical pulping  

 

The mechanical pulping was developed in Germany by F.G. Keller in the 1840s 

(Sjöström 1993). Today, the thermomechanical pulping (TMP) process is the dominating 

refiner-based mechanical pulping process. In the TMP process, pulp is made by heating 

the chips with steam and mechanically separating the fibers in a pressurized refiner. The 

refining process generally includes two stages: fiber separation and fiber development 

which can occur simultaneously (Karnis 1994). In the fiber separation stage, wood chips 

are broken down to smaller particles, whereas fiber development proceeds via 

delamination and peeling of the fiber surface. Basically, the outer fiber wall layers, i.e. 

middle lamella, primary wall and outer secondary wall, are peeled off leaving the inner 

secondary wall exposed.  
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Mechanical pulp fibers have very heterogeneous structure and their composition depends 

on both the wood species and the processing method. The quality of mechanical pulp is 

determined by the inherent properties of the pulp fibers, such as the surface ultrastructure 

and chemical composition, and their physical properties.  

 

2.3 Paper 

 

Paper is a versatile material made from various fibers which are typically derived from 

wood, rags or grasses. Paper is used principally for printing, writing and many other 

applications.  Based on the classification used by the European forest industry companies, 

paper can be mainly divided into: printing and writing papers, paperboards, tissue and 

specialty papers.  Printing and writing papers are those papers used for newspapers, 

magazines, catalogs, books, copying, and printing.  Paperboards are usually used for 

packaging. Tissues are mainly used for hygiene purposes. Specialty papers typically have 

specific characteristics such as strength, thickness, porosity, absorptivity, which target 

particular end-use applications (Paulapuro 2000). In the current study, base paper and 

impregnated paper are used as laminates for plywood and can be considered to be 

specialty papers. 

 

2.4 Plywood 

 

Plywood is one of the most widely used wood composites. It is made by gluing thin wood 

veneers together. Plywood is in many cases used instead of plain wood because of its 

high strength and its resistance to cracking and shrinkage. Hardwood plywood is 

primarily used for decorative purposes while softwood plywood is usually applied in the 

building industry. The modification of plywood has been done with an overlayed resin 

impregnated paper on top of it (Fahey 1971). It has also been reported that the wear and 

climatic resistance for plywood can be achieved by thermosetting resin coating (e.g. 

phenol-formaldehyde). The thermosetting resins are applied on to the plywood by 

pressing under high temperature and pressure (Kuusipalo 2001). The coated plywood is 

primarily used in concrete cast moulds, horse boxes, flooring of vehicles and claddings. 

However, the disadvantages of coated thermosetting resins are their limited wear 

resistance, brown color, limited coloring possibilities, and limited water resistance. A 

better water and wear resistance and appearance were found by Tervala et al. by using an 

alternative thermoplastic coating (e.g. polyethylene and polypropylene) (Tervala 1999). 

 

2.5 Thermal modification of wood 

 

The thermal modification, usually performed between 180°C and 260°C, has been used 

to improve the dimensional stability and decay resistance of wood.  The first scientific 

study of heat treated wood was carried out by Stamm and Hansen in the 1930s in 
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Germany by heating the black gum at 205°C to reduce its hygroscopicity (Stamm 1937). 

The most recent commercialized thermal treatment processes in Europe are the 

ThermoWood process in Finland, the Perdure and Retification processes in France, and 

the Plato process in the Netherlands. The thermal treatment generally changes the 

chemical, physical and biological properties of wood depending on the process variables: 

time and temperature of treatment, wood species, sample dimensions, catalysts used and 

system closure. 

 

The physical changes include changes in color, dimensions, crystallinity and mechanical 

properties as well as a mass loss (Hill 2006).  Usually, a darkening of the wood occurs 

and wood becomes more stable than untreated wood after a treatment. Ayadi et al. 

reported that the color stability of thermally modified wood is better than for control 

samples in accelerated weathering tests (Ayadi 2003). However, Syrjänen et al. found 

that the color of heat-treated samples will nonetheless fade if they are exposed to exterior 

conditions (Syrjänen 2000).  Hietala et al. reported an increase in the microporosity of the 

cell wall (the average pore size was of the order of tens of nanometers) resulting from the 

steam heating at temperatures in excess of 180°C due to component removal (Hietala 

2002). The benefits of heat treatment lie in the increased dimensional stability, reduced 

hygroscopicity and improved decay resistance. However, the heat treatment at high 

temperatures may cause reduction in strength, toughness and abrasion resistance (Chang 

1978).  The chemical changes in wood due to thermal modification are complex and 

dependent on the treatment conditions. The main components of wood degrade in 

different ways under heat. It is generally believed that cellulose and lignin degrade more 

slowly and at higher temperatures than the hemicelluloses. The extractives degrade more 

easily and evaporate from the wood during the heat treatment (Nuopponen 2003). 

 

In this work, the heat-treated spruce (Thermo-S
®
, S is stability) for sol-gel coatings was 

manufactured by the ThermoWood process developed by VTT technical research center 

of Finland (ThermoWood
®
 handbook 2003). The ThermoWood process can be briefly 

divided into three main phases as shown in Figure 2. Phase 1 is the temperature increase 

and kiln drying by using heat and steam in air. Steam is used as vapor membrane to 

prevent cracking of the wood and to facilitate chemical changes taking place. The wood 

moisture content is reduced to nearly zero at the end of this stage.  Phase 2 is intensive 

heat treatment at a temperature of 185-225°C (the peak temperature is dependent on the 

desired end use of the material) for 2-3 hours. Phase 3 is cooling and moisture 

conditioning. The temperature is reduced to 80–90°C by water spray systems. The wood 

material is therefore re-moistured to a workable moisture content level of over 4%. A 

detailed description of the industrial-scale heat-treatment process for wood can be found 

in the ThermoWood
®
 handbook.  
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Figure 2. Temperature-time diagram of a wood heat-treatment process (ThermoWood
®

 

handbook 2003).  

 

The main chemical changes occurring in the ThermoWood heating process are thermal 

degradation of hemicelluloses. As a result of the heat treatment, the biological durability, 

dimensional stability, thermal insulation properties and decay resistance of wood are 

improved. In addition, the equilibrium moisture content and water uptake of wood is 

reduced. However, the bending and splitting strength of wood can slightly decrease by 

the high treatment temperature. ThermoWood-treated wood is usually unable to resist 

weathering effects; therefore, the surface needs to be protected by a surface coating to 

prevent color changes and other effects from weather exposure. 

 

2.6 Modification of wood and paper substrates by sol-gel technology 

 

Modification of wood has been done chemically, thermally and through other processes. 

An excellent elucidation about wood modification is in a book by Hill (Hill 2006). 

Various types of chemical compounds and treatments have been used in the modification 

of wood properties including anhydrides, acid chlorides, carboxylic acids, alkyl chlorides, 

isocyanates, aldehydes, nitriles, lactones, epoxides, elevated heat and plasma treatment 

(Rowell 1981, Rowell 1985, Militz 1997, Mahlberg 1998, Ritschkoff 2003, Jämsä 2001).  

 

Over the last years, a wide variety of inorganic and organic silicon compounds have been 

used for wood modification with attempts to improve its fire resistance, water repellence, 

fungal decay resistance, durability and to reduce the fungal disfigurement (Saka 1992, 

Saka 1997, Saka 2001, De Vetter 2009a, b, Tshabalala 2003a). The wood modification 

with the inorganic and organic silicon compounds is well reviewed by Mai and Militz 
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(Mai 2004a, b). In this chapter, the wood and paper modification with alkoxysilanes is 

briefly reviewed. 

Treatment of wood with alkoxysilanes has been found promising to improve wood 

material properties as well as to provide new properties into wood-based substrates. The 

effect of alkoxysilanes on wood moisture behavior and dimensional stability, anti-mold, 

anti-fungal and weathering properties has been reported in literature (Saka 2001, 

Tshabalala 2003a, b, Tshabalala 2007, Tshabalala 2009, Donath 2006, Donath 2007).    

 

The alkoxysilanes can be applied to wood by different approaches. In one approach, the 

hydrolysis of the alkoxysilane is initiated by the bound water and free water in the wood 

(Saka 1992, Ogiso 1993). In another approach, silanes are first hydrolysed in a batch 

reactor before treatment of wood (Mai 2004a). The main sites of reaction for wood and 

paper substrates are the hydroxyl groups. In general, the reactions of the alkoxysilane 

with the substrates by a sol-gel process involve four steps as shown in equations 1-3, 

which begin with hydrolysis of the three alkoxyl groups, followed by condensation to 

oligomers. The oligomers form hydrogen bonds with hydroxyl groups of the substrate. 

Finally, during drying or curing, a covalent bond is formed with the substrate. 

 

                    
               (1) 

 

                                                (2) 

 

                                
                  (3) 

 

In above, R refers to a methyl or an ethyl group and R' refers to e.g. an alkyl or a 

fluoroalkyl chain, or an amino or epoxy group. The alkoxysilanes can be applied to wood 

or paper by impregnation or by surface treatment with dip, spill or spin coating, spraying, 

brushing or roll coating. The surface treatment is usually carried out with a silane water-

alcohol solution in a concentration range of 0.5–2% by weight (Brochier Salon 2005). 

Typically, thickness of these sol-gel coatings ranges from 0.1 to 10 µm depending on the 

coating chemistry and the coating technique used.  Because of the very thin coatings, the 

surface properties can be modified without changing the bulk substrate properties or 

appearance. In addition to the sol-gel deposition methods, surface modification of wood 

can be also accomplished by plasma-enhanced chemical vapor deposition methods 

(Denes 1999, Podgorski 2001, Bente 2004). 

 

A hydrophobic surface can be obtained by employing organically modified alkoxysilanes 

(organosilane) with long-chained aliphatic or highly fluorinated hydrocarbon substituents 

by a sol-gel route (Mahltig 2005, Textor 2010, Wang 2011). Factors which contribute to 

the ability of an organosilane to generate a hydrophobic surface are its organic 
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substitution, the extent of surface coverage, residual unreacted groups (both from the 

silane and the surface) and the distribution of the silane on the surface. The advantage of 

silanes over other water repellents, such as oils or waxes, is that the sorption behavior of 

wood is only marginally influenced.  

 

Silane based sol-gel materials have also been applied onto paper substrates, for example, 

to enhance the resistance of paper against environmental effects caused by water or heat 

(Yoldas 1998, Iwamiya 2000, Kiuberis 2003, Yagi 2005). A recent study by Yagi et al. 

showed that tensile strength and water repellency of paper was improved after treatment 

with a methyltrimethoxysilane oligomer (Yagi 2005). Another study showed that coating 

of paper with sol-gel silica layers containing bound dyes improved the leaching stability 

(Trepte 2000).  Ly et al. reported that by grafting of cellulose with fluorine-bearing silane 

coupling agents, it is possible to achieve a highly hydrophobic non-penetrating surface 

(Ly 2010). 
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3. SURFACE CHARACTERIZATION 

 

3.1 Surface energy and wetting of a rough surface 

 

Surface energy 

Surface energy or surface free energy is conventionally defined as the work required to 

build a unit of area of a given surface (Oura 2001). Contact angle measurements can be 

used to determine the surface energy of a material. The term surface energy or surface 

free energy is occasionally preferred for solid surfaces, while the term surface tension is 

usually used for liquids and vapors. The surface energy of a solid can be determined by, 

e.g., Z sman’s plot, G r falco-Good, Fowkes, Owen-Wendt, Wu, and Van Oss-

Chaudhury-Good methods. These methods have been reviewed in literature (Adamson 

1967, Zenkiewic 2007, Girifalco 1957, Good 1960, Fowkes 1964, Owens 1969, Wu 1971, 

Vanoss 1988, Correia 1997). In this thesis, Fowkes’s equation was used for calculation of 

surface energy of sol-gel coated impregnated paper (paper IV). The total surface energy 

and surface dispersive and polar components are calculated using the geometric mean 

method. The geometric mean method (also known as the Fowkes, extended Fowkes, 

Owens and Wendt method) is suitable for characterization of non-polar and moderately 

polar substrates such as plastics, rubber, polymer films and paper.  

