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Det demokratiska samtalet
Behovet av deliberativ demok rati, dvs. politiskt beslutsfattande som bet onar över-

läggningar där olika skäl vägs mot varandra, bet onas allt oftare i samhällsdebatten. 

Men trots att teorin om deliberativ demokrati fått ett stort genomslag är den empi-

riska forskningen fortfarande rätt outvecklad. Detta gäller framför allt bevisföringen 

kring hur vanliga medborgare lyckas ta del av en mer deliberativ demokrati.

Genom att analysera samtal från ett diskussionsforum där vanliga medborgare sam-

lats för att rådslå om ut vecklingen av kärnkraft i Finland redogör denna studie f ör 

hur deliberativ demok rati mellan vanliga medbor gare ser ut och huruvida samta-

len motsvarar förväntningarna i den deliberativa t eorin. Materialet som utnyttjas i 

studien bygger på en omfattande innehållsanalys , vars utfall kontrasteras mot olika 

karakteristika på individ- och gruppnivå.

Resultaten av studien är tudelade i f örhållande till de t eoretiska förväntningarna. 

Deltagarna visar en förhållandevis god förmåga att framställa sina synpunkt er med 

hjälp av välunderbyggda argument. Dessutom är samtalen överlag mycket respekt-

fulla. Brister står däremot att fi nna i deltagarnas förmåga att beakta och r efl ektera 

över åsikter som inte stämmer överrens med den eg na. Möjligheten till ett jämlikt  

deltagande kan också ifrågasättas , eftersom vissa grupper systematiskt förfördelas 

sett till diskussionsaktiviteten.
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Abstract 

Mass-produced paper electronics (large area organic printed electronics on paper-based 

substrates, “throw-away electronics”) has the potential to introduce the use of flexible 

electronic applications in everyday life. While paper manufacturing and printing have a 
long history, they were not developed with electronic applications in mind. 

Modifications to paper substrates and printing processes are required in order to obtain 

working electronic devices. This should be done while maintaining the high throughput 
of conventional printing techniques and the low cost and recyclability of paper. An 

understanding of the interactions between the functional materials, the printing process 

and the substrate are required for successful manufacturing of advanced devices on 

paper. 

Based on the understanding, a recyclable, multilayer-coated paper-based substrate that 

combines adequate barrier and printability properties for printed electronics and sensor 
applications was developed in this work. In this multilayer structure, a thin top-coating 

consisting of mineral pigments is coated on top of a dispersion-coated barrier layer. The 

top-coating provides well-controlled sorption properties through controlled thickness 
and porosity, thus enabling optimizing the printability of functional materials. The 

penetration of ink solvents and functional materials stops at the barrier layer, which not 

only improves the performance of the functional material but also eliminates potential 

fiber swelling and de-bonding that can occur when the solvents are allowed to penetrate 
into the base paper. The multi-layer coated paper under consideration in the current 

work consists of a pre-coating and a smoothing layer on which the barrier layer is 

deposited. Coated fine paper may also be used directly as basepaper, ensuring a smooth 
base for the barrier layer. The top layer is thin and smooth consisting of mineral 

pigments such as kaolin, precipitated calcium carbonate, silica or blends of these. All 

the materials in the coating structure have been chosen in order to maintain the 
recyclability and sustainability of the substrate. The substrate can be coated in steps, 

sequentially layer by layer, which requires detailed understanding and tuning of the 

wetting properties and topography of the barrier layer versus the surface tension of the 

top-coating. A cost competitive method for industrial scale production is the curtain 
coating technique allowing extremely thin top-coatings to be applied simultaneously 

with a closed and sealed barrier layer. 

The understanding of the interactions between functional materials formulated and 

applied on paper as inks, makes it possible to create a paper-based substrate that can be 

used to manufacture printed electronics-based devices and sensors on paper. The 
multitude of functional materials and their complex interactions make it challenging to 

draw general conclusions in this topic area. Inevitably, the results become partially 

specific to the device chosen and the materials needed in its manufacturing. Based on 

the results, it is clear that for inks based on dissolved or small size functional materials, 
a barrier layer is beneficial and ensures the functionality of the printed material in a 

device. The required active barrier life time depends on the solvents or analytes used 
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and their volatility. High aspect ratio mineral pigments, which create tortuous pathways 

and physical barriers within the barrier layer limit the penetration of solvents used in 
functional inks. The surface pore volume and pore size can be optimized for a given 

printing process and ink through a choice of pigment type and coating layer thickness. 

However, when manufacturing multilayer functional devices, such as transistors, which 

consist of several printed layers, compromises have to be made. E.g., while a thick and 
porous top-coating is preferable for printing of source and drain electrodes with a silver 

particle ink, a thinner and less absorbing surface is required to form a functional 

semiconducting layer.  

With the multilayer coating structure concept developed in this work, it was possible to 

make the paper substrate suitable for printed functionality. The possibility of printing 
functional devices, such as transistors, sensors and pixels in a roll-to-roll process on 

paper is demonstrated which may enable introducing paper for use in disposable “one-

time use” or “throwaway” electronics and sensors, such as lab-on-strip devices for 

various analyses, consumer packages equipped with product quality sensors or remote 
tracking devices. 

 

Keywords: paper electronics, multilayer curtain coating, mineral pigments, barrier 

properties, tortuosity, printing, functional inks, transistor, sensor  
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Svensk Sammanfattning 

Massproduktion av papperselektronik, bestående av till exempel tryckt organisk 

elektronik på papperssubstrat, kommer att möjliggöra nya flexibla elektroniska 

produkter för vardaglig användning. Även om papperstillverkning och tryckning har en 
lång historia, har de inte utvecklats med tanke på elektroniska produkter. Både 

papperssubstratet och tryckmetoderna bör därigenom modifieras för att fungerande 

elektronik skall kunna tillverkas. Detta bör göras så att den höga 
produktionshastigheten från de konventionella tryckmetoderna bibehålls, likaså 

återanvändningen av pappret. Noggrann förståelse om hur de funktionella materialen, 

tryckmetoderna och substratet interagerar är ett krav för lyckad produktion av 

avancerade elektroniska anordningar på papper. 

Baserat på denna förestålse utvecklades i detta arbete ett multiskiktbestruket 

papperssubstrat där goda barriäregenskaper kombineras med tryckbarhet vilket 
möjliggör tryckning av elektronik och sensorer. I denna multiskiktsstruktur har ett tunt 

toppskikt bestående av mineralpigment bestrukets ovanpå ett dispersionsbestruket 

barriärskikt. Toppskiktet möjliggör väl-kontrollerbar färgsättning av de funktionella 
tryckfärgerna genom kontrollerad tjocklek och porositet. Penetration av lösningsmedel 

från tryckfärgerna genom substratet förhindras av barriärskiktet, vilket både förbättrar 

funktionaliteten av det funktionella materialet men också hindrar eventuell 

fibersvällning som kunde ske om lösningsmedlen skulle gå in i baspappret. 
Multiskiktstrukturen i fråga består av en förbestrykning och ett utjämnande skikt, 

ovanpå vilka barriärskiktet har applicerats. Bestruket finpapper ger också en slät grund 

för barriärskiktet och kan därigenom likväl användas direkt som baspapper. Toppskiktet 
är tunt och slätt och består av mineralpigment, som till exempel kaolin, utfälld 

kalciumkarbonat, kisel eller en blandning av dessa. Alla material i 

bestrykningsstrukturen har valts med tanke på att en återvinning av substratet skall vara 
möjlig. Substratet kan bestrykas stegvis, alla skikt separat ovanpå varandra, men kräver 

noggrann kännedom och optimering av vätningen och topografin hos barriärskiktet 

gentemot ytspänningen i toppskiktsdispersionen. En kostnadseffektiv metod för 

produktion i industriell skala är ridåbestrykning som möjliggör bestrykningen av ett 
extremt tunt toppskikt ovanpå barriärskiktet i samma kör. 

Med kunskap om hur funktionella material applicerade som tryckfärger på papper 
interagerar, möjliggörs tillverkning av pappersbaserade substrat som kan utnyttjas som 

underlag för tryckta elektronikbaserade anordningar och sensorer. Mångfalden av 

funktionella material och deras komplexa interaktioner gör det dock svårt att dra 
generella slutsatser inom detta område. Resultaten blir delvis specifika för anordningen 

i fråga, samt beroende av materialen som används.  Baserat på resultatet är det klart att 

för tryckfärger baserade på lösligt material eller material bestående av mycket små 

partiklar krävs ett barriärskikt för att bibehålla detta material på ytan. Den krävda 
livslängden på barriärskiktet beror av lösningsmedel eller analysvätskorna och deras 

flyktighet. Mineralpigment av hög formfaktor resulterar i hög tortuositet och bildar en 
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fysisk barriär som hindrar eller begränsar penetration av lösningsmedel från de 

funktionella tryckfärgerna. Ytporositeten i form av porstorlek och porvolym kan 
optimeras för en särskild tryckprocess genom val av pigmenttyp och skikttjocklek. 

Dock, vid produktion av funktionella anordningar bestående av flera tryckta lager måste 

vanligen kompromisser göras. Ett tjockt toppskikt är till exempel ändamålsenligt för 

tryckning av elektroder, bestående av silverpartiklar, medan en mindre absorberande 
yta krävs för att åstadkomma ett fungerande halvledarskikt.  

Konceptet för multiskiktsbestrykningsstruktur som utvecklades i detta arbete 
möjliggjorde tryckning av funktionalitet på papper. Möjligheten att trycka funktionella 

anordningar som transistorer, sensorer och pixlar på papper i en rulle till rulle process 

demonstreras, vilket kan öppna upp nya möjligheter för användning av papper i så 
kallad ”engångselektronik”, som t.ex. ”lab-on-strip” för integrerad analys av olika 

vätskor, i konsumentförpackningar med sensorer för analys av produktkvalitet eller 

fjärravläsning och kontroll via RFID (radio frequency identification device).  

 

Nyckelord: papperselektronik, multiskiktsridåbestrykning, mineral pigment, 
barriäregenskaper, tortuositet, tryckning, funktionella tryckfärger, transistor, sensor  
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Nomenclature 

AFM atomic force microscope 

CPVC critical pigment volume concentration 

DCB dichlorobenzene 

DIM diiodomethane 

EA ethylene acrylic 

EG ethylene glycol 

FET field effect transistor 

FIB focused ion beam 

GCC ground calcium carbonate 

HIFET hygroscopic insulator field effect transistor 

IGT Institut für Graphische Technik 

LED light emitting diode 

MEK methyl ethyl ketone  

MLC multilayer coated 

MLCC multilayer curtain coated 

NTP normal temperature and pressure 

OFET organic field effect transistor 

P3HT poly(3-hexylthiophene)  

PANI polyaniline 

PBTTT poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2-b] thiophene)  

PCC precipitated calcium carbonate 

PEDOT:PSS poly(3,4-ethylene dioxythiophene) with poly(styrene sulfonate) 

PET polyethylene terephthalate 

PM-acetate 1-methoxy-2-propanol acetate  

PPS Parker Print Surf 

PVC pigment volume concentration 

PVP poly(4-vinylphenol)  

PQT poly(3,3’’’-didodecyl quaterthiophene) 

RFID radio frequency identification 

RH relative humidity 

RMS root mean square 

SA styrene acrylic 

SB styrene butadiene 

SEM scanning electron microscope 

SF shape factor 

TLC thin layer chromatography 

UV ultra violet  

WVTR water vapor transmission rate 
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1. Introduction and objectives 

Paper and board are versatile materials with numerous end-use applications. Coated 

paper and board grades are typically used for magazines, brochures and packages, where 

control of surface properties is important.  Paper coating with aqueous mineral pigment 
dispersion improves its compatibility with various converting and finishing operations, 

such as printing. The coating improves smoothness, surface strength, optical and 

absorption properties. Rising costs, limited market growth and expansion of electronic 
media have led the paper industry to search for new innovative and value-added fiber-

based products, such as functional packages and biologically active papers for sensor or 

medical applications. 

Mass-produced paper electronics (on paper printed electronics) has the potential to 

introduce the use of flexible electronic applications in everyday life. While paper 

manufacturing and printing have a long history, they were not developed with electronic 
applications in mind. Modifications to paper substrates and printing processes are 

required in order to obtain working electronic devices. This should be done while 

maintaining the high throughput of conventional printing techniques and the low cost 
and recyclability of paper. An understanding of the interactions between the functional 

materials, the printing process and the substrate are required for successful 

manufacturing of advanced devices on paper. 

Much research has been and is being done to develop value-added functionalities on 

paper or paper-like substrates. Especially printed sensors and displays are capturing 

much attention (1,2). Low-cost and recyclable paper substrates have been considered for 
various printed functional applications outside of the conventional graphical arts 

industry (1-4). Electronic devices such as transistors, capacitors, RFID antennas and 

batteries have been fabricated on paper or paper-like substrates by using functional inks 
containing conducting and semiconducting materials, such as silver, organic polymers as 

well as carbon nanotubes (5-9). Organic photodiodes and photovoltaic cells, electronic 

paper displays, foldable thermochromic displays and high-performance organic thin film 

transistor arrays on paper have also been demonstrated (10-14). Recently also sensors 
for analysis of ionic concentration, analysis of modified atmosphere conditions, as well 

as sensors for use in diagnostics applications, have been manufactured by printing on 

paper (15-19). 

