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ABSTRACT 

Elena Privalova 

Towards novel biogas upgrading processes. 

Doctoral Thesis, Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, 
Department of Chemical Engineering, Åbo Akademi University, 2013. 

Keywords: biogas upgrading, CO2 capture, amine solutions, piperazine, ionic liquids, 
poly(ionic liquid)s, ‘switchable’ ionic liquids, regeneration, viscosity, volatile organic 
compounds (VOCs). 

Biogas production has considerable development possibilities not only in Finland but all over 
the world since it is the easiest way of creating value out of various waste fractions and 
represents an alternative source of renewable energy. 

Development of efficient biogas upgrading technology has become an important issue since it 
improves the quality of biogas and for example facilitating its injection into the natural gas 
pipelines. Moreover, such upgrading contributes to resolving the issue of increasing CO2 
emissions and addresses the increasing climate change concerns. Together with traditional 
CO2 capturing technologies a new class of recently emerged sorbents such as ionic liquids is 
claimed as promising media for gas separations. 

In this thesis, an extensive comparison of the performance of different solvents in terms of 
CO2 capture has been performed. The focus of the present study was on aqueous amine 
solutions and their mixtures, traditional ionic liquids, ‘switchable’ ionic liquids and 
poly(ionic liquid)s in order to reveal the best option for biogas upgrading. The CO2 capturing 
efficiency for the most promising solvents achieved values around 50 - 60 L CO2 / L 
absorbent. These values are superior to currently widely applied water wash biogas upgrading 
system.  

Regeneration of the solvent mixtures appeared to be challenging since the loss of initial 
efficiency upon CO2 release was in excess of 20 - 40 vol %, especially in the case of aqueous 
amine solutions. In contrast, some of the ionic liquids displayed reversible behavior. Thus, 
for selected “switchable” ionic and poly(ionic liquid)s the CO2 absorption/regeneration 
cycles were performed 3 - 4 times without any notable efficiency decrease. 

The viscosity issue, typical for ionic liquids upon CO2 saturation, was addressed and the 
information obtained was evaluated and related to the ionic interactions. 

The occurrence of volatile organic compounds (VOCs) before and after biogas upgrading 
was studied for biogas produced through anaerobic digestion of waste waters sludge. The 
ionic liquid [C4mim][OAc] demonstrated its feasibility as a promising scrubbing media and 
exhibited high efficiency in terms of the removal of VOCs. Upon application of this ionic 
liquid, the amount of identified VOCs was diminished by around 65 wt %, while the samples  
treated with the aqueous mixture of 15 wt % N-methyldiethanolamine with addition of 5 wt 
% piperazine resulted in 32 wt % reduction in the amounts of volatile organic compounds 
only. 
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REFERAT 

Elena Privalova 

Utveckling och jämförelse av nya biogasuppgraderingsprocesser 

Doktorsavhandling, Teknisk kemi och reaktionsteknik, Processkemiska centret, Insitutionen 
för kemiteknik, Åbo Akademi, 2013. 

Nyckelord: biogasuppgradering, CO2-upptagning, aminlösningar, piperazin, joniska vätskor, 
polyjoniska vätskor, ‘switchable’ joniska vätskor, regenerering, viskositet, flyktiga organiska 
föreringar (VOC). 

Produktionsprocesser för biogas har många utvecklingsmöjligheter i dagens läge, inte enbart i 
Finland utan även globalt, eftersom rötning av biomassa till biogas eventuellt är den lättaste 
vägen att skapa mervärde ut av olika restströmmar och samtidigt erbjuda en alternativ, 
förnyelsebar energikälla.  

Utveckling av effektiva biogasuppgraderingsteknologier har blivit allt mera viktigt på sistone, 
eftersom den producerade biogasen med bättre kvalitet kan vid behov injiceras i existerande 
naturgasnätverk. Samtidigt bidrar dessa teknologier till att lösa problematiken kring utökade 
koldioxidemissioner av mänskligheten och den resulterande klimatförändringen. Tillsammans 
med de traditionella teknologierna för koldioxid-upptagning har nya typer av alternativa 
sorptionsmedia, såsom joniska vätskor, på sistone väckt uppmärksamhet som lovande matris för 
gasseparationer. 

I denna avhandling har en jämförelse av prestandan för olika sorptionslösningar studerats 
med hänsyn till koldioxidupptagning i en återcirkulationsreaktor samt i en satsvis reaktor. 
Fokus för detta arbete ligger på olika amin-vattenblandningar, ’traditionella’ joniska vätskor, 
’switchable’-joniska vätskor samt polyjoniska vätskor med målsättningen att identifiera det 
bästa alternativet för uppgradering av biogas. Upptagningsförmågan hos de bästa lösningarna 
uppgick till 50-60 liter CO2/liter upplösningsmedia – ett värde som vida överstiger dagens 
typiska teknologi, vattentvätt, vid uppgradering av biogas. 

Regenerering av sorptionslösningarna konstaterades vara uppmanande, eftersom många 
system tappade 20-40 volym% av kapaciteten i samband med det första sorptionscykeln. 
Detta var fallet i synnerhet vid användning av amin-vattenblandningar. Som motsats till detta 
uppvisade vissa joniska vätskor reversibla egenskaper. I själva verket konstaterades att 
åtminstone 3-4 återcirkuleringsförsök kunde utövas utan en nämnvärd minskning i 
kapaciteten  för några ’switchable’ joniska vätskor samt polyjoniska vätskor. 

Vidare, problemet med höga viskositeter vanliga vid CO2-mättning av joniska vätskor tacklades 
och ny information samlades för att evaluera inverkan av de joniska sammankopplingarna. 

Uppkomsten av flyktiga organiska föroreningar (VOCs) kontrollerades både i rå biogas 
härstammande från anaerobisk rötning av avfallsvattenslam och i uppgraderad biogas. 
Joniska vätskan [C4mim][OAc] uppvisade god prestanda och hög kapacitet vid absorption av 
dessa föreningar. Vid uppgraderingsförsök med denna joniska vätska observerades en 
förminskning i mängden av identifierade organiska föroreningar som motsvarar 65 vikt-% i 
jämförelse till fallen då en 15 vikt- % N-metyldietanolamin (i vatten) tillspetsad med 5 vikt- 
% piperazin användes, varvid enbart 32 vikt-% av organiska föroreningar kunde avlägsnas. 
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Реферат 

Привалова Елена Ивановна 

Новые возможности для улучшения качества биогаза 

Диссертация, Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, 
Department of Chemical Engineering, Åbo Akademi University, 2013. 

Ключевые слова: повышение качества биогаза, поглощение углекислого газа,  водные 
растворы аминов, пиперазин, ионные жидкости, полиионные жидкости, 
'переключаемые' ионные жидкости, регенерация сорбента, вязкость, летучие 
органические вещества. 

Производство биогаза располагает огромным потенциалом для развития не только в 
Финляндии, но и во всем мире, поскольку в результате переработки органических 
отходов получается био-метан - альтернативный источник возобновляемой энергии. 

В последнее время особый интерес уделяется разработке методов удаления различных 
примесей из биогаза, поскольку это способствует повышению его качества и позволяет 
осуществлять соединение с трубопроводами природного газа. 

Более того, разработка системы повышения качества биогаза и, в частности, удаления 
углекислого газа, способствует уменьшению его выбросов в атмосферу. Наряду с 
распространенными в промышленности методами поглощения углекислого газа 
применение нового класса химических реагентов, ионных жидкостей, вызывает 
повышенный интерес в качестве альтернативной среды разделения различных 
соединений без взаимного загрязнения.  

В данной работе рассматривались различные сорбенты для разделения газов с точки 
зрения их возможностей для удаления СО2. Оценка их эффективности проводилась с 
помощью реакторов периодического и непрерывного действия. Основное внимание 
было уделено водным растворам аминов в связи с их широким использованием в 
современных процессах удаления углекислого газа из топочных газов и в процессах 
очистки в промышленном производстве аммиака и водорода. В качестве альтернативы 
рассмотрены различные представители ионных жидкостей, а именно, традиционные 
ионных жидкости, полимеры на основе ионных жидкостей и СО2-связывающие 
растворители, работающие по принципу “переключаемого” растворителя Джессопа. 
Поглотительная способность наиболее эффективных сорбентов достигала 50 - 60 
литров углекислого газа на литр раствора. Более того, в ходе работы проводилось 
сравнение рассматриваемых растворителей с традиционными методами удаления 
углекислого газа. 

