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ABSTRACT 

Adrenoceptors (ARs), G-protein coupled receptors (GPCRs) at the plasma membrane, 

respond to endogenous catecholamines noradrenaline and adrenaline. These receptors mediate 

several important physiological functions being especially important in the cardiovascular 

system and in the regulation of smooth muscle contraction. Impairments in the function of 

these receptors can thus lead to severe diseases and disorders such as to cardiovascular 

diseases and benign prostatic hyperplasia. The Eastern green mamba (Dendroaspis 

angusticeps) venom has been shown to contain toxins that can antagonize the functions of 

GPCRs. The most well-known are muscarinic toxins (MTs) targeting muscarinic 

acetylcholine receptors (mAChRs) with high affinity and selectivity. However, some reports 

have indicated that these toxins might also act on the α1- and α2-ARs which can be divided 

into various subtypes; the α1-ARs to α1A-, α1B- and α1D-ARs and α2-ARs to α2A-, α2B- and α2C-

ARs.  

In this thesis, the interaction of four common MTs (MT1, MT3, MT7 and MTα) with the 

adrenoceptors was characterized. It was also evaluated whether these toxins could be 

anchored to the plasma membrane via glycosylphosphatidylinositol (GPI) tail. Results of this 

thesis reveal that muscarinic toxins are targeting several α-adrenoceptor subtypes in addition 

to their previously identified target receptors, mAChRs. MTα was found to interact with high 

affinity and selectivity with the α2B-AR whereas MT7 confirmed its selectivity for the M1 

mAChR. Unlike MTα and MT7, MT1 and MT3 have a broad range of target receptors among 

the α-ARs. All the MTs characterized were found to behave as non-competitive antagonists of 

receptor action. The interaction between MTα and the α2B-AR was studied more closely and it 

was observed that the second extracellular loop of the receptor functions as a structural entity 

enabling toxin binding. The binding of MTα to the α2B-AR appears to be rather complex and 

probably involves dimerized receptor. Anchoring MTs to the plasma membrane did not 

interfere with their pharmacological profile; all the GPI-anchored toxins created retained their 

ability to block their target receptors. 

This thesis shows that muscarinic toxins are able to target several subtypes of α-ARs and 

mAChRs. These toxins offer thus a possibility to create new subtype specific ligands for the 

α-AR subtypes. Membrane anchored MTs on the other hand could be used to block α-AR and 

mAChR actions in disease conditions such as in hypertension and in gastrointestinal and 

urinary bladder disorders in a cell-specific manner and to study the physiological functions of 

ARs and mAChRs in vivo in model organisms. 
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DEFINITION OF THE PHARMACOLOGICAL TERMS USED 

Bmax – The total amount of receptor binding sites present in a cell. Usually presented as 

mol/mg protein. 

EC50 – The concentration of an agonist that induces a response which is 50% of the maximal 

response. 

Efficacy – The ability of a ligand to produce the response in the tissue. An antagonist has zero 

efficacy. 

IC50 – The concentration of an inhibitor where the receptor response or binding of a ligand to 

the receptor is reduced by 50%. 

Kd – The equilibrium binding constant. The radioligand concentration needed to achieve a 

half-maximum binding at equilibrium conditions. Usually presented as nM. 

Ki – Inhibition constant. Usually presented as nM. 

Potency – A measure of ligand activity expressed in terms of the amount required to produce 

an effect of given intensity. 
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1 REVIEW OF THE LITERATURE 

1.1 Introduction 

Plasma membrane contains numerous receptors which bind specific extracellular signaling 

molecules. These extracellular signaling molecules change the function of the cell and direct 

the cell for example to divide, change its gene expression, move or die. Molecules binding to 

a receptor are called ligands and can be peptides, hormones, neurotransmitters, 

pharmaceutical drugs and toxins. G-protein coupled receptors (GPCRs) form the largest group 

of membrane receptors found in the human genome. These receptors traverse the plasma 

membrane seven times and are arranged into a tight helical bundle which resembles a barrel 

when viewed from the cytoplasm.  

The GPCRs can be classified into several families based on their sequences, structures and 

ligands that they bind. The adrenoceptors (ARs) and muscarinic acetylcholine receptors 

(mAChRs) covered in this thesis belong to the rhodopsin family of GPCRs. These receptors 

mediate a wide variety of important biological responses both in the peripheral tissues and in 

the central nervous system such as increases/reductions in heart rate, contraction of smooth 

muscle and glandular secretion. In addition to the endogenous ligands of ARs (noradrenaline 

and adrenaline) and mAChRs (acetylcholine), nature provides compounds that are targeting 

these receptors. Of these compounds many are present in the venom of animals. Several 

venom components act on nervous system while some disrupt cell membranes and behave as 

hemolytic or cytolytic peptides. The venom of mamba snakes contains muscarinic toxins 

which are known to bind with high affinity and selectivity to the mAChR subtypes. Studies 

described in this thesis were performed to characterize muscarinic toxin binding to ARs and 

thus to provide new tools to study adrenoceptor physiology. 

1.2 The super-family of G-protein coupled receptors 

Receptors at the surface of the cell bind external signaling molecules and direct these signals 

into the cell which eventually leads to changes in the cell’s function. The receptive 

mechanism and the receptors were first introduced by John Newport Langley at the beginning 

of the 20th century (1, 2). In his pioneering study, Langley defined the receptors in the context 

of the action of nicotine and curare on neuromuscular transmission. Since Langley’s 

proposition of the receptive mechanism, the receptor concept has evolved considerably and 

currently the International Union of Basic and Clinical Pharmacology provides extensive 

classification of various receptors (Classification of receptors available at 

http://www.iuphar.org/, site visited 17.6.2013). Generally receptors can be divided into four 
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distinct receptor super-families of which G-protein coupled receptors (GPCRs) form by far 

the largest group of membrane receptors found in humans; they comprise almost 4 % of the 

size of the genome accounting approximately 800 different receptors (3). 

The GPCRs are classified into various families based on their amino acid sequences, 

structures and on the ligands that bind to these receptors (3-6). The first and the most 

commonly used classification system was introduced by Kolakowski in 1994 (5). This system 

covers GPCRs from both vertebrates and invertebrates and divides GPCRs into six classes, A-

F (5). Class A is the most diverse one and contains receptors similar to rhodopsin (4, 5). Class 

B contains secretin and secretin-like receptors and class C glutamate receptors. Classes D, E 

and F contain receptors that are not expressed in humans. More recently, Fredriksson and co-

workers collected ~ 800 human GPCR sequences and performed multiple phylogenetic 

analyses (3). Based on the sequence similarities within the transmembrane domains, the 

human GPCRs were divided into five distinct families; glutamate (G, n = 15), rhodopsin (R, n 

= 241 non-olfactory, total of 701, corresponding to family A in A-F classification system), 

adhesion (A, n = 24), Frizzled/Taste 2 (F, n = 24) and secretin (S, n = 15). This classification 

system is known as the GRAFS and is based on the initials of the family names. The 

rhodopsin family can be further divided to four groups (α, β, γ and δ) and 13 branches. The 

GPCRs covered in this thesis, the ARs and the mAChRs, belong to the rhodopsin α-family 

together with other biogenic amine receptors. 

1.2.1 Structure of G-protein coupled receptors 

G-protein coupled receptors respond to a wide variety of extracellular signals, such as 

hormones, neurotransmitters, smell and taste molecules, small peptides and proteins, ions and 

even photons. However, despite the vast diversity of ligands binding to GPCRs, these 

receptors share the same structural organization within the plasma membrane. GPCRs contain 

seven hydrophobic membrane spanning α-helical domains (TMI-VII) with the amino 

terminus (N-terminus) at the extracellular face of the plasma membrane and the carboxyl 

terminus (C-terminus) at the cytosolic part (Figure 1A). Within the plasma membrane, the 

highly conserved TM domains of a GPCR are arranged into a tightly packed helical bundle, a 

structure resembling a barrel when viewed from the cytoplasm (Figure 1B). The TM domains 

are connected to each other by three extracellular and three intracellular loops which have 

important roles in binding of ligands and in signal transduction, respectively. Conserved 

cysteine residues in the N-terminus and extracellular loops further stabilize the structure by 

forming disulfide bonds (7). 
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Figure 1. Structure of a G-protein coupled receptor. A. Snake diagram of a GPCR embedded in a 
lipid bilayer. Transmembrane domains are presented as roman numbers I-VII. The extracellular loops 
are presented in green, the intracellular loops in black and the amino (N) – and carboxyl (C) –terminus 
as letters. B. The transmembrane domains (I-VII) are arranged within the plasma membrane in a 
counterclockwise manner. Shown are the N- and C-terminus, the seven transmembrane domains (I-
VII), the extra- and intracellular loop structures and the binding sites for ligands and heterotrimeric G-
proteins. Upon ligand binding TM5 and TM6 undergo conformational changes which allow Gα 
subunit of the heterotrimeric G-protein to interact with the receptor (8, 9).  

Initially, the general structure of GPCRs was predicted based on sequences and on 

hydrophobicity analyses which indicated the presence of seven TM domains connected by 

extra- and intracellular loops (10). The TM domains were shown to be highly conserved 

among the GPCRs while the N- and C-terminus and the intracellular loop connecting TMV 

and VI were observed to show greatest diversity (11). The first structure of a seven 

transmembrane protein, bacteriorhodopsin, was solved in 1990 using electron cryo-

microscopy (12). Although bacteriorhodopsin is not coupled to a G-protein, its structure was 

used as a template to build models of GPCRs. The first crystal structure obtained of a GPCR 

was that of rhodopsin in 2000 (13). Thereafter, crystal structures for several GPCRs have 

been solved which have confirmed the predicted arrangement of GPCRs within the plasma 

membrane (8, 13-27). Considering the receptors covered in this thesis, crystal structures are 

known for the β1- and β2-ARs and for the M2 and M3 mAChRs but not for the α-AR subtypes 

(8, 14-16, 24, 25, 28). The crystal structures have revealed only small deviations in the 

structures of the solved GPCRs; an example of such a difference is an additional disulfide 

bond in the second extracellular loop of β1- and β2-ARs (15, 16). 

GPCRs have classically been considered as monomers. However, evidence shows that these 

receptors can form both homo- and heterodimers which can affect localization, pharmacology 

and function of the receptors (29). The formation of GPCR dimers is thought to occur prior to 

receptor transport to the plasma membrane and to be mediated by covalent and non-covalent 

interactions including both extra- and intracellular domains and transmembrane domains (30, 

31). The proper dimer formation has been noticed to be especially important for the correct 
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transportation of the metabotropic γ-aminobutyric acid B receptor (GABAB) to the plasma 

membrane, and also for the function of the receptor (32). In the GABAB heterodimer, 

GABABR1 subunit binds the agonist, but when expressed alone, it is retained in the 

endoplasmic reticulum (33). The GABABR2 subunit does not bind the ligand but it is 

responsible for the cell surface expression of GABABR1 subunit and G-protein coupling (33). 

A similar phenomenon has been observed with the α1B-/α1D-adrenoceptor heterodimers (34). 

1.2.2 Function of G-protein coupled receptors 

Activation of GPCRs involves binding of extracellular signaling molecules to the ligand 

binding cavity (35). This induces conformational changes within the TM region and on the 

cytoplasmic side of the receptor. These conformational changes activate the heterotrimeric G-

protein which further transduces the signal to various downstream effector proteins leading 

eventually to changes in cellular functions such as to stimulation of gene expression or 

opening of ion channels. 

Heterotrimeric G-proteins are composed of three subunits; α, β and γ (36). The G-proteins, 

named after their Gα-subunits, are classified into four major families (Gαs, Gαi/o, Gαq/11, 

Gα12/13) based on the sequence similarity of the Gα subunits and on the functional outcome 

(37). Table 1 presents the four major G-protein families and their signaling pathways. 

Members of one class can be further subdivided into multiple isotypes. Currently there are 

over 20 Gα subunits, 6 Gβ subunits and 12 Gγ subunits found in the human genome (38, 39) 

which can be combined to create over 1500 variants of the Gαβγ trimer. Majority of the 

subunits are widely expressed but some are expressed only in certain tissues. For example, the 

expression of Gαolf is restricted to specific neural tissue and is enriched in the neurons of the 

olfactory epithelium (37) whereas Gα15/16 is expressed solely in hematopoietic cells (40). 

Table 1. The four major families of heterotrimeric mammalian G-proteins. 

Gα                     Associated effector                   Second messenger                    Receptor examples

Gαs                     Adenylyl cyclase                        cAMP (increased)                     β-AR 

Gαi/o                   Adenylyl cyclase                        cAMP (decreased)                     α2-AR 

Gαq/11                 Phospholipase C-β                      IP3, DAG (increased)                α1-AR 

Gα12/13                Rho family of GTPases              --                                                actin cytoskeleton  

cAMP-cyclic adenosine monophosphate; IP3-inositiol (1,4,5) triphophate; DAG-diacylglycerol 

The activation cycle of a GPCR – G-protein complex by an agonist is summarized in Figure 

2. When the receptor is in the inactive state the subunits of heterotrimeric G-protein are 

associated and guanosine diphosphate (GDP) is bound to the Gα subunit. This Gα-GDP-Gβγ 

heterotrimer makes interactions with the receptor at the intracellular face of the plasma 
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membrane. Ligand binding to the receptor triggers conformational changes not only in the 

receptor itself but also in the Gα subunit resulting in the exchange of GDP with guanosine 

triphosphate (GTP) and dissociation of the heterotrimer into two functional subunits, Gα and 

Gβγ. Both Gα and Gβγ can bind to a wide variety of effectors and initiate signaling cascades. 

(41)  

The third intracellular loop of the receptor seems to be the most important one in determining 

the interaction between the receptor and G-protein (42). For example, the β2-ARs having two-

thirds of their third intracellular loop deleted are unable to bind to effectors and to activate 

signaling cascades (43). Additionally, TM5 and TM6 of ligand-free rhodopsin and β2-AR 

have been reported to undergo conformational changes which allow Gα subunit of the G-

protein to interact with the receptor (8, 9). Besides this the second intracellular loop and the 

C-terminus have been shown to guide the receptor in G-protein selection and activation (44-

47). The corresponding interaction domain in the G-protein appears to reside in the C-

terminus of the alpha subunit but interactions sites can be found also in the N-terminus (8, 48-

51). Exchange between alpha subunits of as few as five amino acids in this region allows for a 

switch in G-proteins receptor selectivity (52). 

 

Figure 2. Activation cycle of a G-protein coupled receptor. In an inactive state, the α- and βγ- 
subunits of a G-protein are associated. Binding of an extracellular agonist to GPCR (R) induces 
conformational changes within the receptor enabling G-protein binding. In the Gα-subunit GDP is 
exchanged with GTP. GTP bound Gα and Gβγ dissociate and activate various downstream effector 
proteins such as adenylyl cyclase (AC) and Ca2+ channels. Intrinsic GTPase activity of Gα-subunit 
eventually hydrolyses GTP to GDP leading to re-association of Gα- and βγ- subunits. This together 
with agonist dissociation terminates the signaling. Figure is reprinted with permission from 8.  