In the present work, requirements for using paper as substrate for different functional 

applications are investigated. For such applications to come into everyday use, devices 
with reasonable electrical performance and practically negligible production cost are 

required. The low cost can be achieved with manufacturing techniques such as printing 

or coating, which enable large scale production in a roll-to-roll process. Printing of 

functional materials requires detailed knowledge of the ink-substrate interactions and in 
case of devices consisting of several printed layers, compromises might be necessary. 

One of the most important advantages for paper, in addition to the low cost, is the 
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biodegradability and recyclability which should be kept in mind and maintained by 

choice of only biodegradable, recyclable or at least disposable coating materials. 
Improving barrier properties by for example extrusion coating or lamination reduces the 

recyclability of the end-product.  The biodegradability or recyclability is important 

considering the targeted end-use applications, which could be “one-time-use electronics” 

or “throw-away electronics,” i.e. products such as lab-on-strip devices for various 
analyses, consumer packages equipped with sensors for product quality analysis or 

remote tracking, such as radio frequency identification devices (RFID).  

In traditional graphical printing, the print results are evaluated according to their visual 

and optical properties, where images are built up by printing of non-connected dots. In 

functional printing the functionality is often measured as for example conductivity, 
which may only be achieved by connected features. Additionally, the functional material, 

whether it is metal particles, organic conductive polymers or semi-conductive polymers, 

is not originally designed with printing in focus, which means the solutions or 

dispersions made of these seldom have suitable printing properties.  

The objective of this work was to understand what are the requirements set for paper 

when it is used as substrate for printed functional devices. Influence of critical paper 
surface properties, such as roughness, porosity and wettability, and their impact on 

printability of various functional materials was in focus. An understanding of the 

compatibility between functional inks, printing and coating methods, and substrate 
properties is essential for successful manufacturing of complex, multilayer devices on 

paper. Barrier properties of the paper were also investigated, in order to enable device 

fabrication and to ensure satisfactory performance of the devices in the end-use of 

application. Considering the requirements set by functional materials and their 
processing, a multilayer-coated, paper-based substrate concept suitable for printed 

electronics and functionality was developed. Fabrication of several functional devices, 

such as transistors and sensors, on paper was demonstrated. 
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2. Paper electronics 
 

2.1. Paper 

Paper is a versatile substance made from naturally occurring plant fibers mainly 

containing cellulose, hemicellulose and lignin. Originally fibers were derived from cloth 

rags and grass but are today predominantly sourced from wood. The water suspension of 
fibers, which is called pulp, is made by separating the wood into its constituent fibers in 

a mechanical, thermomechanical, or chemical process. A paper that is made of 

mechanical pulp is referred to as a wood-containing, while a paper made entirely from 
chemical pulp is called wood-free. In chemical pulp the cellulose fibers have been 

separated by use of chemicals, in a process called cooking, which results in long fibers 

and enables removal of amorphous lignin. The pulp is then refined and cleaned before 
being pumped onto a moving screen on a paper machine. As the pulp travels along the 

screen the excess water is drained away and a paper sheet made from interlocking 

cellulose fibers is formed (Figure 1 A and B, left side) (20,21). In order to improve the 

optical properties such as light scattering, whiteness and opacity as well as for ensuring 
printability, mineral fillers such as calcium carbonate and kaolin that fill the pores of the 

fiber matrix are often introduced already in the pulp. Once the paper has been dried and 

pressed, depending upon its end use, it may be finished with mineral pigment coatings 
or other additives to ensure uniform smoothness and thickness (Figure 1 A and B, right 

side). High-quality papers with smooth surfaces and improved optical properties are 

produced by applying additional coating layers of pigments and by calendering (22). 

The white background of paper is beneficial for contrast when text or images are printed. 
To improve the optical properties, in addition to bleaching the pulp and using mineral 

fillers and coatings, fluorescent whitening agents are often added in order to make the 

surface appear whiter and brighter. The fluorescent materials absorb UV light and re-
emit it in the blue part of the visible spectrum, which compensates for the otherwise 

yellowish color of paper (23). In addition to being used as the printing substrate in 

newspapers, magazines and office papers, paper and board are used in several 
specialized products. Most common are packages, which can be divided into primary 

packages (direct contact with the product, e.g. milk carton), secondary packages 

(collates primary packages, e.g. portion packs) and tertiary packages (collates secondary 

packages, e.g. roller cages). A new, however not yet well defined, expression is “smart 
packaging” representing packages with novel features going beyond traditional product 

protection, graphics and barcodes. Terms such as “active”, “intelligent” and “diagnostic” 

have been used to promote the functionality the package may bring to the user. RFID-
enabled packages and packages equipped with different sensors for streamlining 

logistics and transport conditions are common on tertiary packages but recently the 

interest for bringing them towards the consumer, i.e. including them on the primary 
packages, has also risen. Paper and board are also common construction materials, 

comprising the surfaces in plasterboard as well as in wallpapers. Besides these 

application areas, a wide variety of specialty papers are used, for example different 
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tissue grades, filter papers, sandpaper, label and release papers, blueprint and thermal 

printing papers as well as photo papers and security papers (24). 

 

Figure 1. Optical microscopy (A) and scanning electron microscopy (B) image of 

coated and uncoated paper surface. To the left in the images the fiber network can be 

seen and to the right the surface as pigment coated. 

 

 

2.2. Paper as carrier of functionality 

The idea of incorporating advanced functionality to paper beyond its traditional areas of 

use, is not new. E.g., already in 1968 at Westinghouse, first attempts were made to 

manufacture transistors on paper (25). A stenciling method for depositing inorganic 

thin-film transistors on paper substrates on a roll inside a vacuum chamber was used. 
However, the approach for making flexible electronics on paper did not become a 

commercial reality at that time. One reason may have been the required vacuum, which 

prevented the manufacturing process from being truly low-cost. Paper has also been 
used as an insulating material for over a century in cables and capacitors. While paper 

nowadays has been replaced by thinner insulating plastic materials in many applications, 

oil impregnated paper is still used in high voltage and high-power applications (26). 

A 

B 
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Recently there have been many advances in the field of paper electronics. However, 

many examples of paper electronics involve the use of paper substrates covered with 
plastic films, lamination of a plastic film, having electronic components between paper 

or board sheets that are glued together, or attaching electronic components such as 

silicon chips onto paper substrates. Actually, the term or field “paper electronics” can be 

divided into three categories. The very paper itself can be electronic or electrical. 
Secondly, traditional silicon-based electronics can be placed onto paper as is done in 

talking gift cards and RFID tags; however an increasing part (wires and antenna) of 

them is being printed to save cost. Thirdly, electrics, or parts of it can firmly be buried in 
paper or operated by being on both sides of a paper sheet, like batteries or capacitors.  

The paper itself has been made conductive by addition of conducting materials such as 
carbon and metalized fibers to the pulp. Conductivity up to 0.3S/cm was achieved by 

addition of 20 weight % of silver plated carbon fibers in the paper (27). For 

electromagnetic shielding applications paper has also been dispersion coated with 

graphite (28). However, the addition of large amounts of conductive fillers into the 
paper both darkens and weakens the paper. Various types of paper-polymer composite 

materials have been created by polymerizing polypyrrole and polyaniline into cellulose 

substrates (29-34). As high as 20S/cm conductivity has been obtained when covering 
cellulose fibers with a blend of poly(3,4-ethylene dioxythiophene) with poly(styrene 

sulfonate) (PEDOT:PSS) and carbon nanotubes (35-37). 

Manufacturing electronic devices, such as organic transistors that usually require 

molecularly smooth interfaces, directly onto paper substrates is challenging. 

Nevertheless, there have been many promising reports of electronic devices and sensors 

fabricated directly onto paper, and for some of the applications the porous paper surface 
is even advantageous. Perhaps the most advanced device fabricated directly onto 

unmodified newspaper is the photovoltaic cell demonstrated by Barr et al. (14). 

Manufacturing of that photovoltaic cell however required an oxidative chemical vapor 
deposition technique, which is a limiting factor regarding large scale manufacturing. 

The porous and wetting structure of the fiber network in filter and chromatography 

papers has been widely utilized for sensor and diagnostics applications, where liquid 
transport is required (38-43). Having the cellulose paper structure as an active material 

in for example, sensor applications, expressions like “electroactive paper” or “smart 

paper” have been used to capture the incorporation of this activity. 

Manufacturing techniques utilizing solution processing can be used to produce 

inexpensive products in large scale. These techniques, e.g. printing and coating, require 

substrates which retain the used functional materials on their surfaces. A surface can be 
made impermeable to liquids and solvents by laminating or extrusion coating with 

polyethylene, polypropylene or polyethylene terephthalate. Polymer-covered paper 

substrates have been used, for example for electrochemical displays (12). Another 
alternative is pigment coating, which was used by Trnovec et al. (4). By coating the 

paper with a dispersion consisting of CaCO3 blended with latex, PVA and starch a 

surface roughness of down to 0.26μm was achieved after calendering, enabling gravure 
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printing of transistors. That pigment coated paper improves printability compared to 

uncoated paper is a clear fact. Additionally, covering the fiber structure with mineral 
pigments improves heat resistance and stability (44-46), thereby enabling use of high 

temperature infrared sintering (47), which is advantageous when using metal particle 

based inks in roll-to-roll processes (Section 2.3.). Surface roughness has been 

considered an important factor regarding functionality of conductive prints (48), and 
recently a detailed study was conducted by Ihalainen at al. (49) pointing out the 

importance of the low roughness at the shorter length scales. Although pigment coating 

improved the smoothness compared to uncoated paper as well as limited considerably 
absorbency or penetration of inks into the fiber structure, nevertheless, the remaining 

absorbency was still the main factor limiting the performance of the printed transistors 

as reported by Trnovec et al. Both the conductive and semiconductive materials were to 
a large extent absorbed by the coating structure (4). Similar problems with absorbency 

of functional inks on various commercial coated paper grades have been reported by 

Denneulin (50), Zhou (51) and Mäkelä (52). Compared to plastic substrates paper 

generally resulted in much poorer surface conductivities of printed or coated conductors; 
for example 100 times higher resistivity for PEDOT:PSS on commercial coated paper 

compared to plastic was reported by Denneulin (50). In addition to problems with 

absorbency, issues related to surface charge and pH have been speculated to influence 
the conductivity of the organic conductors. Recently various types of nanocellulose 

based coatings have also been suggested for creation of smooth surfaces for printed 

functionality (53,54). It should be pointed out that the expression “paper electronics” is 
not to be confused with “electronic paper” or “e-paper”, which refer to paper-like 

electronic displays, that are in fact not fabricated on paper (1,55).  

 

2.3. Functional materials 

To fabricate electronics basically three types of materials are required, divided 

according to their electrical properties as conductors, semiconductors and insulators or 
dielectrics. In addition to these, materials with properties such as electrochromism, 

luminescence or sensing properties are needed for certain devices. The functional 

materials may be either organic or inorganic, the former being preferred due to its 
flexibility and lower cost, however regarding conductivity, the inorganic material is 

better. Composite materials have also been made by mixing inorganic metallic 

nanoparticles with organic conducting polymers. Common printable metals are silver, 
gold and copper, which as nanoparticles in a thin layer result in high conductivity 

(<5x10
5
S/cm) and a smooth surface but require sintering and might suffer from 

oxidation. The same metals are also common as larger micron sized flakey particles, 

used in flexographic, screen or pad printing inks. Sintering, or removal of surrounding 
stabilizing polymers from the metal particle surface is required for obtaining 

conductivity, but the required energy (temperature) is very ink specific. The micron 

sized particles result in rougher printed layers compared to the nanoparticles. Common 
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organic conductive materials are PEDOT:PSS and polyaniline (PANI), which may be 

considered semitransparent as thin layers and are very flexible. The conductivity is 
however relatively low (<10

3
S/cm). Recently carbon nanotubes have gained increasing 

interest and conductivities of < 10
3-4

 S/cm have been reported, however they are still 

quite expensive. As printable semiconductors, different types of polythiophenes are 

common.  Regioregular poly(3-hexylthiophene) (P3HT) has high mobility but is prone 
to oxygen doping, which in transistor use will lead to high off-currents. Poly(3,3’’’-

didodecyl quaterthiophene) (PQT) and poly(2,5-bis(3-tetradecylthiophen-2-

yl)thieno[3,2-b] thiophene) (PBTTT) have higher ionization potential and thereby also 
better air stability, however the reachable conductivity is slightly lower compared to 

P3HT (56,57). Insulating or dielectric materials are also required in electronic devices, 

not only as active components as in the transistor or capacitor but also for preventing 
short circuits of crossing conductive wires. Most polymers are good insulators as well as 

soluble in organic solvents enabling printability. Poly(4-vinylphenol) (PVP), 

poly(methyl methacrylate), polypropylene, polyethylene terephthalate, polyimide, 

polyvinyl alcohol, and polystyrene are examples of insulating polymers. In organic field 
effect transistors (OFET) the dielectric - semiconductor interface is of extra importance 

because most of the charge transport in the semiconductor takes place within a few 

nanometers from this interface (58).  