Регенерация отработанных растворителей подчас проблематична, так как после 
удаления углекислого раза растворитель теряет свою эффективность на 20 - 40 об. %, 
что особенно характерно для водных растворов аминов. В отличие от аминных 
растворов, ряд ионных жидкостей продемонстрировал способность легко 
регенерироваться. В частности, была проведена серия циклов поглощения и 
высвобождения СО2 для полиионных жидкостей и “переключаемых” ионных 
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жидкостей, которая показала их способность к регенерации без потери активности и 
подтвердила возможность многократного использования.   

Особое внимание было уделено проблеме увеличения вязкости ионных жидкостей в 
ходе поглощения молекул углекислого газа, так как такое увеличение значительно 
ограничивает их области применения. Полученные данные позволяют оценить силу 
взаимодействия между ионами в растворе. 

Был проведен анализ биогаза, полученного в результате анаэробного (без кислорода) 
брожения сточных вод, чтобы установить наличие различных летучих органических 
веществ (ЛОВ) и степень их удаления в процессе обработки различными растворами. 
Применение ионной жидкости 1-н-бутил-3-метилимидазолия ацетат [C4mim][OAc] 
подтвердило возможность ее использование для удаления летучих органических 
веществ. В случае применения данной ионной жидкости концентрация ЛОВ снижалась 
на 65 вес. %, в то время как обработка образца биогаза раствором аминов, содержащим 
15 вес. % N-метилдиэтаноламина и 5 вес. % пиперазина, способствовала снижению 
концентрации ЛОВ только на 32 вес. %. 

Таким образом, данная работа вносит существенный вклад в развитие нового процесса 
улучшения качества биогаза, основанного на применении различных ионных 
жидкостей и дает первичную сравнительную характеристику таких важных факторов 
как адсорбционная емкость сорбентов, их регенерация и повторное использование, 
увеличение вязкости в процессе очистки и степень удаления летучих огранических 
веществ. Дальнейшие исследования в данной области приведут к созданию 
экономически эффективной технологии с минимальным экологическим риском.  
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1. INTRODUCTION 

1.1 Biogas as alternative renewable energy source 

Nowadays, biogas is recognized as a valuable alternative energy resource 

frequently utilized in heat and electricity production. Biogas formation is based on 

biological decomposition of organic raw materials. Thus, the composition of biogas 

depends on process conditions and the raw materials applied, such as landfills, sewage 

sludge or other bio-waste. Typical biogas production plants generate a gas containing 40 - 

60 vol % of bio-methane and 25 - 45 vol % of carbon dioxide [1].  

Carbon dioxide is considered as a greenhouse gas and is often assigned as being 

responsible for global warming [2]. Carbon dioxide should be removed from the biogas 

to increase its heating value, decrease the transportation costs and avoid the corrosion in 

pipelines. In the case of more refined use of bio-methane (e. g. transportation fuel, 

chemical synthesis), purification is also a must. 

Besides carbon dioxide, biogas often contains various other contaminants such as 

sulphur compounds, organic silicon compounds, halogenated hydrocarbons, aromatics, 

oxygenated compounds and other residual species which have detrimental environmental 

effects, facilitates corrosion problems and damage engine surfaces [3]. 

However, the research in the field of biogas upgrading has gained little attention 

during the last years even if there is growing attention to the production of biogas in 

general (Fig. 1).  

Among the major biogas upgrading technologies water scrubbing, pressure swing 

adsorption (PSA), membrane separation and cryogenic separation can be listed. 

Pressurized water wash scrubbing belongs to the one most frequently used since it seems 

to be the cheapest option, although the efficiency of water for CO2 capture is still rather 

limited compared to organic solvents. The schematic view of biogas upgrading based on 

an absorption process is shown in Figure 2. 

Thus, the development of a novel absorption media with desired requirements will 

contribute to effective scrubbing applications, decreasing the energy consumption, 

investment and operational costs. Novel innovative upgrading processes should facilitate 

more efficient biogas utilization and integration in the present energy infrastructure. 
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Figure 1. Historical trends in the number of publications per year, reporting the concepts 

“biogas production” and “biogas upgrading”, available in open literature  (SciFinder®, as 

entered, English only, December 2012). 

 

 

 

 

Figure 2. Schematic view of a gas upgrading process. 

 



 
   

3

1.2 Conventional technologies for CO2 capture 

Recently, much research effort has been dedicated towards CO2 capture [4]. As a 

result, many new absorption solutions have been developed [5] and tested in terms of 

CO2 capture (Fig. 3). 

 

 

 

Figure 3. Overview of biogas upgrading process and research strategy. 

 

Owing to their high capacity, CO2 capture with aqueous amine solutions seems to 

be the leading industrial technology [6]. However, the use of monoethanolamine in the 

MEA-based process, applied for a long time as the dominant approach, is associated with 

several disadvantages, such as high energy consumption at the regeneration step, 

corrosivity and degradation problems [7]. BASF activated ‘aMDEA’ process based on 
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the application of N-methyldiethanolamine (MDEA) with piperazine (PZ) as an activator 

is claimed to cope with the abovementioned issues [8]. Moreover, aMDEA is considered 

to be non-toxic and non-corrosive and, therefore, environmentally friendly sorbent. 

While amine scrubbing belongs to the class of chemical solvent scrubbing, the 

properties of aMDEA vary depending on the PZ concentration and can be shifted to 

behave more like a physical solvent. The possibility to combine the advantages of 

chemical and physical solvents expands the process flexibility [9]. 

Moreover, several industrial processes apply chemical solvents such as aqueous 

ammonia solutions, aqueous potassium and sodium carbonate and their mixtures with 

amines and physical solvents [5]. Among the most widely known are the Benfield (UOP), 

Catacarb (Eickmeyer), LRS10 (British Gas), Flexsorb HP (ExxonMobil) and 

Giammarco-Vetrocoke processes [10, 11]. 

Physical absorbents are usually favorable for the separation of the gas mixtures 

containing high partial pressure of CO2. The main physical solvents used for CO2 

removal are cold methanol (Rectisol/ Lurgi and Linde), N-methyl-2-pyrrolidone 

(Purisol/Lurgi), dimethyl ether of polyethylene glycol (Selexol/UOP) as well as 

propylene carbonate (Fluor Solvent process/Fluor Daniel) [10, 11]. 

The primary advantage of physical sorbents over chemical ones is their lower 

energy requirement since no chemical reaction is involved and CO2 capture is 

accomplished via physical solubility interactions. CO2 release can be achieved by means 

of pressure reductions (flash stages) [12]. However, the process also has several 

disadvantages, namely low CO2 capacity, absorption of hydrocarbons, solvent loss and 

requirement of high circulation rates resulting in higher operating costs [7]. 

Moreover, another attractive option for CO2 removal from oxygen-rich gas streams 

should be mentioned here. Amino acids and amino-acid salts are claimed to be suitable 

for this task and considered to be non-toxic and environmentally friendly [13, 14]. A high 

absorption rate and high selectivity for CO2 capture as well as better resistance to 

degradation were claimed. Nonetheless, the energy requirements for solvent regeneration 

are reported to be higher compared to MEA and raise therefore concerns about 

applicability of these sorbents [14]. 
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Thus, the recent CO2 capturing technologies have certain limitations, and, 

consequently, it would be desirable to develop a CO2 removal process merging the best 

characteristics and minimize substantial drawbacks of the numerous strategies available. 

 

1.3 Novel sorbents 

Ionic liquids (ILs) have been identified as new alternatives for CO2 removal from 

gas streams [15]. As potentially “green” solvents, ionic liquids are offering the promise 

of minimized waste streams and are currently under intensive research [16]. Due to their 

unique properties, in particular, low vapour pressure, non-flammability and high thermal 

stability, they have attracted much interest being applied in different applications [17].  

Ionic liquids consist of a large organic cation and a smaller organic/inorganic anion.  

The properties of room-temperature ionic liquids can in general be modified through 

varying cation-anion moieties.  

The solubility of CO2 in a “physical IL” involves the interactions between CO2 and 

IL anion by means of weak Lewis acid-base interactions. This suggests that the nature of 

anion plays the key role here, while the cation plays a secondary role whereas the CO2 

solubility is slightly affected by increasing the alkyl chain length [16]. Among 

intermolecular interactions, van der Waals forces belong to the dominant ones and 

contribute most to the CO2 dissolution. The electrostatic interactions have a less 

important contribution, whereas the effect of hydrogen bonding can be insignificant [16].  