Gα subunit has intrinsic GTPase activity which hydrolyses GTP to GDP thus terminating the 

signaling and allowing the re-association of Gα and Gβγ subunits (53, Figure 2). Although 

hydrolysis of GTP to GDP terminates the signaling occurring through a particular G-protein, 

the receptor is still active due to the presence of agonist and can activate a new set of G-

proteins. In order to adapt to the stimulus or turn off signaling completely, receptors must be 
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desensitized which involves phosphorylation of the receptors. Receptor desensitization can be 

either homologous or heterologous. In homologous desensitization the activated receptor 

serves as a substrate for G-protein coupled receptor kinases which phosphorylate serine and 

threonine residues present in the intracellular parts of the activated receptor (54). 

Phosphorylated receptor serves then as a sign for arrestins to bind. Arrestin binding to the 

activated and phosphorylated receptor blocks further G-protein binding and activation 

eventually attenuating the signaling (55). As a result of this, the receptor is rapidly 

internalized. The internalized receptor is either dephosphorylated and recycled back to the 

plasma membrane or directed to lysosomes for degradation. Heterologous desensitization, on 

the contrary to homologous desensitization, is also known as receptor activation-independent 

regulation and involves second messenger activated protein kinases A and C. These kinases 

phosphorylate and desensitize receptors even in the absence of agonists (56, 57). The 

receptors desensitized in heterologous manner are less able to be activated by their own 

agonist. 

Receptor dimerization can additionally modulate the properties of GPCRs such as targeting of 

GPCRs to the plasma membrane, activation, G-protein coupling, signaling and internalization 

(29, 58, 59). Changes in signaling can be seen with the dopamine D1-D2 receptor heterodimer. 

Normally, dopamine D2-receptor is coupled to Gi/o leading to reduction in cyclic adenosine 

monophosphate (cAMP) levels. However, upon heterodimerization with the dopamine D1-

receptors, D2-receptor becomes coupled to Gq/11. In this way heterodimerization of D1- and 

D2-receptors provides a mechanism by which dopamine can activate Ca2+ release through 

phospholipase C. (60). 

1.2.3 Ligand binding to G-protein coupled receptors 

Ligands acting on GPCRs can be roughly divided into three classes; agonists, antagonists and 

allosteric modulators. An agonist is defined as a ligand binding to a receptor and triggering a 

biological response. Agonists can be further divided into full, partial, and inverse agonists and 

they all bind to the same orthosteric binding site. Full agonists produce maximum response 

upon binding and thus have high efficacy. Partial agonists have lower efficacy than full 

agonist. They are able to activate the receptors but produce responses that are only partial of 

the maximum response irrespective of the concentration applied. Some receptors, such as β2-

ARs, show weak constitutive activity in the absence of ligands. Inverse agonists decrease this 

activity below basal level producing an opposite effect compared to full and partial agonists. 

(61, 62). The effects of agonists on receptor activity are illustrated in Figure 3. 
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Figure 3. The effects of agonists on the activity of receptors. The baseline represents constitutive 
activity in the absence of agonists. The figure is based on figure 2-22 from reference 63. 

Antagonists produce no biological response upon receptor binding. They function by blocking 

or weakening the responses created by agonists. Antagonists are either competitive (produce 

surmountable blocking) or non-competitive (produce insurmountable blocking). Competitive 

antagonists bind to the same orthosteric binding site as agonists and compete with them. 

These antagonists produce rightward shifts in concentration-response curves without altering 

the maximum response (Figure 4A). Non-competitive antagonists bind to a site distinct from 

the orthosteric one. They block the receptor responses and result in depression of maximum 

response (Figure 4B). (64). However, in many cases the non-competitive antagonism is 

caused by irreversibility of the ligand-receptor interaction or alternatively is a result of slowly 

dissociating antagonist. 

 
Figure 4. Theoretical concentration-response curves for receptors preincubated with antagonist. 
Curves on the left; no antagonist exposure. Curves with roman numbers (I-III) represent treatment 
with increasing antagonist concentrations. A. Competitive antagonist.  B. Non-competitive antagonist. 
The figure is modified and reprinted with permission from Figure 1 in 64. 
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Allosteric modulators have an indirect effect to the binding properties of agonists by binding 

to a site which is distinct from the orthosteric binding site. These modulators act by changing 

the conformation of the receptor and thus have impact on the affinity and efficacy of 

orthosteric ligands (65). Classical examples of allosteric modulators of GPCRs include 

gallamine and alkane-bisammonium compounds such as W84 which inhibit the functions of 

mAChRs (66, 67). Allosteric modulators can be divided into positive, negative and neutral 

modulators. A positive allosteric modulator does not have intrinsic agonistic effects; it 

functions by amplifying the effects of orthosteric agonists. Negative allosteric modulators can 

be regarded as non-competitive antagonists. These modulators function by decreasing the 

affinity and/or effects of orthosteric ligands. Neutral allosteric modulators do not change the 

affinity of orthosteric ligands at equilibrium, but can inhibit the actions of other allosteric 

modulators binding to the same site. (65). 

1.2.3.1 Orthosteric ligand binding cavity 

Most small agonists bind to a cavity formed by the transmembrane domains whereas peptide 

hormones and proteins bind to the N-terminus and extracellular sequences connecting the TM 

domains (68). However, the size of the ligand does not always predict the site where it binds. 

For example, glycoprotein hormones, the calcium ion and glutamate all activate their 

respective receptors by binding to the large N-terminal domains (68). 

In bovine rhodopsin the binding cavity for covalently bound 11-cis retinal is formed by TM3-

TM7 and is covered with the second extracellular loop (ECL2) which folds as a β-hairpin 

above the cavity (13, 69). This fold has been observed to be stabilized by a disulfide bridge 

(13). The binding cavity of rhodopsin-like GPCRs is similar to that of rhodopsin and the 

residues present in TM domains 3, 5, 6 and 7 have been implicated to have important roles in 

ligand binding in ARs (70). However, recent evidence from crystal structures reveals that the 

ligand binding site in ARs involves also residues present in extracellular domains (14-16). 

Figure 5 illustrates the structure of turkey β1-AR, part of its ligand binding cavity and some of 

the amino acids taking part in ligand binding. 
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Figure 5. Ligand binding cavity of turkey β1-AR. A. Ribbon presentation of the β1-AR structure. 
Extracellular loop 2 (ELC2), intracellular loops 1 and 2 (ICL1, ICL2) and C- and N-terminus that were 
truncated in the crystallized structure are labelled. Shown is also natrium ion (in pink) which stabilizes 
the helical conformation of ELC2 and thus the structure of the entrance to the ligand-binding cavity. 
B. Superposition of a model of the agonist, adrenaline (yellow), with the structure of the antagonist, 
cyanopindolol (pink), as it binds to the β1-AR. Shown are the TM domains 3 and 5, ELC2 and amino 
acids whose side chains are known to interact with the hydroxyl groups on the catechol ring of the 
agonist (S=Ser, T=Thr, D=Asp). The Ballesteros-Weinstein numbering of amino acids is shown in 
brackets. Reprinted with permission from 16. 

TM domain 3 contains a highly conserved aspartate residue at position 3.32 (according to the 

Ballesteros-Weinstein numbering (71)) and its negatively charged side chain has been shown 

to provide anchoring points for ligands and to play a key role in receptor activation (70). In 

addition to TM3, residues in TM5 are involved in binding of classical orthosteric ligands. In 

the α2A-AR particularly important are Ser200 (5.42), Cys201 (5.43) and Ser204 (5.46). These 

amino acids have been linked not only to ligand binding but also for receptor activation (72, 

73). Besides the TM domains, ECL2 has been reported to participate in ligand binding in 

several rhodopsin-like GPCRs including ARs (16, 74, 75), adenosine receptors (76, 77), 

dopamine receptors (78) and mAChRs (79, 80). This loop is constrained above the ligand 

binding site by a disulfide bridge which is formed by cysteines at positions xl2.50 (The 

Ballesteros–Weinstein numbering scheme was extended to the ECL2 by Xhaard and co-

workers (81)) and 3.25. The amino acids present in the ECL2 have noticed to be important for 

the high affinity binding and specificity of various ligands for GPCRs but also for the species-

selectivity of ligands. For example, substituting amino acids in the ECL2 of α1A- and α1B-ARs 

changed their subtype selectivity for phentolamine and WB4101 (74) whereas in type-1D 

serotonin receptors, replacement of ECL2 resulted in a mutant whose affinity for ketanserin 

(selective antagonist) was approximately 46-fold lower compared to the wild type receptor 

(82, 83). Regarding the species-selectivity of ligands, in α2A-AR, three amino acids, Arg187 

(xl2.49) and Glu189 (xl2.51) from the ECL2 and Cys201 (5.43) from the TM5, were found to 
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determine the species selectivity of yohimbine and rauwolscine for the human and mouse α2A-

ARs (75).  

In addition to the specific amino acids, receptor dimerization can have influences on the 

ligand binding and pharmacological properties. For example, heterodimerization of two fully 

functional opioid receptors, κ and δ, resulted in a receptor whose binding properties were 

different from monomeric κ and δ opioid receptors; the κ/δ heterodimer did not show 

significant affinity for the two highly selective κ and δ agonists and antagonists (84). On the 

contrary, high affinity binding was detected with partially selective κ and δ opioid receptor 

ligands (84). It has also been observed that a ligand specific for one receptor in a GPCR 

heterodimer can affect to the affinity of another ligand specific for other monomer in the 

heterodimer. This phenomenon is characterized by the dopamine-somatostatin heterodimer 

where binding affinity of somatostatin agonist somatostatin-14 is increased by 3000 % upon 

addition of dopamine agonist quinpirole (85). However, there are many GPCRs whose 

binding properties are not altered upon dimerization (86-88). For example, heterodimerization 

of α1-ARs does not alter the affinity for noradrenaline, prazosin and subtype specific 

antagonists suggesting that heterodimer formation does not produce pharmacologically 

distinct subtypes (88). 

1.2.3.2 Allosteric ligand binding site 

The GPCRs can be considered naturally allosteric as they possess more than one type of 

binding site with the G-proteins being the best-known allosteric modulators of agonists 

binding to GPCRs. Allosteric modulators, other than the G-proteins, interact with the GPCRs 

through an extracellular site which is distinct from the orthosteric binding site. This binding 

site is also often less conserved than the orthosteric one. (89). 

The mAChRs are the best studied examples of allosteric phenomena among the GPCRs. The 

earliest evidence of an allosteric binding site on the mAChRs was obtained from functional 

studies on the M2 mAChR with gallamine and W84 (66, 67). Later on the crystal structures of 

GPCRs have indicated that these receptors have a large extracellular vestibule which binds 

the allosteric modulators (90). The allosteric binding site has been shown to be situated 

directly above the orthosteric binding site accounting for the fact that the ligands binding to 

the allosteric binding site can modulate the affinity and efficacy of orthosteric ligands (90). 

Closer investigations, such site-directed mutagenesis and chimeric receptor studies in addition 

to the crystal structures of the M2 and M3 mAChRs, have shown that several amino acids in 

the ECL2, ECL3 and TM7 take part in allosteric ligand binding in the mAChRs (28, 90, 91). 

For example Tyr177 in the ECL2 of the M2 mAChR has been shown to interact with a 

positive allosteric modulator, LY2119620 (90). On the TM7, Trp422 has been implicated to 

take part in the binding of allosteric ligands in the M2 mAChRs (28, 90). In addition to these, 



 

 

Review of the Literature

15

some residues in ECL2 (Tyr80), ECL3 (Asn419) and TM6 (Asn410) of the M2 mAChRs have 

been noticed to form hydrogen bonds with the allosteric ligand (90) whereas Glu172 present 

in the ECL2 has been indicated to be required for gallamine’s selectivity (92).  

1.3 Adrenoceptors  

The adrenoceptors, classically involved in the ‘fight or flight’ reactions, respond to the 

endogenous catecholamines noradrenaline (neurotransmitter) and adrenaline (hormone) 

(Figure 6). Both of these catecholamines are derived from the amino acid tyrosine and belong 

to phenylethylamines which consist of a catechol moiety (a benzene ring with two attached 

hydroxyl groups) and an aliphatic amine side chain. The biosynthetic pathway leading to 

these catecholamines includes several enzymatic reactions with tyrosine hydroxylase as the 

rate limiting enzyme. (93) 

 
Figure 6. The chemical structure of A. noradrenaline and B. adrenaline, a methylated derivative 
of noradrenaline. 

During the fight or flight reactions (also known as acute stress response), the sympathetic 

nervous system becomes activated and induces the adrenal medulla to release high levels of 

adrenaline and noradrenaline. In addition to adrenal medulla, noradrenaline is released from 

the nerve terminals of the sympathetic nervous system. Due to sudden release of 

catecholamines, adrenoceptors become highly activated. This results in various changes in the 

body including increases in heart rate and rise in blood pressure with a concomitant increase 

in blood flow to major muscle groups preparing the animal or man to respond rapidly to a 

threatening situation. The blood glucose levels are also elevated to support the energy 

demand. (94). 

1.3.1 Classification of adrenoceptors  

The primary classification of ARs into α- and β-ARs was done by Ahlquist in 1948 and was 

based on pharmacological criteria, i.e. the rank order by which natural catecholamines 

(adrenaline and noradenaline) and certain synthetic amine agonists (such as isoproterenol and 

α-methyl noradrenaline) induced effects on different organs (95). Among the ligands tested 
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noradrenaline and adrenaline were the most potent on the α-ARs whereas isoproterenol and 

adrenaline were the most potent on the β-ARs (95). In the 1960s the β-ARs were further 

subdivided into β1-AR and β2-AR by Lands and co-workers (96, 97). This division was based 

on the different potencies of noradrenaline and adrenaline at these receptor sites. The third β-

AR subtype, β3-AR, was isolated at the beginning of the 1990s (98-100). Compared to the 

other two β-AR subtypes, noradrenaline is more potent than adrenaline in stimulating the β3-

AR subtype (98-100).  

The α-ARs were not studied thoroughly until the 1970’s when they were, based on anatomy, 

subdivided to postsynaptic α1-ARs and to presynaptic α2-ARs (101). Another classification 

system divided them according to their functional properties i.e. α1-ARs caused excitatory 

responses and α2-ARs inhibitory responses (102). However, later it became evident that these 

classification systems were inappropriate with regard to α2-ARs as these receptors were found 

to exist on both pre- and postsynaptic sites and in non-synaptic locations (103) and to mediate 

both excitatory and inhibitory functions (104). 

The first AR to be cloned was the hamster β2-AR in 1986 (105) followed by other ARs at 

rapid intervals (106-113). Development of cloning techniques and the different affinities of 

radiolabelled ligands for the receptors greatly helped to divide ARs into various subtypes. The 

current division of ARs is based on both the amino acid sequences and on the biological and 

pharmacological properties of the receptors. The major AR types are α1-ARs, α2-ARs and β-

ARs. Each of these AR types can be further divided into three subtypes encoded by distinct 

genes; α1-ARs to α1A, α1B and α1D, α2-ARs to α2A, α2B and α2C and β-ARs to β1, β2 and β3 

(Figure 7). In addition to these subtypes, there are reports proposing a putative fourth subtype 

for each major receptor class (114-117).  

 

α1-adrenoceptors β-adrenoceptors

Adrenoceptors

α2A α2B α2Cα1Dα1Bα1A β3β2β1

α2-adrenoceptors

 
Figure 7. Classification of adrenoceptors. Shown in the figure are the adrenoceptors present in 
mammals. 