 

2.4. Paper electronics “State of the art” 

Printed electronics, including functional materials research and development, has been a 

target of intensive research in the academic world for soon twenty years. Related 

research is going on in several universities, Massachusetts Institute of Technology, 
Harvard University, Chemnitz University of Technology, University of Toronto, 

Western Michigan University, Mid Sweden University, Uppsala Universitet, KTH 

Royal Institute of Technology, Monash University and Swansea University, just to 

mention a few. Recently also the use of paper as substrate has been brought in focus, not 
only for printed electronics but especially for sensors and diagnostics applications. For 

example, the Whitesides Research Group at Harvard University has demonstrated 

several diagnostics concepts on paper (59). In addition to journal publications several 
academic theses have also been published in the field, for example PhD Theses by Tapio 

Mäkelä (60), Daniel Tobjörk (61), Peter Angelo (62), Ana Lopez Cabezas (63) and 

Aamir Razag (64) as well as the Licentiate Thesis by Thomas Öhlund (65). Several 
research institutes are active in the field, for example the Technical Research Centre of 

Finland (VTT), Fraunhofer Institut, Holst Centre, Welsh Centre for Printing and Coating 

(WCPC) and Acreo, cooperating both with universities and industry. The printed 

electronics sector is now beginning to move into the marketplace after years of 
development work in laboratories and pilot printing facilities. However, many obstacles 

still have to be overcome, not only in improving the technologies but also in achieving 

competitive costs. Electronics and electrics on or in paper and board products such as 
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packages, is being used for security, safety, crime prevention, brand enhancement and 

anti-counterfeiting. Cost, weight and bulk are a problem, so conventional electronics in 
paper products is being replaced with printed electronics. According to IDTechEx 

analysis in the report, "Brand Enhancement by Electronics in Packaging 2012-2022", the 

global demand for electronic smart packaging devices is currently at a tipping point and 

will grow rapidly from $0.03 billion in 2012 to $1.7 billion in 2022. The electronic 
packaging market will remain primarily in consumer packaged goods reaching 35 

billion units that have electronic functionality in 2022 (66). StoraEnso has brought to the 

market intelligent medicine packages, registering whether or when pills have been taken 
and via a GSM device included in the package, transferring the information to the 

medical personnel (67). Raflatac, starting as part of UPM, produces a wide variety of 

RFID tags and applications for streamlining logistics as well as for security purposes 
(68). A recent concept presented by Fulton Innovation is the Nestlé's Cheerios cereal 

box, using inorganic electroluminescent displays on the packaging combined with 

wireless power supply via inductive coupling (69). Bar codes, and 2D codes such as the 

QR Code and the UpCode
TM

 are widely used, as so called hybrid media, meaning the 
printed code gives access to further information, either available in the code or as a web 

link. Reading the code however requires a reader, which most often is a mobile phone 

with a camera. Printechnologics GmbH, has recently presented a technique where the 
code is printed with conductive ink and may be read with a multi-touch screen, available 

on most smart phones today (70). An alternative will probably in the future also be the 

Near Field Communication (NFC) technology, that can be used to interrogate RFID 
labels on or in packaging, posters etc. (71). 

 

2.5. Electronic devices and components 

Electronic components can be categorized either as passive or active. The simplest 

components such as conducting wires, resistors, inductors, and antennas are considered 

passive, while transistors, diodes, batteries, and solar cells are considered active 

components. The transistor is perhaps the most important building block in electronics, 
but in comparison to the passive components much more complicated to fabricate. Most 

electronics also require some kind of power source which may be a battery or a solar 

cell or if energy is transferred via induction, an antenna. For a standalone electronic 
device, a combination of an input and output device, a logic device including memory 

and a power source may be needed. Functional devices, such as sensors, may also work 

completely without electricity, for example by change in color as in pH-sensitive Litmus 
paper. A short explanation of active electronic components and sensors demonstrated on 

paper substrates is briefly given below. 
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2.5.1. Energy sources 

Capacitor 

A capacitor is made up of two electrodes separated by an electrolyte (Figure 2A). 

Cellulose papers filled with a liquid electrolyte have been used as a separating 
membrane between the electrodes. In a capacitor the electrostatic charge is stored 

through the formation of an electric double layer at the interface between the electrolyte 

and the electrodes. Figure 2B shows a capacitor constructed from two electrodes 

separated by a dielectric, in which the energy is stored by the mechanism of charge 
polarization (72-74). 

 

Battery 

The structure of a battery is similar to the capacitor structure, but in contrary to the 

capacitor the electric charge is stored as chemical energy through the electrochemical 

redox reaction in the electrode materials (Figure 2B). The most common thin-film 
flexible batteries are based on Li-ion, Li-polymer, Zn-MnO2, or Zn-C. Batteries based 

on Zn-C/MnO2 are already fabricated commercially (Enfucell Oy, Power Paper and 

Blue Spark Technologies) on paper by screen printing and lamination (75-77). A 

drawback with the metals in the batteries has been the difficulties regarding recycling. A 
solution to this may be the all-polymer battery structure developed at Johns Hopkins 

University (78). 

 

Solar cell 

An alternative energy source for a battery or capacitor is the solar (photovoltaic) cell. 

While the performance is higher in inorganic solar cells, organic bulk heterojunction 
solar cells are considered to be most suitable for applications where low cost and 

flexibility are important (79,80). The schematic principle of an organic solar cell is 

demonstrated in Figure 2D, where the donor and acceptor stand for the key 

semiconductive materials enabling release of electrons when exposed to light.  
Photovoltaic cells have been fabricated on glass and plastic substrates as well as on 

lacquered paper (13) and recently also the Barr et al. demonstration of photovoltaic cells 

manufactured onto an ordinary newspaper by oxidative chemical vapor deposition (14). 
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Figure 2. Schematics of common functional devices. A: electrolytic capacitor, B: 
dielectric capacitor or battery, C: OLED, D: Solar cell, E: Transistor, F: Electrochromic 

pixel. 

 

2.5.2. Logic devices 

The field effect transistor (FET) is a key component in most electronic logics. 

Transistors are used for driving elements in displays and as logic gates in digital 

electronic circuits. A FET consists of source and drain electrodes, a semiconductor, an 

insulator and a gate electrode and may exist in different geometries (Figure 2E). In a 
FET, the drain-to-source current flows via a conducting channel that connects the source 

region to the drain region. The conductivity is adjusted by the electric field that is 

produced when a voltage is applied between the gate and source. The current flowing 
between the drain and source is thereby controlled by the voltage applied between the 

A B 

C D 

E F 
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gate and source (61,81-84). Several types of transistors have been fabricated with 

different printing methods on paper (4,85,86)  or by using the paper as an active 
(dielectric) component (87). Memory devices are needed for storage of digital 

information and required in applications such as RFID tags. There are several ways of 

creating a memory device, but they are generally all based on a capacitor (on/off 

depending on charge), a resistor (on/off, may be destroyed once, to off stage, by 
applying high voltage), or a transistor (on/off depending on applied gate voltage. A 

transistor based memory requires continuous power, whereas a capacitor based one 

stores the information as long as the charge is maintained, i.e. both types can be 
considered volatile memory devices. The resistor based type does not need power to 

retain the information and is thereby non-volatile. Scott and Bozano (88) as well as Ling 

et al. (89) reviewed different types of memory devices, but there have been only few 
approaches directed toward printing memories onto paper. However, XaarJet AB has 

demonstrated inkjet manufactured 100-bit memory arrays consisting of ferroelectric 

cells on polyethylene terephthalate (PET) film  (90). 

 

2.5.3. Output devices 

Electrochromic low-resolution flexible displays can be made from low-cost materials 

using simple printing and lamination techniques. For example PEDOT:PSS organic 

conductive polymer can depending on its redox state show either blue color or 
transparency. An electrochromic (electrochemical) display was fabricated by Andersson 

et al. on PE-coated paper (12,91). An opaque electrolyte was placed between two 

conducting polymer (PEDOT:PSS) layers (Figure 2F). A different type of simple 
display demonstrated on paper is a thermochromic display, consisting of patterned 

conducting wires on one side and a coated or printed thermochromic ink on the other 

side of the paper. When current is applied to the wires, resistive heating causes the dye 

in the thermochromic ink to turn transparent (92).  A resolution of down to 200μm has 
been claimed for this device. In addition to the electrochromic and thermochromic 

displays, luminescent flexible displays can be made of organic light emitting diodes 

(OLED) (Figure 2C), light-emitting electrochemical cells, or phosphor-based 
electroluminescent devices (93-96). However, the requirements on the drive transistors, 

sealing, and expensive fabrication processes of luminescent displays make the use of 

low-cost paper as substrate questionable. 

 

2.5.4. Sensors 

In addition to the electronic components there are various types of sensors, which in 

their simplest form reversibly or irreversibly detect some kind of stimulus, such as gas, 

pH, temperature, light, or biological compounds. The sensor signal may be read 
electrically, but there are also simple colorimetric indicators. Examples of sensors are 
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glucose sensors, ion-selective electrodes, hydrogen sulfide sensors and oxygen sensors. 

Among the most important properties of a sensor are the specificity, sensitivity, cross-
sensitivity, and stability. 
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3. Fabrication of functional devices 

A wide variety of methods exist for application of functional materials onto a substrate. 

The suitability of a given method is determined, together with the substrate properties, 

by the physico-chemical properties of the material to be deposited, the possible need for 
patterning, and the thickness and resolution requirements. Generally, slow methods used 

in highly controlled clean room conditions allow for high accuracy, whereas methods 

used in fast roll-to-roll processes enable low cost production, but provide less control 
over the fabrication accuracy. Below, printing and coating techniques that can be used 

for material deposition on paper are presented, with the focus on roll-to-roll processing 

techniques. 

 

3.1. Batch processing methods 
 

Photolithography is a commonly used process in microfabrication to pattern parts of a 

thin film on a substrate. It is a typical example of a subtractive method; first a uniform 

film is applied where after the pattern is created by engraving or etching. Etching may 
be carried out chemically or by use of a mask and UV light. Nano imprinting or stamp 

fabrication (97) are also used to mechanically pattern for example semiconductor films. 

For applying film, various coating methods, for example spin-coating may be used, but 
also deposition under vacuum is common. Photolithography allows for high resolution, 

down to nanometer scale, as for example in production of integrated circuits, but is 

relatively slow, requires cleanroom conditions and is not roll-to-roll applicable. Material 

may also be deposited by evaporation or vapor deposition and patterned via a mask. The 
limiting factor regarding resolution is in this case the accuracy for the mask production. 

Application and patterning via evaporation or vapor combined with a mask is an 

additive method, meaning the pattern is created onto the substrate directly to its final 
pattern. Evaporation requires vacuum and cleanroom conditions, which limits the roll-

to-roll applicability. Pad printing is a simple batch printing technique, where the ink is 

transferred from an inked gravure plate or ink filled fabric to the substrate via a silicone 
rubber stamp. Inkjet printing is a common and widely used batch printing method, the 

most common method for printing documents at home, which has also gained a growing 

interest for printing functional materials. Inkjet has many advantages; it uses low 

viscosity inks, has low ink consumption, low cost and it is simple to change the digital 
print pattern.   
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3.2. Roll-to-roll processing methods 
 

3.2.1. Coating methods 

Different variants of roll-to-roll coating techniques for coating or sizing of paper have 

been used since the early 20
th
 century. The first versions were brush and roll coaters. In 

roll coating the coating color is applied in a nip between rollers (Figure 3A). The 

principle of the premetered size press is similar as in roll coating, but addition of a 

premetering blade or rod on the application roller allows for control of the applied 

amount. The smoothness development is however somewhat limited with both methods 
due to film splitting occurring in the coating nip. This may be overcome by first 

applying an excess amount of coating color on the paper where afterwards the excess 

amount is metered by a blade (Figure 3B), an airknife (Figure 3C) or a rod. Blade 
coating is one of the most common coating methods for paper today. Recently, pre-

metered contactless coating methods have gained increasing interest. While spray 

coating (Figure 3D) has not enjoyed much success, due to the poor coverage and 
smoothness it provides, curtain coating (Figure 3F) is today being used not only for 

specialty papers, such as thermal and photo papers, but also in traditional pigment 

coating. This is especially the case with board coating, in which high coat weights are 

used and good optical coverage is needed. An advantage of curtain coating is the 
possibility to apply several coating layers simultaneously in one pass. As paper coating 

is a high volume production process, the speed of the coating method is essential. When 

producing specialized coatings and thereby higher value products, a slower coating 
speed may be acceptable. Coating methods such as reverse gravure (Figure 3E) or slide 

bead coating allow for wide tunability of the coating color but have limited production 

speed. In addition to the wet coating methods, recently even gas phase deposition 

methods, such as plasma coating, chemical vapor deposition and atomic layer deposition, 
have been operated as roll-to-roll processes (98,99). However, the low pressure 

operation required by these techniques makes them complex and expensive. 
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Figure 3. Schematic principle of coating methods. A: Roll coating (double sided). B: 
Blade coating. C: Air knife coating. D: Spray coating. E: Reverse gravure coating. F: 

Curtain coating with slide die. 