 

Wetting of a heterogeneous surface 

Wetting refers to the study of how a liquid deposited on a solid (or liquid) substrate 

spreads out. It is known that the wettability of a solid surface by a liquid droplet is 

strongly affected by both intrinsic chemical properties and surface roughness of the solid 

surface. The wettability of a rough solid surface is frequently represented by an apparent 

contact angle of a liquid droplet on the surface. The relationship between the apparent 

and the intrinsic contact angle can be described by the following two models. The 

Wenzel model (Wenzel 1949)
 
is applied to a rough surface which is fully wetted by a 

liquid droplet: 

 

,                           

 

where , , and  are the intrinsic contact angle on the solid surface, the ratio of the 

actual area of the rough surface to the projected area, and the apparent contact angle on 

the wetted surface, respectively. The Wenzel equation states that a rough hydrophilic 

surface should appear more hydrophilic and a rough hydrophobic surface more 

hydrophobic than a smooth surface with the same chemical composition. Cassie-Baxter 

model
 
(Cassie 1944) is introduced when a liquid droplet is placed only on top of the 

rough features of the surface (composite surface): 

 

 coscos rm 

 r m
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,           

 

where  and  are the solid area fraction of the solid surface (solid fraction) and the 

apparent contact angle on the composite surface, respectively. In this model, air is 

entrapped below the liquid droplet. The influence of the surface geometry on the 

entrapment of air was demonstrated by Wapner et al. (Wapner 2002). Bico et al. observed 

air entrapment when surface roughness was of the order of 30 μm (Bico 2002). 

 

For a chemically heterogeneous surface, the Cassie model is typically used to describe 

the wetting (Cassie 1948): 

 

, 

     

where is the apparent contact angle on the ideally flat two-component surface, and

 are the area fractions of material 1 and 2, and are the Young contact angles on 

pure materials 1 and 2. According to both Wenzel and Cassie models, surface roughness 

enhances the effects of hydrophobic or hydrophilic behavior (Hay 2008, Kim 2009, Spori 

2008). However, both the Wenzel and the Cassie equations are approximations, and they 

are valid only when the scale of the roughness/heterogeneity is small compared to the 

length of the three phase contact line (Nosonovsky 2007, Brandon 2003, Iliev 2003). 

 

3.2 Microscopic methods 

 

A variety of microscopic and spectroscopic methods have been used for characterization 

of wood, paper and fibrous surface ultrastructure and chemical composition. 

Characterization of surface properties of pulp, paper and wood is very complex. Usually, 

several techniques are combined in order to obtain adequate information about the 

surface. This and the following chapters describe the main surface analysis techniques 

used in this thesis. 

 

Light Microscopy 

Light microscopy (LM) involves passing visible light transmitted through or reflected 

from the sample through a single or multiple lenses to allow a magnified view of the 

sample (Abramowitz 2007). Different techniques, such as bright field, oblique 

illumination, dark field, dispersion staining and phase contrast, can be used to improve 

the specimen contrast or to highlight certain structures. The light microscopy has in the 

past played a very important role in the study of wood anatomy and in investigations of 

the structure of fibers and paper. Light microscopy provides low magnification (8–1000X) 

of fibers and textiles that can be used to examine fiber surface characteristics and 

)cos1(1cos   s

m

s
m

2211 coscoscos  ffm 

m 1f

2f 1 2
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measure their shape and dimensions. In addition, it is useful for the determination of the 

construction and function of fibrous assemblies; diagnosis of chemical and microbial 

damage, and evaluation of processing defects and mechanical degradation. The 

morphology of mechanical pulp fiber surfaces has been studied by light microscopy using 

staining and polarization (Jayme 1970a, b; Werthmann 1993a, b).  The disadvantages of 

light microscope include low magnification (1000-2000X) and resolution (200 nm) when 

analyzing sub-micron size features.  

 

Confocal Laser Scanning Microscopy 

The confocal laser scanning microscopy (CLSM) was first invented by Minsky in 1950s 

and became commercially available 1987 (Minsky 1988). In this thesis work, a Leica 

CLSM was used for capturing 3D topographical images of wood and paper samples. The 

system consists of a conventional Leitz Diaplan light microscope to which an argon-ion 

laser unit (operating at wavelengths of 488 nm & 514 nm) is coupled, comprising beam 

generation and photodetector units, a scanning system, control panel and monitors. All 

functions are controlled by a fast central processing unit (Moss 1993). The CLSM differs 

from the conventional light microscope in that the optical system of the CLSM contains 

two pinholes whereas in the conventional LM the whole field of view is illuminated and 

simultaneously imaged directly to the eye or to a monitor. In CLSM only the focal plane 

is scanned point-by-point in raster fashion. The advantage of CLSM over the other types 

of optical microscopes is that it allows 3-D imaging of thick and opaque specimens, such 

as wood surfaces (Rowell 2013). The CLSM also provides a measurement of surface 

roughness at large scale in comparison with AFM. Nevertheless, the CLSM has a limit in 

a detailed examination of fine structures such as fibrillar material. 

 

The CLSM has been widely used in the studies of fiber morphology, drying process of 

wet webs, external fibrillation in different fibers, and fibril orientation in the S2 layer of 

wood fibers, wet fiber flexibility, paper cross-section analysis, chemical distribution 

across the fiber wall (Nanko 1989, Ylikoski 1992, Jang 1998, Yan 2008, Ozaki 2005, Li 

2005). The CLSM has also been found to be useful in study of the surface roughness of 

coated wood and paper (Tshabalala 2007, Enomae 2006) and in examining wood-coating 

interface and macro-fracture in wood (Singh 2004, Dill-Langer 2004).  

 

Scanning Electron Microscopy  

Scanning Electron Microscopy (SEM) was first developed in the 1930s and 

commercialized in 1960s. Compared to light microscopy, SEM has much higher 

magnification, up to 100,1000X. The sample surface is imaged by scanning it with a 

focused beam of high-energy electrons in a raster scan pattern. When the electron strikes 

the specimen, secondary electrons, backscattered electrons, diffracted backscattered 

electrons, photons, visible light, and heat, is generated through electron-sample 
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interactions and collected in detectors which convert them to a signal that is processed 

into an image. These signals include secondary and backscattered electrons, which are 

commonly used for imaging samples. Secondary electrons are most valuable for 

investigating the external morphology and topography of a sample. The contrast in the 

image is determined by the surface morphology. In general, a larger number of secondary 

electrons are displayed as bright spots in the images. Small projections on the sample 

surface appear brighter than flat areas.  Backscattered electrons are most valuable for 

illustrating contrast in composition in multiphase samples, i.e. the image shows the 

distribution of different chemical phases in the specimen surface. With a field emission 

electron emitter (FE), it is possible to obtain images with high magnification. FE-SEM 

has a depth resolution of 1–5 µm and lateral resolution of 5 nm. In addition to imaging, 

elemental analysis can be performed by detection and measurement of X-rays, which is 

commonly referred to as Energy Dispersive X-ray Spectroscopy (EDS, EDX or EDXA). 

EDS can provide quantitative analysis of elemental composition with a sampling depth of 

1–2 microns. The detection limit is 0.1–0.5 wt%. The samples for SEM images need to 

be conductive in order to prevent charging artifacts and consequent loss of image quality. 

Therefore, most electrically insulating samples are coated with a thin layer of conducting 

materials, commonly carbon, gold, or some other metal or alloy. The recent development 

in SEM is environmental scanning electron microscopy (ESEM), which allows the 

introduction of a gaseous environment in the specimen chamber and no pre-coating of the 

insulating samples is required.  

 

One of the first fields in which the scanning electron microscope was consistently applied 

in research was in wood and paper technology, and results have been described in a 

number of publications. The surface structural properties of TMP fibers and fines 

observed by SEM have been reported by Lidbrandt 1980, Johnsen 1995, Braaten 1997, 

Reme 1998, Kangas 2004, Fernando 2008, Fernando 2011, Daniel 2009. Buchanan and 

Washburn described the use of SEM for the examination of the surface and tensile 

fractures of chemical fiber handsheets (Buchanan 1962). Forgacs and Atack used 

scanning electron microscopy to observe the distribution of chemical wood pulp and 

groundwood through the thickness of newsprint (Forgacs 1961). Adusumalli and 

Raghavan et al. have studied the deformation of single fiber in transverse direction by 

using in situ SEM micro-indentation (Adusumalli 2010). Fromm and Rockel et al. 

reported a technique based on the mercurization of lignin and the subsequent 

visualization of mercury by FE-SEM combined with a back-scattered electron detector. 

Fromm found that the lignin distribution across the different layers of the wood cell wall 

could be visualized by SEM (Fromm 2003). Peng et al. have utilized SEM together with 

AFM and XPS to study the surface characteristics of cellulose fibers after laccase and 

alkali treatments (Peng 2010). SEM-EDX was used to detect the silicon distribution in 

the wood cells by measuring cross-sections of wood (Tingaut 2006, Donath 2004, Donath 
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2006). SEM micrographs of sol-gel coatings on cellulose fiber and wood have also been 

reported (Tomš č  008, Tshabalala  00 a, b, Tshabalala 2007). 

 

Atomic Force Microscopy 

The atomic force microscopy (AFM) was first developed by Binning et al. in 1986 to 

overcome a basic drawback with Scanning Tunneling Microscope (STM) which can only 

image conducting or semiconducting surfaces (Binning 1986).  Different from optical and 

electron microscopes which use light or electrons, in AFM, a probe consisting of a sharp 

tip located near the end of a cantilever is raster scanned across the surface of a specimen 

using piezoelectric scanners. The cantilever is typically Si or Si3N4 with a tip radius from 

a few to tens of nm. AFM measures the attractive or repulsive forces between the tip and 

the sample. As the raster-scan drags the tip over the sample, the vertical deflection of the 

cantilever is detected and monitored with a laser beam and a photodiode detector (Meyer 

1990). Three modes of operation; contact mode, non-contact mode, and intermittent 

contact or tapping mode can be used to produce a topographic image of a surface. A 

detailed description of AFM and its basic modes was elaborated in the book by Greg 

Haugstad (Haugstad 2012).  

 

The AFM measurements in this thesis were performed in tapping mode.  In tapping mode, 

in addition to topographical images, the phase images were also captured by measuring 

the phase-shift caused by the changes in the phase angle of the cantilever probe 

interacting with the sample. The phase imaging is useful to investigate surface fine 

features which are obscured by rough topography, and to detect material properties, such 

as stiffness, adhesion, elasticity, and chemical composition. 