1.3.2 Physiology  

Adrenoceptors are widely distributed in the body being present both in the central nervous 

system (CNS) and in peripheral tissues. These receptors are involved in many physiological 
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functions but particularly important they are in the cardiovascular system and in the 

regulation of smooth muscle contraction. In the CNS, the role of AR function is less well 

defined, but knock-out mice are beginning to unravel their particular functions (118-120). 

The three α1-AR subtypes are considered to be stimulatory receptors which signal through the 

G-proteins of the Gq/11 family. Stimulation of α1-ARs leads to activation of phospholipase C 

through actions of Gq/11 and subsequent generation of second messengers IP3 and DAG by the 

hydrolysis of the phospholipid phosphatidylinositol 4,5-bisphosphate on the plasma 

membrane. IP3, released into the cytosol, binds to IP3 receptors present on the smooth 

endoplasmic reticulum resulting in mobilization of Ca2+ from intracellular stores and muscle 

contraction.  

The α1-ARs are highly expressed in the heart and prostate but they are widely expressed also 

in the liver and in smooth muscle (121-123). The most important actions of α1-ARs are 

contraction of smooth muscle and regulation of blood pressure (124). A sudden fall in blood 

pressure activates the baroreceptor reflex which further activates the α1-ARs leading to 

contraction of less vital vascular beds, particularly in skin and internal organs. Besides the 

vital role in blood pressure control, the α1-ARs are involved in prostate function (125). The 

importance of α1-ARs in prostate function is evident in benign prostatic hyperplasia (BPH) 

where enlargement of prostate complicates normal urine flow. Activation of the α1-ARs 

relaxes the muscles of prostate and bladder neck, making it easier for men to urinate. In 

addition to their high expression levels in smooth muscle and the heart, all three α1-ARs show 

wide but rather restricted expression patterns in the CNS of mammalians (126, 127). In the 

CNS the α1-ARs have a role in addiction (119), nociception (120) and modulation of working 

memory (120). 

In contrast to α1-ARs, the three α2-AR subtypes have traditionally been reported to have 

mostly inhibitory roles in the body by coupling to pertussis toxin sensitive G-proteins, Gi and 

G0. This interaction inhibits the opening of voltage-gated Ca2+ channels in neuronal cells 

(128, 129) and decreases the activity of adenylyl cyclase leading to reduction in cellular 

cAMP levels (130, 131). However, α2-ARs have also been linked to stimulation of Ca2+ influx 

(132-135) and to activation of voltage-gated potassium channels (136). 

The α2-ARs are present in virtually every peripheral tissue (137-139). However, some tissues 

have been found to express predominantly only one α2-AR subtype; for example the α2A is the 

only detected subtype in the aorta and in the spleen whereas the α2B is the only α2-AR subtype 

present in the liver (140). Most of the classical effects mediated by the α2-AR agonists are 

governed by the α2A-AR subtype such as hypotensive and bradycardic effects (141, 142) and 

sedation (143). This particular subtype plays a dominant role in cardiovascular regulation as 

confirmed by α2A-AR knockout mice which show increases in blood pressure and heart rate 
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(144). Compared to the α2A-AR, rather few functions have been described for the other two 

α2-AR subtypes. The α2B-AR mediates increases in systemic blood pressure but it also seems 

to be important for the organ development and proper reproduction (145, 146). The α2C-ARs 

are mainly expressed in the CNS where they modulate various behavioral responses such as 

aggressive behavior, startle reactivity and amphetamine induced locomotor activity (147). 

This particular subtype also has a putative role in stress-dependent depression (148).  

All three β-AR subtypes are positively coupled to adenylyl cyclase through activation of Gs 

protein. This in turn results in increased levels of cellular cAMP, activation of protein kinase 

A and inhibition of Ca2+ release from intracellular stores. The β-AR subtypes show rather 

restricted expression in various organs and tissues being extensively distributed in the 

cardiovascular system and in smooth muscle (149-152). The β-ARs have for a long time been 

established as key players in maintaining cardiovascular homeostasis. Stimulation of β1-ARs, 

the predominant β-AR subtype found in the heart (150), induces positive chronotropic 

(increases in heart rate) and inotropic effects (increases in force of contraction). As a 

consequence, these receptors are often either stimulated or blocked to treat common diseases 

such as hypertension, cardiac arrhythmias and ischemic heart disease. In the smooth muscle, 

particularly in the bronchial smooth muscle, the β2-ARs mediate relaxation of the muscles in 

response to activation (153). The third subtype, the β3-AR, is present in large amounts in the 

brown and white adipose tissues (98). In the brown adipose tissue the β3-AR most likely 

regulates noradrenaline-induced changes in energy metabolism and thermogenesis (154). 

However, all the β-AR subtypes seem to be important for the regulation of metabolism as 

mice lacking all three β-ARs develop massive obesity (155). 

1.3.3 Drugs and therapeutics 

Hypertension, more commonly known as high blood pressure, is a condition where the blood 

pressure in the arteries is elevated increasing the risk for stroke, heart disease and death. For 

many years, β-AR antagonists have been used to treat hypertension (156). These drugs target 

mainly the -ARs thereby reducing the heart rate and the contractility of the heart. The β-AR 

antagonists are also commonly used in other cardiovascular conditions such as in the 

treatment of angina pectoris, cardiac arrhythmia and for the long-term treatment of patients 

who have survived myocardial infarction (156). Additionally, these drugs have also been useful 

in the treatment of migraine, anxiety disorders, hyperthyroidism, alcohol withdrawal, 

glaucoma and ocular hypertension. In some cases the α-blockers have been used to treat 

hypertension (157). The α-AR antagonists, especially α1-AR antagonists, have been useful in 

the treatment of primary hypertension; they show 8-10 % decrease in systolic and diastolic 

blood pressure (158). However, their use has not been as widespread as of the other 

antihypertensive drugs and nowadays the α1-AR antagonists are no longer recommended for 
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the treatment of early-stage hypertension (158). Despite this, they can be added as individual 

agents to treat refractory hypertension (159).  

Although α1-AR antagonists are not recommended for the treatment of early-stage 

hypertension, BPH, a urologic disorder prevalent in elderly men, is treated mainly by α1-AR 

antagonists. Alfuzosin was the first uroselective α1-AR antagonist to be evaluated in the 

treatment of BPH (160) and was subsequently marketed, initially in France, in 1987. This 

drug became the standard α1-AR antagonist in the treatment of BPH and is widely used in 

Europe. Other antagonists widely used are prazosin and tamsulosin. Prazosin can be 

considered the prototype of α1-AR ligands and it displays equal affinities for all three α1-AR 

subtypes (161), but it also binds to α2-ARs (162). Tamsulosin is the only uroselective α1A-AR 

antagonist commercially available and it does not have impact on the heart rate or blood 

pressure (163).  

Yohimbine and rauwolscine, a stereoisomer of yohimbine, are classical α2-AR antagonists. 

These compounds belong to the family of yohimbanes which are complex polycyclic 

structures. Yohimbine, extracted from the bark of the Pausinystalia yohimbe tree, is α2-AR 

ligand used for the treatment of male impotence (164). Side effects of yohimbine are dose-

dependent and only small increases in heart rate are observed with doses exceeding the well-

tolerated level (10 mg). The first highly selective α2-AR ligand, an antagonist JP-1302, was 

discovered through a high-throughput screening approach (165). This compound shows 

approximately 100-fold selectivity for the α2C-AR over the α2A-AR and α2B-AR subtypes 

(165). It is speculated that JP-1302 would have therapeutic potential for the treatment of 

neuropsychiatric disorders such as depression and schizophrenia as it has been noticed to 

display antidepressant and antipsychotic-like effects in animals (147, 166). Another ligand 

showing slight subtype selectivity is MK-912 which is about 4- and 13-fold more selective for 

the α2C-AR as compared to the α2A-AR and α2B-AR subtypes (167). In addition to the 

antagonists described, α2-AR agonists are being used as antihypertensive drugs of which 

clonidine serves as an example (157), as veterinary sedatives (168) but also in the treatment of 

attention-deficit hyperactivity disorder (169). Table 2 lists some α-AR ligands and their 

subtype selectivities. 
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Table 2. The ligands acting on α-adrenoceptors and their binding preferences. 

            Ligand                                           Binding preference                                       Reference

 

α1-adrenoceptor ligands 

 

Agonists                                          

Noradrenaline                                  α1A-AR    ~    α1B-AR    ~    α1D-AR                 170 

Adrenaline                                       α1A-AR     >    α1B-AR    ~    α1D-AR                170 

Oxymetazoline                                 α1A-AR     >>    α1B-AR    ~    α1D-AR             171 

 

Antagonists 

Prazosin                                           α1A-AR    ~    α1B-AR    ~    α1D-AR                  161 

Silodosin                                         α1A-AR   >>   α1D-AR    >    α1B-AR                  171 

Tamsulosin                                      α1D-AR    ~    α1A-AR    >    α1B-AR                  161 

 

α2-adrenoceptor ligands 

 

Agonists                                          

Noradrenaline                                 α2A-AR    ~    α2B-AR    ~    α2C-AR                   170 

Adrenaline                                      α2A-AR    ~    α2B-AR    ~    α2C-AR                   170 

Clonidine                                        α2A-AR    >    α2B-AR    >    α2C-AR                   172 

UK-14,304                                      α2A-AR    >>    α2C-AR    >    α2B-AR                 172 

 

Antagonists 

JP-1302                                            α2C-AR    >>    α2B-AR    ~    α2A-AR               165 

MK-912                                            α2C-AR    >    α2A-AR    ~    α2B-AR                 173 

RX-821002                                       α2A-AR    ~    α2B-AR    ~    α2C-AR                 174 

Yohimbine                                        α2C-AR    >    α2A-AR    >    α2B-AR                 175 

1.4 Muscarinic acetylcholine receptors 

Acetylcholine (ACh) was first identified in 1914 by Henry Dale (176) but its role as a 

transmitter was not discovered until 1930s by Dale and co-workers. ACh functions in the 

peripheral and central nervous systems and activates two distinct classes of plasma membrane 

receptors; muscarinic acetylcholine receptors (mAChRs) and nicotinic acetylcholine receptors 

(nAChRs) (176). The mAChRs were named after muscarine, a hallusinogenic alkaloid from 
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mushrooms, whereas the nAChRs, ligand-gated ion channels located on neurons and on the 

postsynaptic side of the neuromuscular junction, were named after nicotine found from 

nightshade family of plants (62). 

Currently there are five muscarinic acetylcholine receptors (mAChR), M1-M5, which have 

been cloned and whose pharmacological profiles have been determined (177). These receptors 

mediate most of the excitatory and inhibitory actions of ACh in the central and peripheral 

nervous systems and can be divided into two different classes based on the G-proteins to 

which they are coupled. M1, M3 and M5 mAChRs couple to the G-proteins of the Gq/11 family 

which results in increases in IP3 levels and in intracellular calcium levels (178). M2 and M4 

mAChRs preferentially couple to Gi/o type G-proteins leading to a decrease in the activity of 

adenylyl cyclase and modulation of ion channel activity (178). 

As with ARs, the mAChRs are widely distributed in the body although each receptor subtype 

exhibits its own distinct distribution patterns both in the CNS and in peripheral tissues (179). 

Regarding the distribution of mAChRs in different organs and tissues, only a few examples 

will be mentioned in this context. For example, M1 and M4 mAChRs are the most abundant 

subtypes in the CNS (179). In the peripheral tissues it is generally accepted that mAChR 

subtypes are distributed as follows; in the glandular tissue the most prominent subtypes are 

the M1 and M3 (180), abundant expression of M2 mAChR is observed in the heart (181) but 

also in the smooth muscle together with M3 mAChR (182). The M5 subtype has very 

restricted expression profile and can be found in cerebral blood vessels (178, 183). 

Considering the wide distribution of mAChRs it is not surprising that these receptors mediate 

many important physiological functions. Among these can be mentioned reduction of heart 

rate, regulation of smooth muscle contractility and glandular secretion (184). The mAChRs 

are also involved in controlling various functions in the CNS such as cognitive, behavioral, 

motor and autonomic processes (178, 185, 186). Notably, many diseases of the CNS have 

been associated with changes in mAChR expression of which the best known are Alzheimer’s 

disease, Parkinson’s disease and schizophrenia (187). 

1.4.1 mAChRs as targets for natural defense and attack 

There are several compounds in the Nature which bind to mAChRs and either stimulate or 

inhibit the function of these receptors. These natural compounds can be found both from 

plants and from animals and have probably evolved to be part of the natural defense against 

predators. 

Muscarine, a highly toxic alkaloid, was isolated in 1869 from the mushroom Amanita 

muscaria. Thereafter it has been found also from other mushrooms such as from Inocybe and 
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Clitocybe species where it is more abundant. Muscarine mimics the functions of acetylcholine 

by binding to and activating the mAChRs. If ingested, muscarine can cause poisoning 

characterized by bradycardia, bronchoconstriction and convulsions (188). This is due to 

muscarine binding to mAChR subtypes present in the heart and smooth muscle resulting in 

prolonged receptor activation. Cardiac arrest and respiratory failure have been reported in 

severe cases (189). The effects of muscarine can be reversed by mAChRs antagonists. 

Natural antagonists of mAChRs include atropine, scopolamine and toxins isolated from 

snakes. Atropine is an alkaloid extracted from a perennial herbaceous plant, Atropa 

belladonna. This prototypic antimuscarinic drug acts by blocking the action of mAChR 

agonists in a competitive manner resulting in increased heart rate (190) and dilation of pupils 

(191). Scopolamine, an atropine-like alkaloid, was extracted from the same family of plants 

(nightshade family) as atropine in 1880 by Albert Ladenburg. It has a wider effect on the 

nervous system compared to atropine due to its ability to cross blood-brain barrier. 

Scopolamine has been used to dilate pupils, as a sedative and to prevent motion sickness. 

Side-effects of scopolamine include tachycardia and disorientation.  

Toxins from snakes include both enzymes and non-enzymatic peptides. Snake venoms are 

known to be a rich source of phopholipase A2, an enzyme that hydrolyses phospholipids into 

fatty acids and to other lipophilic substances, but only few of them show neurotoxic 

properties by binding to receptors on nerve and muscle membranes (192, 193). The 

muscarinic inhibitor from the Malayan spitting cobra is a phospholipase A2 which was found 

to bind to the mAChRs and to block their actions (194). Regarding the non-enzymatic 

mAChRs blockers, MTs were discovered from green and black mambas at the end of the 

1980's (195). Among these peptides can be found the most specific and selective ligands for 

the mAChRs. 

1.5 Animal toxins 

Toxins are substances produced by living cells or venomous organisms such as animals. They 

can be for example small molecules and proteins which are capable of interacting with 

biological macromolecules including receptors at the plasma membrane and enzymes. The 

effects of toxins can vary from minor to acute effects which in severe cases can lead to death.  

1.5.1 Venomous animals 

Venomous animals are widely spread in the animal kingdom comprising chordates (reptiles, 

fishes, amphibians, mammals), echinoderms (starfishes, sea urchins), molluscs (cone snails, 

octopi), annelids (leeches), nemertines, arthropods (arachnids, insects, myriapods) and 

cnidarians (sea anemones, jellyfish, corals) (196). Venoms of these animals have evolved to 
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immobilize, paralyze, kill and digest prey, but venoms can also be used for defense. The 

venom is stored in a gland from which it is “injected” to the prey through a specialized 

envenomation apparatus which can be a sting or a hollow fang (tooth). 