 

3.2.2. Printing methods 

Printing can be defined as patterned coating, i.e. material is only applied on desired 

areas. The most common rotary printing methods are offset lithography, rotogravure, 

flexography and screen printing. In a rotary printing method the same pattern is rotating 

on a cylinder from where it is either directly (rotogravure, flexography, screen) or 
indirectly (offset) transferred to the substrate. Printing methods such as inkjet and 

A 
B 

C 

D 

E 

F 
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electrophotography may also be used in a roll-to-roll process and the printed pattern 

may be continuously changed. A common term in graphical printing is “print quality” 
which may have various definitions, but is usually related to a visual impression of the 

reproduced text or image. When printing electronics, the term print quality should, in 

addition to, or perhaps even instead of, the optical impression, measure the functionality, 

for example obtained conductivity. It should also be noted that in all traditional printing 
methods the image is built up from a raster of discrete dots. For achieving conductivity, 

it is essential that these dots are connected, i.e. overlapping or merged. Continuous lines, 

or image areas, may however be created in an offset plate or engraved in a rotogravure 
cylinder. 

Table 1. General parameters and requirements for the common printing methods (100). 

Printing method    Offset Rotogravure Flexography Letterpress        Inkjet    Screen 

Transfer method rollers rollers rollers plate 
thermal, piezo, 

continuous 

ink pressed 

through holes 

in screen 

Pressure applied 1MPa 3MPa 0.3MPa 10MPa 
  

 

Drop size 
- - - - 1–100pl - 

 

Ink viscosity 
40–100Pa·s 0.05–0.2Pa·s 0.05–0.5Pa·s 50–150Pa·s 1–20mPa·s 1–50Pa·s 

 

Thickness of ink 

layer on substrate 

0.5–1.5µm 0.8–8µm 0.8–2.5µm 0.5–1.5µm <0.5µm <12µm 

 

Comments 

 

 

high print 

quality 

excellent 

image 

reproduction 

high quality slow drying special paper required 

versatile 

method, 

low 

quality 

 

Cost-effective 

run length 

(copies) 

>5,000 

(sheet-fed) 

>30,000 

(web-fed) 

>500,000 
  

<350 
 

 

Offset lithography 

Offset lithography (Figure 4C and Table 1) printing is the most common printing 

technique today. The print pattern is based on local differences in surface energy, 
created by photolithography. In normal offset, the nonprinting areas of the printing plate 

are first wetted with a water-based fountain solution, whereby the oil based ink transfers 

only to the image areas. In waterless offset presses, no dampening solution is used. 
Instead the plate's nonimage areas consist of a layer of silicone rubber that repels the ink. 

The temperature of the inks must however be exactly controlled to maintain the correct 

viscosity since the plate surface is designed to repel inks only of a specific viscosity. In 

comparison with normal offset, waterless offset allows for higher screen ruling and 
better image definition, however the silicon rubber plates are more expensive as well as 

more vulnerable compared to normal plates. Additionally the requirement for heated 

roller increases the printing costs (101). The offset inks are tacky and have high 
viscosities (40-100Pas). High print resolution can be achieved with offset technique, but 
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the presence of water and the restrictions on the viscoelastic properties of the ink limit 

the use of offset for printing electronics. Waterless offset has, however, been used for 
printing PEDOT:PSS (4). 

 

Figure 4. Schematic principle of the printing methods. A: Flexography, B: Rotogravure, 

C: Offset, D: Rotary screen. The schematic figures are reproduced with slight 
modification from “Handbook of Print Media” (100). 

 

Rotogravure 

Rotogravure printing (Figure 4B and Table 1) is a high volume printing process. The 

print pattern is engraved into a ceramic or metallic cylinder by laser, chemical etching, 

or mechanically as separate cells or intaglio trenches and high print resolution (~20μm) 

can be achieved. The rotogravure rolls have a long lifetime, but are expensive to 

A B 

C 

D 
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produce, which makes rotogravure a technique mainly suitable for large print volumes. 

Low viscosity (50-200mPas) solvent based inks are used. Continuous print patterns can 
be created by using a small enough cell spacing compared to the cell width, if the ink 

viscosity and surface tension are also low enough to allow the printed dots to merge. 

The ink transfer may be further enhanced by use of electrostatic assist. Rotogravure has 

been widely used for fully or partly fabricating functional devices such as wires (52,102), 
antennas (103), organic solar cells (104) and OLEDs (105).  

 

Flexography 

Flexography (Figure 4A and Table 1) originates from the letterpress technique and is 

today one of the main methods for printing of packages. In flexographic printing the 

pattern to be printed is raised on a flexible plate that is attached to a cylinder. The raised 
surfaces of the printing roll are inked when in contact with an ink-covered anilox 

cylinder that consists of homogeneously distributed, laser or mechanically engraved 

cells. The ink amount is adjusted by the cell volume of the anilox, and the viscosity of 

the flexographic inks is usually in the range of 50 - 500mPas. A lower viscosity and 
surface tension as well as low nip pressure enhance the possibility to achieve continuous 

print patterns, even though the anilox roll consists of engraved discrete dots. The print 

resolution in flexographic printing is lower than in rotogravure printing, mainly due to 
limitations in plate manufacturing, but also due to distortion of the pattern on the 

flexible plate during printing. Another common defect is observed when a flexographic 

plate is pressed against the substrate thereby causing excessive squeezing of the ink, 
which results in undesired halo-like shapes around the edges of the printed pattern. 

Flexographic printing has been used for printing conductive inks, for example electrodes 

in sensor applications, and for fabrication of RFID antennas and transistors (48,106,107).  

 

Screen printing 

Screen printing has lower requirements for substrate and ink when compared to the 

other traditional printing techniques. The surface does not have to be printed under 
pressure and it does not necessarily even have to be planar. The most common form of 

screen printing is the batch method, used for printing of clothes, signs and irregularly 

formed items such as balloons. Rotary screen (Figure 4D and Table 1) is used for 

printing of for example textiles and wallpapers. In screen printing the ink is dragged 
across the surface of a screen and squeezed through the open pores of the patterned 

mesh onto the substrate. Print resolution and print thickness depend on the density of the 

mesh and the ink properties. A rather high ink viscosity of 1000 - 50000mPas is required 
and a print resolution of ca 100μm as well as wet layer thicknesses up to 100μm can be 

printed. The possibility of printing thick layers has been an advantage for functional 
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printing and screen printing has successfully been used for manufacturing for example 

antennas (108), photovoltaic cells (79) and even pyrotechnics (109).   

 

Inkjet 

Inkjet printing has gained increasing interest for graphical printing, both as a standalone 

and as an afterwards added method in hybrid printers. The advantages of inkjet versus 
the conventional rotary printing methods are continuously changeable print pattern and 

low material consumption (Table 1). Although inkjet is roll-to-roll compatible it has 

limitations regarding printing speed as well as high requirements regarding printing ink 
quality, since the small nozzles are sensitive to impurities. The requirement of low 

viscosity inks which contain large amounts of ink vehicle/solvents set further limitations 

to the printing speed by prolonging the drying time. Narrow structures as small as 1μm 
have been printed by inkjet, when using extremely small nozzles (110), however in 

practice today structures down to 20-30μm are reality. Inkjet has been used for printing 

a variety of functional materials and is today a common method for fabricating 

functional devices (111-113). 
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4. Materials and methods 

The materials and methods used in this work are outlined in this chapter. All product 

trademarks are listed in the attached publications. 

 

4.1. Substrates 

As reference substrates were used commercially available coated fine paper (StoraEnso 

Lumipress 115g/m
2
), inkjet photo paper (Canon Photo Paper Plus Glossy II, 260g/m

2
) 

and a standard 80g/m
2
 copy paper (Image Volume). Mylar A (DuPont Teijin Films) 

flexible plastic was also used as reference substrate. For the coating structure introduced 

in this work, the base web substrate may be any coatable substrate and further studies 
regarding the base substrate were therefore not made. The requirement was suitable 

strength for roll-to-roll coating and printing. Pre-coated base paper (90-107g/m
2
) 

fulfilled that requirement and was therefore chosen as basepaper. The precoated 

basepaper was blade coated with a ca. 10g/m
2
 kaolin layer (smoothing layer) to increase 

the surface smoothness. Commercially available coated fine paper (StoraEnso 

Lumipress 115g/m
2
) was also used as basepaper as such. When using readily coated 

smooth basepaper there is no need for coating a smoothing layer. 

 

4.2. Coating materials 
 

4.2.1. Mineral pigments 

The main component in a coating layer is the pigment. Characteristics like pigment 

particle size distribution and particle shape affect the properties of the final paper, such 

as the optical and the structural properties but also printability. Mined minerals tend to 
have broad particle size distribution whereas synthesized mineral particles can be 

controlled in size and shape. Influence of pigment size and shape on coating 

microstructure and furthermore its relationship to printability has been widely studied 

and reported (114-117). For coater runnability, platy pigment particles usually increase 
the water retention (resist dewatering of the coating color) due to high tortuosity caused 

by the particle orientation perpendicular to the liquid flow direction. Isotropic particles, 

such as ground calcium carbonate, create structures with higher permeability allowing 
the water to penetrate them more easily.  
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Kaolin 

Kaolin has been used both as filler and as coating pigment for over a century. Kaolin 

consists of two atomic layers, an octahedrally co-ordinated aluminium oxide layer and a 

tetrahedrally co-ordinated silica layer. The layers are bound to each other by oxygen 
atoms. The particle shape and size differ depending on where the pigment originates 

from. Several different shape factor (1 - 100:1) kaolins were used, all supplied by 

Imerys Minerals Ltd. The trademarks of the pigments are listed in the attached 

publications [Publication II- VI]. 

 

GCC 

Ground calcium carbonate has been an important coating and filler pigment for half a 
century. The calcite mineral occurs in various rock forms: chalk, limestone and marble. 

The grinding is done through either wet or dry processing and the product is today 

usually delivered in slurry form because of a smaller storage volume and because of the 

feasibility to be pumped. GCC was used as precoating pigment, coated in industrial 
scale by the basepaper manufacturer. 

 

PCC 

Precipitated calcium carbonate is produced via a synthesis, by a reaction between 

calcium hydroxide and carbon dioxide. The physical properties for PCC are the same as 

for GCC but the particle shape and particle size distribution differ. There are two 
different mineralogical forms of PCC, calcite and aragonite. Calcite assumes hexagonal 

or rhombohedral structures while aragonite assumes orthorhombic, needle-like 

structures. The particle size distribution can for PCC be made very narrow, which 

creates a highly porous coating structure. Narrow PSD aragonite PCC (Opacarb 3000, 
Specialty Minerals Nordic Oy) was used as top-coating pigment [Publication II and V]. 

 

Talc 

Talc is a common platy mineral composed of hydrated magnesium silicate. Talc is the 

softest mineral in the world. It is formed either through regional or contact 

metamorphosis of carbonate sediments or through hydrothermal alteration of 
magnesium-rich magmatic rocks. Talc (Mondo Minerals B.V., C10B, delivered as 

dispersion) was used in barrier layer coatings [Publication II]. 
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Mica 

Ground mica is used in the paint industry as a pigment extender to reduce chalking, to 

prevent shrinking as well as to increase resistance of the paint film to water penetration. 

Mica has not been a common pigment for paper coating, but was included due to its 
extremely high aspect ratio (>200:1) as a reference in barrier coatings [Publication IV]. 

 

Silica 

The chemical compound silicon dioxide, also known as silica, is an oxide of silicon with 
the chemical formula SiO2. Silica is a porous pigment, i.e. the pigment itself contains 

nanoscale pores. In a coating layer this feature results in a bimodal porosity. Due to its 

porosity and large pore volume silica is commonly used in inkjet papers. Different 
particle size silica pigments were used for top-coatings. Large particle size (Syloid C807, 

Grace GmbH, DE) was used in Publication V.  

 

 

4.2.2. Latex 

Latex is a colloidal dispersion of spherical polymer particles in water. The particles do 
not float or sink due to gravity and in one liter there are approximately 3 *10

15 
particles 

with a surface area of 20,000m². Styrene is a common backbone polymer, but also 

ethylene and propylene are used. Styrene-butadiene latex as supplied by Styron Europe 
GmbH or BASF was used as binder in top-coatings. Styrene-acrylic and ethylene-acrylic 

latexes were also used for barrier coatings. The trademarks are listed in the attached 

publications. 

 

4.2.3. Starch 

Starch can be anionic or cationic and it functions as a binder or barrier. It has been used 

for bringing stiffness and posture to the paper and lowering the surface porosity. In this 
work starch was used as an alternative binder in barrier coatings. Chemigate Raisamyl

®
 

01151 surface sizing and coating starch, supplied as powder and prepared according to 

instructions by supplier, was used as a reference binder in barrier coatings. 

 

4.2.4. Additives 

Different additives are required during coating color preparation and coating, such as 
dispersing agents, surfactants and rheology modifiers. Sodium polyacrylate dispersing 

agent was added according to instructions by supplier when dispersing kaolin, GCC and 
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mica. The other pigments were delivered as slurries and ready to use. Coating color 

rheology was adjusted by carboxymethyl cellulose (CMC) or synthetic thickener. 
Surface tension of coating color was adjusted by either replacement of water with iso-

propanol [Publication II] or addition of surfactants [Publication VI]. 