CO2 uptake by a “chemical ionic liquid” 1-butyl-3-methylimidazolium acetate 

[C4mim][OAc] is, presumably, accomplished through the generation of an intermolecular 

complex [18] or a chemical reaction leading to the carboxylation of the imidazolium ring 

accompanied by acetic acid formation [19].  

 The performance of ionic liquids can be significantly improved by means of 

incorporation of an amine function in the structure of the ionic liquid (task-specific ionic 

liquid) [20]. 

However, ionic liquids also possess several disadvantages limiting their practical 

usability, such as frequent high viscosity, low and difficult to control purity, and 

multistage synthesis procedure resulting in comparatively high prices. Poor knowledge 

about their toxicity and biodegradability impede the expansion of their practical scope. 
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While the majority of room-temperature ionic liquids remain liquid over a wide 

temperature range, the ionic liquids in polymeric forms are solids [21]. Many of them 

exhibit substantially increased CO2 sorption capacity and demonstrate very high 

sorption/desorption rates compared to their corresponding monomers. In a few minutes 

the polymers such as poly[(p-vinylbenzyl)trimethylammonium hexafluorophosphate] 

P[VBTMA][PF6] [22], poly[(p-vinylbenzyl)trimethylammonium tetrafluoroborate] 

P[VBTMA][BF4] and poly[(2-(methacryloyloxy)ethyl)trimethylammonium 

tetrafluoroborate] P[MATMA][BF4] [23] reached the equilibrium and complete CO2 

saturation. In contrast to room-temperature ionic liquids, in the case of IL-polymers the 

cation is assigned to be decisive upon CO2 sorption [22]. These polymers are claimed to 

be reversible and CO2 selective that renders them exceptionally promising for CO2 

separation as sorbents as well as membrane materials. 

Recently, a new class of ionic liquids called ‘switchable’ solvents has emerged 

[24]. A mixture of an amidine or guanidine, for example 1,8-diazabicyclo[5.4.0] undec-7-

ene (DBU), coupled with an (amino) alcohol can form ionic liquids upon CO2 bubbling 

(Fig. 4) and revert back to non-ionic form by exposing to nitrogen or other inert gas [25]. 

More generally, an organic superbase (such as 1, 5-diazabicyclo(4.3.0)non-5-ene (DBN) 

or tetramethylguanidine) coupled with an OH-group containing molecule also forms ionic 

liquids [26]. 

 

N

N

+ ROH

CO2

heat, N2

N

N

H O O

R

O

8-diazabicyclo[5.4.0]undec-7-ene (DBU)
 

Figure 4. Reversible process of CO2 binding by a ‘switchable’ ionic liquid. 

 

The properties of such solvents can be tuned by varying the alcohol/base pair [27]. 

These solvents exhibit high CO2 absorption performance and can be easily recycled [28].  
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The fact that no cumbersome organic synthesis is required is highlighted as one of 

the advantages compared to traditional ionic liquids. At the same time, the main 

disadvantage is the dramatically increased viscosity upon saturation with CO2. 

In order to develop a mixture with desirable properties, ionic liquids can be mixed 

with conventional solvents aiming at combining the tunable green properties of ionic 

liquids and the high efficiency of amines [29]. Such IL/amine mixtures exhibited better 

process flexibility and were effective at a range of pressures [30]. Thus, they combine the 

advantages of different solvents omitting some drawbacks [30]. For example, the 

viscosity issue typical for ionic liquids was significantly diminished upon mixing with 

amine solutions.  

To summarize, much data was compiled from the literature on the various CO2 

capturing technologies operated under different conditions. However, a fair comparison is 

until today missing. Moreover, there is a lack of information on utilization, viscosity and 

regeneration characteristics for the emerging solvents intended to be used in industrial 

applications and, in particular, in biogas upgrading. 
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1.4 Aim and scope of the research 

The overall objective of this research was to study the use of the emerging solvents 

in terms of their CO2 capturing capacity and their applicability and efficiency in biogas 

upgrading. The long term goal is to develop a new sustainable, energy efficient and 

economically competitive technology. 

An overview of the conventional CO2 capturing technologies was performed in 

article (I). A realistic comparison of different types of solvents claimed to be efficient 

with respect to their CO2 loading capacity was made in paper (II). Moreover, the work 

provides data on the absorbent regeneration and viscosity, crucial for economic process 

evaluation (II). Utilization of activated MDEA solution upon biogas upgrading was 

studied in regard to the theory of intermolecular interactions between the absorbed 

molecules (III).  

Novel classes of solvents such as ‘switchable’ ionic liquids (IV) and poly(ionic 

liquid)s (V) were investigated in terms of their CO2 capturing capacity. Furthermore, the 

occurrence of volatile organic compounds (VOCs) in biogas was confirmed and 

identified (VI). The impact of chosen solvents on the level of VOCs removal was 

investigated (II, VI).  
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2. EXPERIMENTAL 

2.1 Materials 

2.1.1 Chemicals 

The gases CO2 (99.99 %), CH4 (99.95 %) and N2 (99.99 %) were obtained from 

AGA Oyj (Finland). Monoethanolamine (MEA) (≥99.0 %), diethanolamine (DEA) 

(≥99.5 %), N-methyldiethanolamine (MDEA) (≥99.0 %), amino-2-propanol (AMP) (93.0 

%), piperazine (PZ) (anhydrous, ≥99.0 %), polyethylene glycol 400 dimethyl ether 

(PEG), L-alanine (≥99.5 %), β-alanine (≥99.0 %), sarcosine (≥98.0 %), L-asparagine 

(98.0 %), DL-serine (≥99.0 %), glycine (≥99.0 %), 1,8-diazabicyclo[5.4.0] undec-7-ene 

(DBU) (≥99, 0 %), 1-hexanol (≥99.0 %), 4-amino-1-butanol (98 %), 6-amino-1-hexanol 

(97.0%), and 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) (≥95.0 %) were 

purchased from Sigma-Aldrich while the amino alcohols, L-prolinol (95.0%) and L-(+)-

valinol (97.0 %), were purchased from ABCR. All chemicals were used without further 

purification. The ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate 

[C4mim][BF4], 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-

butyl-3-methylimidazolium dicyanamide [C4mim][DCA] were synthesized at M. V. 

Lomonosov Moscow State University (Russia) and analyzed by means of proton NMR 

spectroscopy (II). All chemicals were used as received.  

The poly(ionic liquid)s were prepared at the University of Helsinki by free radical 

polymerisation. Their structure was confirmed by means of proton NMR spectroscopy 

(V). 

 

2.1.2 Biogas 

Biogas was obtained from BIOvakka’s biogas plant (BIOvakka Suomi Oy, 

Topinoja, Åbo - Turku, Finland), where it is being produced in two 3500 m3 digester 

tanks (Fig. 5).  

Raw materials are charged to a storage tank (40m3) through the receiving silo 

located in the open air (1). Thus, the sludge is in contact with air only for an hour, after 

which it is diluted with water and supplied to the underground storage tank (2) with the 

volume of 120 m3 where slurry creation takes place. Then the slurry is pumped to the 

sludge storage 3 (800m3). Passing a pulper buffer (4), the sludge flow splits into three 
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parallel flows leading to the reactors (5, 6, 7) with the volume of 10 m3 each. In the 

reactor, 6 m3 are taken by the sludge mixture and 4 m3 are assigned for the gas phase. 

Due to the steam injection at this stage, the process of thermal hydrolyzation and 

sterilization begins at 3.5 bar and 130 ˚C.  

 

 

 

Figure 5. Biogas plant flowsketch, where 1 - storage tank; 2- underground storage tank; 

3- sludge storage; 4 - pulper buffer for sludge; 5, 6, 7 – reactors; 8 - flash tank; 9 - heat-

exchanger; 10, 11 – digesters; 12 - decanter centrifuge; 13- gas holder; 14- droplet 

separator; 15- active carbon filter; 16 – cooler; 17- compressor. 