The venom components of animals are well-selected by the Nature and targeted to interfere 

with vital physiological processes of the victim. Venoms comprise a unique mixture of 

peptides, proteins, carbohydrates, lipids and other small molecules such as alkaloids. The 

wide variety of different peptides from the venom has been proven to function as effective 

biological weapons. In many cases these peptides act on the nervous system and perturb 

neurotransmission but some are also able to disrupt host cell membranes, behave as 

antibacterials and exert cytolytic or hemolytic actions (197). In addition to the small peptides, 

several enzymes are found in the venoms such as phospholipases, peptidases and 

sphingomyelinases (198). Upon envenomation, these multiple peptides and enzymes work in 

cooperation to produce the desired effects. 

The modern era of toxinology began in 1960’s with the aim to understand the mechanism of 

action of lethal venom components and to create antivenoms for the envenomation victims 

(199, 200). Soon it became clear that venoms also contain non-lethal components that may be 

useful as research tools, as pharmaceutical lead compounds and as insecticides (201-206). A 

good example of the therapeutic potential of animal toxins is a conopeptide ω-MVIIA from 

the venom of the cone snail Conus magus (207). Its synthetic version, ziconotide, is used as 

the last line treatment for chronic pain in patients refractory to morphine and alternative 

treatments (207-209). 

1.5.2 Snakes 

Snakes are carnivorous reptiles which can be found on almost every continent. Currently there 

are over 20 different families of snakes which comprise about 500 genera and over 3000 

different species. Of these ~ 20 % are considered venomous and include elapids, viperids, 

colubrids and atractaspidids. Snakes have always fascinated humans. They appear in many 

creation stories and are seen as symbols of fertility. In some cultures snakes are even 

considered immortal because of their ability to slough their skin. However, fascination and 

fear often go together. 

The fear for snakes is an innate reaction in humans. Envenomation resulting from snake bite 

causes severe threats to human health leading in many cases to physical disability and even 

death. Mambas, which are of particular interest in this thesis, are one of the most venomous 

snakes and the mortality of envenomation reaches almost 100 % if proper therapy is not 

available. In a case report, a 31-year old man was bitten by a black mamba and developed 
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life-threatening symptomatology within 30 minutes (210). The man was rescued thanks to 

mechanical ventilation, myorelaxation and effective antivenin therapy. 

Snake venoms can be considered as cocktails of peptides and proteins targeting primarily the 

peripheral nervous system and the neuromuscular junction of skeletal muscles. The protein 

components can be divided into different families based on their structure and function; to 

three-finger toxins, protease inhibitors, lectins, phospholipases, serine proteinases and 

metalloproteinases (211). The proteins within one family share remarkable structural 

similarity although in some cases their pharmacological actions can be quite different. For 

example some act on cell membrane proteins while the others inhibit the functions of certain 

enzymes. 

α-bungarotoxin (αBTx), the first three-finger toxin isolated from the venom of the Taiwanese 

many-banded krait, Bungarus multicinctus, approximately fifty years ago, was found to bind 

with high affinity to the nicotinic acetylcholine receptors (nAChRs) and to block 

neurotransmission (212). After its discovery, αBTx has had important applications in 

biological research. This toxin, being selective for the α7 nAChRs, greatly facilitated the 

isolation and characterization of nAChRs (213). In addition to αBTx, several other snake 

peptides have been proven to be biologically valuable. Good examples are the bradykinin-

potentiating peptides from the venom of Bothrops jararaca (venomous pit viper). Their 

molecular structures were used as a base for the design of a compound inhibiting the function 

of angiotensin-I converting enzyme (214, 215). This compound, named captopril, is currently 

used for the treatment of renovascular hypertension (215, 216).  

1.5.3 Three-finger toxins 

The three-finger toxin (TFT) family comprises one of the most abundant and well 

characterized families of snake venom peptides. These toxins are 60-74 amino acids long non-

enzymatic peptides found in the venoms of elapids (cobras, kraits and mambas), hydrophiids 

(sea snakes) and colubrids (211, 217- 219). All TFTs are structurally highly conserved. They 

contain four or five disulfide bonds which direct the folding of these peptides into structures 

having three β-stranded loops protruding from a central core (Figure 8). The three loops 

projecting from the core resemble the three fingers of a hand thus explaining the name of the 

toxin family. However, the three-finger fold is not restricted solely to snake venom peptides 

as several non-venomous proteins and peptides have been shown to possess a similar folding 

pattern. Examples of these non-venomous peptides include the complement regulatory protein 

CD59 (220) and the Ly-6 alloantigen family members of the immune system (221) which 

includes lynx1. Lynx1 is a toxin-like peptide which is tethered to the plasma membrane 

through a GPI-tail (222). It was found to be present in the same cellular compartments as 

nAChRs where it altered the function of nAChRs (222, 223).  
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Figure 8. Three dimensional structures of three-finger toxins. A. Muscarinic Toxin 7 from the 
Eastern green mamba (MT7; pdb:2vlw), B. α-bungarotoxin from the Taiwanese many-banded krait 
(pdb; 1kfh) and C. Erabutoxin from broad-banded blue sea krait (pdb: 1qkd). The β-strands are 
presented as blue arrows and the disulfide bridges in yellow. Loop structures are presented as roman 
numbers I-III. The structures were drawn by the PyMOL Molecular Graphics System.  

Regardless of their structural similarity, the three-finger toxins differ from each other in their 

pharmacological and biological properties. Most of the three-finger toxins identified interact 

with ligand-gated ion channels, in particular with the nAChRs (213). Additional TFT targets 

include voltage-gated ion channels (224, 225), coagulating factors (226), phospholipids (227), 

integrin receptors (228), acetylcholinesterases (229) and GPCRs (230-233). Consequently the 

three-finger fold appears to be a structural motif which allows a wide variety of unrelated but 

specific functions. Mamba venom seems to be a rich source of three-finger toxins. Most of the 

toxins currently found have been isolated from the black (Dendroaspis polylepis) and Eastern 

green mambas (Dendroaspis angusticeps) (224, 230-238); only a few are from Western green 

mamba and Jameson’s mamba (195, 236, 239, 240). Among the three-finger toxins are toxins 

which target GPCRs including MTs and two recently identified novel toxins, ρ-Da1a and ρ-

Da1b (230- 233). 

1.5.3.1 Muscarinic toxins 

Muscarinic toxins (MTs) are 65-66 amino acid long peptides isolated from both Eastern green 

mamba (D. angusticeps) and black mamba (D. polylepis) venoms. The first MTs (MT1 and 

MT2) to be isolated over 20 years ago from the venom of Eastern green mamba, were 

characterized by their ability to inhibit the binding of a nonselective muscarinic antagonist, 

quinuclidinyl benzilate (QNB), to muscarinic acetylcholine receptors (241, 242). Later on 

several other MTs were found from the Eastern green mamba (MT1-7) and black mamba 

(MTα, β and γ) that interfered with ligand binding to mAChRs (195). The venom of Western 
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green mamba (D. viridis) also contains toxins similar to MTs but these have not been 

characterized in detail (195, 240). 

Two main research groups were responsible for isolating, characterizing and naming the MTs. 

Dr. Karlsson’s group named the toxins according to the order by which they were discovered 

(243). According to this nomenclature MT1 and MT2 were the first toxins to be isolated from 

the Eastern green mamba whereas MTα and MTβ were the first toxins isolated from the black 

mamba and so on. Dr. Potter’s group, instead, named the toxins based on the receptor for 

which they have the highest affinity (244). For example, m1-toxin shows the highest affinity 

for the M1 mAChR whereas m4-toxin was found to be most active on the M4 mAChR. 

Consequently, m1-toxin and MT7 are identical toxins. The same applies for m4-toxin and 

MT3. In the thesis, muscarinic toxins will be named according to Dr. Karlsson’s group. 

Muscarinic toxins are highly similar to each other at their primary sequence level (Figure 9). 

A closer inspection of toxin sequences reveals some highly conserved sequence signatures 

such as i) the eight cysteine residues involved in the formation of four disulfide bonds, ii) the 

LeuThrCysVal (LTCV) sequence present in the N-terminus, iii) the ThrAspLysCysAsnX 

(TDKCNX) sequence in the C-terminus, iv) GlyGlnAns(Leu/Val)CysPheLys 

(GQN(L/V)CFK) sequence connecting loops I and II and v) GlyCys(Ala/Val)AlaThrCysPro 

(GC(A/V)ATCP) sequence connecting loops II and III. Besides the toxins presented in Figure 

9, two additional toxins, MT6 and MTγ, were isolated in the beginning of the 1990's (243, 

245) but their amino acid sequences have not been determined. However, based on the 

pharmacological profile, MT6 is considered to be an isotoxin of MT3 (243). Three additional 

isotoxins of MT7 have also been found. These have single or a few amino acid substitutions 

in their primary sequences as compared to MT7, but these substitutions do not seem to affect 

the pharmacological profile of the toxins (246). 

 
Figure 9. Amino acid sequence of the muscarinic toxins. The specific sequence signatures are 
shown in boldface and conserved cysteine residues are presented in red. Disulfide bridges are 
indicated by connecting lines. 

MT1     LTCVT SKSIF GITTE NCPDG QNLCF KKWYY IVPRY SDITW GCAAT CPKPT NVRET IRCCE TDKCN E
MT2     LTCVT TKSIG GVTTE DCPAG QNVCF KRWHY VTPKN YDIIK GCAAT CPKVD NN-DP IRCCG TDKCN D 
MT3     LTCVT KNTIF GITTE NCPAG QNLCF KRWHY VIPRY TEITR GCAAT CPIPE NY-DS IHCCK TDKCN E 
MT4     LTCVT SKSIF GITTE NCPDG QNLCF KKWYY IVPRY SDITW GCAAT CPKPT NVRET IHCCE TDKCN E 
MT5     LTCVT SKSIF GITTE DCPDG QNLCF KRRHY VVPKI YDITR GCVAT CPKPE NY-DS IHCCK TDKCN E 
MT7     LTCVK SNSIW FPTSE DCPDG QNLCF KRWQY ISPRM YDFTR GCAAT CPKAE YR-DV INCCG TDKCN K 
MTα     LTCVT SKSIF GITTE NCPDG QNLCF KKWYY LNHRY SDITW GCAAT CPKPT NVRET IHCCE TDKCN E 
MTβ     LTCVT SKSIF GITTE DCPDG QNLCF KRRHY VVPKI YDITR GCVAT CPIPE NY-DS IHCCK TDKCN E 

Loop I Loop II   Loop III 
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1.5.3.1.1 Subtype selectivity and affinity for mAChRs 

Conventional mAChR ligands usually lack specificity and selectivity for one particular 

receptor subtype. For example pirenzepine, a commonly used M1 mAChR antagonist, shows 

only 2-43 fold higher affinity for the M1 mAChRs as compared to the other mAChR subtypes 

(247). On the contrary to the conventional ligands, muscarinic toxins have been shown to be 

exceptional in their selectivity for a certain receptor subtype which offers remarkable 

advantages for the basic biological research. 

The first indication regarding the subtype selectivity of MTs arose from MT1 and MT2. 

These MTs could not totally inhibit the specific binding of the tritium (3H) labeled muscarinic 

antagonist QNB to rat and bovine cerebral cortex membranes (241). As QNB displays similar 

binding affinities for all the mAChR subtypes, it was suggested that these two MTs might 

bind to mAChRs in a subtype-selective manner (241). Further studies confirmed the subtype 

selectivity of MT1 and MT2 for the M1 and M4 mAChRs (Table 3, 248-250). Similar 

selectivity pattern was suggested for MT4 which differs from MT1 by a single amino acid at 

position 57 (His for MT4 and Arg for MT1) (Table 3, 251). However, to my knowledge the 

binding of MT4 to mAChRs has not been confirmed with cloned mAChRs. In addition to 

toxins above, also MT5 has been reported to target the M1 and M4 receptors (Table 3, 249). 

MT3, also known as m4-toxin, binds to M4 mAChR with high affinity (pKi = 8.7 ± 0.06) 

(Table 3, 252). A lower affinity (about 40-fold) has been measured for the M1 mAChRs 

whereas the other mAChRs, M2, M3 and M5, do not show detectable binding of MT3 (Table 

3, 252, 253). The high affinity and selective binding of MT3 to the M4 mAChRs has later 

been confirmed in functional assays using different cell lines and both recombinant and native 

receptors (254, 255). MT6, not yet sequenced, has been speculated to be an isotoxin of MT3 

based on its amino acid composition and pharmacological profile (243, 249). 

A toxin targeting the M1 mAChR with remarkably high affinity and selectivity was found in 

the early 1990’s by Dr. Potter’s group and was named m1-toxin (244). Few years later 

Karlsson’s group identified another toxin which bound selectively to the M1 mAChR (256). 

The toxin was named MT7. Later these toxins were found to be identical despite initial errors 

in amino acid sequencing (246, 257). MT7 (m1-toxin) targets the M1 mAChRs with 

picomolar (pM) affinity showing no detectable binding to the other mAChR subtypes (Table 

3, 244, 258-260).  

Three toxins resembling MTs from the Eastern green mamba, MTα, MTβ and MTγ, were 

isolated from the black mamba in the mid 1990’s (245). MTα was initially reported to have 

high affinities for all the mAChRs (245). This has not, however, been confirmed. MTβ was 

also reported to bind to all mAChRs, but with lower affinities than MTα (245). Yet, a recent 
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study employing synthetic MTβ suggests that this toxin targets adrenoceptors and not 

mAChRs (233). MTγ has not been characterized and thus its selectivity pattern remains to be 

established. 

Table 3. Subtype selectivity of muscarinic toxins from the Eastern green mamba for mAChR 
subtypes.  

Toxin                                     Subtype selectivity                                              Reference 

MT1                                        M1 > M4 >> M2, M3, M5                                       261, 262 

MT2                                        M1 > M4 >> M2, M3, M5                                       261, 262 

MT3                                        M4 >> M1 >> M2, M3, M5                                     252, 253, 255 

MT4                                        M1 > M4 >> M2, M3, M5                                       251 

MT5                                        M1 > M4 >> M2, M3, M5                                       249 

MT6                                        M4 >> M1 > M2, M3, M5                                       249 

MT7                                        M1, no detectable binding to M2, M3, M4, M5       79, 258, 263  

Individual affinity values can be found from the references.  

Generally MTs are considered as antagonists although MT1 and MT2 have shown also 

agonistic properties. First indications regarding their agonism were obtained from studies 

examining the effects of MT1 and MT2 on memory (240, 264). Both of them were shown to 

behave like the mAChR agonist oxotremorine in the passive learning avoidance task in rats, 

and this behavior was antagonized by scopolamine (240, 264). However, in a recent 

publication Dr. Servent and co-workers reported that high concentration of synthetic MT1 

could not induce Ca2+ release in cells expressing cloned M1 mAChRs (258). This creates 

doubts on its agonistic actions. Another rather peculiar observation regarding agonistic 

actions of MTs arises with MT2. This toxin was reported to increase intracellular Ca2+ levels 

in cell lines expressing M1, M3 and M5 mAChRs (265) although no binding to M3 and M5 

mAChRs has previously been observed (Table 3, 248, 250). During my doctoral studies I 

have also tried to activate M1 mAChRs with venomous MT2 (obtained from Peptide Institute, 

Japan) but without success.  