 

4.3. Paper coating methods 

A mini pilot scale blade coater (Rotary Koater, RK Print-Coat Instruments Ltd., UK) 

was used for applying both the precoating and the second “precoating” (smoothing 
layer) as well as for applying of barrier coatings. A laboratory scale table top rod coater 

(K Control Coater, RK Print-Coat Instruments Ltd., UK) was used for applying top-

coatings. A Minilabo, (Yasui Seiki, JP) as well as a custom built reverse gravure coater, 

were used for applying barrier coatings and top-coatings. The same equipment was also 
used for functional coatings, described in section 4.6 and Figure 5C. Two pilot scale 

slide curtain coating trials were performed, the first trial at Styron Europe GmbH in 

Samstagern Switzerland and the second one at Metso Paper Oyj in Järvenpää, Finland. 
Both the barrier layer and the top-coating layer were applied simultaneously 

[Publications IV, V and VI]. The slide bead coating method is very similar to the curtain 

coating technique, with the difference that in the slide bead coating method, the coating 

color falls in a narrow gap (zero length curtain) onto the running web. Pilot scale slide 
bead coating trials were carried out at Ilford Imaging GmbH in Marly, Switzerland 

[Publication IV]. 

 

4.4. Surface treatment 
 

Corona and plasma treatment 

Corona treatment is a surface modification technique that uses low temperature 
discharge plasma to impart changes in surface properties, usually increasing the surface 

energy by oxidization. The corona plasma is generated by the application of high 

voltage to sharp electrode tips which forms plasma at the ends of the sharp tips. Both 
corona and plasma treatments use high voltage electrodes, which charge the surrounding 

gas molecules and ionize them. Both treatments were performed on a pilot scale in a 

roll-to-roll process (Vetaphone, Corona Plus) at normal atmosphere (air). In the corona 

treatment, the plasma state occurs between two electrodes, one of which is a grounded 
metal roll under the substrate. The atmospheric plasma is generated using a dielectric 

barrier discharge, which eliminates the backside treatment of the substrate [Publication 

II].  
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Ultra violet (UV-C) radiation treatment 

Low-pressure mercury lamps with radiation mainly composed of two wavelengths, 185 

and 254nm, can be used for increasing surface wettability of polymer and rubber films. 

The UV radiation at 185nm generates ozone from oxygen in air. The germicidal 
wavelength of 254nm has conventionally been used for cleaning and removing organic 

material. In publication II, UV-C surface treatment was performed using a germicidal, 

ozone-free UV-C lamp (maximum wavelength=254nm) supplied by Heraeus. The 

irradiation intensity was varied between 30 and 70mW/cm
2
. 

 

4.5. Functional inks 

Nanoparticle  silver ink 

A commercial silver-nanoparticle ink (SunTronic Silver, U5603, Sun Chemicals Corp.) 

consisting of ca. 30–50nm large dispersed silver nanoparticles (20 wt-%) in the solvents 
ethanol and ethylene glycol with a viscosity of 10–15mPas and a surface tension of 27–

31mN/m was used in Publications I, V and VI. 

 

Micron-size particle silver ink 

For flexographic printing a commercial silver flake based ink (125-06, Creative 

Materials Corp.) was used after required dilution with 1-methoxy-2-propanol acetate 

(PM-acetate) [Publication V].  

 

Micron-size particle carbon ink 

Flexographic printing in Publication V was carried out with a micron-size particle based 

carbon ink (Creative Materials Corp., 110-04). The ink was diluted with methyl ethyl 

ketone (MEK).  

 

Conductive polymer inks  

Conductive polymer ink, poly(3,4-ethylene dioxythiophene) with poly(styrene 

sulfonate) (PEDOT:PSS) was used both for inkjet and flexographic printing. Heraeus 

Clevios PH 500, which is water based, was used for ink-jet printing in the roll-to-roll 
process after adding 0.1 vol-% surfactant (Triton X-100) just before printing. For 

flexographic printing relatively viscous PEDOT:PSS ink was used; both Baytron P 

(increased viscosity by roto-evaporation to a concentration of about 1.7 wt-%) and 
Heraeus Clevios P HC V4 as delivered [Publications I and V]. 
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Organic semiconductor ink 

Regioregular poly(3-hexylthiophene) (P3HT) (Plexcore OS-1100, Plextronics Inc.) was 

used as semiconductor material. Depending on the application method and need of 
evaporation time different solvents or solvent mixtures were used as described in 

[Publication I, V and VI].  

 

Organic dielectric ink 

Non-cross-linked poly(4-vinylphenol) (PVP) (P25ED, DuPont Electronic Polymers) 
with a molecular weight of 25,000 was used as the hygroscopic electronic insulating 

material when fabricating hygroscopic insulator field effect transistors. Iso-propanol or 

ethyl acetate were used as solvents and solids contents between 10 and 20% were used. 
In order to strengthen the PVP film, kaolin particles (up to 10 wt-%) were added to form 

a composite structure [Publication I and V]. 

  

4.6. Functional printing and coating 

Flexographic printing was carried out using a custom-built roll-to-roll mini pilot scale 
printer (web width 10-12cm) (Figure 5A) with Commercial ASAHI DSH® (Shore A 

69°) photopolymer plates. The ceramic anilox cylinder (Cheshire Engraving Cervices 

Ltd., UK) used with the silver ink had a cell angle of 60° with 120 lines/cm and a cell 

volume of 12cm
3
/m

2
, while the one used with the carbon ink and the PEDOT:PSS had a 

cell angle of 60° with 70 lines/cm and a cell volume of 30cm
3
/m

2
. The printing speed 

was 10m/min and eight 500W infrared sintering units (HQE 500, Ceramicx, IRL) 

(700°C) were mounted online (Figure 5D). Flexography register control was carried out 
manually with step motors [Publication V].  

Inkjet printing in batch processing was carried out with a drop-on-demand Dimatix 
Materials inkjet printer (DMP-2831, Dimatix-Fujifilm Inc., US). All inks were filtered 

through 0.45μm filters before filling the 1.5 ml-cartridge (DMC-11610) consisting of 16 

piezoelectric nozzles. The batch printed silver was sintered for 10 to 30 seconds at a 

light intensity of around 2W/cm
2
 with an offline infrared heater (2kW) (IRT systems, 

Hedson Technologies AB). In roll-to-roll processing the inkjet printhead (Xaar 128/80, 

Xaarjet Ab, SE), consisting of 128 nozzles with a nominal drop volume of 80pl, was 

operated by an Imaje 4400 controller and software, and fed by a custom-built ink-feed 
setup (Figure 5B). Alignment of inkjet printing was controlled with the help of an 

optical sensor that was coupled to the inkjet control unit [Publication V and VI].  

Two different reverse gravure coaters were used, namely a commercially available 

MiniLabo (Yasui Seiki Co., Japan) and a custom built one. The latter was included 



26 
 

inline in the custom-built mini pilot scale printer (Figure 5C). The maximum web speed 

of the Mini-Labo test coater was 1.6m/min and the maximum gravure roll speed 48 rpm 
(surface speed: 3m/min) while in the custom built reverse gravure coating head the 

maximum roll speed is ca. 200 rpm, which allows for web speeds of up to 10m/min. The 

gravure rolls were the same in both coaters, 20mm in diameter, and the grooves/inch 

were chosen according to required application amount.  

A custom built spray coater consisting of four airbrushes was used for applying of 

semiconductor material as well as copper chloride. The coating thickness was controlled 
by varying the web speed, spraying distance, spraying pressure and ink/air ratio. Drying 

was enhanced by a hotplate behind the substrate [Publication V].  

A Chemat Technology KW-4A spincoater was used for coating semiconductor (P3HT) 

and insulator (PVP) material [Publication I and VI]. 

 

Figure 5. The custom-built roll-to-roll hybrid printer with exchangeable units. A: 

Flexography, B: Inkjet, C: Reverse gravure, D: Infrared sintering, E: Fan driers, F: Oven 
driers. Spray coating unit not installed in the setup above due to space limitations. 

 
 

4.7. Characterization methods  

Substrate characterization 

An FEI FIB201 gallium focused ion beam instrument was used for sectioning and high-

resolution imaging of paper cross sections. A JEOL JSM-6335F field emission scanning 

electron microscope (SEM) was used for surface imaging and cross-section imaging of 
resin embedded substrates. The PPS surface roughness was measured with a ME 90 

Parker Print-Surf (PPS), Messmer Instruments Ltd. roughness meter. An NTEGRA 

Prima (NT-MDT) atomic force microscopy (AFM) was also used to analyze the surface 

topography. Topographical imaging was carried out in semi-contact mode. All the AFM 
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images (1024 x 1024 pixels) were measured at ambient conditions (RH = 24 ± 3%, and 

RT = 24 ± 1°C). Scanning Probe Image Processor (SPIP, Image Metrology, DEN) 
software was used for the roughness analysis of the images. The pigment particle shape 

factor was determined through the conductivity based measurement method described in 

Webb et al. (118). 

The liquid-solid surface contact angles were measured at ambient conditions (RH = 22 ± 

3%, T = 22 ± 2°C) using a CAM 200 contact angle goniometer (KSV Instruments Ltd). 

For calculating the surface energy, the apparent contact angles of the probe liquids, i.e., 
water, ethylene glycol (EG), and diiodomethane (DIM), were measured. The 

calculations were performed using the theory proposed by Owens and Wendt (119), 

Kaelbe (120) and Fowkes (121), subdividing the surface energy into polar and 
dispersive parts. No roughness corrections were made.  

The surface porosity was analyzed according to the IGT W24 print penetration test 
(Dutch standard NEN 1836) with an AC2 (IGT Testing Systems Ltd., Netherlands) 

tabletop printability tester. A Pascal 140/440 (Thermo Fisher Scientific Inc., GER) 

mercury porosimeter was used for analyzing the porosity of coating tablets. A 

DeWetPres (DT Paper Science, FI) tablet press was used for pressure filtration of the 
coating colors to form the tablets for the mercury porosimetry measurements.  

An Elrepho 070 (Lorentzen&Wettre, SE) spectrophotometer was used for the whiteness, 
brightness and opacity measurements. A Zehntner ZLR 1050 gloss meter was used for 

the gloss measurements. An Epson Perfection V750 Pro scanner (6400 dpi) was used for 

scanning the images for image analysis.  

A Weiss Umwelttechnik SB111/300 humidity chamber (RH=90%, T=23°C) and an 

MBraun UNIlab glovebox (H2O:1.4ppm, O2:11.6ppm) were used for modified 

atmosphere simulation. 

 

Electrical characterization 

A Keithley 2100 multimeter (four-probe setup) was used for resistance measurements 
and an Agilent 4142B instrument operated with a custom written LaBView program was 

used for measuring the transistor characteristics.  

 

Characterization of barrier properties  

Water Vapor Transmission Rate (WVTR) was measured according to the ASTM 

standard (E 96/E96M-10), which monitors the water penetration as a function of time at 

chosen temperature and humidity (122). In the current work a temperature of 23°C and a 
relative humidity (RH) of 85% was used. Barrier properties against solvents and acidic 
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liquids were measured with the prism method described in detail in Publication III. The 

method monitors penetration of a liquid through a substrate as function of time through 
observation of changes in effective refractive index on a prism surface placed under the 

sample. Publication III and Results section 5.2.1. describe and compare barrier 

measurement techniques. 
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5. Results and discussion 

This chapter contains a summary of the main results and findings from the attached 

publications. In section 5.1. the structure of the developed multilayer coating construct 

is explained as well as requirements and possibilities regarding manufacturing. Section 
5.2. describes barrier properties, introducing novel measurement methods for short term 

barrier properties of paper substrates. Barrier properties created by dispersion coating 

and the influence of coating structure is discussed. Section 5.3. focuses on the top-
coating and the impact of surface structure on printability of functional inks. In section 

5.4. the influence of humidity on dimensional stability and its impact on functionality is 

discussed. Section 5.5. demonstrates proof-of-concept devices manufactured by printing 

or coating on the multilayer coated substrate. 

 

5.1. Paper for printed electronics 

It is not possible to define a single paper concept that could be considered a “the paper 

for printed electronics.” The suitability of the paper depends on the functional materials 

deposited on it to fabricate the targeted device. However, there are some general 
properties, which either are a prerequisite for the functioning of a printed device, or 

which improve the performance of it. These include surface smoothness, barrier 

properties to maintain the functional materials on the paper surface as well as print 
definition.  

 
 

5.1.1. Multilayer coating structure 

Based on the requirements listed above (section 5.1.), initial testing of a few concepts, as 
well as by comparison to commercially available paper and polymer substrates, led to a 

multilayer coated paper substrate being developed. In this multilayer structure, shown in 

Figure 6, a thin top-coating consisting of mineral pigments is coated on top of a 

dispersion-coated barrier layer. The top-coating provides well-controlled sorption 
properties through controlled thickness and porosity, thus enabling an optimization of 

the printability of functional materials (section 5.3.). The penetration of ink solvents and 

functional materials stops at the barrier layer, which not only improves the performance 
of the functional material but also eliminates potential fiber swelling and de-bonding 

that can occur if the solvents are allowed to penetrate into the base paper (section 5.2.). 