 

A set of roughness parameters has been developed for versatile characterization of 

surface properties in three dimensions. The parameters are defined by the ISO 25178 

standard, which is the first international standard taking into account the specification and 

measurement of 3D surface texture (ISO 25178). In this thesis, the following roughness 

parameters are used: Root-Mean-Square (RMS) roughness (Sq), Skewness (Ssk), and 

Kurtosis (Sku). The RMS parameter is the most widely used amplitude roughness 

parameter, and it expresses the standard deviation of height. The surface skewness 

describes the asymmetry of the height distribution within the sampling area. A skewness 

value equal to 0 represents a Gaussian-like surface. A negative value refers to a surface-

porous sample, i.e. the valleys dominate over the peak regimes, whereas, a positive value 

indicates a non-porous surface, i.e. the local maxima dominate over the valleys. The 

surface kurtosis describes the peakedness of the surface topography. A Gaussian value 

for this parameter is 3.0, smaller values indicate broader height distribution and vice 

versa for values larger than 3.0.  
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Measured surface roughness is scale dependent, which means that for an accurate 

analysis both the amplitude and lateral spacing of surface heights should be considered 

when determining the surface roughness. Detailed description of a method for surface 

roughness analysis of pigment coatings at different length scales was elaborated by 

Järnstöm (Järnström 2010). 

 

An advantage of AFM over SEM is that it does not require any special treatments to the 

samples and it has a much higher resolution. AFM has been widely used in material 

science to obtain high-resolution 3D images of a surface at different scales: from atomic 

(1 Å) to micrometer scale with a lateral resolution of 1 nm and the depth/vertical 

resolution of 0.1 nm. AFM imaging has been successfully applied to pulp, paper and 

wood materials, e.g. for the surface morphological studies of mechanical pulps, revealing 

different fiber wall layers and components(Kangas 2004, Kleen 2003, , Hanley 1994; 

Börås 1999; Koljonen 2003, Österberg 2006; Snell 2001; Kangas 2004; Gustafsson 2004; 

Stenius 2008; Li 2010). The AFM has also been used to study sol-gel films/coatings and 

the phase separation of organic-inorganic nanocomposite hybrid coatings (Tshabalala 

2003a, Amerio 2005).  

 

3.3 Spectroscopic methods 

 

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was 

first introduced in the 1960s. Infrared spectroscopy provides information about molecular 

vibration, and permits the identification of functional groups. ATR is a sampling 

technique used in conjunction with infrared spectroscopy where a beam of infrared light 

is passed through the ATR crystal in a way that it reflects at least once off the internal 

surface in contact with sample. This reflection forms the evanescent wave which extends 

into the sample. The penetration depth of the infrared beam into the sample is between 

0.5 and 2 micrometers. Therefore, this technique is not as surface sensitive as XPS and 

ToF-SIMS. A detailed description of the fundamentals and applications of ATR-FTIR 

can be found elsewhere (Stuart 2004). ATR-FTIR has been used to characterize the 

chemical structure of alkoxysilane modified wood (Tingaut 2006, Tshabalala 2003a).  

 

X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectrometers became commercially available in 1969 and were first 

used to study polymers. X-ray photoelectron spectroscopy (XPS), also known as electron 

spectroscopy for chemical analysis (ESCA), is a highly surface sensitive technique for 

analyzing the chemical composition of the outermost layer of a sample with a surface 

analysis depth of 5–10 nm and a lateral resolution of 10 µm. In XPS, the sample is 

irradiated with x-rays usually generated by e ther Mg Kα  1 5 .7 eV  or Al Kα  1486.6 
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eV) excitation sources under ultra-high vacuum conditions. The photons interact with 

atoms in the surface region, resulting in emission of photoelectrons whose energies are 

characteristic of the elements present on the surface. This technique provides a total 

elemental analysis, which can be used to identify the elements qualitatively and 

quantitatively, with the exception of hydrogen and helium. XPS can also provide 

chemical bonding formation of a solid surface (Sain 2000). 

 

XPS has been used in the study of wood surfaces coated with multifunctional 

alkoxysilanes by sol-gel deposition. A covalent bond was observed between extracted 

wood and alkoxysilanes by XPS C1s high resolution spectra (Tshabalala 2003a, b, 

Tshabalala 2007). XPS has also been used to study the elemental and chemical 

composition of pulp fibers (Koljonen 2003, Koljonen 2004, Gustafsson 2004, Börås 1999, 

Mustaranta 2000, Mosbye 2003, Kangas 2007). By XPS, the coverage of lignin and 

extractives on the mechanical pulp surface was estimated by detection of oxygen and 

carbon before and after extraction of the sample with a solvent, such as acetone or 

dichloromethane. 

 

Time-of-Flight Secondary Ion Mass Spectrometry 

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) uses a pulsed primary ion 

beam to desorb and ionize species from a sample surface. The resulting secondary ions 

are accelerated into a mass spectrometer, where they are mass analyzed by measuring 

their time-of-flight from the sample surface to the detector. ToF-SIMS mass spectra can 

be used for determination of the elemental and molecular species on a surface (mass 

spectra); visualization the distribution of individual species on the surface (by imaging); 

and to determine the distribution of different chemical species as a function of depth from 

the surface (depth profiling). The sampling depth of ToF-SIMS is in the range of 1–2 nm 

and the lateral resolution for the imaging ~200 nm. In comparison with XPS, ToF-SIMS 

provides more chemical structural information. However, the surface topographic and 

contamination effects due to high surface sensitivity often make the interpretation of the 

mass spectra complicated for unknown samples.  

 

The application of ToF-SIMS in the study of fiber, wood and paper surfaces has been 

reported by many authors (Detter-Hoskin 1995, Brinen 1993, Pachuta 1994, Fardim 

2005a, b, Tokareva 2011, Bryne 2008, Kangas 2007). ToF-SIMS provides qualitative 

information on the chemical structure of carbohydrates, lignin and extractives and their 

lateral distributions in the outermost surface layer of pulp. ToF-SIMS imaging was found 

a valuable chemical microscopy technique for paper and paper coatings, and to assess the 

spatial distribution of components in wood tissues. ToF-SIMS has also been utilized to 

study the chemical interaction between silane film and metal substrates (Bexell 2003, 

Fedel 2010).  
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4. MATERIALS AND METHODS 

 

4.1 TMP fibers and characterization 

 

TMP fibers and chemical treatments 

The analyzed TMP fibers were latewood-enriched, i.e. thick-walled, long fibers separated 

from 1
st
 stage Norway spruce TMP (Picea abies). The TMP was produced in pilot scale 

(KCL, Oy Keskuslaboratorio – Centrallaboratorium Ab, Espoo) in a single disc refiner 

 B1, 44”  w th 1500 rpm, 450 kPa and spec f c energy consumpt on of 1.  MWh/t. The 

1
st
 stage TMP was screened in a two-stage slot screen (0.15 mm) to remove shives and 

then dewatered on a disk filter. The latewood enrichment was executed by a special 

mobile Noss hydrocyclone treatment at a low inlet consistency of 0.14%. Heavy thick-

walled latewood fibers as well as unfibrillated fibers having a low specific surface area 

tend to move towards the reject stream in the hydrocyclone and thus leave through the 

apex from where they were collected for further investigation. The long fibers were 

separated from this material by Bauer-McNett cascade fractionation according to 

standard SCAN method (SCAN-M6). The +14 mesh and 14/28 mesh fractions were 

mixed. The latewood content of this material was 42% measured by microscopy with the 

method recommended by Mork (Mork 1928). Selected properties of the long fibers are 

given in Table 1.  

 

Table 1. Characteristics of the 1
st
 stage TMP from which the studied long fibers were 

separated for chemical treatments.  

 

 1
st
 stage TMP 

Canadian Standard Freeness (CSF), ml 760 

Length-weighted fiber length (FS200), mm 2.12 

Dynamic Drainage Jar (DDJ)-fines content, % 1.7 

Fiber wall thickness (light microscope), µm 5.21 (0.18)
1
 

Fiber width (light microscope), µm 35.48 (0.90)
1
 

Cell-wall index CWI
2
 0.294 

1
 95% confidence interval is given in the brackets 

2 
CWI = (2 x Fiber wall thickness) / Fiber width 

 

The long fibers were treated either with sodium oxalate solution buffered with oxalic acid 

dihydrate (hereafter called as buffered sodium oxalate, OX) or with hydrochloric acid 

(AC). The pH value of both solutions was approximately 2.5. Reference treatment (REF) 

was performed with deionized water at pH 6. The conditions for all the treatments are 
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given in Table 2. In all cases, fiber consistency was 2% and the treatment temperature 

130ºC. All mechanical treatments, such as mixing and stirring, were the same for all trials.  

 

Table 2.  Fiber treatment conditions. 

 

Sample 

name 

Treatment Amount of 

chemical on 

o.d. fiber 

(mmol/g) 

Initial pH Treatment 

time 

(min) 

Total 

contact time 

(min) 

REF De-ionized 

water 

 6.0 15 53 

OX Na-oxalate 

buffered 

with oxalic 

acid 

dihydrate 

6.0 2.6 15 49 

AC HCl 1.14 2.5 15 51 

 

Fiber characterization   

A special single fiber analysis procedure for inspection with different microscopy 

techniques was developed. This technique enabled the imaging of the same specific fiber 

with all the microscopy methods. The principle is depicted in Figure 3.  

 

 
 

Figure 3. Single fiber inspection sequence with light microscopy, AFM and FE-SEM. 

 

Moist fibers with visible bands of intact outer fiber wall were selected under the light 

microscope. The fibers were placed and aligned in parallel onto a circular glass plate of 

15 mm diameter. The fiber ends were fixed with water-proof tape, and the glass plate was 

then brought to an object slide fixed with a drop of water-glycerin. A drop of water was 

- Light microscopy of unstained material
(brightfield, polarization, fluorescence)

- AFM (gentle dried, prevented from shrinkage)
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applied onto the fibers. Finally, the fibers were covered with a cover slide and kept in a 

cool and dark storage room. For AFM measurements, dry fibers are preferred. The fibers 

fixed on the glass plates and covered with standard cover glass were permitted to dry 

gently in the storage room at 8ºC. Before AFM imaging, the cover glass was carefully 

removed. By this procedure, minor changes in the surface structure cannot be avoided, 

and some shrinkage was observed. These minor changes are assumed not to affect the 

comparison of the samples, since the same preparation procedure was applied to all 

samples. After AFM measurement, the same glass plates with fibers fixed on them were 

studied by FE-SEM. The glass plates were mounted to the sample holder and the fibers 

were sputtered directly on the glass support.  

  

As shown in Figure 3, each single unstained fiber was first inspected in a light 

microscope applying bright field, polarization, surface scatter and combinations of these 

optical techniques. These illumination modes were applied to visualize distinctive parts 

of the fiber wall – bands of intact outer (ML/P) fiber wall, and exposed areas of inner (S2) 

fiber wall. Additionally, selected fibers were stained with Rhodamine Red and Toluidine 

Blue to further improve the visibility of morphologically different fiber wall areas. 

Images were taken from all inspected single fibers. The positions of the different fiber 

wall parts were marked to localize them again when analyzing the fibers by AFM and 

FE-SEM. At least five fibers of each sample type were analyzed.  

 

The AFM measurements were carried out at ambient conditions with a Nanoscope IIIa 

(Digital Instruments Veeco Meterology Group, Santa Barbara, CA) instrument. The 

microscope was placed on an active vibration isolation table (MOD-1, JAS Scientific 

Instruments), which was itself placed on a massive stone table to eliminate external 

vibration noise. All images were obtained with a J-scanner in tapping mode and using 

s l con cant levers  N C15/NoAl, μmasch
TM

) with a radius of curvature of the tips less 

than 10 nm. The free vibration amplitude of the cantilever was 80 ± 5 nm, and a damping 

ratio (tapping amplitude/free amplitude) within 0.60–0.75 was used for imaging. 

Topographical and phase images were recorded simultaneously using a scan speed of 

0.8–1 Hz with a pixel resolution of 512 × 51 . The  mage s ze was   μm ×   μm.  n 

average 9 images, varying from 4 to 12, were measured for both inner and outer fiber 

wall areas in order to obtain statistically representative data. RMS roughness, kurtosis 

and skewness, calculated with the commercial SPIP-software (Image Metrology A/S, 

Denmark), were used for characterization of surface differences between the outer and 

the inner fiber wall areas. 