1.5.3.1.2 Determinants of subtype selectivity 

The interaction between a particular receptor and toxin is a result of good molecular fit. The 

initial clues considering the factors determining the subtype selectivity of MTs were based on 

the toxin sequences. By comparing the amino acid sequences and their pharmacological 

profiles, particular regions and amino acids possibly involved in the binding and defining the 

subtype selectivity could be indicated. For example, the charged residues present in MT1 and 

MT7 sequences are differently distributed. This might explain the differences seen in their 
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subtype selectivity and be one reason for the high affinity interaction between MT7 and M1 

mAChR (258).  

The interaction occurring between MT7 and M1 mAChR has been extensively studied both at 

the toxin and receptor level. An initial step towards understanding this interaction was 

provided by Krajewski and co-workers in 2001 (266). As only seven of the 65 amino acids of 

MT7 are not conserved in the other MTs, two of these amino acids, Phe38 and Lys65, were 

chosen and mutated to corresponding residues in other toxins; Phe38 to Ile and Lys65 to Glu. 

Neither of these two residues was observed to be important for the selective binding to the M1 

mAChRs (266). A study conducted in 1993 by Max and co-workers demonstrated that MT7 

makes highly stable and irreversible interactions with the M1 mAChR (267). However, a 

similar phenomenon was not observed to occur with Phe38Ile-MT7 mutant which dissociated 

rapidly from the receptor (266). The altered binding characteristics of Phe38Ile-MT7 mutant 

suggested that Phe38 might contribute to the stability of the toxin-receptor complex (266). On 

the contrary to Phe38Ile, Lys65Glu-MT7 mutant bound irreversibly to ligand-free M1 

mAChR but unlike native MT7, this mutant did not slow the dissociation of [3H]-NMS. Based 

on this it was suggested that the positively charged lysine at position 65 forms contacts with 

an outer loop of the M1 mAChR. (266)  

The tips of three loops have previously been found to be the main determinants for the high 

affinity interactions of TFTs with nAChRs (268, 269). Based on this observation, several 

residues located mainly at the tips of these three loops were selected and mutated to alanines 

in MT7 (270). The amino acids residing at the tip of loop II (Arg34, Met35 and Tyr36) were 

noticed to be of particular importance for the high affinity binding to ligand-free M1 mAChR 

(270). Based on the three dimensional structures of MT2, Arg34 has previously been 

proposed to be in a favorable position to interact with the amino acids residing in the ligand 

binding cavity of the target receptor (271). Substitution of the highly conserved Arg34 with 

an alanine resulted in approximately 200-fold reduction in the affinity for the M1 mAChR. 

The other two residues, Met35 and Tyr36, mutated to alanines produced 8- and 20-fold 

reductions in the binding affinity. (258, 270). Further studies have shown that replacing the 

whole loop II of MT7 with that of MT1 decreases the affinity of MT7 for the M1 mAChR 

significantly (~ 400-fold decrease) thus indicating the importance of loop II for the high 

affinity interaction (272). Substituting MT7 loops I and III by those of MT1 does not show 

significant impacts on the affinity of MT7 (272) although some modifications at the loops I 

(Trp10 → Ala and Ser8 → Ala) and III (Tyr51 → Ala) have been observed to have weak 

effects on toxin’s affinity for the M1 mAChR (270).  

The mAChR subtypes are closely homologous to each other in their TMs and therefore a 

common binding site for MTs has been proposed (79). The selective binding of MT7 to M1 
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mAChR must then be a result of some specific interactions taking place for example in the 

more divergent receptor domains. To identify the larger domains responsible for the selective 

interaction of MT7 with the M1 mAChR, chimeras of M1 and M3 mAChRs were constructed 

(79, 80). The exchange of M1 mAChR ECL1 with that of M3 mAChR did not significantly 

alter the affinity of MT7 for the M1 mAChR. However, when the ECL2 were exchanged 

drastic changes were observed in the affinity for MT7 (79, 80). Simple introduction of the 

ECL2 of M3 mAChR on to the M1 mAChR reduced MT7 binding by three orders of 

magnitude whereas introduction of the ECL2 of M1 mAChR on to the M3 mAChR converted 

M3 mAChR into a receptor able to interact with MT7 (80). The ECL3 was also found to take 

part in MT7 binding (79). 

As many other GPCRs, the M1 mAChR is able to form dimers (273). MT7 was observed to 

bind to a dimeric form of M1 mAChR and to promote its stability probably by inducing 

conformational changes within the receptor dimers (274). The stabilizing effect of MT7 on 

dimer formation was detected based on its ability to protect M1 mAChRs from the 

dissociating effect of detergent, n-dodecyl-β-d-maltoside (274). Modeling dimeric M1 

mAChRs in complex with MT7 has provided further information regarding the high affinity 

interaction. The loops of MT7 interacted with the different protomers of the M1 mAChR 

dimer; loops II and III interacted with protomer A whereas loop I made contacts with 

protomer B (80). The model also demonstrated that MT7 was flanked by the ECL2 of each 

M1 mAChR protomer. This finding confirmed the crucial role of this loop structure in the 

interaction between M1 mAChR and MT7. 

At the receptor level several amino acids have been noticed to be important for the selective 

interaction occurring between M1 mAChR and MT7. In the proximal part of the ECL2 

Glu170, Arg171, Leu174 and Tyr179 have been identified to be crucial for the selective 

interaction with MT7 (79, 80). Other residues taking part in MT7 binding are Trp400 located 

at the TM7 (80) and Glu397 at the ECL3 (79, 275) although some conflicting results have 

been reported regarding the role of Glu397 in MT7 binding (79, 80, 275). It was suggested, 

based on the structural model of MT7-M1 mAChR dimer, that the π-cation interaction 

between the conserved amino acids Tyr179/Trp400 of the M1 mAChR and Arg34 of MT7 is 

one of the major determinants in binding whereas the electrostatic interaction between Glu170 

of M1 mAChR and Arg52 of MT7 is crucial for the specificity of MT7/M1 mAChR 

interaction (80). 

1.5.3.1.3 Binding mode of muscarinic toxins 

Ever since the discovery of MTs as high affinity ligands for mAChRs, their mode of 

interaction has been under intensive research. The experiments performed have focused on 

determining whether the antagonism produced by MTs is competitive or non-competitive and 
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how stable are the toxin-receptor complexes formed. Regarding antagonism, muscarinic 

toxins have shown both competitive and non-competitive antagonistic effects on the 

mAChRs.  

The binding mode of MT1 and MT2 is currently relatively unclear. For both toxins 

competitive interactions with the M1 mAChR have been demonstrated (261). The competitive 

binding of MT1 has been later supported by radiolabeled MT1 whose binding to porcine brain 

was inhibited by pirenzepine (276) and by the lack of effect of MT1 on the dissociation 

kinetics of [3H]-N-methylscopolamine (NMS) (258). However, other results have suggested 

an allosteric interaction for MT1 and M1 mAChR as MT1 binding was not affected by 4-

diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP) which is an irreversible 

orthosteric alkylating agent (240). On the contrary to MT1 and MT2, the binding of MT3 to 

M4 mAChR has been more straightforward to determine. MT3 was shown to interact with the 

M4 mAChR in a competitive manner (253-255, 277). 

The binding mode of MT7 has been most intensively studied because of its high affinity and 

selectivity for the M1 mAChR. MT7 binds to M1 mAChRs in a non-competitive manner as 

judged from its disability to completely inhibit the binding of orthosteric ligands to the 

receptor (258, 259, 263, 266). In addition, if orthosteric ligands are added prior to MT7, the 

toxin appears to trap the ligands in the receptor (263). MT7 markedly decreases the rate of 

atropine-induced dissociation of [3H]-NMS from the M1 mAChRs (263, 267). On the other 

hand, MT7 accelerates the dissociation of [3H]-ACh (259). Both of these observations on 

orthosteric ligand affinity indicated that MT7 acts as an allosteric modulator of M1 mAChR. 

Additional evidence for the allosteric properties of MT7 came from studies where the 

interaction of MT7 with free and NMS-occupied M1 mAChRs was examined (260). The 

results highlighted a strong negative co-operativity between MT7 and NMS which is 

characteristic for ligands that bind to an allosteric site and reduce the affinity of orthosteric 

ligands (65). These results thus provided further evidence that MT7 interacts with M1 mAChR 

through an allosteric site. 

Toxins can form either reversible or irreversible/pseudo-irreversible interactions with their 

target receptors. In reversible binding the toxin-receptor complexes are rapidly formed and 

deformed whereas in irreversible/pseudo-irreversible binding the toxin and receptor form 

rather stable interactions which are not easily broken. MT7 forms highly stable and 

irreversible interactions with the M1 mAChR. This has been revealed by the inability of [3H]-

NMS or [3H]-pirenzepine to interact with the M1 mAChR after receptors have been 

preincubated with MT7 (263, 266, 267). MT1 and MT2 have also been reported to interact 

irreversibly with M1 and M4 mAChRs (262) although some studies have suggested that MT1 
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binding is reversible (258, 278). For the MT3 reversible binding has been confirmed (254, 

255). 

1.5.3.2 Three-finger toxins acting on adrenoceptors 

Among the three-finger toxins, there are also toxins that are able to interact with 

adrenoceptors and block their functions. In a doctoral thesis from 1996, the author briefly 

describes a moderate affinity interaction of MT3 with α1- and α2-ARs (249). A few years later 

Dr. Harvey and co-workers conducted a study on the functional effects of MT1 and MT2 on 

different tissue preparations (262). This study revealed that both MT1 and MT2 could 

reversibly inhibit the binding of [3H]-prazosin (α1-AR antagonist) to rat cerebral cortex and 

vas deferens membranes (262). Of the two toxins MT1 appeared to be more potent on the α1-

ARs than MT2. 

During the course of this study, the Eastern green mamba venom was extensively screened in 

hope to discover new toxins acting on aminergic-GPCRs. Two novel three-finger peptides 

isolated, ρ-Da1a (initially named AdTx1) and ρ-Da1b, were both active on α-ARs and 

displayed high sequence similarity to MTs (230, 231). The amino acid sequence of ρ-Da1a is 

very similar to MTβ (97 % identity) (230, 245) whereas ρ-Da1b shows some structural 

similarity to MTα (77 %) and MT3 (76 %) (231). ρ-Da1a has subnanomolar affinity for the 

α1A-AR and approximately 1000 times lower affinity for the other α1-AR subtypes (230). The 

activity of ρ-Da1a was also tested on the α2-ARs, β-ARs and mAChRs. ρ-Da1a inhibited α2-

ARs at high micromolar concentrations while β-ARs and mAChRs were unaffected by the 

toxin (230). ρ-Da1b was found to target the α2-ARs (231). This toxin shows slight selectivity 

for the α2A-AR subtype over the other α2-ARs (ninefold compared with α2C-AR and fivefold 

compared with α2B-AR).  

Additional three-finger toxins, MTβ and CM-3, acting on ARs were discovered from black 

mamba venom over fifteen years ago (245, 279). Initially MTβ was reported to bind non-

selectively to mAChRs (245) while no biological function was determined for CM-3 (279). 

Both MTβ and CM-3 show high sequence identity to MTs and ρ-Da1a. For this reason 

synthetic MTβ and CM-3 were pharmacologically re-characterized by Blancet and co-workers 

(233). Their study revealed that synthetic MTβ and CM-3 have very similar pharmacological 

profiles on the three α1-AR subtypes and on α2C-AR. Both of them are very potent on all α-

ARs tested; highest affinity was measured for the α1A-AR. The activities of MTβ and CM-3 

resemble that of ρ-Da1a but they interact more potently with the α1B- and α1D-ARs as ρ-Da1a 

does (230, 233). 
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2 AIMS OF THE STUDY 

Adrenoceptors have proved to be important mediators of a number of physiological 

responses. Impairments in the function of these receptors can lead to severe diseases such as 

to cardiovascular diseases and BPH. The most well-known drugs targeting ARs are the beta-

antagonists which have been used to treat angina pectoris for over 40 years. However, many 

drugs targeting ARs lack specificity and selectivity which prevent their use as therapeutics. 

The aim of this study was to find new receptor ligands which would show selectivity among 

the AR subtypes. Muscarinic toxins from mamba snakes have been shown to bind to 

mAChRs with high selectivity. Thus the interaction of these toxins with the ARs was studied 

and characterized.  

 

Specific aims were as follows 

- The initial studies have indicated that MTs from the mambas interact with mAChR 

with rather high affinity and selectivity. However, few studies have shown that MTs 

are able to interact also with the α1- and α2-ARs. In publications I and III, the binding 

of four different MTs to  the ARs was evaluated and their binding to the mAChRs 

reassessed. (I, III)  

- To characterize further MTα binding to the α2B-AR by analyzing the effect of MTα on 

various parameters of agonist and antagonist binding. Additionally, MTα binding sites 

on the α2B-AR were mapped with the help of chimeric α2-ARs. (II) 

- Several toxins, such as α-BTx have been anchored to the plasma membrane with the 

help of a GPI-tail. Thus it was evaluated if such GPI-anchoring could be applied to 

MTs targeting the mAChRs and ARs. (IV) 
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3 EXPERIMENTAL PROCEDURES 

This section introduces the methods used in the publications (I-IV). For more precise 

information on the methods and materials used the reader is referred to individual studies. 

3.1 Receptor expression 

The receptors were recombinantly expressed in Spodoptera frugiperda insect cells (Sf9) with 

the help of the Bac-to-Bac® expression vector system (Invitrogen, Paisley, UK). The 

generation of recombinant baculoviruses is based on the site-specific transposition where the 

gene to be expressed is first cloned into a plasmid transfer vector, pFastBac1 in this study. 

This recombinant plasmid is then transformed into competent DH10Bac Escherichia coli cells 

containing the bacmid DNA. The transposition process is enabled by proteins provided by a 

helper plasmid. Bacterial colonies containing recombinant bacmid DNA are identified by 

disruption of the lacZα gene. The recombinant bacmid DNA is then used to transfect Sf9 

insect cells. The viral stocks harvested from the transfected insect cells are used to infect fresh 

insect cells to induce recombinant receptor expression. (280). 

In the Bac-to-Bac® system, the gene of interest replaces the polyhedrin gene and becomes 

under the control of polyhedrin promoter. However, the polyhedrin promoter is expressed late 

in the infection cycle when the lytic baculoviruses are already killing the host cells. To induce 

receptor expression earlier in the infection cycle, the receptor genes were cloned behind the 

Rous sarcoma virus promoter (RSV-promoter) in some cases. The RSV-promoter is a 

mammalian virus promoter that appears to work well in the Sf9 insect cells infected with 

recombinant baculoviruses (281). 

3.2 Chimeric receptor constructs and mutagenesis 

Chimeric receptors can be used to study the major domains involved in ligand binding. Six 

different chimeric α2-ARs were constructed using polymerase chain reaction (PCR) based 

mutagenesis. Oligonucleotide primers used in the publication II are presented in Table 4. 