The multi-layer coated paper under consideration in the current work consists of a pre-

coating and a smoothing layer under the barrier layer. Coated fine paper may also be 
used directly as basepaper, as long as a smooth base for the barrier layer is ensured. The 

top coating layer is thin and smooth (coat weight 0.5–10g/m², layer thickness 0.5–5μm, 

RMS surface roughness 55-75nm) consisting of mineral pigments such as kaolin, 
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calcium carbonate, silica or blends of these. All the materials in the coating structure 

were chosen in order to maintain the recyclability and sustainability of the substrate. 

  

Figure 6. A: Cross-section SEM image showing the layer structure of the paper 

substrate: top-coating, barrier layer, smoothing layer, pre-coating and basepaper. B: 

Focused ion beam etched cross-section image. 

 

5.1.2. Multilayer structure manufacturing 

The multilayer substrate developed in this work can be produced by coating each layer 

sequentially, by laying down all the coating layers simultaneously, or by combining 
these approaches. Sequential coating was used in laboratory scale, since most multilayer 

coating methods require minimum process speeds of approximately 300m/min, which is 

impractical for small scale studies. Simultaneous multilayer coating was carried out in 
minipilot and pilot scale. In the sequential approach, the coating of the thin top-coating 

on top of the closed and often relatively hydrophobic barrier layer requires detailed 

understanding and tuning of the wetting properties and topography of the barrier layer in 

relation to the surface tension of the top-coating formulation [Publication II]. 
Incompatibility of the barrier and the top-coating material may cause insufficient 

wetting of the barrier layer by the top-coating dispersion during coating, which can lead 

to an uneven top-coating thickness or uncoated spots. The top-coating coatability was 
studied by creating barrier layers with as distinct as possible surface properties (surface 

energy, hydrophilicity and roughness) while maintaining adequate barrier properties. 

Furthermore, different post treatment methods were used to modify the surface energy 

and wettability. Plasma and corona treatments were used at two power levels and ultra 
violet (UV-C) radiation was also tested. The full experimental plan, including the 

detailed recipes, is listed in Tables 1-3 in Publication II. In addition to the modifications 

of the barrier layer also the surface tension of the top-coating dispersion was adjusted to 
three different levels (49.4, 43.3 and 35.2mN/m) by partially replacing water with iso-

propanol. The reverse gravure coating technique was used for coating of the top-coating 

because it enabled the coating of thin (0.5-10g/m²) top-coating layers onto the barrier 

Topcoating 0.5-5µm

Barrier layer 5-20µm

Smoothing layer

Precoating layer

Basepaper

A B 
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layer. The laboratory scale blade coating technique was not able to generate uniform 

coating layers, since the coating did not adhere to the barrier layer and was scraped off.  

The coatability, or wetting of the barrier layer by the top-coating, was visually evaluated 

on a scale from 1 to 4. Figure 7 shows examples of the coating layer quality. The scale 
grades indicate the following characteristics: grade 1, no wetting; grade 2, inadequate 

wetting resulting in areas being uncoated; grade 3, small defects, i.e., at the minimum 

limit to required wetting; and grade 4, proper wetting and adequate coatability. From a 

research point of view, the grade 3 is the most interesting one, indicating that the 
wetting is only slightly inadequate. From a manufacturing point of view, only the grade 

4 is acceptable and results in a defect-free coated layer. 

Figure 7. The coatability was visually evaluated on a scale of 1-4. The image contrast 
has been increased to show the differences better between the barrier and the top-coating 

layers. 

The water contact angle of the barrier layer was found to be the most important factor 

for predicting the coatability. On the barrier layers with water contact angles less than 

100°, it was possible to coat with all the studied top coat pigment dispersions. In a water 

contact angle range from 100° to 110°, there is a variation in the coatability, and the 
effect of the reduced surface tension in the top coat dispersion can be observed. When 

the water contact angle on the barrier layer reaches 110°, the coating of the top coat in 

an aqueous suspension becomes impossible (Figure 8). Beyond this point, the cohesive 
forces in the coating color are stronger than the adhesive forces to the barrier layer. A 

lower surface tension clearly improved coatability, especially in the water contact angle 

range from 100° to 110° on the barrier layer. A reduction of 10 to 15mN/m in surface 

tension could counteract ca. 5 to 10° higher water contact angle on the barrier layer. 

 
1 2 3 4 



32 
 

 

Figure 8. Top-coating coatability against contact angle for water on the barrier layer. 
Three different surface tensions in the top-coating dispersion were used: 49.4mN/m, 

43.3mN/m and 35.2mN/m. The surface free energy of the barrier layer was measured at 

three points: 95°, 105° and 114° water contact angle. 

Although there is only negligible nip pressure in the reverse gravure coating method, the 

coating process can still be considered forced wetting because the web is pressed against 
the gravure roller by the web tension. This means that the coating color is forced to 

contact angles smaller than would be the case without external pressure. Because the 

coating color is a dispersion consisting of pigments in water at a relatively high viscosity 

of 500mPas, viscous resistance plays a role in the wetting behavior. The dispersion does 
not have time to return to the contact angle set by the chemistry alone before the water is 

removed by evaporation. The evaporation increases the viscosity rapidly, and the 

pigments are immobilized where they have been deposited by the gravure roller. The 
surface roughness of the barrier layer appeared to have only a minor impact on the 

coatability. 

A cost competitive method for industrial scale production of the multilayer coated paper 

is the curtain coating technique, which enables coating of all the layers in one pass 

[Publication V and VI]. While in curtain coating both the top-coating and the barrier 

layer are coated simultaneously, wet on wet, there is no such relationship between 
surface tension and surface energy as described for the layer by layer coating. Curtain 

coating, however, sets high requirements for elongational viscosity and surface tension 

of the coating colors in order to ensure a stable curtain. Additionally, deaeration is 
required, since possible air bubbles will cause holes in the coated layers. In practice, 

successful coating of thin top-coating layers also requires very low solids contents 

(down to 5%), addition of synthetic thickeners and surfactants as well as a stable barrier-
layer curtain to support it. A variety of coating recipes and parameters are described in 



33 
 

Publications V and VI. Curtain coating coatability was not explored in the present work 

since it is difficult to carry out such an investigation in small scale. The practical 
difficulties here arise from the minimum coating speed requirement of ca. 300 m/min, 

and the relatively large coating color amounts needed for deaeration. 

 

5.2. Barrier properties 

In functional printing and coating, conductive, semi-conductive and insulating materials 
are usually dissolved in organic solvents such as dichlorobenzene or toluene. Although 

these liquids are brought into a direct contact with the substrate, the solvents evaporate 

quite rapidly, suggesting that short term barrier properties might suffice. On the other 

hand, in throw-away sensor applications, for example for medical use, acidic or basic 
analytes may be used, the sensoring process might last for several minutes and long term 

barrier properties are needed (123-128). In the multilayer coating structure the barrier 

layer both controls the absorption of the inks during device fabrication and ensures the 
end-use function. A simple example of a sorption test for a semiconductor ink, 

regioregular poly(3-hexylthiophene) (P3HT) dissolved in ortho-dichlorobenzene (DCB), 

is shown in Figure 9. The amount of ink applied was the same for each sample, 5 μl, and 
the scanned area was 25 × 25mm

2
 except for the Mylar

®
 A where an area of 35 × 

35mm
2
 was needed because of the excessive droplet spreading. A visible spot on the 

backside indicates poor barrier properties against the solvent and the functional ink. To 

be able to study in detail the effective barrier life time, novel barrier measurement 
methods were developed. 



34 
 

 

Figure 9. A simple barrier test, application of semiconductor ink dissolved in DCB onto 

different substrates and scanning of the spots from the front and backside of the 
substrate. A visible spot on the backside indicates solvent and functional ink penetration. 

 

5.2.1. Barrier measurement methods 

There are two common methods for measuring barrier properties of paper, one being the 

Cobb test “Standard Test Method for Water Absorptiveness of Nonbibulous Paper and 
Paperboard” (ASTM standard D3285-93(2005), which has been withdrawn in 2010, but 

exists as Tappi Test Method T 441 om-09 (129). The other method is the “Water Vapor 

Transmission Rate method” (WVTR) (ASTM standard (E 96/E96M-10) (122). The 
WVTR method monitors the water penetration by measuring gas phase penetration as a 

function of time at chosen temperature and humidity. Therefore, it is not suitable for 

measuring barrier properties against liquids applied directly onto a substrate. The 
packaging industry uses widely the standardized method (ASTM F119 - 82(2008)), 
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“Standard Test Method for Rate of Grease Penetration of Flexible Barrier Materials 

(Rapid Method)”, for measuring barrier properties against grease (130). The principle of 
the method is to apply a certain type of grease on a substrate, apply a weight on the 

grease spot and a thin layer chromatography (TLC) plate below the substrate. In case of 

penetration, the TLC plate picks up a spot of grease. In the present work, three methods 

for measuring barrier properties against solvents, acids and bases were developed. The 
experimental setup for the methods is based on the method for measuring of grease 

barrier (130), meaning the solvent is directly applied onto the substrate. The first method 

utilizes a trace color dissolved in a solvent combined with optical analysis of the 
backside of the substrate. The second one monitors conductivity through the barrier 

layer as function of time when the liquid applied on top of the substrate penetrates it. 

The third one quantifies the penetration through the substrate as changes in effective 
refractive index on a prism placed on the backside of the substrate.   

  

Figure 10. The schematic setup of the trace color based measurement system and 

example results for three substrates (A, B and C) tested with different solvents. 

 

Trace color method 

In the trace color method, a trace color (Amaranth red or Sudan red) is dissolved in the 

solvent to be studied and the solution is placed on the front side of the substrate as 
shown in Figure 10. Once the solvent has dried, both through evaporation and 

absorption into the substrate, the possible trace color spot on the backside and on the 

TLC plate placed below the substrate are studied. A visible colored spot on the backside 
of the substrate indicates a penetration whereas no visible spot usually indicates high 

barrier properties. In order to obtain more information of the penetration a possible spot 

on the TLC plate can be further analyzed. This gives a qualitative result of the barrier 

properties in form of passed / failed. A quantification of the amount of trace color that 
has penetrated through the substrate can be carried out by image analysis. A simple way 

to convert the penetration and spreading into a numerical value is to calculate the sum of 

the spot area in pixels × intensity of each pixel (grayscale 0-255, rescaled to 0-1), which 
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gives a dimensionless number related to the volume of penetrated liquid (Figure 10). 

The volume is thereby calculated as the average color density × number of pixels in the 
spot. With this method it is not possible to measure short time behavior, i.e. effective 

barrier lifetime, since the spots are studied after the solvent has dried and variations in 

applied solvent amount as well as evaporation time influence the result. In addition, the 

observed spot on the backside is influenced by the relative affinity of the trace color to 
the paper components and the carrier solvent, which makes the method inapplicable to 

some solvents.  

 

Conductivity method 

An alternative method for measuring the barrier properties to solvents is measuring 

conductivity through the substrate as a function of time. By replacing the TLC plate 
with a conductive aluminum plate connected to an electrode that is inserted in the liquid 

on the top side of the substrate, the conductivity through the substrate can be measured 

as a function of time. Dry substrate acts as an insulator, but since most solvents are at 

least slightly conductive, penetration of solvent through the substrate increases its 
conductivity. The testing procedure (Figure 11) is the same as for the method based on 

trace color, except for that now no trace color is needed but the solvent has to be 

conductive. 

 

Figure 11. Schematic setup of the conductivity based measurement system and example 

results for three substrates (A,B and C) tested with NaOH as conductive solution/solvent. 

 

Refractive index method 

Light reflection provides a sensitive probe to monitor minute changes in the complex 

refractive index of the investigated sample (131-135). In the prism method a glass prism 
is utilized to monitor reflection from the paper surface, with a green light emitting diode 

(LED) as the light source. Figure 12 shows the schematic diagram of the set-up and 

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

M
Ω

Time (s)

A 1 A 2 A 3

B 1 B 2 B 3

C 1 C 2 C 3Deviation for paper CDeviation for paper B



37 
 

measured image of the camera detector. Initially, the detector signal is a plain white spot 

as no liquid is in contact with the prism. The investigated liquid is applied as a pillar 
through the pinhole (diameter of 8mm) of the cylinder that is used as an external weight 

to improve the contact between the prism and paper. The liquid penetration through the 

barrier layer is immediately observed as a darker spot in the image due to the effective 

refractive index increase toward that of the value of the investigated liquid. This is also 
shown by the inserted images in Figure 12. In order to quantify the degree of penetration, 

image analysis can be used. The relative spot area is measured through pixel count and 

plotted against time. 

 

Figure 12. Schematic setup of the measurement system based on reflectometry. The 

paper surface is white until the solvent penetrates through the barrier layer. In the dark 

regions solvent has penetrated through the sample and is in contact with the prism. Pixel 

count was carried out for the images and the relative spot area is plotted against time, 
indicating the time when penetration occurs. 

 

As a general conclusion, all three methods provide information about barrier properties. 