 

 The system with three reactors was developed to handle more sludge per hour. To 

be able to release the excess pressure, there is a connection line to the pulper, which is 

also used to pre-heat the slurry. Then the effluents enter the flush tank 8 (16 m3) which 

operates at the temperature of ca. 120 ˚C and at a pressure of ca. 0.3 bar. The cooling of 

the suspension down to 56 ˚C is performed before it enters the digesters by means of heat 

exchangers (9). The biogas is formed in the digesters (10, 11) at 53 ˚C and at the pressure 

of 23 mbars.  Usually the digestion process takes 15 - 18 days. The overhead product gas 

from the digesters is combined in the line and led to a gas holder (850 m3). Then it passes 

through the water removal section, active carbon filter, cooler (2 ˚C) and is pressurized to 

200 mbars. The slurry coming from the bottom of the digester is mixed with the polymer 

and led to the decanter centrifuge, where it separates into solid and liquid fractions.  
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Raw biogas samples were withdrawn from an outlet collector pipe, where the 

product biogas was being collected after passing through water removal as well as active 

carbon filtres, cooling and pressurization stages.   

The resulting raw biogas was, consequently, compressed into a gas storage tank by 

means of Makita AC310H 240V High Pressure Air Compressor 2.5HP. The biogas 

samples were obtained from the site in February 2010 and in June 2012, respectively. 

 

2.2 Reactor systems 

2.2.1 Loop reactor 

A loop reactor with the liquid phase volume of 50 ml was designed, constructed and 

utilized for CO2 capture from biogas and its model mixture (Fig. 6). In the latter case 

methane – carbon dioxide mixture containing 20 vol % of each gas was introduced into 

the reactor. 

 

 

 

Figure 6. The reactor system with liquid phase volume VL= 50 m: [1] - mass flow 

controller; [2] - absorption column; [3] - separator; [4]- thermostat; [5] – temperature 

controller;  [6], [7] - peristaltic pumps; [8] - trap; [9]- pressure indicator; [10] – pressure 

controller; [11]- vacuum pump; [12] - gas analyser; [13]- computer. 
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The carrier gas was nitrogen. The gas stream was contacted counter-currently with 

various solvents. The gas flows were controlled by the flowmeters FlowPlot V 4.58 

provided by Bronkhorst High-Tech B.V.  

The CO2 loading measurements were carried at different temperatures (8 - 50 ºC) 

and partial pressures of CO2 between 1 and 5 bars. The temperature was measured with a 

thermocouple placed near the bottom of the reactor. The instrumental uncertainties in 

temperature and pressure were within ± 0.1 K and ± 0.1 bar, respectively. 

For chemical sorbents, a regeneration process was carried out for 1 hour under 

atmospheric pressure by increasing the temperature (93 ºC). Physical sorbents 

regeneration was achieved by simple flushing with an inert gas (nitrogen). In both cases 

the regeneration was carried out under nitrogen flow with a flow rate of 143.3 ml/min. 

 

2.2.2 Batch reactor 

For the absorbents with a tendency to dramatically increase viscosity upon 

saturation with CO2 batch reactors were utilized in order to evaluate their CO2 capturing 

ability. For the screening purposes, a tailor-made experimental setup with an inner 

diameter of 10 mm was designed, operating at atmospheric pressure (Fig.7).  

 

                     

 

Figure 7. Batch reactor utilized in CO2 uptake-release experiments. 
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In order to remove pre-dissolved impurities and captured atmospheric CO2, flushing 

with an inert gas for 15 min was applied prior to experiments. The carbon dioxide flow 

was controlled by the flowmeter FlowPlot V 4.58 provided by Bronkhorst High-Tech 

B.V. (24.53 ml/min). In order to facilitate an efficient contact of CO2 with the solution, a 

magnetic stirring system Heidolph MR 1000 was used with the stirring rate of 400 r.p.m. 

CO2 absorption was performed at room temperature (22 ˚C). The temperature of the 

sample was kept constant by means of an external thermostat (Frigomix U provided by B. 

Braun Biotech International) filled with water.  

In order to evaluate the effect of the mass transfer limitations, a batch reactor with a 

bigger volume (150 ml) equipped with an efficient mechanical stirring (300 r.p.m) was 

utilized. An electrical heater provided by Barnstead was applied instead of a water or oil 

bath to keep the temperature constant. In order to avoid evaporation losses, a cooler filled 

with glycol was installed.  

  

2.2.3 TGA as a reactor 

A thermogravimetric analyzer (TGA) Cahn D - 200 was applied to measure CO2 

capturing capacity of poly(ionic liquids) with a small sample volume (25 - 50 mg).  The 

sample was placed in a quartz cup and suspended in the thermogravimetric analyser.  

Prior to purging with CO2 the sample was held at 40 ºC under argon stream (191 ml/min) 

to remove all the impurities until the sample weight stabilized (3 hours). Then the 

temperature was decreased to room temperature (25 ºC) under Ar stream to avoid any 

gaseous impurities. For CO2 adsorption studies the sample was held under CO2 stream 

with a flow rate of 231 ml/min until saturation and the constant weight. Desorption of 

ionic (ILs) and poly(ionic liquid)s (PILs) was carried out under Ar stream at 40 ºC  for 3 

hours and 1 hour, respectively. 

 

2.3 Analysis and product characterization 

2.3.1 Level of CO2 capture 

The outlet gas stream from the loop reactor was led to a gas analyser (Geotech GA 

2000/GA 2000 Plus Gas Analyser with a precision of ± 0.1 vol %). The gas analyzer was 

calibrated with all gases used in the experiment with known gas concentrations. The total 
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flow to the reactor was 260 ml/min. The outlet signal of the analyzer was transformed 

into molar flow at the ambient temperature (21 ºC). Upon integration the experimental 

values of CO2 loading were calculated, based on the difference between the CH4 and CO2 

responses (II). To consider methane as an inert gas in the calculations, the following 

corrections were implemented: 

 

aCHCOaCO ,exp,, 422
  ,                                                                                          (1) 

 

where 
exp,2CO  represents the experimentally obtained CO2 solubility in a particular solvent,  

aCH ,4
  corresponds to the CH4 solubility in the same solvent. 

In the case of CO2 capture in the batch and the TGA reactors, the increment of 

weight was monitored as a function of time, until the saturation was achieved and 

equilibrium was established. 

 

2.3.2 Viscosity and pH measurements 

Viscosity of the absorbents mixtures before and after CO2 absorption was measured 

on modular compact rheometer Anton Paar Physica MCK 300 at the shear rate 393 s-1.  

Solutions pH was measured with a pH meter (Mettler Toledo, S20 SevenEasyTM pH). 

 

2.3.3 Poly(ionic liquid)s 

2.3.3.1 Scanning electron microscopy 

The morphology and surface texture of the poly(ionic liquid)s were investigated by 

means of scanning electron microscopy (SEM). The analysis was performed by a Cambridge 

Instruments Stereoscan 360 with a ThermoNORAN Vantage X-ray detector as well as a LEO 

Gemini 1530 with a Thermo Scientific UltraDry Silicon Drift Detector (SDD).  

 

2.3.3.2 Thermogravimetric analysis (TGA)  

The degradation temperature for each poly(ionic liquid) was determined by means 

Cahn D -200 thermogravimetric analyzer. 
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2.3.3.3 Differential scanning calorimetry 

The differential scanning calorimetric (DSC) curves were measured with a Mettler 

Toledo 822-instrument under nitrogen atmosphere. The samples were first heated from 

25 °C to 150 °C with a heating rate of 10 °C/min. The samples were then kept at 150 °C 

for 10 minutes and cooled to -20 °C with a cooling rate of 10 °C/min, equilibrating them 

again for 10 minutes at -20 °C. Finally, the samples were heated from -20 °C to 150 °C, 

at 10 °C/min. The reported values of glass transition are from the final heating run. 

 

2.3.4 Biogas sampling and analysis 

Gas samples were withdrawn from the raw biogas and after upgrading with 

different absorbents in order to evaluate the level of removal of such contaminants as 

CO2 and different volatile organic compounds (VOCs). The study of VOCs removal was 

performed under atmospheric pressure and at 27 °C. 