Additional restriction sites to either α2A-AR or α2B-AR sequence were introduced by PCR to 

facilitate subcloning. In order to make AB-I chimera a BglII restriction site was introduced 

into the α2B-AR sequence (primer BBGCS). AB-II chimera was generated by introducing an 

ApaI restriction site into α2A-AR sequence (primer AAPNCS). For AB-III it was necessary to 

introduce a StuI restriction site into α2A-AR sequence (primer ASTNCS) whereas an AccI 

restriction sites at equivalent positions in both α2A-AR and α2B-AR were used to generate the 

AB-IV chimera (Figure 10A). An Eco47III restriction site is located at the same position in all 
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three α2-ARs and this was utilized to generate the BA and BC constructs (Figure 10B). In 

addition to the chimeric α2-AR constructs, two mutant α2B-AR variants were made. Amino 

acids Asp153 (α2B-Asp153Ala) and Gnl154 (α2B-Gln154Ala) were mutated to alanines using 

standard PCR techniques. 

Table 4. A list of primers used for mutagenesis in publication II.  

Primer name               Primer sequence

BBGCS   (forward)       5’-GC GAG ATC TAC CTG GCG CTC GAC GTG CTC-3’ 

(=AB-I)             Bgl II 

 

AAPNCS   (reverse)      5’-CC GGG GCC CTT CTT CTC GAT GGA GAT GAG CGG CG-3’ 

(= AB-II)             Apa I 

  

ASTNCS   (reverse)      5’-A CCA GGC CTG GTC GTT GAT CTC GCA GCG CGG CT C-3’ 

(=AB-III)              Stu I 

 

BDANCS   (reverse)     5’- TG GGG GCC CTG GGC GCC CTT GTA GAT GAG GGG C -3’ 

(=α2B-Asp153Ala) 

 

BQANCS   (reverse)     5’- TG GGG GCC CGC GTC GCC CTT GTA GAT GAG GGG -3’ 

(=α2B-Gln154Ala)           

Nucleotides encoding an artificial restriction enzyme recognition site are highlighted in red. 
Underlined red nucleotides are those changed compared to the wild type nucleotide sequence. 
Nucleotides encoding a single amino acid mutation are highlighted in green. Template for the primers 
was either α2A-AR (AAPNCS and ASTNCS) or α2B-AR (BBGCS, BDANCS and BQANCS). 

 
Figure 10. Stretches of α2-AR sequences showing the AccI and Eco47III restriction sites. A. AccI 
restriction sites at equivalent positions in both α2A-AR and α2B-AR. B. Eco47III (AfeI) sites in the α2-
ARs. Restriction enzyme recognition sites are highlighted in red. Numbers in brackets indicate the 
position of sequence stretches in the α2-ARs. 
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3.3 Radioligand binding  

Radioligand binding assays are commonly used to determine receptor-ligand interactions. The 

binding reaction between a receptor and a radiolabelled ligand can be described by the 

following simple, reversible and bimolecular reaction, where kon is the association rate of a 

ligand (L) for the receptor (R) and koff is the dissociation rate of a ligand from the receptor 

(Equation 1). (282) 

 

In the present studies (I-IV) several different radioligand binding assays were performed to 

characterize toxin binding to the ARs: saturation binding experiments, radioligand 

displacement experiments, kinetic titrations and experiments designed to reveal the 

reversibility of toxin binding to the receptors. Radioligands used in publications I-IV are 

presented in Figure 11. 

 
Figure 11. 3H-labeled radioligands used in the publications (I-IV). Binding preferences of the 
compounds are shown in brackets. References for the binding preferences are shown below brackets. 
Of the compounds used UK-14,304 is an agonist and the others are antagonists. * Indicates the 
position of the radioactive isotope. 

Equation 1 R + L   RL 
Kon 

Koff 
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3.3.1 Saturation binding experiments 

The affinity of a radiolabeled ligand for a receptor can be determined in saturation binding 

experiments. In these experiments receptors are incubated with different concentrations of 

radioligand until equilibrium state is reached and total binding obtained. Non-specific binding 

must be determined and subtracted from the total binding. The non-specific binding is usually 

determined by using a high concentration of unlabelled ligand which will occupy receptor 

binding sites studied. After plotting the specific binding vs. radioligand concentrations, two 

different parameters can be obtained; Kd and Bmax values. Kd is the equilibrium dissociation 

constant of the radioligand and describes the strength of interaction of the ligand with receptor 

whereas Bmax value describes the maximum density of receptors present in the assay and is 

often presented as mol/mg of protein. (282) 

The following radioligands were used to obtain Kd and Bmax values of the adrenoceptors and 

mAChRs; [3H]-prazosin for α1-ARs, [3H]-MK-912 and [3H]-RX821002 for α2-ARs, [3H]-UK-

14,304 for α2B-AR, [3H]-CGP-12177 for β-ARs and [3H]-NMS for mAChRs. The unlabelled 

ligands used to determine non-specific binding were phentolamine for α1- and α2-ARs, 

propranolol for β-ARs and atropine for mAChRs. 

3.3.2 Radioligand displacement experiments 

In the radioligand displacement experiments, binding of the radioligand to the receptor is 

measured in the presence of various concentrations of unlabelled ligand (in these studies the 

toxins used). Increasing the concentration of unlabelled ligand results in increased 

displacement of the radioligand. The usual parameter obtained from radioligand displacement 

experiments is the IC50 value which represents the concentration of an inhibitor decreasing the 

binding of the radioligand to the receptor by 50%. For truly competitive ligands, the IC50 

values can be converted to Ki values which describe the affinity of the unlabelled ligand 

taking into account the concentration of the radioligand and its affinity for the receptor. 

However, when studying the toxin molecules, we found that the IC50 values were unaffected 

by the radioligand concentrations. With MTα the radioligand used ([3H]-RX821002, [3H]-

UK-14,304, [3H]-MK-912) neither affected the IC50 values. For this reason we preferred to 

list IC50 values instead of Ki values. (282) 

3.3.3 Kinetic experiments 

Kinetic binding experiments are used to measure radioligand binding at various times to 

determine its dissociation (koff) and association (kon) rates. Also the effect of unlabelled 

ligands on the radioligand binding kinetics can be determined by using these assays. In 

dissociation experiments receptors are first incubated with the radioligand until equilibrium is 

reached. Thereafter dissociation is started by adding a displacing concentration of an 
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unlabelled competitor. After dissociation has started, binding is measured over time to 

determine how quickly the ligand dissociates from the receptors. Association experiments are 

useful in determining how long it takes before equilibrium is reached in saturation binding 

experiments. In these assays the radioligand is added and specific binding is measured at 

various times. (282). Ligands binding to an allosteric site can affect the receptor in such a way 

that the association and/or dissociation rates of orthosteric ligands are altered. For MTs, such 

phenomenon has been readily shown with MT7 and the M1 mAChR (259, 263, 266). 

3.3.4 Reversibility of toxin binding 

The longevity of receptor-toxin complexes can be determined by studying the reversibility of 

the interaction with the help of radioligands. In publication I we applied a method where cell 

homogenates were centrifuged and re-suspended up to four times. The recovery of receptor 

binding sites was almost 100%, both in control experiments and when preincubated with MTα 

(I). 

3.4 Functional calcium mobilization assays 

There are several methods which can be employed to study receptor activation and 

intracellular signaling cascades. One common method is the Ca2+ mobilization assays where 

increases in intracellular calcium levels are monitored with the help of fluorescently labeled 

compounds. In these studies the fura-2 probe was used. This probe is highly selective for Ca2+ 

and it is delivered into the cells as an acetoxymethyl ester conjugate (fura-2-AM). In cells 

fura-2-AM undergoes removal of the AM group and as a result of this fura-2 gets trapped into 

the cells. Upon Ca2+ binding fura-2 undergoes a spectrum shift on which the measurements 

are based on. In the absence of Ca2+ the wavelength of fura-2 for maximal excitation is 380 

nm which is transferred to 340 nm upon Ca2+ binding. Receptors coupled to Gαq/11 result in 

increases in intracellular Ca2+ levels. For receptors predominantly coupled to Gαi/o in Sf9 cells 

(α2A-AR, α2C-AR and M4 mAChR), a chimeric G-protein G11αi5 (Gα11:Gαi chimera) was co-

expressed in the assays. 
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4 RESULTS AND DISCUSSION 

Animal venoms are complex and diverse mixture of pharmacologically active peptides and 

proteins. The huge diversity of venomous peptides is the most apparent within small peptides 

such as conopeptides and conotoxins present in the venom of cone snails; their venom 

accounts > 50 000 different peptides (201). Snake venoms are another diverse source of 

pharmacologically highly active peptides which largely affect neurotransmission. Most of the 

peptides characterized from snake venoms target ligand-gated ion channels but some appear 

to interact specifically with GPCRs. Muscarinic toxins, TXTs from the black and Eastern 

green mambas, were previously identified as ligands acting on mAChRs (241, 244, 245, 251). 

However, the specificity of MTs for the mAChRs has not been extensively studied. This 

thesis work shows that muscarinic toxins are able to interact also with the α-ARs besides their 

previously identified mAChR targets. The toxin-receptor interactions occurring between MTs 

and α-ARs were found to occur with high affinity and in the case of MTα with high 

specificity.  

The results described here present the main results from publications I-IV. 

4.1 Adrenoceptor activity of muscarinic toxins (I, III) 

Initially, muscarinic toxins were identified as toxins binding with high affinity and specificity 

to the mAChRs. An implication that these toxins might be active on ARs was first presented 

by Mikael Jolkkonen who reported in his thesis work that MT3 interacts with the α1- and α2-

ARs with moderate affinity (pKi between 6 and 7) (249). However, no additional data has 

been presented to support this. The specificity of MTs for the mAChRs was further 

challenged by Dr. Harvey and co-workers who noticed that MT1 and MT2 interfered with 

ligand binding to the α1-ARs (262). 

The AR activity search was initiated with venomous MTα which was a generous gift from Dr. 

E. Karlsson (I). Previously venomous MTα has been reported to bind to all mAChRs with a 

rather high affinity (pKi 7.36-8.46) (245) but in our hands the toxin did not produce inhibitory 

effects on the M3 mAChRs in functional calcium mobilization assay (I, Figure 12A). Instead, 

incubation of venomous MTα with the α2B-AR resulted in total block of receptor responses (I, 

Figure 12B). Further characterization of the blocking effect of MTα on the α2B-AR showed 

that agonist induced increases in intracellular calcium levels ([Ca2+]i) were concentration 

dependently inhibited by the toxin (I). 300 nM MTα was required to fully silence the 

responses (I). 



 

 

Results and Discussion 

40 

 
Figure 12. Blocking effect of venomous MTα. Suspensions of Sf9 cells were used to measure [Ca2+]i 
fluctuations in response to receptor stimulation. Fluorescence traces obtained from intracellularly 
loaded fura-2 were converted to [Ca2+]i and are shown as such. Two traces in each panel are 
superimposed. The continuous lines represent control condition and the dotted lines represent the 
presence of 1.8 µM venomous MTα. Numbers at arrows indicate molar additions of agonists. A. Cells 
expressing the human M3 mAChR stimulated with carbachol.  B. Cells expressing the human α2B-AR 
stimulated with noradrenaline. Reprinted with permission from publication I. 

The antagonistic potency of synthetic MTα was further screened with all members of the α-

adrenoceptors and the mAChRs and with the β1- and β2-ARs (I, III). Results indicated that 

MTα interacts specifically and with high affinity with the α2B-AR (IC50 = 2.5-3.5 nM 

depending on the radioligand used in the assay) leaving the other adrenoceptors and mAChR 

subtypes unaffected (Figure 13A and B, Table 6). The subtype diversity of ARs has put 

pressure on the development and synthesis of selective and specific ligands for these 

receptors. Regarding the ligands acting on the ARs, most are rather unselective and show 

binding even to other GPCRs. This is a significant disadvantage considering their role as 

therapeutic agents and experimental tools. However, some ligands have shown to be 

somewhat selective for a certain receptor subtype. Among these are the α2-AR ligands JP-

1302 and MK-912. Of these, JP-1302 shows about 100-fold selectivity for the α2C-AR over 

the α2A-AR and α2B-AR subtypes (165) while MK-912 is about 4- and 13-fold more selective 

for the α2C-AR compared with the α2A-AR and α2B-AR (167). Although subtype selective 

ligands have been developed and found for the other AR subtypes, the α2B-AR has lacked 

them. This feature makes MTα unique as it is currently the only ligand targeting this AR 

subtype with high affinity and remarkable selectivity. 
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Figure 13. Inhibition profile of synthetic MTα on the α2B-AR and mAChRs. A. MTα inhibiting 
specific [3H]-RX821002 binding to the α2B-AR. Data points are means ± SEM from three experiments. 
B. The effect of MTα on mAChR subtypes. [3H]-NMS was used to label mAChRs. Data points are 
means ± SD from one experiment performed with triplicate samples. The figure is adapted and 
reprinted with permission from figures 4B and 7 from publication I. 

Considering the lack of interaction between mAChRs and synthetic MTα, a similar 

phenomenon has been observed with the venom purified MTβ and its synthetic analog. The 

venom-purified MTβ has been reported to display micromolar affinity (pKi 6.00-6.90) for the 

mAChRs (245). This is in contrast to the synthetic MTβ which shows highly potent 

interactions with the α-adrenoceptors and no or very weak binding to mAChRs (233). The 

pharmacological discrepancies detected between venom-purified and synthetic toxins might 

be a result of contamination in the venom fraction that might associate with their action on the 

mAChRs but also sequencing errors might have effects on the pharmacological outcome. 

Additionally the original publication presenting the micromolar interaction between mAChRs 

and MTα has no binding data presented to support the observation (245). Taking these into 

account, the activity of venomous MTα should be considered with some care as it has not 

been investigated thoroughly.  

Encouraged by the results obtained with MTα, binding of MTs to ARs was further 

characterized with three additional toxins (III). Of the MTs chosen MT1 is known for its 

binding to the M1 and M4 mAChRs (258, 261), MT3 for its high affinity binding to the M4 

mAChRs (252, 255) and MT7 for its remarkable selectivity for the M1 mAChR leaving the 

other mAChR subtypes unaffected (244, 256, 258-260). Table 6 presents the inhibition 

profiles of all the MTs used in the studies I and III. MT1 exhibited similar affinity for the α2B-

AR as MTα (III, Figure 14, Table 6). Low affinity binding was detected with the α2A-AR and 

α1-AR subtypes (Table 6). The mAChR ligand, [3H]-NMS, was displaced by MT1 from the 

M1 and M4 mAChRs as previously described (251, 258, 261, Table 6). 
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Table 6. Inhibition profiles of four muscarinic toxins at different receptors. 

pIC50 ± SEM (n = 3-4)

Receptor                            MT1                             MT3                  MT7                        MTα 

   α1A                        6.98 ± 0.17                    8.86 ± 0.14                NI                        NI 

   α1B               <6.5 (48%)a                   7.57 ± 0.22                NI                        NI 

   α1D               <6 (28%)a                      8.13 ± 0.08                NI                        NI 

   α2A                       <6.5 (47%)a                   8.49 ± 0.06                NI                        NI 

   α2B               8.64 ± 0.10                   <6.5 (39%)a                NI                 8.62 ± 0.12 

   α2C                      NI                           7.29 ± 0.13                NI                        NI 

   β1                      NI             NI                NI                        NI 

   β2                      NI             NI                NI                        NI 

   M1                       6.85 ± 0.06                    6.71 ± 0.14         9.36 ± 0.06                    NI 

   M4                                               6.54 ± 0.09                    8.79 ± 0.06                NI                           NI 

The inhibitory potencies of different MTs were determined in radioligand displacement experiments. 
a% values in parentheses indicate inhibition obtained with 1 μM toxin because the inhibition curves 
did not reach saturation at concentrations used. NI = no inhibition. The threshold for inhibition was set 
to 25% at 1 µM concentration for MT1, MT3 and MTα and 0.3 µM for MT7 (III). 