 

The morphology of pulp fibers was also imaged using a Field Emission Scanning 

Electron Microscope (FE-SEM, Jeol JSM 6335F). A low acceleration voltage (1 kV) was 

used. Fibers were sputter-coated with a thin layer of Au-Pd. The same areas as already 

studied with the light microscope and measured by AFM were localized in FE-SEM.  
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4.2 Modification and characterization of wood and paper  

 

Wood and paper substrates and sol-gel coatings 

The wood substrate materials in Paper II were sawn timber from pine sapwood (Pinus 

sylvestris) and heat-treated spruce (Picea abies). The sample size was 100 mm × 50 mm 

× 5 mm (longitudinal × tangential × radial for pine and longitudinal × radial × tangential 

for spruce). Samples with the dimensions of 10 mm × 10 mm × 5 mm were cut from the 

original samples and subjected to AFM and ToF-SIMS analyses. Half of the original 

samples (50 mm × 50 mm × 5 mm) were used for contact angle measurements. The heat-

treated spruce was Thermo-S (S stands for Stability) produced according to a 

methodology developed by VTT (Viitaniemi 1994). All the wood specimens were 

preconditioned at 50% of relative humidity (RH) and 20ºC prior to the sol-gel 

modification. 

 

The wood and paper substrates in Papers III-V were base paper (43 g/m
2
, moisture 

content 8.3%, from unbleached softwood chemical pulp, Paper III), industrial phenolic 

resin (PF) impregnated paper (120 g/m
2
, delivered by Stora Enso Laminating Paper Oy, 

Kotka, Finland, Paper IV) and birch plywood (Paper V). Industrial impregnated paper is 

normally pre-cured at 160ºC for 20–25 s. 

 

Three silane-based sol-gel coatings (coating A, B, C) were developed by VTT and used 

in Papers II-V in order to modify surface energy and control the moisture behavior of the 

studied wood and paper. Coatings A and B are fluorine free coatings, which differed from 

each other in terms of the length of the organic aliphatic chain. The alkoxysilane in 

coating A is methyltriethoxysilane (MTEOS) and in coating B octyltriethoxysilane 

(OTEOS). Coatings A and B were either spread onto the tangential pine and the radial 

heat-treated spruce surfaces (Paper II) using a brush or spray coated into base paper 

(Paper III) and industrially PF impregnated paper (Paper IV). Coating C contains a 

fluorocarbon group (CF3–) attached to the silane backbone (fluorocarbon-containing 

triethoxysilane (FTEOS)).  The sol-gel coatings B and C and phenolic resin were used in 

Paper V for the paper modification. The modified paper was further pressed onto 

plywood at 135ºC, 18 bar, for 5 minutes. In this thesis, the sol-gel coatings are labeled as 

MTEOS, OTEOS, FTEOS, corresponding to labels coating A, B, C used in Papers I-V. 

 

Spray coating of sol-gels to paper was performed with a Spray-combo device developed 

by VTT in Jyväskylä, Finland using different amounts of sol-gel measured by dry basis 

weight. The solids content of the coating was optimized to 15 wt%. The desired amount 

of coating was applied by varying the amount of coating layers (1–5) and non-volatile 

content, followed by blow drying and a separate heat treatment (thermal curing) of coated 

papers.  
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The wet spreading amounts of the coatings for pine sapwood and heat-treated spruce 

were 100–120 g/m
2
. In papers III-IV, the same spraying amount was applied to base 

paper and PF impregnated paper with a thermal curing at 110ºC for 1 hour.  As a 

reference treatment, paper was sprayed with water (same amount as used for preparing 

the coatings) followed by a thermal heating at 110ºC for 1h. In paper V, the OTEOS and 

FTEOS sol-gel coatings were also applied by spray coating to the paper substrates. The 

details can be found in Table 3. 

 

Table 3. Paper samples treated with OTEOS and FTEOS.  

 

Paper samples Treatment Treatment conditions 

Base paper + OTEOS Base paper was surface 

treated with OTEOS 

(coating amount 1.3 

g/m
2
, dry weight) 

The coating was cured in 

the oven at 110ºC for 15  

minutes 

Base paper + FTEOS Base paper was surface 

treated with FTEOS 

(coating amount 0.8 

g/m
2
, dry weight) 

The coating was cured in 

the oven at 110ºC for 15 

minutes 

Industrially impregnated 

paper + OTEOS 

Industrially impregnated 

paper was surface 

treated with OTEOS 

(coating amount 1.1 

g/m
2
, dry weight)  

The coating was cured in 

the oven at 110ºC for 15 

minutes  

Industrially impregnated 

paper + FTEOS 

Industrially impregnated 

paper was surface 

treated with FTEOS 

(coating amount 1.6 

g/m
2
, dry weight)  

The coating was cured in 

the oven at 110ºC for 15 

minutes 

 

Surface analysis 

The morphology of sol-gel coated wood and paper was examined by SEM (Paper III-IV), 

AFM (Paper II-V) and CLSM (Paper III-IV). XPS and ToF-SIMS were used to examine 

the surface chemical composition of studied wood and paper samples (Paper II-V). ToF-

SIMS was mainly used to examine the distribution of sol-gel coatings on the surfaces of 

modified wood and paper. In addition, ATR-FTIR was performed to probe the possible 

chemical bonds between the sol-gel coating and impregnated paper (Paper III). The 

wettability of wood and paper was evaluated by contact angle measurements (Paper II-IV) 

and surface energy determination (Paper IV). The contact angles were determined by the 
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sessile drop method, where a liquid droplet was deposited on the solid surface and the 

contact angle was determined in time. A modified Cobb method (ISO 535) was used to 

evaluate the water absorption of film-coated plywood (Paper V). More details about the 

surface analysis can be found in Papers II-V. 
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5. RESULTS AND DISCUSSION 

 

This chapter contains a summary of the main results from Papers I-V. In section 5.1, the 

effects of chemical treatments on micro and nano-scale surface structure of 1
st
 stage TMP 

latewood fibers from Norway spruce are discussed (Paper I). Sections 5.2 and 5.3 discuss 

the surface and wetting properties of pine sapwood, heat-treated spruce and paper 

substrates modified with sol-gel coatings (Paper II-IV). Section 5.4 summarizes the 

results from the laminated plywood (Paper V). 

 

5.1 Characterization of TMP fiber wall surface structure  

 

In this section, the effect of buffered sodium oxalate (OX) and hydrochloric acid (AC) on 

fiber wall surface structure of TMP fibers is discussed. In this case, the outer as well as 

the inner fiber wall layers of the untreated and chemically treated fibers were separately 

analyzed by LM, AFM and FE-SEM.  

 

The results show that the inner (S2) and outer (M/P) layers can be clearly distinguished 

by light microscopy with various optics. The outer layer appears as bands around the 

fiber, and the inner layer can be seen as swollen areas (Figure 4). In order to find out the 

effect of chemical treatments, the outer and inner layers were further investigated with 

AFM and FE-SEM. The representative AFM phase images (Figure 5) reveal that the 

inner and outer fiber walls of the reference pulp (REF) can clearly be distinguished due to 

their different visual appearance and roughness. The outer layer is rougher than the inner 

layer due to the different structural properties of the outer and inner wall layers. When 

fibers were treated with OX, the inner layer appears similar to that of REF. The outer 

layer is however rougher than the one for REF. With respect to the effect of hydrochloric 

acid on the inner layer and outer layer, the AC treatments cause some granular structures 

in the inner layer which can be interpreted to be lignin. In addition, the inner layer for AC 

fiber is clearly rougher than that of the REF fiber and slightly rougher than that of the OX 

fiber. This is probably partly due to the presence of the granules. However, the average 

surface roughness values calculated from nine images from each type of wall area 

(Figures 6-8) indicate that the different chemical treatments do not cause significant 

differences in the mean Sq roughness values of the inner layers. However, OX results in 

the highest surface roughness in the outer layer and causes the largest difference between 

the outer and the inner wall roughness. As can be seen from the Sku values (Figure 7), the 

AC causes the largest change in the surface peak distribution of the inner wall areas. The 

largest difference in kurtosis between the inner and the outer fiber wall areas is found in 

AC-treated samples. No visible changes are introduced to the surface height distribution 

of the outer fiber wall areas by any of the chemical treatments. Surface porosity of inner 

and outer layers was evaluated by the skewness, Ssk, shown in Figure 8. The AC 
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treatment creates most surface pores in the inner wall areas. Similar, but lower tendency 

is seen for the inner fiber wall areas of the OX treated fibers. The surface pores can be 

ascribed to the dissolved hemicelluloses by AC or OX treatments. The outer layer 

surfaces appear to be less porous than the corresponding inner layers, especially in the 

REF sample. This is assumed to be due to the high lignin and low hemicellulose content 

of the outer fiber walls, which decreases the possibility for removal of hemicellulose by 

hydrolysis.   

 

 
 

Figure 4. Intact outer (M/P) fiber wall areas and exposed inner (S2) fiber wall area along 

fiber length axis revealed by different light microscopy techniques.  
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Figure 5. AFM phase images, fibril angle and surface roughness parameters of reference 

fiber (REF), fiber treated with buffered sodium oxalate (OX) and fiber treated with 

hydrochloric acid (AC). The images are 3 m x 3 m.  

c) AC samples

Fibril angle, º 25 76

Sq, nm 23.6 26.7

Sku 4.38 2.91

Ssk -0.78 0.13

b) OX samples 

Fibril angle, º 12 69

Sq, nm 21.6 54.4

Sku 3.96 2.69

Ssk -0.41 -0.07

a) REF samples

Fibril angle, º 20 87

Sq, nm 14.2 45.3

Sku 4.49 2.28

Ssk 0.26 0.10

inner wall outer wall

inner wall outer wall

inner wall outer wall
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Figure 6. RMS roughness Sq of inner and outer fiber wall parts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Kurtosis Sku of inner and outer fiber wall parts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Skewness Ssk of inner and outer fiber wall parts. 
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The same single fibers, which were measured by AFM, were also studied by FE-SEM to 

compare the information obtained with these two techniques. As shown in Figure 9, for 

visual characterization of the fiber surface structures, FE-SEM can give high-quality 

information comparable to AFM.  

 

 
 

Figure 9. FE-SEM images of the inner (S2) fiber wall surface of the reference sample 

(REF). The small colored image is a corresponding AFM image (3 m x 3 m). The 

scale bar in image 1 is 1 m.  

 

5.2 Surface characteristics of sol-gel coated pine sapwood and heat treated spruce   

 

The effects of the two alkoxysilane sol-gel coatings (MTEOS and OTEOS) on surface 

properties and moisture behavior of pine sapwood and heat-treated spruce were studied 

by AFM, XPS, ToF-SIMS and water contact angle measurements (Paper II). The results 

are briefly discussed below.  

 

Surface morphology  

The surface morphology of uncoated and coated pine sapwood and heat-treated spruce at 

micro-scale were determined by AFM. As apparent in Figure 10, the deposited sol-gel 

coatings appear as particulate and/or film-like structures.  MTEOS appears as a more 

even layer than OTEOS. In order to estimate the coating-induced changes in smoothness, 

the surface RMS roughness (Sq, Figure 11) values of pine sapwood and heat-treated 

spruce were calculated from at least 8 topographical images. It is seen that MTEOS has a 

stronger tendency than OTEOS to smoothen the wood surfaces at the studied micro-scale. 