The product biogas samples were collected in Nalophan ® NA bags during a time-

frame of 20 minutes. The sampling tubes were preconditioned for 8 hours at 300 ˚C under 

nitrogen stream. The gas samples were drawn into the sampling tubes with the adsorption 

material Tenax GR (2, 6-diphenylene-oxide polymer resin plus 30% graphite) by means 

of a Gilian Low Flow Air Sampling Pump LFS-113DC (Sensidyne, LP) with a sampling 

rate of 210 ml/min. The sample volume was in the range of 0.3 - 0.6 l, while for raw 

biogas sampling, a minimum volume of 0.3 l was used. The tubes were capped and stored 

at -18 ˚C until analyzed. Thermal desorption gas chromatograph-mass spectrometry 

(Tekmar Purge & Trap concentrator 3000/Agilent 6890+/5973 N MSD) was applied to 

extract the absorbed VOCs from the Tenax and analyze them as described (II, VI). In the 

gas chromatography (GC) analysis, an Agilent Technologies HP5 capillary column was 

applied in all of the analyses (column characteristics: film 1 μm, diameter 0.25 mm, 

length 30 m). During desorption (at 250 ˚C for 10 min.), compounds were carried into the 

cryogenic trap where the temperature was kept at -120 ˚C. After desorption, the 

temperature of the cryogenic trap was ramped up to 250 ˚C.  The initial GC oven 

temperature was 40 ˚C for 2 min, then ramped at 5 ˚C/min up to 150 ˚C, followed by a 

steeper ramp of 15 ˚C/min up to 250 ˚C and held constant at this temperature for 5 min. 

Helium with the flow rate 1.1 ml/min was used as the carrier gas. 
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3. RESULTS AND DISCUSSIONS 

3.3 Experiments with a model mixture of biogas 

In the preliminary part of the work, various solvents claimed from the open 

literature to be effective in terms of CO2 capture were investigated. Instead of real biogas, 

a model mixture consisting of CO2 and CH4 with 20 vol % of each gas was applied in 

these experiments. Nitrogen was applied as a carrier gas.   

 

3.3.1 Amine solutions 

Owing to their high capacity, amine scrubbing remains the most commonly used 

technology for removal of acid gas impurities [31].  

Due to the different electronegativity of the atoms in the molecule, carbon dioxide 

possesses the properties of Lewis acid and can easily react with water and amines, which 

represent 'hard’ Lewis bases. Thus, amine scrubbing process belongs to chemical solvent 

scrubbing. After binding with CO2 there is formation of the carbamate (2) in case of 

primary and secondary amines and bicarbonate (3) for tertiary amines. 

 

  COORRNHRRCONHRR 212212212                                                           (2)          

  332122321 HCONHRRRCOOHNRRR                                                      (3), 

where R represents an alkyl group or H atom. 

 

An equation (3) usually includes additional protic species (e.g. alcohol) to facilitate 

the reaction of the thertiary amine. 

In the present work, aqueous 15 wt % solutions of monoethanolamine (MEA), 

diethanolamine (DEA), N-methyldiethanolamine (MDEA) and amino-2-propanol (AMP) 

have been investigated representing primary, secondary, tertiary and sterically hindered 

solvents, respectively. Moreover, aqueous solutions of 15 wt % MDEA with an addition 

of different amounts of PZ were tested. 

It was confirmed that the solutions with higher concentration of MEA exhibited 

higher CO2 capturing efficiency since CO2 absorption is proportional to the equilibrium 
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constant and the amine concentration. However, to avoid equipment corrosion, 15 wt % 

amine solutions were chosen for the subsequent work. 

The results revealed that the efficiency in terms of CO2 capture increased as 

follows: water < MDEA < DEA < AMP < MDEA + (2-5) wt % PZ < MEA (II, III). The 

addition of PZ affects the process flexibility, providing the advantages of chemical and 

physical solvents. The CO2 loading increases by increasing the percentage of PZ, but less 

than 15 wt % of PZ has to be used to avoid precipitation. At atmospheric pressure the 

mixture, containing 15 wt % of MDEA and 14 wt % of PZ  (68 L CO2 / L solution), 

outperformed 15 wt % MEA (50 L CO2 / L solution) and the performance of 15 wt % 

MDEA (32 L CO2 / L solution) solution by two-fold.  

The experimental results demonstrated that the addition of 5 wt % of PZ increased 

the efficiency of abovementioned solutions by 24 - 50 vol %, the effect being the most 

significant in the case of MDEA solution (II). 

Isothermal absorption curves were determined confirming that equilibrium 

constants tend to decrease with a temperature rise. Increasing the temperature in general 

inhibits the dissolving reactions.  

The pH dependence upon increasing pressure demonstrated that a higher pressure 

results in stronger CO2 absorption (Fig. 8). 
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Figure 8. pH of the CO2-treated aqueous amine solutions  
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The pressure dependence determined in coordinates θ = f (
2COP ) was rewritten by 

introducing the constants a1 and a2.  

 

         water
CO

CO

Pa

Pa
 




1
2

2

2

1 ,                                                                                          (4) 

 

where a1(bar-1) and a2 (bar-1)  are the constants, while the term water describes the CO2 

loading of water, at particular pressure and temperature. The constants of equation for 

saturation type absorption isotherm tend to increase with an increase in the binding 

energy of absorption and with a decrease in temperature (III). 

A comparison between experimental and calculated values (eq. 4) revealed a 

certain discrepancy, especially notable in the case of 15 wt % MEA solution which might 

be associated with non-ideality of the solvent mixture (Fig. 9). 
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absorption curves for aqueous 15 wt % amine solutions at 20 ˚C. 
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Such non-ideal behavior can be well described by a logarithmic (or Temkin) 

absorption isotherm: 

 

,21 2
ln waterCOPaa                                                                                                        (5) 

where  - CO2 loading (L CO2 / L solution), 

a1 – constant (L CO2 / L solution), 

a2 – constant (bar-1), 

water - CO2 loading of water at particular pressure and temperature. 

 

The logarithmic absorption value of a1 corresponds to the CO2 capturing efficiency 

of the amine solutions and is increasing in the following order: 15 wt % MEA > 15 wt % 

DEA > 15 wt % MDEA. The constant a2 stands for the equilibrium constant 

corresponding to the maximum binding energy (III). 

The logarithmic approach represents a more simple way of analysing experimental 

data and was tested in the current work in the case of aqueous amine solutions (Fig. 10). 
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Figure 10. Comparison of suitability different equations to describe the experimental 

data obtained for aqueous amine solutions at 20 ˚C.  
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One of the hypotheses to explain such non-ideality was the assumption that the 

absorption equilibrium and the values of CO2 loading depend not only on the amine 

concentration, but also on the amount of the protonated amine. However, from Fig. 8 it 

could be concluded that with increasing pressure more amine is protonated in the case of 

all amines used and cannot be a possible reason for the non-ideality, at least in the 

particular case of the MEA solution. Thus, a tentative hypothesis was proposed assuming 

that the ion-ion interactions influence the activity coefficients with altering CO2 

concentrations (III). 

As mentioned above, the addition of PZ enhanced the CO2 capturing ability of 

amine solutions. Moreover, a quantitative analysis of absorption data was performed 

using an isotherm with saturation behaviour as well as a simple logarithmic model, 

accounting for the non-ideality of the mixtures (Fig. 10).  

 

3.3.2 Ionic liquids 

3.3.2.1 Traditional room-temperature ionic liquids  

For the present study different ionic liquids were selected based on whether they 

belong to the class of chemical or physical solvents. Since for the physical ionic liquids 

the anion has a stronger effect on CO2 solubility, several representatives of physical ionic 

liquids with different anions were studied such as 1-butyl-3-methylimidazolium 

tetrafluoroborate [C4mim][BF4], 1-butyl-3-methylimidazolium hexafluorophosphate 

[C4mim][PF6] and 1-butyl-3-methylimidazolium dicyanamide [C4mim][DCA]. The CO2 

solubility increased in the following order: [DCA] < [BF4] < [PF6] (II) which 

corresponds well to the theory. Thus, an IL with fluor containing anion possesses higher 

CO2 capturing efficiency than the one without a fluor group. Moreover, the efficiency 

increases with the number of fluor groups in the anion. However, in general, the 

efficiency of physical ionic liquids is quite low (< 4 L CO2 / L solution) at low pressures 

and can be significantly increased at elevated pressure. Thus, an increase in the partial 

CO2 pressure from 1 to 5 bars contributes to the rise in CO2 capturing efficiency by a 

factor of 6, supporting a space-filling mechanism suggested by different research groups 

[32, 33]. 
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1-butyl-3-methylimidazolium acetate [C4mim][OAc] signifies the so called 

chemical ionic liquids since it absorbs CO2 by means of the chemical reaction [19]. It was 

revealed to be efficient at low pressure and possessed the highest CO2 removal efficiency 

(49 L CO2 / L solution). As for amine solutions, in the case of ionic liquids the isothermal 

absorption curve confirmed the decline in CO2 capturing efficiency upon rising 

temperature due to the decrease in equilibrium constants (II). 