 
Figure 14. Inhibition profile of MT1 on the α2B-AR and α2A-AR. MT1 inhibiting specific [3H]-MK-
912 binding to the α2B-AR and α2A-AR. Data points are given as % of control binding and represent 
means ± SEM of three experiments each performed with triplicate samples. The data with the α2A-AR 
serves as an example of inhibitory potencies when given as % inhibition in Table 6. Reprinted with 
permission from publication III. 

Taking into account the selectivity profiles of MTα and MT1, small deviations in their amino 

acid sequences seem to have large effects on their affinity for adrenoceptor and mAChR 

subtypes. MT1 binds more tightly to its high affinity adrenoceptor targets (α2B-AR and α1A-

AR) than to its previously identified target receptors M1 and M4 mAChRs (Table 6, 251, 258, 

261). Similar affinities of MT1 and MTα for the α2B-AR are not surprising taking into account 

the primary sequences of these two toxins; they differ from each other only by four amino 



 

 

Results and Discussion

43

acids (Figure 15). Three of these amino acids are clustered at the tip of loop II, Ile31ValPro33 

in MT1 and Leu31AsnHis33 in MTα, whereas the fourth amino acid difference, Arg57 in 

MT1 and His57 in MTα, is located adjacent to the third disulfide bridge making up the third 

loop. Residues adjacent to disulfide bridges are highly conserved among the MTs. It is more 

likely that Arg57/His57 ensures the correct disulfide bridge formation which is important for 

the right folding to take place than to have effects on receptor binding. 

 

    1           10          20          30          40          50          60 

MT1 LTCVT SKSIF GITTE NCPDG QNLCF KKWYY IVPRY SDITW GCAAT CPKPT NVRET IRCCE TDKCN E 

MTα LTCVT SKSIF GITTE NCPDG QNLCF KKWYY LNHRY SDITW GCAAT CPKPT NVRET IHCCE TDKCN E 

 

Figure 15. Amino acid sequences of MT1 and MTα. Amino acid differences of MT1 and MTα are 
highlighted in red. 

The three amino acids at the tip of loop II are adjacent to Arg34. The residue at this particular 

position has been speculated to reach down to the ligand binding cavity of the orthosteric 

ligands and to interact with residues of the transmembrane helices allowing the amino acid 

residues near to Arg34/Lys34 to be in contact with the residues of the outer surfaces of the 

target receptor (271). The LeuAsnHis sequence of MTα is unique among MTs and thus it 

would be intriguing to name it as an α2B-AR recognition motif. However, as the affinity of 

MT1 for the α2B-AR is equal to that of MTα, it is not likely that LeuAsnHis sequence would 

alone determine the high affinity binding of MTα for the α2B-AR but rather be a reason for the 

lack of binding to mAChRs. In this sense LeuAsnHis-motif would fulfill its function from the 

pharmacological point of view. If LeuAsnHis -motif in MTα is the reason for lack of binding 

to mAChRs, corresponding amino acids in MT1 might confer to mAChRs binding. The 

Tα/1L-GPI construct is based on MTα and MT1 sequences and has His33 of LeuAsnHis 

sequence of MTα replaced by Pro33 like in MT1 sequence (IV). This toxin construct inhibits 

the α2B-AR induced receptor responses as the soluble MTα (see publication IV Figures 3B 

and 4) but it can also bind to the M1 and M4 mAChRs although with lower affinity as the wild 

type MT1 (258, 261). This indicates that Pro33 might have a role in mAChR binding. 

However, before firm conclusions can be made this issue needs to be tested with soluble 

toxins in detail as the membrane-anchored conformation can have effects on the 

pharmacological properties of the toxin. 

MT3 has a large receptor repertoire (III). In addition to its action on the M4 mAChRs (252, 

253, 255, Table 6), MT3 shows high-affinity interactions with all three α1-ARs and α2A-AR 

(Figure 16, Table 6). Relatively high affinity was detected with the α2C-AR (Figure 16B, 

Table 6). On the contrary to MTα and MT1, binding to the α2B-AR was considerably low. 

This indicates that there are some structural differences in the α-ARs that preclude MT3 from 



 

 

Results and Discussion 

44 

being a totally unselective ligand. The reason for these structural differences could arise from 

the extracellular loops of α-ARs which are not conserved among the α-AR subtypes and show 

much more divergence. Given that MT3 has a broad number of high affinity receptor targets 

and the fact that other MTs are able to show subtype selectivity, it could be possible to use 

MT3 as a template for the design of new and more subtype selective ligands for the receptor 

subtypes still lacking them. From the snake’s point of view, the wide repertoire of receptor 

targets for MT3 might have evolved to strengthen the effect of other MTs as in the venom the 

toxins work in co-operation to produce the desired effects. 

 
Figure 16. Inhibition profile of MT3 on the α-adrenoceptors. A. MT3 inhibiting specific [3H]-
prazosin binding to α1-ARs. B. MT3 inhibiting specific [3H]-MK-912 binding to α2-ARs.  Data points 
are means ± SEM of three experiments performed in triplicates. Reprinted with permission from 
publication III. 

Several studies have shown that among mAChRs, MT7 displays remarkable selectivity for the 

M1 mAChRs (244, 256, 258-260). MT7 has failed to show effects on the neuronal nAChRs as 

demonstrated by Max and co-workers (285) but its binding to other GPCRs has not been 

evaluated. Our studies demonstrate that MT7 does not bind to adrenoceptors confirming thus 

its high affinity and selective interaction with the M1 mAChRs (III, Table 6). Considering the 

β-ARs, none of the toxins was able to inhibit [3H]-CGP-12177 binding to β1- and β2-ARs 

although β-cardiotoxin, structurally related to MTs, was shown to bind to β-ARs (286). It 

might be that there are some structural differences between the β-ARs and α-ARs which 

prevent MT binding to the β-ARs. A reason for these structural differences could arise from 

the ECL2 which probably folds differently in β- and α-ARs due to presence of additional 

disulfide bridge in the ECL2 of β-ARs (15). Despite the fact that the MTs examined did not 

bind to β-ARs, it nevertheless appears that snake venom contains toxins that can target β-ARs, 

the highly important receptors involved in the maintenance of cardiovascular homeostasis. 
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4.2 The enigmatic receptor-toxin interactions (I, II, III) 

Muscarinic toxins have been shown to behave both as competitive and non-competitive 

antagonists of receptor function. However, defining MTs into distinct pharmacological 

categories has in some cases been relatively difficult. For example MT1 and MT2 have been 

shown to function as competitive antagonists but even allosteric and agonistic interactions 

have been described (240, 258, 261, 276). 

Muscarinic toxins used in the studies bound to their target receptors in a non-competitive 

manner with regard to classical orthosteric ligands. This was judged from the inability to 

displace all bound radioligand from the receptors (20-40 % of specific binding left at 

saturating concentrations of MTs) (I, II, III) and from the insurmountable inhibition of 

receptor responses (I, III). Similar inability to displace orthosteric ligands has previously been 

presented by MT7 and M1 mAChRs (258, 259, 263, 266). In the case of MTα, further 

evidence in favor for non-competitive binding mode came from the similarity in IC50 values 

when different radioligands were used and from saturation binding experiments where the 

Bmax values were suppressed as for non-competitive ligands in the presence of MTα (I, II). On 

the contrary to the Bmax values, the affinities of radioligands (Kd values) for the α2B-AR were 

not changed (I, II). However, it should be noted that MTα bound to the α2B-AR in a weakly 

reversible manner (pseudo-irreversibly i.e dissociates slowly from the receptors) as extensive 

washing was needed to recover all binding sites at high toxin concentrations (I). This might 

have effects on the binding mode. Functional calcium mobilization assays additionally 

pointed that MTα, MT1 and MT3 bind rather slowly to their target receptors (I, III) which is 

different seen for example with MT7 which binds to the M1 mAChR instantly after its 

addition (79, 259, 285). 

The non-competitive binding mode of ligands has been in many cases ascribed to allosteric 

interactions between the ligand and receptor which has effects on the binding kinetics of 

orthosteric ligands (287). Allosteric modulators generally alter the affinity of orthosteric 

ligand for the receptor but changes can be detected also on the efficacy of the ligand or on 

both of these. The interaction between the M1 mAChR and MT7 serves as a good example of 

an allosteric interaction (259, 263, 267). MT7 has an influence on the affinity of the 

orthosteric ligands for the M1 mAChR; it slows down the dissociation rate of [3H]-NMS (263, 

266) and accelerates that of [3H]-ACh (259). However, MT7 appears to be exceptional in this 

regard as another non-competitive TFT, ρ-Da1a, does not affect dissociation rates of 

orthosteric ligands from the α1A-AR (230) indicating that the inhibitory actions are not 

governed through an allosteric site. To test whether or not the non-competitive binding of 

MTα was due to an allosteric interaction between MTα and the α2B-AR, the effects of MTα on 

the orthosteric ligand binding kinetics were tested (I, II). The kinetic experiments were 

performed with three different radioligands of which two are antagonists ([3H]-RX821002 



 

 

Results and Discussion 

46 

and [3H]-MK-912) and one an agonist ([3H]-UK-14,304). MTα had no effects on the 

dissociation and association rates of radioligands for the α2B-AR indicating that MTα does not 

exert its inhibitory actions through an allosteric mechanism (I, II). The α2B-AR was also 

preincubated with the toxin before radioligands were added and dissociation started (I). 

Neither this had any effects on radioligand dissociation suggesting that MTα does not bind to 

ligand-occupied receptors. This feature of MTα is not in line with MT7 which can bind to 

ligand-occupied M1 mAChRs and trap the orthosteric ligands to the receptor (263). The lack 

of allosterism was further supported by the fact that the affinities of orthosteric ligands for the 

α2B-AR were unaltered upon MTα pre-incubation as already stated above (I, II). These effects 

seen on orthosteric ligand affinity are not in line with an allosteric model where the affinity of 

a ligand for the orthosteric binding site changes as a result of allosteric interaction with 

another ligand (65). Likewise MTα, MT3 was incapable of having effects on radioligand 

binding kinetics (III).  

4.2.1 Live cell assays to clarify non-competitive binding (II) 

As the non-competitive binding of MTα and thus the incomplete displacement of radioligands 

appeared not to be due to an allosteric interaction between the receptor and toxin, the partial 

displacement of orthosteric ligands from the α2B-AR was speculated to occur as a result of 

fractional occupancy of receptors. This fractional occupancy might derive from receptor 

subspecies binding the toxin differently possibly due to receptor dimerization or incompletely 

processed receptors. To study this, the blocking efficiency of MTα on surface receptors was 

evaluated by using live cells (II). Results revealed that receptor responses were after toxin 

exposure much smaller than what could have been expected from the orthosteric binding sites 

available (Figure 17A-C). Thus, it seems that receptors not blocked by the toxin are not able 

to create decent responses suggesting that MTα might have effects on the efficacy of the 

remaining ligand-receptor complexes.                           
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Figure 17. The blocking efficiency of MTα on surface receptors. A. Cells expressing the α2B-AR 
were loaded with fura-2 and Ca2+ responses measured in the absence and presence of different 
concentrations of MTα. UK-14,304 was used to stimulate the receptors. B. The effect of MTα on [3H]-
MK-912 binding to live Sf-9 cells was measured. C. The α2B-ARs were expressed for different times 
(16-26 h) in Sf-9 cells and the cellular responses to 10 μM UK-14,304 and surface receptor densities 
as detected with 3nM [3H]-MK-912 were measured simultaneously. The effect of 100 nM MTα was 
evaluated on receptors expressed for 26 h. Data are means ± S.D. from at least one representative 
experiment with three triplicates. Reprinted with permission from publication II.  

The binding mode of MTα to the α2B-AR appears to be rather complex and it is difficult to 

explain with the current pharmacological concepts. However, the binding mode is similar to 

the effect of risperidone on serotonin 5-HT7 receptors. Risperidone binds pseudo-irreversibly 

only to 50 % of serotonin HT7 receptors expressed in human embryonic kidney 293 cells 

although all receptor activity are blocked by it (288). It was later demonstrated that the effect 

of risperidone on the serotonin HT7 receptors is due to homodimerization of serotonin 5-HT7 
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receptors (289). In this homodimeric model risperidone binds only to one protomer of the 

homodimeric receptor and impairs receptor function still allowing ligand binding to the other 

protomer. The effect of MTα on the α2B-AR could be explained by this homodimeric model as 

illustrated in Figure 18. According to this model, MTα binds tightly to one protomer of the 

α2B-AR homodimer changing the conformation of the receptor in such a way that coupling to 

a G-protein would not be possible and agonists would thus not be able to activate the 

receptors as seen in functional calcium mobilization assays. This conformational change 

could also prevent MTα from binding tightly to the other promoter allowing orthosteric 

ligands to compete with MTα on binding to the receptor and explaining thus the partial 

displacement seen in radioligand binding assays. The M1 mAChR has been reported to form 

homodimers to which MT7 can bind (80, 274). This verifies that MTs have the ability of 

interact with dimerized receptors. The homodimeric model, however, does not exclude the 

possibility that MTα could also bind to monomeric form of the α2B-AR. Additional studies 

need to be performed before the binding of MTα to the homodimeric form of α2B-AR can be 

verified and the binding mode fully assessed. 

 
Figure 18. Schematic presentation of the homodimeric model with the effects of MTα on the α2B-
AR. MTα binds to one protomer of the α2B-AR dimer resulting in a pseudo-irreversible complex 
between the toxin and receptor. This interaction precludes G-protein coupling to the α2B-AR and 
therefore no increases in [Ca2+]i can be observed. The second protomer, however, retains the ability to 
bind orthosteric ligands, both agonists and antagonists. 

4.2.2 Complex interaction between MT3 and M4 mAChR (III) 

MT3 has been previously reported to function as a competitive antagonist of M4 mAChR 

action (255, 277, 290). This assumption is based on the complete displacement of 

radioligands and shifts in their Kd values in the presence of MT3 (254). Yet, binding of MT3 

to the M4 mAChR seems to be a bit more complex as our studies showed that MT3 binds to 

the M4 mAChR in a non-competitive manner (III). Additionally, initial shifts in the potency of 

MT3 were observed at low radioligand concentrations indicating thus a competitive 
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interaction (III). These shifts were not, however, obvious at higher radioligand concentrations, 

a feature which is in line with a previous report (253). The interaction of MT3 with the M4 

mAChR thus appears to be more complex than simple competition between the toxin and 

orthosteric ligand. As illustrated by MTα and also with MT3, it can be difficult to categorize 

muscarinic toxins into defined pharmacological agents. One factor contributing to this is the 

reversibility of interaction. Some muscarinic toxins are easily washed away from the receptor 

such as MT3 whereas the others such as MT7 and MTα come off very slowly which can have 

effects on the outcome. Another factor that should be taken into account is the existence of 

potential receptor reserves which can affect the inhibition profile of toxins. This was 

demonstrated to occur with α1A-AR and MT3 (III). In cells expressing high levels of α1A-AR, 

long pre-incubations with MT3 did not show remarkable insurmountable inhibition. On 

contrary to this, the agonist induced responses were strongly inhibited by MT3 with cells 

expressing α1A-AR at low density (see publication III Figures 5A and B). This indicates that 

in cells expressing high levels of α1A-AR, there is a receptor reserve which can elicit a full 

response irrespective of toxin application. 