In addition, the level of roughness of the coated samples is relatively the same 

independent of the substrate (wood species). The SEM-EDS imaging of coated wood 

cross-sections suggests that MTEOS likely deposits more on the surface and in the upper 

layers and therefore smoothens the substrate surface structure (Appendix I). However, 

more images are required to statistically confirm this observation.  
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Figure 10. Representative AFM topographical and phase images of a) pine sapwood b) 

pine sapwood with MTEOS, c) pine sapwood with OTEOS, d) heat-treated spruce, e) 
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heat-treated spruce with MTEOS, and f) heat-treated spruce with OTEOS. The image size 

 s 6 μm × 6 μm for p ne sapwood and   μm ×   μm for heat-treated spruce. The scale bar 

is 500 nm in images a-c and 200 nm in images d-f. 

 

 
 

Figure 11. Surface RMS roughness, Sq, of pine sapwood and heat-treated spruce before 

and after modification with MTEOS and OTEOS. The AFM image size is 3 µm x 3 µm.  

 

Surface chemistry  

Surface composition of the wood samples was studied by XPS using both survey and 

high resolution spectra. Previous research verified the chemical covalent bonds between 

the sol-gel coating and the wooden surface by ATR-FTIR and XPS (Tshabalala 2003a). 

The elemental composition from survey spectra and the concentrations of C1–C4 

components from C1s high resolution spectra are summarized in Table 4. C1 corresponds 

to carbon linked to hydrogen or carbon (–C–H or –C–C), C2 to carbon linked to one 

oxygen (–C–O), C3 to carbon linked to two non-carbonyl oxygen atoms (–O–C–O–), or 

one carbonyl oxygen (–C=O), and C4 to carbon linked to carbonyl and non-carbonyl 

oxygen (O=C–O–).The elemental composition data indicates a successful deposition of 

the sol-gel coatings. The silicon content of the coated specimens is approximately 18% 

(MTEOS) and 14% (OTEOS) whereas practically no silicon is observed on the uncoated 

pine sapwood. The corresponding silicon amounts are approximately 12% (MTEOS) and 

13% (MTEOS) for heat-treated spruce. The carbon content of the coated specimens 

decreases approximately 42% (MTEOS) and 30% (OTEOS) for pine sapwood and 

approximately 29% (MTEOS) and 34% (coating B) for heat-treated spruce. On the other 

hand, the oxygen content increases approximately 24% (MTEOS) and 14% (OTEOS) for 

pine sapwood, and approximately 16% (MTEOS) and 20% (OTEOS) for heat-treated 

spruce. The increase in the surface oxygen content and decrease in the surface carbon 
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content suggests that the coated wood surfaces are completely covered by the sol-gel 

coatings. The typical thickness of the deposited sol-gel coatings was ~1–2 μm, whereas 

the depth resolution of XPS is about 5–10 nm, therefore, it is only the composition of sol-

gel coatings which is measured by XPS. It is also interesting to note that OTEOS results 

in similar surface chemistry for pine sapwood and heat-treated spruce. However, MTEOS 

absorbs more into the surface of pine sapwood than onto the surface of heat-treated 

spruce. It is known that the main components of wood (cellulose, hemicelluloses, and 

lignin) degrade in different ways under heat. Cellulose and lignin degrade more slowly 

and at higher temperatures than the hemicelluloses. The extractives in wood degrade 

more easily, and these compounds evaporate from wood during the heat treatment. For 

example, migration of wood resins onto the surface of wood has been observed at low 

temperatures 100–160°C; the lipophilic compounds in wood, such as fats, waxes, and 

steryl esters, migrate to the surface of wood after heat treatment and form a monolayer or 

a structured multilayer. In general, a rise in temperature from 180 to 225°C (temperature 

used in heat treatment process) results in a steady increase of the mass fraction of lignin 

with a simultaneous decrease of the carbohydrate content (Alén 2002). Therefore, in 

principle, there are less hydroxyl groups on heat-treated spruce surface than on pine 

sapwood accessible to the hydrogen bonding with the applied sol-gel coatings. It is 

reasonable to conclude that with the same coating amount, less coating will be covalently 

bound onto heat treated spruce surface.  

 

Regarding the chemical bonds, both coatings led to a decrease of the C2–C4 components. 

The increase of C1 component for all the sol-gel coated samples is evidence of the 

presence of C–C and C–H structures arising from the hydrocarbon chains of the coatings. 

Th s  s  n agreement w th Tshabalala’s study which ascribed the increase of the C1 

component to the hydrocarbon chains in the coatings. 
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Table 4. Surface chemistry of uncoated and coated pine sapwood and heat-treated spruce 

by XPS. 

 

Samples C O Si C1 (%) C2 (%) C3 (%) C4 (%) 

Pine sapwood 74.0  26.0  <0.1 60.9  26.0  7.1 5.9  

Pine sapwood 

+ MTEOS 

32.3  49.7  18.0  77.8 12.7  4.0 5.5 

Pine sapwood 

+ OTEOS 

44.8  40.8 14.5  85.6 12.2 1.9 1.4  

Heat-treated spruce 79.4  20.6  <0.1 69.6  23.6  4.0 2.8  

Heat-treated spruce 

+ MTEOS 

50.8  36.7  12.5  81.3 15.2 1.3 2.3 

Heat-treated spruce 

+ OTEOS 

45.5  40.6  13.5  82.7 12.9 2.5 1.9  

 

Distribution of sol-gel coatings on wood surfaces 

The distribution of the applied sol-gel coatings on pine sapwood and heat-treated spruce 

is shown in Figure 12. The light-dark contrast in the images represents high-low ion 

intensity. The sol-gel coatings are spread fully on the pine sapwood surfaces with a 

slightly higher deposition onto the cell walls. For heat-treated spruce, both coatings 

deposit on the sample surface with a high concentration of MTEOS around the pit edges 

(Figure 12d). Thin coatings are presumably formed since the original wood texture is 

visible. Moreover, less coating is found on the fiber macro-voids of heat-treated spruce 

than on the pine sapwood. This observation is reasonable since the surface of heat-treated 

spruce is much rougher and less polar than pine sapwood (Figure 11, Table 4), which 

suggests weaker adhesion of the coating to the heat-treated spruce than to the pine 

sapwood.  
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Figure 12. Total positive and Si

4+ 
ion distribution on (a) pine sapwood, (c) pine sapwood 

with MTEOS, (e) pine sapwood with OTEOS, (b) heat-treated spruce, (d) heat-treated 

spruce with MTEOS and (f) heat-treated spruce with OTEOS.  

 

Water repellency 

The effect of sol-gel coatings on water repellency of pine sapwood and heat-treated 

spruce was studied by water contact angle measurements. The results obtained from 

contact angle measurements (Figure 13) indicate that both sol-gel coatings resulted in 

rather similar contact angles irrespective of the coated substrate: immediately after 

stabilization on the surfaces, the initial contact angle values on the two wood materials 

were ~80° for MTEOS and ~105° for OTEOS coating. In addition, monitoring of the 

droplet volumes throughout the contact angle measurements indicated that OTEOS 

results in an impermeable surface for both pine sapwood and heat-treated spruce. 

MTEOS leads to a permeable surface for pine sapwood, but an impermeable one for heat-

treated spruce. Thus, OTEOS performs as a better barrier for pine sapwood and heat-

treated spruce than MTEOS. In addition, one should note that the reference heat-treated 

spruce is slightly more hydrophobic than the reference pine sapwood. It has been reported 

earlier that drying wood at high temperatures lowers the surface wettability, partly due to 

the migration of wood extractives to the surface (Nuopponen 2003). The higher contact 

angle for untreated heat-treated spruce may be due to different factors: (1) the 

hydrophobic nature of heat-treated spruce, (2) presence of adequate fine (nano-scale) 
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surface features on the heat-treated spruce samples (as a result higher roughness values 

compared to the pine surfaces were recorded), or (3) both of these factors. Water uptake 

of wood is known to be slower in the radial direction compared to the tangential or 

longitudinal directions (Derome 2005), and thus, the water permeability of the tangential 

pine and the radial heat-treated spruce surfaces are expected to differ from each other. In 

addition, the bordered pits in spruce are known to be mainly at the aspirated state which 

limits water transfer through the pit openings. On the other hand, thermal treatment 

changes the porosity and density of wood and can make the wood surfaces more 

permeable compared to the untreated material (Pfriem 2009). However, with Norway 

spruce drastic damages due to thermal treatments, e.g. detachment of cells or cell wall 

layers, or destruction of pits through degradation of pit membranes have not been 

observed (Boonstra 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The water contact angle measurements for the uncoated and the coated pine 

sapwood, and the heat-treated spruce. The polypropylene film was used as a non-

penetrating reference surface. 

 

5.3 Surface characteristics of spray coated base paper and impregnated paper  

 

Surface morphology  

The sol-gel coatings (MTEOS and OTEOS) used above for wood surface modification 

were also used to spray coat the base paper and PF impregnated paper (Papers III-IV). A 
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water treatment was used as a reference to evaluate the effect of curing process of the 

coatings on the surface properties.  

 

The surface morphology of base paper and PF impregnated paper before and after 

different treatments was studied by CLSM, SEM and AFM. The CLSM and SEM images 

were used to investigate the surface morphology at macro-scale, while AFM images gave 

more structural details at micro-scale. In Figure 14, the CLSM images reveal that the 

structure of water-treated as well as MTEOS coated base paper appears rather similar to 

the reference base paper and PF impregnated paper. Similarly no clear visual difference 

between the surfaces of the OTEOS coated base paper and the reference base paper can 

be observed. Nevertheless, the surface of OTEOS coated impregnated paper appears to 

differ from the other samples. The fibers under the coating are no longer visible. This 

sample consists of large continuous and smooth areas which are separated by cracks. In 

order to gain more information of the surface morphology, SEM images were analyzed 

(Figures 15 & 16). It can be seen that the structure of water-treated base paper appears 

rather similar to that of the reference. MTEOS together with OTEOS appears as smooth 

films on the fiber surfaces of base paper and partially fills the intersections of the 

neighboring fibers.  For the PF impregnated paper, the water treatment causes a more 

continuous surface with partially exposed fiber structures. This is because the industrially 

impregnated paper is partially cured; consequently, the structural change may have been 

caused by the further curing of the PF resin in the paper during the heat treatment. The 

surface morphology of the impregnated paper with MTEOS resembles that of the 

untreated impregnated paper with the same kind of structural boundaries (cracks) and 

local defects which are possibly due to bubbles or local de-wetting. In addition, local 

cracks induced by the coating are observed. In comparison with MTEOS, OTEOS results 

in larger continuous and smooth areas on the impregnated paper in spite of the local 

defects and cracks after the treatment. A further study of the deposited film morphology 

at micro-scale was carried out by AFM. As shown in Figure 17, it is evident that the 

deposited sol-gel films on base paper surfaces are virtually discontinuous. Both coatings 

appear to behave differently on the surfaces of industrially impregnated paper; in 

particular, particle-like structures can be observed on the surface of OTEOS coated paper 

(Figure 17g and h).  
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Figure 14. CLSM images of reference paper, treated base paper and PF impregnated 

paper. The image size is 1.5 mm x 1.5 mm.  
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Figure 15. SEM micrographs of the surfaces of (a) base paper, (b) base paper with water 

treatment, (c) base paper with MTEOS, and (d) base paper with OTEOS. The scale bar is 

100 μm and 1 μm, respectively. The areas marked with a circle indicate intersections of 

neighboring fibers being partially filled by the applied coatings. 
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Figure 16. SEM micrographs of the surfaces of (a) impregnated paper, (b) impregnated 

paper with water treatment; (c) impregnated paper with MTEOS, and (d) impregnated 

paper with OTEOS. The scale bar  s 100 μm. 
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Figure 17. Representative AFM  topographical and phase images of a) base paper, b) 

base paper with water treatment, c) base paper with MTEOS, d) base paper with OTEOS, 

e) impregnated paper, f) impregnated paper with water treatment, g) impregnated paper 
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with MTEOS, and h) impregnated paper with OTEOS. The image size is 2.5 µm x 2.5 

µm. The scale bar is 200 nm. 