The trace color method is a qualitative method, giving a pass / fail indication. Since it is 
often sufficient to have short term barrier properties, due to rapid evaporation of 

solvents, a failed result in the trace color method may still be acceptable in regards to 

printability of a functional ink. A serious drawback of the trace color method is the 

affinity of the trace color to mineral pigments, which in certain cases could be observed 
as a penetration of solvent without penetration of trace color. With careful investigation 

the penetration could be detected as a barely visible solvent spot on the TLC plate, but it 

should be noted that a severe risk for not detecting it remains. The second method tests 
barrier lifetime, by measuring conductivity through the substrate as a function of time, 

but it can only be used for conductive solvents. The third method monitors changes in 

the effective refractive index at the prism-paper interface as a function of time. It proved 
to be the most applicable method, capable of analyzing any solvent. The prism method 

was utilized for determination of barrier properties against solvents and acids as a 

function of barrier layer formulation, described in section 5.2.2.  
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5.2.2. Barrier properties of dispersion coating 

Dispersion coating has received attention as a production method for barrier coatings, 
since it has been considered to be more environmentally friendly regarding composting 

and recyclability in comparison to extrusion coating and lamination (136-139). 

Traditional paper- and board-based products, such as those used in packaging, require 
high barrier properties against gases and liquids. If paper is to be used as a substrate in 

functional applications, the required barrier properties against solvents and acids need to 

be understood and developed, since the functional inks are commonly dissolved in 

organic solvents and acidic analyte carriers might be required in the end-use devices 
[section 5.5]. As part of the objective to create a paper-based substrate that can be used 

in printed electronics applications, an understanding regarding how a dispersion coated 

barrier layer optimally should be built up was needed. Improving the barrier properties 
of dispersion coated paper with mineral platelets, is based on the tortuous structure, 

introduced by the lengthened pathway (for the penetrant liquid) which arises from the 

high aspect ratio compared to particles of other shapes such as spheres or needles. It is 
generally agreed that the barrier properties depend on factors, besides the barrier 

polymer chemistry and the coated layer thickness, such as the pigment particle volume 

fraction, particle shape, particle aspect ratio and the orientation of the particles in the 

built up structure (140-143). 

Different size, shape and shape factor pigments were blended with different amounts of 

styrene-acrylate (SA), styrene-butadiene (SB) and ethylene-acrylate (EA) latex as well 
as starch. For barrier dispersions, a specific ratio between the pigment and the binder 

exists, acting as a threshold level, at which barrier properties change significantly. For 

barrier coating, it is of utmost importance to have knowledge of this critical pigment 
volume concentration (CPVC). The CPVC was determined by measuring light 

scattering as a function of drying time (144-146). Latex and pigment particles have a 

higher refractive index compared to water and air. In the wet coating color the latex and 

pigment particles are surrounded by a water layer, resulting in interfaces causing high 
light scattering. When the coating color is dried, the water content and the coating layer 

thickness decrease, and interparticle void spaces become smaller, thereby reducing the 

light scattering. In case air voids (porosity) arises along with the disappearance of water, 
the light scattering starts to increase again as function of the increased number of air / 

pigment interfaces. A plateau value in light scattering indicates that all voids are filled 

with latex and the critical pigment volume concentration is yet not reached (Figure 13).  
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Figure 13. Principle for determining pigment volume concentration by measuring light 

scattering as a function of drying time. The schematic image shows the air voids (pores) 
at pigment volume concentrations above the critical pigment volume concentration. 

 

Figure 14. Critical pigment volume concentration as function of shape factor. The shape 
factor of Mica is in practice higher than 200. Low shape factor pigments, which have 

high CPVC, allow the use of high dispersing solids content. 

Pigments with small particle size (in comparison to latex particle size, which was the 

same in all the studied blends) and low shape factor result in a high packing density and 
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a high CPVC, and therefore allow the use of a high dispersing solids content (Figure 14). 

Pigment particle size distribution also impacts the CPVC, since a broad distribution 
leads to a high pigment packing density. Figure 14 plots the measured CPVC values 

against shape factor. The shape factor of the mica is in practice higher than 200, but due 

to limitations of the measurement method (118), shape factors higher than 200 could not 

be reliably measured. 

Figure 15. Normalized (15μm thickness) water vapor transmission (WVTR) at 23°C 

and 85% RH for kaolin with a shape factor SF=30 and SF=100 combined with different 

amounts of SA and SB latex. 

Figure 15 shows the influence of high (SF=100) and low (SF=30) shape factor kaolin 

additions on barrier properties (WVTR, normalized to 15μm). In the case of low shape 
factor kaolin, the improvement in barrier properties is only minimal compared to pure 

SA latex. However, the addition of pigments reduces the blocking problem (undesired 

adhesion of the coating layer to the back of the adjacent paper in a roll), which occurred 

for the sticky surface of the pure SA latex and caused defects in rewinding, thereby 
deteriorating the barrier properties. Addition of high shape factor (SF=100) kaolin 

significantly reduces the penetration at both PVC levels when combined with SA latex. 

The standard deviation of the barrier properties measured from the coatings containing 
low shape factor kaolin were significantly larger compared to the practically negligible 

standard deviation of the barrier results obtained from the coatings filled with high 

shape factor kaolin. This may be a result of nonhomogenous or poor alignment of the 
low shape factor particles, as shown in figure 16B. 
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Figure 16. Focused ion beam images showing the alignment of the kaolin particle filled 

latex barrier layer. A: Highly aligned high shape factor (SF=100) kaolin. B: Less aligned 

low shape factor (SF=30) kaolin. The tortuosity of the structures is shown schematically 

in the inserted images. 

Figure 17 shows the WVTR for three latexes with different chemistry, filled with the 

high shape factor (SF=100) kaolin. As a reference material to the latexes, starch was 
also tested as barrier polymer. However, the water soluble anionic starch dissolves 

resulting in very poor barrier properties against water vapor (note the discontinuous y-

axis in Figure 17). Despite the dissolution of the starch, the thicker layer (25μm) clearly 
improves the barrier properties compared to the thinner one (10μm), which is explained 

by the longer migration pathway through the tortuous kaolin structure. Regarding the 

latexes, the most obvious difference can be seen for the styrene acrylate latex where the 

addition of kaolin clearly improves the barrier properties at the same layer thickness, 
whereas for the styrene butadiene latex the difference is smaller. While the highest 

barrier properties could be obtained by using pure ethylene acrylic latex, an addition of 

44 vol-% kaolin did not significantly weaken the barrier properties against water vapor, 
which is an economic advantage in commercial applications. The WVTR barrier for the 

basepaper, including the porous precoating and smoothing layers, was 795g/m²/day. 

A B 
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Figure 17. Barrier properties against water vapor (WVTR) at 23°C and 85% RH as 

function of barrier layer thickness. The values are average values of three parallel 

measurements, with a negligible standard deviation. (B = Tendency for blocking, P= 
Tendency for pinholes). Note the discontinuous y-axis. 

In addition to barrier properties against water vapor, barrier properties against liquids 
directly applied onto surfaces of the substrates were measured. These measurements 

were made in order to mimic a coating or a printing operation, or an analysis procedure 

in a printed functional application. Organic solvents are common as ink vehicles 

[Section 5.5.1] and acids are used as analyte carriers in sensor applications [Section 
5.5.5], both requiring barrier properties for varying times. Figure 18 plots the time it 

takes for ortho-dichlorobenzene (DCB) to penetrate the substrates. As can be seen for all 

the latexes, the addition of high shape factor kaolin clearly improves the barrier 
properties. This can be related to the increased tortuosity through the particle filled 

structure (Figure 16A). The organic solvent dissolves partially the latex but the inert 

high shape factor mineral particles create a long pathway for the solvent to migrate 
through. DCB, on the contrary to the water vapor, does not dissolve the starch, which as 

a polar molecule performs well as a barrier against the nonpolar DCB. Figure 18 only 

plots the short term barrier properties, but for the starch coatings the barrier 

measurements were extended to three days by addition of DCB to counteract the 
evaporation. No DCB penetrated the starch based barrier coatings during the three days, 

indicating the starch is completely insoluble in DCB. Differences in dissolving or 

degrading of the latexes can also be seen, the styrene-butadiene and styrene-acrylic 
latexes dissolving most rapidly while the ethylene-acrylic can withstand the organic 

solvent for longer. 
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Figure 18. Barrier properties against ortho-dichlorobenzene. The figure shows the time 
in seconds for the liquid to penetrate the substrate. (B = Tendency for blocking, P = 

Tendency for pinholes). 

 

Figure 19. Barrier properties against 1 M hydrochloric acid. The figure shows the time 

in seconds for the liquid to penetrate the substrate. (B = Tendency for blocking, P = 

Tendency for pinholes). 
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In contrast to the barrier properties against DCB, the pure latexes, and the layers with 

low pigment volume concentration show the best barrier properties against 1M 
hydrochloric acid (Figure 19). This can be related to voids existing in the layers filled to 

57% by volume of pigments, since the critical pigment volume concentration for the 

platy kaolin was found to be 55.7% (Figure 13 and 14). The lower amount of organic 

material on the surface of these layers can result in a more hydrophilic surface and more 
complete wetting [Publication II, Table 2]. In the case of the thin 5μm kaolin/ethylene 

acrylic latex layer, the penetration was caused by pinholes. The latexes are all inert 

against the hydrochloric acid showing no degradation or dissolving tendency contrary to 
the case for the organic solvent. The water soluble starch was dissolved immediately by 

the hydrochloric acid. Both the DCB and the hydrochloric acid penetrate the basepaper, 

including precoating and smoothing layer, in less than 5 seconds. 

The binder, whether it is latex or starch can be considered the most important material 

for creating a sealed layer, but an addition of mineral pigments can both improve the 

barrier properties as well as ensure problem free runnability. Latexes, especially with 
low Tg, tend to cause blocking problems, which can be significantly reduced by use of 

mineral pigments in the barrier layer. The addition of high shape factor kaolin improved 

barrier properties by increasing tortuosity, i.e., the migration pathway of a liquid through 
the structure. The tortuosity created by the inert mineral pigments was shown to be 

extremely important against DCB, which can dissolve or degrade the latexes, as well as 

against water vapor which dissolved the starch. The addition level of mineral pigments 
should not exceed the critical pigment volume concentration, since any porosity will 

deteriorate the barrier properties.  

 

5.3. Functional printability 

The ability to print narrow and well defined lines or structures is important, especially 
when high resolution devices are produced. In addition to the high requirements 

regarding line definition, functional printing also sets further demands regarding the 

actual functionality of the printed material, which often is measured as electrical 

conductivity. Resistance is normally measured, which can be converted to conductivity. 
Since exact thicknesses and thereby volume resistivities are practically impossible to 

measure accurately on absorbing surfaces, surface resistivity (Ω/sq) was chosen as the 

main parameter for evaluating conductivity. In the multilayer coating structure it is the 
top-coating that determines the printability of the functional inks. Coating layer 

properties that can influence printability of functional inks are thickness, porosity, pore 

volume, surface energy and roughness. These can be adjusted by the choice of pigment, 

its shape, size and their distributions as well as by calendering [Publication V and VI]. 
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5.3.1. Impact of porosity and pore size 

Impact of the top layer porosity and pore size was investigated by printing conductive 
silver of micro- and nanoparticle size with flexography and inkjet. The ink designed for 

flexography consisted of micrometer-sized particles with a propylene glycol 

monomethyl ether acetate (PM acetate) as solvent, and the one designed for inkjet of 
nano-sized particles with ethylene glycol as solvent. As can be seen in the SEM image 

(Figure 20A), the nanoparticles of the silver ink penetrate into the pores of the silica 

coating rendering it nonconductive, but stay on the surface of both the kaolin and the 

kaolin/PCC blend top-coatings. The pore volume of the top-coating was measured by 
mercury porosimetry (147-150). Since it is not possible to measure reliably the porosity 

of only the top-coating of a multilayer coated structure, pressure-filtrated tablets of the 

top-coating formulations were measured instead. With the knowledge of the porosity 
and the coat weight of the top-coating, the pore volume in the top-coating could then be 

estimated. The penetration of ink particles correlates with the top-coating dominant pore 

size, which for the kaolin and kaolin/PCC coatings was in the range of 13 to 80nm and 
ca 380nm for the silica coatings [Publication V, Table 2]. The large pore size of the 

silica pigment is a consequence of the relatively large particle size of the pigment used 

here. It should also be noted that the silica pigment itself is nano-porous resulting in a 

bimodal coating layer porosity. However, the modal value for the nano-scale porosity 
was ca. 10nm, which in comparison to the dominant coating layer pore size of ca. 

380nm is almost negligible. The flexographic silver ink with micrometer-sized flaky 

particles remained on the surface on all the top-coatings, and is thereby less sensitive to 
pore size (Figure 20B). High porosity and total available pore volume in the top-coating 

allowed for fast ink vehicle uptake, which reduced the squeeze (ink spreading under 

printing nip pressure), thereby improving the flexographic printability of the 

micrometer-sized particle ink [Publication V, Table 3]. 

  

Figure 20. SEM images of silver particle inks printed with inkjet (A) and flexography 
(B) (3g/m

2
 top-coating).   