In order to reduce the viscosity of ionic liquids and combine some of the existing 

advantages, mixtures of physical ionic liquids and chemical solvents were tested. This 

type of mixtures may offer additional advantages in terms of energy consumption and 

extend the range of pressures applied. Thereby, the application of the aqueous mixture 

consisting of 15 wt % [C4mim][BF4] ionic liquid and 15 wt % MDEA resulted in 14 

times higher CO2 capacity compared to the mixture without this amine. However, having 

investigated several mixtures, no extra additive capturing capability was observed and 

CO2 loading was even lower than the theoretically expected one, calculated as a sum for 

individual sorbents, present in the mixture. 

It should be noted that a minor synergetic effect was detected in the case of addition 

5 wt % PZ to the aqueous 15 wt % [C4mim][BF4] mixture. The mixture displayed 3 vol. 

% higher capacity (22.36 L CO2 / L solution) than the sum of capacities separately for the 

aqueous blended solution of 15 wt % [C4mim][BF4] (1.94 L CO2 / L solution) and 5 wt % 

PZ (19.66 L CO2 / L solution). This fact indicated a limited possibility of improving the 

absorption performance of physical ionic liquids at low pressures. 

 

3.3.2.2 ‘Switchable’ ionic liquids 

In order to investigate the structure-activity relationship, various mixtures 

consisting of 1, 8 – diazabicyclo[5.4.0] undec-7-ene (DBU) and different (amino) 

alcohols were studied. ‘Switchable’ ionic liquids (SILs) were operated at low pressures 

since the CO2 binding is based on the chemical reaction and they tend to behave as 

chemical solvents. After comparing the results obtained for SILs with the other solvents, 

it was concluded that the efficiency of SILs was at least two times higher than that of the 

chemical ionic liquid [C4mim][OAc]  and more than eight times better compared to the 

physical ionic liquid [C4mim][BF4] and the solution of pure DBU (IV).  
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The results revealed that in case of SILs, the presence of an additional amino group in 

(amino) alcohol contributes to the enhanced CO2 capturing capacity (IV). Moreover, after 

comparing the mixtures based on 1-hexanol and 6-amino-1-hexanol, the conclusion was 

made that the presence of an amino group decreases the initial absorption rate. Furthermore, 

primary amines were more efficient than a secondary amine (L-prolinol) in CO2 capture. 

With the purpose of scaling up the experiments were repeated using two-fold 

amount of the solution (10 ml instead of 5 ml).  The results are depicted in Figure 11.  
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Figure 11. CO2 capture by the SILs based on the equimolar mixture (1:1) of DBU and 

the different (amino) alcohols (VL = 10 ml) at 22 ˚C and atmospheric pressure. 

 

In general, all the regularities remained the same. However, in the case of the 

secondary amino alcohol L-prolinol, the CO2 capturing capacity was lower (0. 5 mol CO2 

/ mol ROH vs. 0.8 mol CO2 / mol ROH). A steric effect and a charge –distribution in the 

heterocyclic amino ring of L-prolinol affected the CO2 capturing efficiency and resulted 

in lower values compared to the studied primary amino alcohols. Moreover, the possible 

reasons for the differences in CO2 uptake in a smaller and bigger absorbent volume could 

be variations in mass transfer, gas distribution and gas hold up, different residence time to 



 
   

23

name a few. Furthermore, in case of bigger volume the time of the saturation with CO2 

for the mixtures of DBU with 4-amino-1-butanol and 6-amino-1-hexanol significantly 

increased. Thus, the time for the complete saturation of the DBU + 6-amino-1-hexanol 

mixture increased ten-folds and reaching 1100 minutes (0.85 mol CO2 / mol ROH). As 

expected, due to limitations in gas distribution prevailing in the bigger volume the 

formation of carbamate in the solution proceeds slower than in the smaller volume. 

However, more research is needed to provide comprehensive conclusions.  

CO2 capture by SILs is concerned with the viscosity issues. Dramatic increase in 

the viscosity values upon CO2 capture and crystal formation were observed upon CO2 

saturation (Fig. 12).  
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Figure 12. Viscosity increase upon CO2 capture in ionic liquids [C4mim][BF4] (1) and 

[C4mim][OAc] (2), and the switchable ionic liquid solutions based on mixture of DBU 

and L-prolinol (3), L-valinol (4), 1-hexanol (5), 4-amino-1-butanol (6) and 6-amino-1-

hexanol (7). 

 

For the SILs, the viscosity increased on average by a factor of six, while in the case of 

classical ILs the values even slightly decreased. 
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It was reported that a rise in the temperature provides an attractive decline in the 

viscosity (IV). Moreover, the viscosity data confirmed that the ions inside the 

‘switchable’ ionic liquids move less freely (IV). 

 

3.3.2.3 Poly(ionic liquid)s 

In the present study several poly(ionic liquid)s (PILs) were investigated in terms of 

their CO2 capturing capacity. The PILs consisted of poly(2-(1-butylimidazolium-3-yl)ethyl 

methacrylate [BIEMA] cation with different conter-anions, such as tetrafluoroborate [BF4], 

hexafluorophospate [PF6], bromide [Br], trifluoromethanesulfonate [TfO], 

bis(trifluoromethanesulfonyl)imide [NTf2] and acetate [OAc] (V).  

Some of the studied PILs with monomers containing similar anions exhibited no 

sufficient advantages in CO2 capturing efficiency (Fig. 13), except the PIL with Br-

containing anion. However, P6 [BIEMA][Br] is difficult to work with due to its 

extremely high hygroscopic properties.  
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Figure 13. Comparison of ionic liquids and poly(ionic liquid)s containing similar anions. 

 

The PILs with different counter-anions possessed different CO2 capturing 

efficiency within the range 1.5 - 3.3 mg CO2 / g PIL that corresponded to the following 

order: [NTf2] < [TfO] < [Br] < [BF4] < [PF6]. It confirms the current understanding that 
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in case of poly(ionic liquid)s fluorine atoms are not the key factor in enhancing CO2 

sorption. Moreover, bulky anions reduce the spare volume and impede CO2 access to the 

polycation, responsible for CO2 capture [21, 23].  

In contrast to PILs with inorganic anions, PIL containing acetate anion exhibited 

higher CO2 capturing capacity on average by a factor of 3 (12.5 mg CO2 / g PIL). 

However, the absorption rate is much lower and it took more than 48 hours to reach the 

complete saturation with respect to CO2, while for PILs with inorganic anions complete 

saturation was achieved within 20 minutes. 

CO2 capturing capacity slightly depends on the molecular weight of the polymer 

and the difference can be visible in case of Br-containing PILs.  

Analysis of the surface texture revealed that the abovementioned PILs belong 

mostly to non-porous materials (Fig. 14) and did not show any visual changes after CO2 

capture/release. 

Figure 14. Scanning electron micrographs of fresh PILs with different counter-anions. 

P 5 [BIEMA][PF6] P 2 [BIEMA][BF4] 
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It was proved that an addition of a PIL into an IL does not increase the CO2 

capturing efficiency due to the viscosity increase and hampered diffusion of the gas (V). 

 

3.3.3 Amino acid salts 

Since amino acid salts were claimed to be environmentally friendly sorbents with 

good CO2 removal efficiency, a series of aqueous 15 wt % potassium salts of amino acid 

solutions, containing different functional groups such as hydroxyl (-OH), carbonyl (-CO-

), carboxyl (-COOH-), as well as primary -NH2 or secondary amino groups –NH were 

studied in the present work (Fig. 15).  
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Figure 15. CO2 capture in aqueous 15 wt % potassium salts of the following amino acids: 

[1] – L-alanine; [2]- beta-alanine; [3] – L-asparagine; [4] – DL – serine; [5] – glycine; [6] 

– sarcosine. 

 

The best absorption performance was demonstrated by the sarcosine potassium salt 

(27 L CO2 / L solution), being, however, inferior to the absorption performance of the 
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amine solutions (> 32 L CO2 / L solution) and [C4mim][OAc] ionic liquid (49 L CO2 / L 

solution).   