 

The effect of different treatments on surface roughness of base and impregnated paper at 

macro-scale and micro-scale was investigated by CLSM and AFM and the results are 

compiled in Tables 5 and 6.  As can be seen from Table 5, all the treatments decrease the 

surface roughness of base paper. However, the sol-gel coatings cause the largest decrease 

in RMS roughness in particular at the micro-scale. It is evident that MTEOS results in a 

smoother surface than OTEOS at both macro-scale and micro-scale. Furthermore, though 

no clear change in surface topography by water and heat treatment was observed from 

microscopic images, the treatment (the curing process) actually decreases the surface 

roughness. With respect to impregnated paper, water treatment increases the surface 

roughness at both macro- and micro-scale due to the exposed fibers (Figure 16b) which 

make the surface rougher after the treatment. MTEOS and OTEOS have different effects 

on the surface roughness at different length scales. At macro-scale, similar to the water 

treatment, MTEOS results in a slightly higher roughness compared to that of the 

untreated impregnated paper. The topographical features and roughness of MTEOS 

coating derive partially from the defects of the underlying impregnated paper; however, 

additional cracking and defects are very likely caused by the coating procedure and the 

coating itself (Figure 16c). The opposite result is found at micro-scale, i.e. a slightly 

lower roughness/smoother surface is obtained. OTEOS tends to result in a decreased 

surface roughness at macro-scale but an increased roughness due to the presence of 

granular structures at micro-scale (Figure 17h). OTEOS with the longer alkyl chains are 

hence concluded to increase the fine structure at micro scale but fill the cavities at macro 

scale more effectively than MTEOS. 

 

Table 5. Surface roughness of paper samples measured by CLSM. The image size is 1.5 

mm × 1.5 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

Samples RMS roughness (µm) 

Bas paper 

Base paper + water treatment 

Base paper + MTEOS 

Base paper + OTEOS 

Impregnated paper 

Impregnated paper + water treatment 

Impregnated paper + MTEOS 

Impregnated paper + OTEOS 

27.2 

18.5 

19.0 

21.5 

23.3 

33.1 

31.3 

15.8 
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Table 6. Surface roughness of paper samples measured by AFM. The image size is 6 µm 

x 6 µm for base paper and 2.5 µm x 2.5 µm for PF impregnated paper.   

 

 

 

 

 

 

 

 

 

 

 

 

Surface chemistry  

XPS and ATR-FTIR were used to find out the effect of different treatments on the 

surface chemical properties of base paper and impregnated paper. The same treatments 

for the base paper and the industrial PF impregnated paper were used.  

 

The average results from the XPS survey spectra measured from three different spots and 

their standard deviations are shown in Table 7. A higher atomic percent concentration of 

silicon is detected from the surface of the base paper with MTEOS than with OTEOS. 

This is logical result keeping in mind the longer aliphatic chain in OTEOS, which 

contributes to a stronger signal to carbon. It is also worth noting that the water treatment 

of base paper slightly decreases the surface carbon concentration and increases the 

oxygen concentration. This is probably due to the partial dissolution and migration of 

water soluble species, such as carboxylates, into the bulk during drying. For impregnated 

paper, after water treatment, a higher O/C ratio is found. This might be caused by 

previously partially cured PF resin which is further polycondensed/hardened during water 

and heat treatment. Similarly as for base paper, higher O/C and Si/C ratios are obtained 

for the paper with MTEOS than that with OTEOS. Furthermore, the atomic concentration 

of Na originating from the PF resin is lower for the sol-gel coated papers.  A higher 

concentration of Na is found on the impregnated paper modified by water treatment. This 

is probably due to migration of Na onto the surface during the treatment.  

 

The deconvolution and curve fitting results from the C1s XPS high resolution spectra are 

presented in Table 8. In general, the C1 represents the nonoxidized carbon, while C2–C3 

refers to the oxidized carbon. The water and heat treatment resulted in a slight decrease of 

C1 compared to the untreated base paper. The decrease of C1 is quite similar to that 

observed as a result of an extraction process (Fardim 2005a). Only two peaks (C1–C2) 

Samples RMS roughness (nm) 

Bas paper 

Base paper + water treatment 

Base paper + MTEOS 

Base paper + OTEOS 

Impregnated paper 

Impregnated paper + water treatment 

Impregnated paper + MTEOS 

Impregnated paper + OTEOS 

143.0 

99.2 

26.0 

52.3 

3.4 

3.7 

2.5 

8.0 
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are resolved for both sol-gel coated samples. The C1 (C–C, C–H) peak was mainly 

attributed to the alkyl group in the coatings, while the C2 peak is ascribed to the C–O–Si 

or C–O–H bonds. In contrast to the reference and water-treated samples, the percentage 

of C2 is much less than that of C1 for both coatings. A marked difference is also found 

between the coatings; the C1/C2 ratio for MTEOS coating is ~5.6:1 whereas for OTEOS 

it is ~11.4:1. This difference reflects the difference between the length of the alkyl groups 

of MTEOS and OTEOS. The C3 and C4 components, which are characteristic of the 

fibers in the base paper, are not observed for sol-gel coated samples suggesting a rather 

complete coverage of the fibers on the paper surfaces by the applied coatings. 

 

As for impregnated paper, the water treatment results in a decrease of C1 and C2 and a 

clear increase of C3. The increased concentration of the C3 component is likely due to 

the curing of the PF resin during the heating process, i.e. oligomers are formed through 

dimethylene ether linkages which may split to form aromatic aldehydes (Knop 1979). 

The C1/C2 ratio for MTEOS coating is ∼7.5:1, whereas for OTEOS it is ∼17.5:1. 

 

It can also be seen from Table 7 and 8 that the highest O/C and Si/C is found for base 

paper with MTEOS. When compared to the base paper, with the same coating, lower 

ratios are observed on the surface of impregnated paper.  

 

The ATR-FTIR results (Fig. 4, Paper IV) reveal that the water and heat treatment induces 

further curing of the PF resin, and the sol-gel coatings form the Si–O–C bonds with the 

hydroxyl groups in impregnated paper. 

 

The distribution of sol-gel coatings on the paper surfaces were evaluated by ToF-SIMS 

imaging. The representative ToF-SIMS Si ion images are shown in Figures 18 & 19, 

which also contains the total positive ion images. High contrast (light) pixels in the 

images indicate high secondary ion peak intensities. Part of the differences in the 

intensities was caused by the topographical effects. The surface topography can be 

envisaged from the total ion images. In the Si ion images the intensity scale is set to the 

same level to compare the samples. Both the sol-gel coatings spread quite uniformly over 

the base paper and PF impregnated paper surfaces. Thin coating layers are presumably 

formed on base paper surfaces because the original texture of fibers is still visible. It is 

noted by SEM-EDS (Appendix II) that MTEOS is observed on both sides of base paper. 

This is probably due to the short aliphatic chain in MTEOS, which allows it penetrate 

easier.  
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Figure 18. Positive total ion (left) and Si

4+
 ion (right) ToF-SIMS images of (a) base 

paper, (b) base paper with water treatment, (c) base paper with MTEOS, and (d) base 

paper with OTEOS. The scale bar is 100 μm. 

 

 
 

Figure 19. ToF-SIMS Si ion distribution on the surfaces of (a) impregnated paper, (b) 

impregnated paper with water treatment, (c) impregnated paper with MTEOS, and (d) 

impregnated paper with OTEOS. The scale bar  s 100 μm.  
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Table 7. Surface atomic compositions (%) of the studied paper samples. The standard 

deviations from three measured spots are in parentheses. 

 

Samples C % O % Na % Si % O/C Si/C 

Base paper 64.8 

(1.3) 

34.5 

(1.1) 

− 0.7 

(0.4) 

0.53 0.011 

Base paper + water treatment 62.4 

(1.4) 

37.6 

(1.4) 

− <0.1 0.60 − 

Base paper + MTEOS 17.3 

(0.4) 

59.7 

(1.0) 

− 23.0 

(0.9) 

3.45 1.33 

Base paper + OTEOS 39.9 

(0.8) 

44.1 

(0.8) 

− 16.0 

(0.6) 

1.10 0.40 

PF impregnated paper 87.0 

(3.0) 

10.1 

(1.9) 

2.7 

(1.4) 

0.2 

(0.3) 

0.12 0.002 

PF impregnated paper + 

water treatment 

72.0 

(1.4) 

17.6 

(0.7) 

10.3 

(0.8) 

<0.1 0.24 − 

PF impregnated paper + 

MTEOS 

28.3 

(2.5) 

51.6 

(2.3) 

0.2 

(0.4) 

19.9 

(0.2) 

1.82 0.70 

PF impregnated paper + 

OTEOS 

44.5 

(1.3) 

40.5 

(1.0) 

<0.1 15.0 

(0.4) 

0.91 0.34 
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Table 8. XPS C1s peak deconvolution results for the studied paper samples. The standard 

deviations from three measured spots are in parentheses. 

 

Samples C1  

(C–C,  

C–H) 

C2  

(C–O–C, 

C–OH) 

C3 

(O–C–O, 

C=O) 

C4  

(O–C=O) 

Base paper 

Binding energy (eV) 

38.0 (5.9) 

284.8 

49.5 (6.1) 

286.4 

10.2 (2.4) 

287.8 

2.3 (2.1) 

288.9 

Base paper + water 

treatment 

Binding energy (eV) 

31.6 (1.5) 

 

284.8 

53.2 (2.3) 

 

286.4 

13.3 (0.5) 

 

287.8 

2.0 (0.3) 

 

288.9 

Base paper + MTEOS 

Binding energy (eV) 

84.8 (1.2) 

284.8 

15.2 (1.2) 

286.7 

− − 

Base paper + OTEOS 

Binding energy (eV) 

91.7 (1.1) 

284.8 

8.3 (1.1) 

286.7 

− − 

PF impregnated paper 

Binding energy (eV) 

95.6 (0.9) 

284.8 

4.4 (0.9) 

286.3 

− − 

PF impregnated paper 

+ water treatment 

Binding energy (eV) 

89.1 (0.8)  

284.8 

3.7 (0.6)  

286.3 

7.2 (0.9)  

288.2 

− 

PF impregnated paper 

+ MTEOS 

Binding energy (eV) 

88.2 (2.5)  

284.8 

11.8 (1.3)  

286.3 

− − 

PF impregnated paper 

+ OTEOS 

Binding energy (eV) 

94.6 (0.8)  

284.8 

5.4 (0.8)  

286.3 

− − 

 

Water repellency  

The sol-gel coatings (MTEOS) and OTEOS) were used in order to modify the surface 

energy. The two coatings containing either a short (–CH3) or a longer organic aliphatic 

chain (–CH3(CH2)7), led to differences in the hydrophobicity of paper substrates. The 

water contact angle results (Figure 20) show that both coatings reduce the hydrophilicity 

of base paper and PF impregnated paper resulting in an approximate water contact angle 

of ~80° and ~105°, respectively. The water contact angle of the untreated and water-

treated paper was hardly measurable, because a water droplet placed on the paper surface 

penetrated completely into the paper after only a few seconds. The droplet volumes were 
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also recorded for evaluation of penetration of water through the paper surfaces. As a non-

permeable reference surface, a polypropylene film was used. The decrease in volume of 

the droplets on the polypropylene (PP) surface is due to evaporation of water, i.e. no 

penetration of water through the plastic film takes place. The wetting ability and 

absorptivity of base paper is clearly reduced by both sol-gel coatings. Only evaporation 

and slight spreading of water droplets took place on the sol-gel coated surfaces within 

600 s. The volumes of the water droplets on the samples treated with MTEOS and 

OTEOS are found to decline at the same slow kinetics as that measured on a completely 

non-permeable polypropylene film. This indicates that only evaporation of water takes 

place on those surfaces. Consequently, the absorptivity of base paper is clearly reduced 

by both sol-gel coatings as the surface is mostly covered by silica coatings and cellulose 

is not easily accessible to water. These results indicate that the alkyl chain length in 

alkoxysilane has an impact on the hydrophobicity of the coated base paper. This 

coincides well with earlier studies where a longer alkyl chain has been found to result in a 

higher hydrophobicity (Zhu 2011, Textor 2010). It can be concluded that in our case, 

MTEOS with only one carbon in its alkyl group is not effective enough to impart 

adequate hydrophobicity to the base paper though it reduces the absorptivity. The higher 

hydrophobicity of OTEOS is also partly attributed to its higher surface roughness as 

revealed by AFM (Table 6). 