4.3 Receptor domain responsible for MTα binding (II) 

The transmembrane regions of α-ARs are highly conserved. The extracellular loops on the 

other hand show much more divergence and are thus considered to represent potential binding 

sites for various ligands. For example, the amino acid differences observed in the ECL2 of α1-

ARs and α2-ARs have been shown to have influences on their antagonist binding specificity 

(70, 74, 291). However, the amino acids residing outside the binding cavity can also have 

significant effects on the ligand binding affinities, presumably through some conformational 

rearrangements of the receptor (292, 293). 

The primary binding sites for MT7 on the M1 mAChR are on the ECL2 and ECL3 of the M1 

mAChR (79). The amino acids responsible for the interaction are mainly negatively charged 

residues in the ELC2 and 3 together with a tyrosine residue from the ECL2 (79, 270). The 

involvement of ECL2 in MT7 binding has been confirmed with a model of dimeric M1 

mAChR in complex with MT7. This model shows that MT7 is flanked by the ECL2 of both 

monomers, pointing out the crucial role of this loop for the interaction with MT7 (80). To 

map the major interaction site for MTα on the α2B-AR, several chimeric α2-AR constructs 

were designed. As α2A-AR and α2C-AR are not target receptors for MTα, the chimeric 

receptors constructs were based on these receptor sequences fused with the α2B-AR. Figure 19 

shows the schematic presentation of the chimeric receptor constructs. The chimeric receptor 

constructs were designed to reveal potential binding sites in the N-terminal part and in the 

ECLs 1-3. 
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Figure 19. Schematic presentation of the chimeric receptor constructs. Blue color stands for the 
α2A-AR, red for the α2B-AR and green for the α2C-AR. The figure is adapted and reprinted with 
permission from Figure 6 in publication II. 

Chimera AB-I was used to assess the involvement of the N-terminal part and the ECL1 of the 

α2B-AR in the binding of MTα. This chimera displayed similar affinity for MTα as the intact 

α2B-AR (Table 7) indicating that the ELC1 and the N-terminus do not possess amino acids 

which take part in MTα binding. As the ECL2 has been shown to participate in ligand binding 

in rhodopsin-like GPCRs (16, 74-78), special emphasis was put on this loop. Three chimeras, 

AB-II, AB-III and AB-IV were designed so that the whole ECL2 of the α2B-AR would 

gradually be exchanged with that of α2A-AR. The sequential exchange of α2B-AR ECL2 

sequence with that of α2A-AR gradually lowered the affinity for the toxin. The AB-II showed 

approximately fourfold decrease in affinity whereas a 25-fold decrease was observed with the 

AB-III (Table 7). The AB-IV chimera which has α2A-AR sequence from the distal end of 

ECL2 until intracellular regions of TM5, was no longer inhibited by MTα (Table 7). 

Multiple contacts between ECL2 and MTα seem to mediate the toxin-receptor interactions. 

The middle portion of ECL2 appears to be especially important for MTα binding as a 25-fold 

decrease in affinity is observed with AB-III chimera. Regarding the loss of binding affinity 

for MTα in AB-IV chimera, several amino acids in TM5 have been indicated to take part in 

ligand binding and to provide binding sites for classical ligands. Particularly important amino 

acids in the α2A-AR are Ser200, Cys201 and Ser204 which have been linked to receptor 

activity and ligand binding (72, 73, 148). Of these three amino acids, Cys201 plays a 

significant role in the binding of catecholamine ligands and UK-14,304 (73, 294). In the 

human α2B-AR, the amino acid corresponding to Cys201 of the human α2A-AR is Ser177 at 

the beginning of TM5. Regarding the prominent role of Cys201 in ligand binding in the α2A-

AR, it might thus be that Ser177 displays a similar role in the α2B-AR. It could be possible 

that this amino acid partly determines the subtype selectivity of MTα for the α2B-AR because 

both α2A-AR and α2C-AR have cysteines in the corresponding position and are not affected by 

MTα.  

To further investigate which amino acid in the ECL2 might contribute to loss in binding 

affinity for MTα, two amino acids in the intact α2B-AR, Asp153 and Gln154, were mutated to 

alanines. Substituting Asp153 with an alanine resulted in a mutant which had slightly higher 
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affinity for MTα as the intact α2B-AR. On the contrary to Asp153Ala mutant, the Gln154Ala 

mutant showed a slight decrease (2-fold) in the affinity for MTα indicating that this amino 

acid has a minor role in MTα binding. Considering the small effect on MTα binding affinity, 

it might be that Gln154 provides an additional anchoring point for MTα which is not 

however, significant for the toxin-receptor interactions. On the contrary to Gln154Ala mutant, 

the slightly higher affinity of Asp153Ala mutant for MTα is probably due to differences in the 

side chains of aspartic acid and alanine. Due to smaller side chain of alanine, MTα could 

move deeper into the binding cavity and make contacts with additional residues. 

In the ECL3 of M1 mAChR, there is one amino acid, Glu397, which has been speculated to 

take part in MT7 binding (79). It could be that this negatively charged amino acid interacts 

with positively charged amino acids present in MT7 sequence. For this reason it was 

examined if there were sites in the ECL3 of α2B-AR that would participate in MTα binding. 

For this purpose BA and BC chimeras were created. In these chimeras the ECL3 of α2B-AR 

was exchanged with either of α2A-AR or α2C-AR sequence. Both BA and BC chimeras had 

similar affinities for MTα as the intact α2B-AR indicating that ECL3 does not have amino 

acids participating in MTα binding (Table 7).  

Table 7. Inhibitory potencies of MTα on the receptor constructs.  

Receptor construct                           pIC50 for MTα                                IC50, mod/IC50, intact*
 
α2B                                                      8.64 ± 0.14 
AB-I              8.63 ± 0.07                                         1 
AB-II              7.99 ± 0.08                                         4.5 
AB-III              7.25 ± 0.16                                         24.5 
AB-IV                                                 -                                                          - 
BA                                                      8.51 ± 0.08                                         1.3 
BC                                                      8.46 ± 0.15                                         1.5 
α2B-Asp153Ala                                   8.89 ± 0.05                                         0.6 
α2B-Gln154Ala                                    8.32 ± 0.15                                        2.1

Values are means ± S.E.M. (n = 3-4). *The IC50, mod/IC50, intact-values were obtained by dividing the 
IC50 values of the modified receptors with that of the intact (unmodified) α2B-AR. By this way the IC50, 
mod/IC50, intact-value for the intact α2B-AR is 1. 

Currently it not known how deep into the binding cavity muscarinic toxins can penetrate. 

Although muscarinic toxins are rather large molecules (~ 8 kD), in theory it is possible that 

one of their three fingers reaches down into the binding cavity as suggested by Segalas and 

co-workers (271). Yet, peptides tend to bind to the extracellular sequences and N-terminus of 

GPCRs although the size of the ligand does not necessarily always indicate the actual binding 

site (68). A model of dimeric M1 mAChR in complex with MT7 demonstrated that MT7 is 

flanked by ECL2 of both protomers of dimerized receptor suggesting that MT7 does not 

penetrate into the ligand binding cavity (80, 274). This is in line with the observation 
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regarding the binding site for large peptide ligands. The different loops of MT7 make contacts 

with different protomers of the dimerized M1 mAChR; MT7 loops II and III interact with 

protomer A and MT7 loop I with protomer B (80). Like MT7, MTα might also preferably 

interact with a dimerized α2B-AR through the ECL2. In such a scenario, MTα binding to one 

α2B-AR protomer could constrain the ECL2 into an unfavorable conformation resulting 

eventually in a situation where dissociation of MTα from the receptor becomes extremely 

slow (pseudo-irreversible). This conformational change could also prevent orthosteric ligand 

binding to this protomer while still allowing both toxin and orthosteric ligand binding to the 

other protomer. 

4.4 Technical applications (IV) 

Peptide toxins used in research do not normally exist at the plasma membrane. However, 

several venom toxins have been successfully linked to the plasma membrane via a GPI-tail. 

Anchoring toxins to the plasma membrane puts them in close vicinity of their target receptors 

or ion-channels and allows cell-specific silencing of cellular responses without interfering 

with the signaling of the neighboring cells (295, 296). This strategy has also been applied for 

some peptide ligands to induce constitutive activation of GPCRs (297, 299) indicating that 

this approach can be successfully adapted also to other bioactive peptides. All the toxins and 

peptides anchored to the plasma membrane so far have retained their activity and specificity 

for their target receptors and ion channels. 

The three-finger receptor toxins are evolutionary related to the Ly-6 antigens of the immune 

system (220, 221). Some members of the Ly-6 antigen family, such as the endogenous 

nAChR modulator lynx1, are attached to the plasma membrane via a GPI-tail (222). In fact, 

lynx1 was the first membrane-bound peptide found to affect the function of neuronal nAChRs 

(222). The consequence of such an interaction is that the nAChRs bound with lynx1 are less 

sensitive to their agonists and desensitize more rapidly (223). The applicability of GPI-

anchoring to MTs was evaluated in the fourth publication (IV). Addition of a GPI-tail to MTs 

should direct the toxins to the secretory pathway of the cell and eventually target them to the 

plasma membrane. For the study three GPI-anchored toxins were created; MT7-GPI, T3L-

GPI which differs from MT3 sequence by two amino acids and Tα/1L-GPI which differs from 

MTα and MT1 sequences only in few positions (see publication IV Figure 1). 

All the GPI-anchored toxins created were able to block agonist induced receptor responses 

when expressed in Sf9 cells together with their target receptors (Figure 20A, B and C). MT7-

GPI did not interfere with signaling resulting from carbachol binding to M3 mAChRs (Figure 

20D) but it was able to almost fully inhibit the specific [3H]-NMS binding to M1 mAChRs 

while no effect on the M4 mAChRs was observed (see publication IV Figure 4). This indicates 
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that MT7-GPI has the same receptor specificity as soluble MT7. Likewise MT7-GPI, the 

T3L-GPI behaved as soluble MT3 (see publication IV Figure 4). The Tα/1L-GPI blocked α2B-

AR induced responses as soluble MTα but showed reduced binding affinity for the M1 and M4 

mAChRs which is different from the moderate binding affinity of MT1 (pIC50 = 6.5-7) for 

these two mAChR subtypes (258, 261). Compared to MTα sequence, Tα/1L-GPI-construct 

has a proline in position 33 like MT1. As previously discussed in section 4.2, Pro33 might 

have a role in mAChR binding in MT1 as MTα does not show binding to these receptors (I). 

Based on the results it can be concluded that GPI-anchor can be added to muscarinic toxins 

without interfering with toxin binding to the receptors. Membrane anchoring did not interfere 

with receptor trafficking to the plasma membrane as receptors were found to be localized at 

the membrane irrespective of simultaneous toxin expression (Figure 21). This was shown 

with the M1 mAChR tagged with enhanced Green Fluorescent Protein (eGFP) and co-

expressed with either soluble MT7 or MT7-GPI (Figure 21).  

Anchoring peptides and toxins to the plasma membrane is an innovative technique for 

modulating the biological function of receptors and ion channels both in vitro and in vivo. It 

helps to increase the cellular specificity of toxins by restricting their actions only to certain 

cells. Membrane anchored MTs can be applied to basic research to study physiological roles 

of ARs and mAChRs more closely in various tissues, especially in the CNS, organs and even 

in individual cells depending on the selectivity of MTs. Additionally membrane anchored 

MTs could also be used to block receptor activity in disease conditions such as in primary 

hypertension resulting from prolonged activation of α-ARs (158). An example of such an 

activity block is presented by α-BTx and nAChRs. The ion currents via nAChRs in muscle 

cells were efficiently blocked in vivo by membrane anchored α-BTx using a transgenic 

approach on zebrafish (295). Muscle cells not expressing membrane anchored toxins 

remained normal (295). Membrane anchored approach offers also a possibility to use MTs in 

the design of new therapeutics for ARs and mAChRs as soluble toxins have some major 

limitations such as scarcity in venoms and lack of cell-selectivity. Overall, anchoring MTs to 

the plasma membrane is relatively easy to put into practice but it offers major potential for 

both the basic research and pharmaceutical industry. 
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Figure 20. Effect of GPI-anchored muscarinic toxins on the mAChRs and α-ARs. Cells 
expressing receptors alone or co-expressing receptors and GPI-anchored toxins were assayed for 
noradrenaline (NA) (A and B) or carbachol (CCh) (C and D) induced increases in [Ca2+]i. Control cells 
were also tested with soluble MTs for comparison. Data points are means ± SD from three 
experiments. The figure is adapted and reprinted with permission from figures 2 and 3 from 
publication IV. 

 
Figure 21. Fluorescence images of eGFP-tagged M1 mAChRs. Sf9 cells were infected with M1-
eGFP virus alone or together with MT7 (secreted,  soluble) or MT7-GPI for 27 h.. Fluorescence  
microscopy was performed using a Carl Zeiss Axiovert 200M inverted microscope (Carl  Zeiss Inc., 
Jena, Germany) with a 40×/0.6 objective. The figure is reprinted with permission from publication IV 
(supplementary Figure S1). 
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5 CONLUSIONS 

Subtype selective ligands are important both for the basic biological research and for the 

pharmaceutical industry. For the ARs most of the ligands in current use are rather unselective 

which puts limits on their use. In this thesis we examined the ability of muscarinic toxins to 

function as new receptor ligands for the ARs. Muscarinic toxins appeared to be 

multifunctional three-finger toxins targeting both mAChR and α-AR subtypes. Additionally 

these toxins could be anchored to the plasma membrane to obtain cell-specific inhibition of 

receptor responses. 

Among the toxins studied MT7 and MTα were shown to be highly selective for their target 

receptors, M1 mAChRs and α2B-ARs, respectively, whereas MT1 and MT3 had a broad range 

of target receptors. Regarding MTα, this is the first peptide ligand known to act on the α2B-

ARs. The interaction between the α2B-AR and MTα is rather complex but it shows clear signs 

of non-competitiveness. Considering MTα binding and its inhibitory effects on receptor 

function, it is likely that MTα binds to a dimerized form of the α2B-AR through the second 

extracellular loop. However, more studies need to be performed to clarify this. 

The ability of MTs to interact with both ARs and mAChRs opens up new possibilities for the 

pharmaceutical industry but also for the basic biological research. These toxins can be used as 

pharmacological tools to study AR physiology more closely in the organs they affect. They 

also seem to be useful as three-dimensional templates to develop molecular mimics which can 

later be used to treat several diseases such as cardiovascular diseases and benign prostatic 

hyperplasia. Additionally, these toxins, especially MT3, could be used to develop more 

subtype selective ligands since α-ARs and mAChRs are still lacking them. The ability to 

anchor these toxins to the plasma membrane with a GPI-tail is also relevant. This approach 

offers several possibilities; it can be used for example to examine the function of ARs and 

mAChRs in vivo in model organisms and to cell specifically inhibit receptor functions in 

specific cells.  

In conclusion, this thesis provides new tools to tackle the problem associated with the lack of 

subtype selective ligands for the adrenoceptors and mAChRs. It also leads to better 

understanding of toxin action on ARs and mAChRs. 
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