Moreover, the results revealed that the efficiency in terms of CO2 capture was 

lower than in the case of the solution with equal amount of potassium hydroxide (28.4 L 

CO2 /L solution). The formation of precipitate was observed after application of 

asparagine potassium salt; however, increased temperature diminished the solid 

precipitate formation. 

The addition of 5 wt % PZ did not provide any synergy and the resulting capacity 

for aqueous solutions of amino acid salts as well as for amino acids was even less than 

the theoretically expected one.    

 

3.3.4 Solvent regeneration and recyclability 

All the applied sorbents were tested in terms of their regeneration since 

recyclability is a key factor of any scrubbing process. Solvent regeneration is a 

substantial and complicated field and requires rigorous studies to be completed. In the 

present study, a preliminary screening was performed in order to have initial comparison 

and make conclusions for the forthcoming work.  

Physical solvents confirmed their ability to be regenerated by simple flushing. 

Complete release of CO2 was reached both for physical ILs and for physical PILs (II, V).  

The regeneration of a chemical solvent is more demanding since besides bubbling 

an inert gas, increased temperature is always required. The regeneration for most of the 

studied chemical sorbents was carried out under N2 passing at 93 ˚C (II) for 1 hour, while 

for SILs several temperatures were tested (22 ˚C, 107 ˚C and degradation temperature) 

(IV). In the case of PILs, the restrictive limit was dictated by the glass transition 

temperature of the polymers, since sample melting significantly affected the sorption 

characteristics (V). 

The results indicated that an aqueous 15 wt % MDEA solution possessed minimal 

decrease in the solvent efficiency (<3 vol %). Other amine solutions exhibited a reduction 

of their efficiency that might be caused by solvent degradation or uncomplete CO2 

release since the required temperature for CO2 desorption is in the range of 110 - 130 ˚C 

[18].   
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The regeneration of [C4mim][OAc] at the mentioned conditions revealed an 

efficiency loss of ca. 30 vol. %  (33.7 L CO2 / L solution). Here it should be mentioned 

that this IL evolves CO2 at 79 ˚C [18] and the influence of insufficient temperature for 

CO2 release should be eliminated. It was proven that in the case of smaller volume of the 

IL, the initial value of CO2 capacity was achieved within one hour treatment since an 

efficient mixing was provided. [C4mim][OAc] was thus proven to be a recyclable 

sorbent. When the loop reactor was entirely filled with the IL, increasing the treatment 

time (up to 4.5 hour) did not provide better regeneration and the capacity of the 

regenerated IL stayed in the range of 18 - 22 L CO2 / L solution. This fact confirmed that 

besides increased temperature, rigorous mixing and bubbling with an inert gas are needed 

for the CO2 release from the IL.  

As mentioned above, in the case of SILs several temperatures were tried for the 

initial optimization of the release process (IV). Some of the SILs can be considered as 

recyclable solvents. One striking example is the mixture of DBU and 1-hexanol (1:1) 

with CO2 absorption/release performed at 22/ 107 ˚C and under atmospheric pressure. 

Regeneration at degradation temperature was proven as the most suitable method 

for better CO2 release and was applied for the regeneration process in the forthcoming 

work. While increasing the liquid volume of the samples, the experiments were repeated 

(Fig. 16) and dependencies similar to the ones reported in (IV) were confirmed.  

The mixtures of an amidine with 1-hexanol (Fig. 17a) and 6-amino-1-hexanol were 

verified to be recyclable along with L-prolinol (Fig. 16). 

However, the efficiency of DBU + L-prolinol mixture was significantly inferior to 

the abovementioned solutions and cannot be considered as a competitive alternative. 

PILs with inorganic anions also demonstrated recyclable properties (Fig. 17b). 

Moreover, CO2 can be released through flushing with an inert gas (Ar). The regeneration 

of the PIL with [OAc] anion appeared much more complicated in terms of time required 

and the complete release of CO2 was difficult to achieve (V). 
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Figure 16. CO2 sorption capacity of fresh and regenerated (at degradation temperature) 

’switchable’ solvents (VL= 10 ml), based on the equimolar (1:1)  mixture of DBU and the 

following (amino) alcohols: (1) - 1-hexanol, (2) – 4-amino-1-butanol, (3) – 6-amino-1-

hexanol, (4) – L-valinol, (5) – L-prolinol. The numbers above show the duration of the 

saturation process. 
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Figure 17. Reversible properties of (a) SIL based on DBU and 1-hexanol mixture (1:1) 

and (b) PIL P6 [BIEMA] [BF4].   
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3.3.5 Comparison of different methods 

As a result of the present study a comparison of the best options for CO2 capture 

and biogas upgrading was done, which is summarized in Table 1.  

 

Table 1. Comparison of the key properties for the selected, high-performance solvents at 

P (CO2) = 1 bar 

 

№ Solvent type Solvent CO2 

mole 

fraction 

Viscosity at  

25 ˚C before 

CO2 uptake, 

cP 

Regeneration 

mol % 

efficiency loss

1 Chemical 15 wt % MEA 0.038 1.14  42 

2 Chemical 15 wt % MDEA 0.026 1.15 3 

3 Chemical 15 wt % MDEA + 5 wt % PZ 0.038 - 16 

4 Chemical IL [C4mim][acetate] 0.271 697 24 

5 Physical IL [C4mim][BF4] 0.018 141 0 

6 Chemical PIL PIL P7 [BIEMA] [OAc]   0.010* -  

7 Physical PIL PIL P6 [BIEMA] [BF4]   0.004* - <2 

8 SIL DBU + 1-hexanol 0.317 9.43 5 

9 SIL DBU + 6-amino-1-hexanol 0.303 44.7 2 
* mass fraction in case of poly(ionic liquid)s 

 

The values presented were determined in the temperature range of 22 - 27 ˚C and 

the CO2 partial pressure of 1 bar. In order to make a clear comparison, the calculations 

were made in mole fraction for liquid absorbents and mass fraction for solid sorbents 

such as poly (ionic liquid)s. 

During the present study, amines were confirmed to be highly efficient in terms of 

CO2 capture (entries 1-3). However, one can see that SILs and the chemical ionic liquid 

can become obvious alternatives (entries 8, 9 and 4). Moreover, the studied solvents 

demonstrated an elevated absorption performance in terms of CO2 capture, compared to 
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water (mole fraction 0.0008). Increasing the partial pressure of CO2 two-folds results in 

an efficiency increase by a factor of 4.5 (mole fraction 0.0035) which is still lower than 

for the organic solvents.  

A pressure increase can also significantly affect the capacity of physical ILs. While 

at atmospheric pressure the value of mole fraction of CO2 capture in the [C4mim][BF4] 

corresponded to 0.018 (entry 5), at 2 and 5 bar it was increased by a factor of  5.5 and 23, 

respectively.  

Moreover, the absorption performance of physical ILs and the physical solvent 

(Selexol) was compared and no significant difference in the solvent behavior upon 

increasing pressure was observed, indicating a possibility of Selexol replacement with IL 

if there are economic incentives to make such substitution. 

At the same time, in terms of costs and viscosity (1 cP), water seems to be the best 

option compared to the studied sorbents (Table 1). Moreover, as mentioned, the viscosity 

of SILs increases dramatically upon CO2 saturation (Fig. 12) and a temperature increase 

is needed in order to mitigate the viscosity increase. From the regeneration point of view, 

physical solvents and some of the PILs attract most of the attention since no heating is 

required, while for the others regeneration seems still challenging.  

At the same time, PILs with their CO2 capturing efficiency in the range of 3 - 12 mg 

CO2 / g PIL appeared to be significantly inferior compared to such typical adsorbents as 

an activated carbon (AC) (83 mg CO2 / g AC) and zeolite 13X (206 mg CO2 / g zeolite) 

tested at similar conditions [34]. The application of supported PILs on the mentioned 

supports could contribute to their increased efficiency and take an advantage of high CO2 

absorption rate and recyclability demonstrated by PILs.  

To sum up, the present study provides some guidelines how to make a comparison 

between the different sorbents. However, to estimate the entire cost of replacement of 

currently used amine solutions with the suggested alternatives, detailed technically-

economic analysis still has to be implemented taking into consideration all capital and 

maintenance costs,  solvent capacity, operational conditions and energy requirements for 

the solvent regeneration, etc. Such attempt has been performed to compare MEA 

solutions with the process based on the utilization [C4mim][OAc] by Shiflett et al [18] 

and revealed that in case of an application of an ionic liquid as a scrubbing media, the 
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process investment and energy losses can be reduced by 11 and 16 %, respectively. 