 

The water contact angle for the untreated impregnated paper is 20°, indicating a relatively 

hydrophilic surface. Furthermore, a sudden drop in the contact angle is observed after ca. 

2 minutes indicating absorption. When the paper sample was sprayed with water and 

heat-treated, the contact angle is increased to ~80°. This is due to the partial curing of the 

PF on the paper surface. MTEOS yields a slightly more hydrophilic surface than water 

treatment, the contact angle being ~70°. OTEOS yields a hydrophobic surface with a 

contact angle of ~105°. The more hydrophobic nature of the OTEOS compared to the 

MTEOS is due to the longer aliphatic chains. The changes in droplet volumes on the 

MTEOS and OTEOS surfaces are equal with the ones on the PP surface, which indicates 

that only evaporation is reducing the droplet volume. The calculated surface energies, 

divided into polar and dispersive components, for impregnated paper after different 

treatments (Fig. 8, Paper IV) indicate that OTEOS leads to a less polar surface than 

MTEOS, which in turn is more polar than the reference (the impregnated paper with 

water and heat treatment). This is very likely due to the long aliphatic (non-polar) chains 

of OTEOS. The difference between the dispersive component of the surface energy of 

MTEOS and OTEOS surfaces is not significant. 
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Figure 20. The water contact angle measurements for reference and treated base paper 

and PF impregnated paper. The polypropylene film was used as a non-penetrating 

reference surface. 

 

5.4 Surface characteristics of laminated plywood  

 

In this section, the surface chemical properties and water absorption of the laminated 

plywood surfaces is discussed. The description of the analyzed laminated plywood 

samples are comprised in Table 9. The sol-gel coatings for paper to be pressed onto 

plywood are OTEOS which contains an octyl group and FTEOS which contains a 

fluorocarbon group. The description of the paper samples including the treatments is 

presented in Table 3. Surface properties of these papers before lamination will be also 

discussed. 
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Table 9. Plywood samples. 

 

Samples Treatment Treatment conditions 

Ply 1 Base paper pre-coated 

with OTEOS before 

impregnation with PF 

(coating amount 1.3 

g/m
2
, dry weight) 

After OTEOS coating, paper was dried in 

an oven at 110ºC for 15 minutes before 

impregnation with PF, after impregnation 

pre-curing in an oven at 160ºC for 20-25 

seconds before pressing on top of  

plywood 

Ply 2 Base paper pre-coated 

with FTEOS before 

impregnation with PF 

(coating amount 0.8 

g/m
2
, dry weight) 

After FTEOS coating, paper was dried in 

an oven at 110ºC for 15 minutes before 

impregnation with PF, after impregnation 

pre-curing in an oven at 160ºC for 20-25 

seconds before pressing on plywood 

Ply 3 Industrially 

impregnated paper 

treated with OTEOS 

(coating amount 0.6 

g/m
2
, dry weight) 

After coating, paper was dried in the 

oven at 110°C for 15 min, then pressed 

on  top of plywood 

Ply 4 Industrially 

impregnated paper 

treated with FTEOS 

(coating amount 1.1 

g/m
2
, dry weight) 

After coating, paper was dried in an oven 

at 110°C for 15 min, then pressed on top 

of  plywood 

Ply 5 Base paper 

impregnated with a 

mixture of OTEOS and 

PF, the amount of 

OTEOS coating was 

0.5% of the dry weight 

of the PF-resin 

After impregnation, paper was pre-cured 

in an oven at 160ºC for 20-25 seconds 

before pressing on top of plywood 

Ply 6 Base paper 

impregnated with a 

mixture of FTEOS and 

PF, the amount of 

FTEOS coating was 

0.5% of the dry weight 

of the PF-resin 

After impregnation, paper was pre-curing 

in an oven at 160ºC for 20-25 seconds 

before pressing on top of  plywood 

Reference 1 Industrially 

impregnated paper 

Pressing on top of  plywood 
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Reference 2 Manually impregnated 

paper 

After manual impregnation, paper was 

pre-cured in an oven at 160ºC for 20-25 

seconds before pressing on plywood 

 

Figure 21 shows AFM phase images of the base paper and the industrially impregnated 

paper before and after the sol-gel coatings. The AFM images were captured at the fiber 

surfaces for the base paper samples and defect-free areas for the impregnated paper 

samples. OTEOS appears to produce a better micro-scale coverage of the fiber surfaces 

than FTEOS. For the impregnated paper, application of different coatings results in 

different micro-structures. Films and patches are observed on the surface of impregnated 

paper with OTEOS. On the other hand, the surface of the impregnated paper lacks the 

particulate microstructure seen after the application of FTEOS.  
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Figure 21. Representative AFM phase images of (a) base paper, (b) with OTEOS, (c) 

with FTEOS, (d) industrially impregnated paper, (e) with OTEOS and (f) with FTEOS. 

The image size is 10 µm x 10 µm. The scale bar is 1 µm. 

 

The surface roughness of uncoated and coated base paper and industrially impregnated 

paper measured by AFM is summarized in Table 10. The roughness values indicate that 

base paper has a much higher small-scale surface roughness (at correlation length T < 2 

µm) compared to the impregnated paper. Both coatings have a smoothening effect on the 

fiber surfaces of base paper by mostly covering the microfibril bundles as shown in 

Figures 21b and 21c. On the other hand, OTEOS slightly increases, while FTEOS 

decreases the surface roughness of the industrially impregnated paper at the measured 



53 

 

short length scale (T < 1 µm). This is in good agreement with the previous findings that 

at micro-scale OTEOS decreased the surface roughness of base paper while increase the 

surface roughness of industrially impregnated paper (findings in section 5.3). The macro-

roughness (Table 11) of the base paper samples calculated based on the CLSM images 

reveals that both coatings filled the voids between adjacent fibers. 

 

Table 10. Surface roughness of paper samples by AFM. The standard deviations from 6 

topographical images are in parentheses. The image size is 10 µm × 10 µm. 

 

Table 11. Surface roughness for base paper samples by CLSM. The image size is 1.5 mm 

× 1.5 mm. 

 

Parameters Units Base paper  Base paper  

+ OTEOS 

Base paper 

 + FTEOS 

Sq  

Correlation length, T 

µm 

µm 

5.7  

46.9 

4.9 

98.5 

5.0 

64.5 

 

The surface chemistry of the uncoated and coated papers was studied by XPS. The results 

from survey spectra are listed in Table 12. The highest Si, O/C and Si/C are observed 

from base paper with coating B.  The elemental composition of impregnated paper is not 

changed significantly by either coating. The results from the high resolution spectra 

(Table 13) show that both coatings increase the percentage of non-oxidized carbon (C1) 

for the base paper. However, this is not seen for impregnated paper as no obvious 

changes in the C1-C2 can be seen after the coatings.  

 

 

 

Samples Sq ± STD 

(nm) 

Correlation length, T 

(nm)  

Base paper 

Base paper + OTEOS 

Base paper + FTEOS 

Industrially impregnated paper 

Industrially impregnated paper  

+ OTEOS 

Industrially impregnated paper  

+ FTEOS 

252 ± 45  

145 ± 31 

115 ± 20 

17.9 ±4.6 

22.1 ± 7.2  

 

9.7 ± 2.8  

 

1656 

1245 

1483 

418 

697 

 

584 
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Table 12. Surface elemental compositions (atomic %) of paper samples by XPS. The 

results are averages from three measured spots and the standard deviations are in 

parentheses. 

 

Table 13. XPS results from the resolved C1s peaks of paper samples. The standard 

deviations from three measured spots are in parentheses. 

 

Paper samples C1% 

(C–C, C–H) 

C2% 

(C–OH, 

C–O–C) 

C3% 

(O–C–O, 

C=O) 

C4% 

(O–C=O) 

Base paper 38.0 (5.9) 49.5 (6.1) 10.2 (2.4) 2.3 (2.1) 

Base paper + OTEOS  84.9 (2.4) 12.6 (2.0) 2.5 (0.6) ─ 

Base paper + FTEOS 41.1 (1.5) 46.0 (2.8) 11.8 (1.8) 1.1 (0.4) 

Industrially impregnated 

paper 

95.6 (0.9) 4.4 (0.9) ─ ─ 

Industrially impregnated 

paper + OTEOS  

95.4 (1.0) 4.6 (1.0) ─ ─ 

Industrially impregnated 

paper + FTEOS  

96.5 (0.5) 3.5 (0.5) ─ ─ 

 

The distributions of sol-gel coatings on the base paper and the industrially impregnated 

paper were analyzed by mapping of Si with ToF-SIMS positive mode. Representative 

ToF-SIMS total positive ion, Si and Na images are shown in Figure 22. OTEOS spreads 

more uniformly on the surface of base paper than FTEOS. This agrees with the AFM 

Paper samples C O Si Na F O/C Si/C 

Base paper 64.8 

(1.3) 

34.5 

(1.1) 

0.7 

(0.4) 

<0.1 <0.1 0.53 0.01 

Base paper + OTEOS  

 

43.3 

(0.8) 

40.8 

(0.5) 

15.9 

(0.5) 

<0.1 <0.1 0.94 0.37 

Base paper + FTEOS  

 

59.6 

(1.3) 

37.1 

(0.4) 

2.5 

(1.0) 

0.4 

(0.3) 

0.5 

(0.3) 

0.62 0.04 

Industrially 

impregnated paper 

92.1 

(1.6) 

7.4 

(1.3) 

0.3 

(0.2) 

0.1 

(0.1) 

<0.1 0.08 0.00

3 

Industrially 

impregnated paper + 

OTEOS  

91.8 

(0.8) 

7.1 

(0.8) 

0.9 

(0.4) 

0.2 

(0.5) 

<0.1 0.08 0.01 

Industrially 

impregnated paper + 

FTEOS  

92.6 

(1.7) 

6.4 

(1.4) 

0.2 

(0.3) 

0.6 

(0.2) 

0.2 

(0.3) 

0.07 0.00

2 
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results that OTEOS likely has a more complete coverage than FTEOS. The distribution of 

sol-gel coatings on the surface of impregnated paper is difficult to interpret due to the low 

intensity of Si ion detected by ToF-SIMS. However, according to the SEM-EDS images 

(Appendix III), the coatings are discontinuously formed on the impregnated paper.  

 

 
 

Figure 22. ToF-SIMS total positive ion (left) and Si
4+

 (right) imaging of (a) base paper, 

(b) with OTEOS, (c) with FTEOS, (d) industrially impregnated paper, (e) with OTEOS 

and (f) with FTEOS. The scale bar is 100 μm. 

 

The surface chemistry and water absorption of the laminated plywood was studied by 

XPS, ToF-SIMS and Cobb test. The XPS results are shown in Table 14. Higher O/C and 

Si/C ratios are apparent on the surface of Ply 3. 
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Table 14. Surface elemental compositions (atomic %) of plywood samples by XPS. The 

standard deviations from three measured spots are in parentheses. 

 

Plywood 

samples  

C O Si Na F O/C Si/C 

Ply 1  81.8 

(1.4) 

14.4 

(1.3) 

0.7 

(0.7) 

3.4 

(0.8) 

<0.1 0.18 0.00

8 

Ply 2  79.6 

(0.5) 

15.8 

(0.5) 

0.7 

(0.3) 

2.9 

(0.7) 

1.0 

(0.2) 

0.20 0.00

9 

Ply 3  69.3 

(1.2) 

22.5 

(0.6) 

5.2 

(0.2) 

3.1 

(0.6) 

<0.1 0.32 0.08 

Ply 4  75.6 

(1.3) 

17.1 

(1.1) 

2.3 

(0.4) 

3.0 

(0.6) 

2.0 

(0.5) 

0.23 0.03 

Ply 5  84.3 

(1.3) 

12.5 

(1.2) 

0.4 

(0.3) 

2.8 

(0.5) 

<0.1 0.15 0.00

5 

Ply 6  80.6 

(0.8) 

15.8 

(0.7) 

0.9 

(0.3) 

2.5 

(0.4) 

0.2 

(0.3) 

0.20 0.01 

Reference 1  75.0 

(1.6) 

18.5 

(0.4) 

1.1 

(0.3) 

5.3 

(0.9) 

<0.1 0.25 0.01 

Reference 2  80.3 

(1.5) 

15.0 

(0.7) 

1.4 

(0.1) 

3.3 

(1.0) 

<0.1 0.19 0.02 

 

Regarding the plywood pressed with manually impregnated paper, the comparison was 

made between the reference plywood (Reference 2, Table 9) and the relevant laminated 

plywood (Ply 1, Ply 2, Ply 5, Ply 6, Table 9). The slightly lower O/C and Si/C ratios are 

seen for Ply 1 and Ply 5 compared to Reference 2 and Ply 2 and Ply 6.  Relatively high 

amounts of Si and Na on the reference plywood surfaces are likely from the release paper 

used during the pressing. 

 

The chemical bonds present on the surfaces of the laminated plywood from XPS C1s 

high resolution spectra are shown in Table 15. Three peaks (C1–C3) are resolved from all 

the laminated plywood samples. In general, no prominent differences in the chemical 

bonds between the samples can be detected. The content of C1 (C–C, C–H) is slightly 

increased for Ply 3 and Ply 4 in comparison to the reference 1. No significant difference 

exists between Ply 1, Ply 5 and the reference 2. Very slight decrease in C1 and increase 

in C2 component is evident for Ply 2, Ply 6 compared to the Reference 2. In addition, one 

can note that the third peak C3 (O–C–O, C=O) is observed on the surface of the 

industrially impregnated paper (Reference 1, Table 15). The pressing probably has a 

similar effect as water and heat treatment to the industrially impregnated paper as stated 

previously (Table 8). The C3 might also derive from contaminates during the pressing. 
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Table 15. XPS results from resolved C1s peaks of plywood samples. The standard 

deviations from three measured spots are in parentheses. 

 

Plywood 

samples 

C1% 

(C–C, C–H) 

C2% 

(C–O, C–

O–C) 

C3% 

(O–C–O, 

C=O) 

C4% 

(O–C=O) 

Ply 1  94.3 (0.6) 1.6 (0.3) 4.1 (0.3) ─ 

Ply 2  92.8 (0.8) 3.0 (0.1) 4.2 (0.7) ─ 

Ply 3  92.6 (0.7) 2.9 (0.1) 4.5 (0.7) ─ 

Ply 4  92.8 (0.4) 2.8 (0.5) 4.4 (0.4) ─ 

Ply 5  94.3 (1.0) 1.9 (0.4) 3.8 (0.6) ─ 

Ply 6  92.8 (0.9) 3.0 (0.7) 4.2 (0.5) ─ 

Reference 1  91.6 (0.6) 2.9 (0.7) 5.5 (1.0) ─ 

Reference 2  94.2 (0.4) 1.6 (0.3) 4.2 (0.5) ─ 

 

The distribution of the sol-gel coatings on the film-coated plywood samples was 

evaluated by ToF-SIMS imaging (Figure 23). It appears that all the coatings spread 

unevenly on the plywood surfaces. 
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Figure 23. ToF-SIMS total positive ion (left) and Si
4+

 (right) imaging of laminated 

plywood (a) Ply 1, (b) Ply 2, (c) Ply 3, (d) Ply 4, (e) Ply 5, (f) Ply 6, (g) Reference 1 and 

(h) Reference 2. The scale bar is 100 µm. 

 

The effect of the impregnated paper on the water absorption of the laminated plywood is 

shown in Figure 24. When the impregnations are carried out in the laboratory, 

considerable variation in the water absorption values is seen (Figure 24b). Due to the 

variations it is difficult to assess the real effect of the sol-gels on the water absorption 

properties. However, it can be seen that pre-coating of the base paper with the sol-gels 

before impregnation (Ply 1, Ply 2) does not decrease water absorption. By coating the 

industrially impregnated paper with OTEOS (Ply 3), a slight decrease in the water 

absorption values can be seen (Figure 24a). In addition, impregnation of the base paper 

with the mixture of OTEOS coating and PF-resin (Ply 5) shows a clear decrease in the 

water absorption values compared to the reference (Reference 2). The FTEOS coating 

(Ply 4, Ply 6) seemed to have a smaller influence on the water absorption values than 

OTEOS. This is probably due to the short chain (CF3–) FTEOS has, which has a less 

steric effect for the paper/plywood from interaction with water.  
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Figure 24. Water absorption of film-coated plywood samples after seven days. The error 

bars are the standard deviations from 3–10 measurements. 

 

 

  

a) 

b) 
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6. CONCLUSIONS  

 

Light microscopy, AFM and FE-SEM are suitable tools to characterize fiber wall surface 

structures. Single fiber examination with a combination of these techniques provides an 

insight into the fiber wall surface structure. Distinction between the outer (ML/P) and the 

exposed inner (S2) fiber walls in TMP refined fibers can easily be done by light 

microscopy in transmitted light on fibers stained with Rhodamine Red. Both high 

resolution FE-SEM and AFM give qualitative information in form of visual 

characterization of fiber surface structures. The strength of AFM lies in additional 

possibilities to quantify surface roughness and other surface structural characteristics.  

 

Using AFM, the surface structures of the inner (S2) and outer (ML/P) fiber wall areas are 

clearly distinguishable based on their fibril angle and RMS roughness values. The 

remnants of the outer fiber areas in all the studied samples are found rougher than the 

exposed inner fiber wall areas. The buffered sodium oxalate treatment increases mostly 

the outer fiber wall roughness. The hydrochloric acid treatment is suggested to create 

surface pores on the inner (S2) fiber wall areas by hydrolyzing and removing some 

hemicelluloses from the S2 fiber walls. The hydrochloric acid treatment also reveals the 

appearance of a granular structure, probably lignin, on the S2 fiber walls.  

 

A successful deposition of sol-gel coatings (octyltriethoxysilane and 

methyltriethoxysilane) on the studied wood surfaces is observed. The deposited sol–gel 

coatings appeared as particulate- and/or film- like structures. MTEOS had a stronger 

tendency than OTEOS to smoothen the wood surfaces at the studied micro-scale. The 

coatings are found to spread fully on the pine sapwood surfaces, especially into cell walls. 

Thin coating layers are formed on the heat-treated spruce surfaces following the wood 

original surface structure. These results are in good agreement with the contact angle 

results showing that the moisture tolerance of the coated surfaces, especially the ones 

coated with the more hydrophobic sol-gel (octyltriethoxysilane), is enhanced compared to 

the non-coated references. With the same coating amount, less coating is covalently 

bound to the heat-treated spruce surface than pine sapwood.  

 

The surface and wetting properties of base paper are clearly changed by the applied sol-

gel coatings. Discontinuous thin films are formed on base paper surfaces. The fiber 

surfaces are covered by the sol-gel coating, but the fiber-fiber intersections were only 

partially filled. The sol-gel coatings, as well as the water treatment (curing process), 

decrease the surface roughness at both macro- and micro-scale. Octyltriethoxysilane 

resulted in a rougher surface than methyltriethoxysilane. Octyltriethoxysilane decreased 

more effectively the wettability of base paper. The results show that the surface 

energetics, i.e. the wetting and absorptive properties of paper samples, can be adjusted by 
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the sol-gel coatings. The coating method is easy and straightforward to use, and tailoring 

the properties of the sol-gel materials can be used to tune the thickness, homogeneity and 

degree of hydrophobicity of the formed coatings. Further studies are needed to optimize 

the coating conditions to control the coating of the intersections between the fibers.  

 

With respect to the impregnated paper, water treatment increases its surface roughness 

and induces further curing of the PF resin. Methyltriethoxysilane results in a slightly 

smoother surface than water treatment. In general, octyltriethoxysilane decreases the 

surface roughness at macro-scale but increases the surface roughness at micro-scale due 

to the presence of granular structures on impregnated paper. Both coatings are evenly 

distributed on the paper surface forming Si–O–C bonds with the hydroxyl groups. In 

comparison with the reference treatment (water treatment), the sol-gel coatings increase 

the hydrophobicity of the impregnated paper with an impermeable surface. Fluorocarbon-

containing triethoxysilane decreased the surface roughness of base paper and industrially 

PF impregnated paper at micro-scale. However, it was unevenly distributed on the paper 

surface. For plywood samples, the most effective decrease in water absorption is obtained 

by a mixture of the PF resin and octyltriethoxysilane coating.  

 

In conclusion, the sol-gel coatings were found applicable for controlling surface 

properties of wood and wood-based products. The surface roughness of the modified 

wood or paper is scale-dependent. At micro-scale, MTEOS as well as FTEOS appear 

smoother than OTEOS, which is attributed to MTEOS/FTEOS being more inclined to 

form thin films due to its short chain length. At macro-scale, the surface roughness is 

determined by the sol-gel coating coverage as well as the substrate. Octyltriethoxysliane 

is found to provide a higher hydrophobicity than the two other coatings under 

consideration in this study.  

 

By combining advanced surface analytical tools, it is possible to gain insight into the 

surface properties of sol-gel modified wood and paper. AFM and CLSM enable 

characterization of the surface morphology of the modified at micro and macro scales, 

while XPS and ToF-SIMS provide complementary information of the surface chemical 

composition and uniformity of the sol-gel coatings. 
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APPENDIX  

    

I SEM-EDS electron images (left) and Si maps (right) for the cross-sections of sol-gel A 

(MTEOS) and B (OTEOS) coated pine sapwood and heat-treated spruce 
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Heat-treated spruce + MTEOS 

Heat-treated spruce + MTEOS 

Heat-treated spruce + OTEOS 
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II SEM-EDS electron images (left) and Si maps (right) for the cross-sections of sol-gel A 

(MTEOS) and B (OTEOS) coated base paper and PF impregnated paper 
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III SEM-EDS electron images (left) and Si maps (right) for the cross-sections of sol-gel B 

(OTEOS) and C (FTEOS) coated base paper and industrially impregnated paper 
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