Moreover, it will contribute to the reduction in equipment footprint by 12 %. 

 

3.4 Experiments with the real biogas 

3.4.1 Comparison of the real biogas with its model mixture 

After the experiments with a model mixture of biogas, the experiments with a real 

biogas obtained from BIOvakka Oy were carried out. The content of the major 

compounds such as methane (63.7 ± 2 vol %) and carbon dioxide (36.8 ± 4.6 vol %) was 

at corresponding levels as reported in an earlier study [1, 35].  

The presence of different trace compounds distinguishes real biogas from its model 

mixture.  The experimental results revealed that due to bicarbonate formation, the pH of 

amine absorption media decreased with an increase in pressure. While in the case of a 

model mixture the decline was proportional to the pressure, for the real biogas a certain 

non-ideality was observed (Fig. 18).  
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Figure 18. Comparison of pH values for a model mixture and the real biogas after 

upgrading with aqueous 15 wt % MDEA solution at 27 ˚C. 
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Moreover, the amount of CO2 captured from the real biogas was always higher 

compared to the model mixture.  

It was assumed that such non-ideality might be caused by the presence of trace 

compounds, contributing to the creation of an acidic environment and facilitating an 

improved CO2 uptake (shifting absorption equilibrium). 

 

3.4.2 Volatile organic compounds 

The occurrence of volatile organic compounds (VOCs) was studied before and after 

biogas upgrading with different absorbents and particular attention was paid towards the 

sulphur- and silicon containing compounds, halogenated hydrocarbons and benzene-

derivatives. Their presence usually originates from anaerobic degradation of bio-waste as 

well as from industrial waste coming to the wastewater treatment plants. 

VOC trace contaminants have a detrimental effect on the engine performance and 

should be removed to improve the quality of biogas (II, VI). 

Based on the preliminary work, the following solutions were chosen for the 

upgrading purpose, namely, aqueous 15 wt % MEA, aqueous mixture of 15 wt % MDEA 

+ 5 wt % PZ and the chemical IL [C4mim][OAc]. 

The results revealed that the ionic liquid was superior not only in terms of CO2 

capture per se but also in terms of VOCs removal (Fig. 19).  A detailed study is presented 

in paper (VI). 

After 20 minutes of upgrading, total concentration of the selected sulphur 

compounds, siloxanes and benzene-derivatives was diminished by 70 wt %, 65 wt % and 

80 wt %, respectively. Selective extraction of the compounds containing aromatic 

moieties is usually associated with the π-π interactions between the imidazolium ring of 

the IL and an aromatic ring of a contaminant. 

The best efficiency in terms of the siloxane removal was achieved by the aqueous 

(15 wt % MDEA + 5 wt % PZ) solvent mixture due to the strong basic properties 

contributing to the cleavage of Si-O bonds. As the main result, a 4.5 times decrease in the 

D4 siloxane mass concentration was detected. 
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Figure 19. The occurence of the selected VOCs in raw biogas before and after upgrading 

with ionic liquid [C4mim][OAc] and aqueous amine solution (15 wt % MDEA + 5 wt % 

PZ), where DMS - dimethyl sulfide, DMDS - dimethyl disulfide, DMTS - dimethyl 

trisulfide, BZ - benzene, EBZ - ethyl benzene, L3 – octamethyltrisiloxane, D4 – 

octamethylcyclotetrasiloxane. 

 

However, in the open literature different processes with higher removal efficiency 

have been reported. Thus, the application of pressurazed water and the activated carbon, 

coated with potassium hydroxide was claimed to result in ca. 90 wt % VOSCs removal in 

the exhaust gas. Silica gel demonstrated the capacity for siloxanes of 100 mg/g, while in 

case of the studied solvents is was significantly lower (0.03 µg siloxanes / g IL and 0.02 

µg siloxanes / g amine solution). This means that the optimization of the upgrading 

procedure and the rigorous choice of the ionic liquids are still needed in order to make the 

process a true alternative to the currently applied absorbents for biogas upgrading. 
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4. CONCLUSIONS 

1. The most important research on CO2 separation as a part of biogas upgrading which 

was reported in the literature was summarized and compared. Particular attention was 

paid towards amine solutions as the most commonly used technologies and emerging 

‘green’ solvents such as ionic liquids. 

2. Within the scope of the current work, a realistic comparison of various categories of 

solvents was performed in terms of CO2 capture from a model biogas mixture. It was 

revealed that the studied amine solutions along with the chemical ionic liquid 

[C4mim][OAc] possessed higher CO2 loading capacity than the other studied compounds. 

Moreover, an addition of piperazine brings along extra benefits in terms of CO2 removal 

in average by 30 vol %. Furthermore, the study revealed that the ‘switchable’ ionic liquid 

mixture consisting of DBU and 1-hexanol exhibited prominent CO2 removal efficiency 

and reversible sorption characteristics. 

3. A quantitative analysis of the absorption data obtained for amine solutions was 

performed using saturation-type and simple logarithmic models. As a result, the non-

ideality in the sorption behavior of the aqueous MEA mixture was confirmed and 

evaluated. 

4. The study confirmed different regeneration requirements for chemical and physical 

solvents. Regeneration of chemical solvents appeared to be challenging since the 

efficiency loss in some cases reached 30 - 40 vol %. 

5. It was determined that the dramatic viscosity increase upon CO2 saturation belongs to 

the main drawback of ‘switchable’ ionic liquids (SILs). However, the viscosity declines 

steadily upon temperature increase. The effect was the most prominent in the case of the 

mixture comprising of CO2, DBU and 4-amino-1-butanol. Moreover, the present study 

demonstrated that CO2 absorption performance was influenced by the structure of the 

(amino) alcohols applied. 

6. It was demonstrated that not all poly(ionic liquid)s exhibit advanced CO2 capturing 

properties compared to the ionic liquids with the same counter-anion. In the present 

study, poly(ionic liquid) with the [BIEMA] cation did not facilitate extended CO2 

adsorption. However, as expected, the sorption rate in case of poly(ionic liquid)s was 

much higher compared to the ‘classical’ ionic liquids. 
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7. The difference in the composition of biogas via mesophilic and thermophilic process 

was demonstrated. The experiments for upgrading real biogas samples were performed. 

New light was shed on ionic liquids as separation media with respect to VOCs removal.  

The occurrence of trace compounds in the treated biogas was significantly affected by the 

applied solvents. Thus, an alternative method for biogas upgrading can be developed to 

provide better biogas utilization. 
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NOTATIONS 

2CO  - CO2 loading 

  - viscosity 

MEA - monoethanolamine 
MDEA - N-methyldiethanolamine 
AMP - amino- 2- propanol 
DEA - diethanolamine    
PZ - piperazine 
DBU – 1, 8-diazabicyclo[5.4.0] undec-7-ene 
DBN – 1, 5-diazabicyclo(4.3.0)non-5-ene 
 [C4mim][BF4] - 1-butyl-3-methylimidazolium tetrafluoroborate  
[C4mim][PF6] - 1-butyl-3-methylimidazolium hexafluorophosphate  
[C4mim][DCA] - 1-butyl-3-methylimidazolium dicyanamide 
[C4mim][Br] - 1-butyl-3-methylimidazolium bromide  
[C4mim][TfO] - 1-butyl-3-methylimidazolium trifluoromethanesulfonate  
[C4mim][NTf2] - 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide  
[C4mim][OAc]-   1-butyl-3-methylimidazolium acetate 
PEG - polyethylene glycol 400 dimethyl ether 
IL – ionic liquid 
SIL – ‘switchable’ ionic liquid 
PIL – poly(ionic liquid) 
PIL [BIEMA] [BF4] -  poly(2-(1-butylimidazolium-3-yl)ethyl methacrylate 
tetrafluoroborate  
VOCs – volatile organic compounds 
DMS – dimethyl sulfide 
DMDS – dimethyl disulfide 
DMTS – dimethyl trisulfide 
BZ - benzene 
EBZ – ethyl benzene 
L3 – octamethyltrisiloxane 
D4 – octamethylcyclotetrasiloxane 
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