 

Kaolin Kaolin/PCC Silica Kaolin Kaolin/PCC Silica

B A 
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The difference in silver particle size and their relationship to the pore size of the top-

coating is further visualized in the focused ion beam image (Figure 21). The conductive 
layer formation by the several micrometers in diameter flaky silver particles is 

insensitive to the pore size as well as any possible roughness variations, whereas the thin 

silver layer formed by the nanoparticles is very dependent on the pore size. In the case 

where fine kaolin is used in the top-coating, the pore size is small enough to keep the 
nanoparticles on the surface, enabling printing of an evenly thick (ca. 1μm) conductive 

layer. 

 

Figure 21. Focused ion beam cut and imaged cross-section of the coated paper substrate, 

showing flexography printed micrometer-sized silver (LEFT) and inkjet-printed 
nanoparticle silver (RIGHT) on the multilayer coating structure. The sectioned layers in 

the multilayer structure are, from the top: top-coating (5g/m
2
 fine kaolin), the barrier 

layer (10g/m
2
 platy kaolin) and the basepaper coating. The platinum deposit is required 

for the milling (ion beam cutting) through the coating structure. 

 

In addition to studying the impact of top layer porosity and pore size on functionality of 

particle based inks, printability and functionality of fully dissolved organic 
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semiconductor was investigated. Semiconductor, regioregular poly(3-hexylthiophene) 

(P3HT) dissolved in a mixture (1:1:2) of xylene:chlorobenzene:ortho-dichlorobenzene, 
was printed with inkjet, both in a roll-to-roll process and as batch printing. The main 

difference between the roll-to-roll inkjet and the batch inkjet was the nominal drop 

volume, which in the roll-to-roll inkjet was 80 pl and in batch 10 pl. P3HT was printed 

at a solids content of 0.25 weight-%. The low solids content means a large amount of 
solvent is applied which has to evaporate or absorb into the coating structure. The 

solvent mixture vapor pressure was chosen to provide an evaporation rate, which is slow 

enough to eliminate clogging of the printing nozzles but fast enough to be printed in a 
roll-to-roll process. Too fast evaporation of the ink solvent leads to a viscosity increase 

and deposits in the inkjet nozzle, whereas too slow drying requires either slowing down 

of the roll-to-roll printing process or use of additional driers. However, excessive drying 
can potentially render the printed device inoperable, e.g. due to crack propagation or a 

too high temperature destroying the semiconductive polymer. Semiconductor ink was 

printed in both batch and roll-to-roll processes at three different amounts, giving equal 

theoretically uniform dry thicknesses of 20nm, 40nm and 80nm. This corresponds to 
applied P3HT-volumes of 2, 4 and 8nl/cm² and to total printed volumes of 800, 1600 

and 3200nl/cm², respectively. These volumes were compared to the pore volumes in the 

top-coatings, which were in the range of 4 to 400nl/cm².  

 

Figure 22. Surface resistivity as function of pore volume in the top-coating for 2nl/cm
2
 

(left), 4nl/cm
2
 (middle) and 8nl/cm

2
 (right) total (roll-to-roll) printed semiconductor 

amounts.   

All printed amounts on all the surfaces gave a visibly purple color, with darker color 
intensity for the higher amounts. Visually evaluated the most even films were achieved 

for the thinnest printed amounts (2nl/cm²) whereas the larger printed amounts (4 and 

8nl/cm²) resulted in slow and uneven drying. Especially the substrates with low pore 

volume, and thereby limited absorptivity, exhibited the coffee stain effect. Surface 
resistivity was measured for all the printed amounts and was correlated with the pore 

volume. As is shown in Figure 22, the relationship between the surface resistivity and 

the pore volume is almost linear for the small coating pore volumes (< 100nl/cm²) and 
the small amount of printed semiconductor (2nl/cm²), while the impact of pore volume 
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decreases as higher amounts of ink are applied. It is likely that for small printed ink 

volumes the semiconductor penetrates fully into the coating structure and surrounds the 
mineral particles, thereby creating a connected network. Once the pores are filled, with 

both semiconductor and evaporating solvent, the rest of the applied amount will be on 

the surface where the continued evaporation seemed to lead to an irregular film.  

 

5.3.2. Impact of substrate roughness 

Control of substrate surface roughness has in several studies been suggested to be one of 

the most important factors for successful functional printing. High surface roughness, 

especially on the shorter length scales, has in previous studies been found to decrease 
the conductivity (49,151,152). The influence of roughness on functionality is however 

very dependent on the properties of the functional ink. As shown visually in Figure 21, 

the substrate role is of minor impact when printing with large micrometer-size based 
particle inks, but when printing thin layers with nanoparticle-sized inks the surface 

smoothness appears essential. In order to minimize the influence of surface chemistry, 

i.e. different surface energy, but highlight the impact of surface roughness, a multilayer 

coated substrate with a kaolin-based top-coating was, by calendering, adjusted to four 
different roughness levels (Figure 23). Nanoparticle silver ink was printed with inkjet 

(10pl drop volume with a drop spacing of 20μm) on these substrates. The lines were 

printed to widths based on 2, 4, 8, 16 and 32 drops, and the actual line widths measured 
by a high resolution scanner. The average line width (required for surface resistivity 

calculation, listed in Table 2, Publication VI) varies somewhat depending on ink 

spreading. 
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Figure 23. Surface resistivity for printed silver lines as function of surface roughness of 

a multilayer coated paper with a kaolin based top-coating. The different roughness 

levels were achieved by different calendering parameters. The line widths are expressed 

as inkjetted drops. The measured average line widths, used for calculation of the surface 
resistivity, are listed in Publication VI, Table 2 and full roughness analysis in 

Publication VI, Figure 2. 

 

Printing of thin lines on a rough surface results in poor conductivity (high surface 
resistivity), as can be seen for the uncalendered (PPS 1.90μm) multilayer coated 

substrate. This can be explained by a single defect (peak or valley in the surface under 

the printed track) weakening the connecting pathway or potentially even causing 
discontinuities, while in a thick line a minor defect does not necessarily lead to a 

discontinuity or even significantly impact the conductivity. A rough surface also leads to 

a more uneven silver layer thickness. A slightly lower surface resistivity could be 

achieved for the wider lines, since the drop spacing was 20μm and the spreading of one 
droplet is ca. 40-50μm, meaning the droplets in the printed lines are partly overlapping, 

leading to an increased thickness. A direct relationship between the conductivity and the 

surface roughness cannot be seen in these results. The main impact of the low roughness 
is the minimized risk for defects in narrow printed lines. In devices consisting of several 

0,1 

1 

10 

100 

1000 

10000 

100000 

1.90 0.73 0.59 0.43 

285 135 85 70 

180 110 70 55 

Ω
 (

su
rf

ac
e

 r
es

is
ti

vi
ty

) 

PPS [μm] 
  
RMS (Ta:50 μm) [nm] 
  
RMS (Ta:25 μm) [nm] 

2 drops 4 drops 8 drops 

16 drops 32 drops 



50 
 

functional layers high roughness or just a peak in the surface may increase the risk for 

short circuits. 

 

5.4. Dimensional stability 

Poor dimensional stability of a substrate may cause cracks and disconnects in printed 

tracks, since dimensional changes may occur with an exposure to varying environmental 

conditions. This is a challenging phenomenon to control for fiber-based materials, since 
humidity and temperature variations have a strong impact on fiber dimensions and the 

bonds between them (153-155). Transferring materials onto the substrate, by use of 

coating or printing methods involves use of solvents combined with harsh drying 

methods, all having a strong influence on the dimensional stability of the fiber network. 
From the end product point of view, maintaining functionality in varying weather and 

temperature conditions is important.  

 

5.4.1. Impact on surface topography 

Dimensional stability was analyzed by exposing substrates to humidity cycling. As 

reference substrates to the multilayer curtain coated (MLCC) paper, commercially 

available standard copy paper, double coated fine paper and high quality photo paper 
were tested. Silver lines (20mm by ~100μm, non-sintered) were inkjet printed onto the 

substrates at 23°C and a relative humidity of 30%. The substrates with the printed lines 

were stored for 24 hours in 90% relative humidity at 23°C, then dried in a 100°C oven 

for 30 minutes where after again stored in 90% relative humidity at 23°C for 24 hours. 
Finally, the substrates were stored at room conditions of 30% relative humidity and 

23°C for two days (Figure 24). The printed lines were scanned after each stage with a 

high resolution (6400dpi) scanner and the line lengths were measured using image 
analysis to determine the expansion/shrinkage in the x/y-plane. The measurement 

accuracy is ± 1 pixel equaling ± 4μm or 0.02%. 
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Figure 24. Dimensional stability (line length) as function of humidity and temperature 

cycling for the different papers. The measurements were made after indicated time 

periods at each condition. 

Exposing the substrates to the first increased humidity level led to 0.1-0.3% expansion 

of all the substrates except for the inkjet paper which has a polymer film coating. 

Subsequent drying in oven shrank all the substrates by 0.35-0.6%, with the smallest 
shrinkage observed for the MLCC paper and the highest for the double coated fine paper. 

The polymer coated inkjet paper did not fully withstand the high temperature which 

resulted in permanent cracks in the polymer film. The second humidity level increase 
resulted in approximately the same dimensional changes as the first one, with the 

exception of the damaged inkjet paper. Overall, the dimensional changes were the 

largest for the fine paper and the copy paper. Compared to similar measurements of 

nanocellulose based sheets conducted by Torvinen et al. (54), the dimensional changes 
observed here were in the same range. The multilayer coated substrate with its strong 

barrier layer, which strengthens the structure, showed the smallest dimensional changes. 

Since the MLCC paper had the multilayer coating only on one side, this asymmetry led 
to curl of the paper. The curl can be reduced or eliminated by coating the backside of the 

paper, which would also reduce penetration of humidity into the base paper, and thereby 

improve the dimensional stability. 

The changes in surface roughness of the double coated fine paper and MLCC caused by 

their exposure to high humidity were measured both by AFM and PPS. PPS allowed for 

fast measuring as a function of “drying” (90% RH → 50% RH @ 23°C) after the 
samples had been brought into equilibrium at high humidity. The PPS surface roughness 

increased slightly during the first 15 minutes (MLCC: 0.53→0.60μm and Fine paper: 
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0.87→1.05μm) after the samples were removed from the high humidity conditions 

[Publication VI, Figure 5]. This is potentially due to contraction of the fibers, which 
causes shrinkage of the basepaper fiber network. The initial surface roughness increase 

was observed for both the fine paper and the MLCC, but after the 15 minutes no change 

in roughness was detected for either one. Changes in surface roughness as a function of 

length scale were further studied by AFM (Figure 25). Since obtaining an AFM image 
takes approximately one hour, the samples were stored for one hour at room conditions 

(25% RH and 23°C) before starting the measurement, in order to avoid possible 

roughness change during the image acquisition. 

 

Figure 25. Root mean square roughness (Sq) as function of correlation length (Ta), for 
multilayer curtain coated paper (MLCC) and double coated fine paper before and after 

humidity treatment (24h in 23°C and 90% RH).  

 

As can be seen in Figure 25, the increase in roughness is obvious on every length scale 

for the fine paper whereas it is significantly smaller for the multilayer curtain coated 
paper. For the fine paper the changes in surface roughness increase at longer length 
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scales. This suggests that the increase is a result of fiber swelling, since the roughness at 

longer length scales is determined by the base paper fibers (156-158). Despite fiber 
swelling, which caused curl of the multilayer coated substrate, the mechanically strong 

barrier layer ensured that only minimal topographical changes on the coated side 

occurred. 

 

5.4.2. Impact on electrical properties and functionality 

The influence of humidity on conductivity was investigated by exposing printed silver 

tracks, with different line widths (2-32 inkjet printed 10pl drops, drop spacing 20μm), to 

humidity cycling. Surface resistivity was measured for the lines as they were printed and 
sintered (25% relative humidity) and again after 24 hour exposure to 90% relative 

humidity. As shown in figure 26, the conductivity of the narrow printed tracks on the 

double coated fine paper, which showed the largest dimensional and surface roughness 
changes when exposed to high humidity (Figure 24 and 25), decreased considerably. 

The surface resistivity increased by 4 orders of magnitude for line widths printed with 4 

and 8 drops. The impact on conductivity of the wider lines, printed with 16 and 32 drops, 

was negligible. On the multilayer coated paper, only a minimal impact on conductivity 
of the thinner lines (2 and 4 drops) could be observed after the humidity treatment. No 

changes could be seen for the wider lines (8-32 drops). It is obvious that poor 

dimensional stability and roughening caused by humidity changes in the environment 
are detrimental to the functioning of narrow printed conductive tracks. In addition to the 

roughness increase and expansion of the substrate, oxidation of the silver particles might 

also play a role in slightly reducing the conductivity. Similar reduction in conductivity 
as function of treatment in high humidity conditions was also reported for printed tracks 

on different label papers by Wood et al. (159). 
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Figure 26. Surface resistivity for different width silver lines on multilayer curtain 
coated (MLCC) paper and fine paper before and after humidity treatment. 

 

5.5. Proof-of-concept devices 

To demonstrate the usability of the multilayer coated paper developed in the current 

work, different functional devices were manufactured as proofs-of-concept. A low-

voltage organic transistor, which has previously been demonstrated on plastic substrate 
(160), consists of four layers printed on top of each other and can be considered a 

challenging device to manufacture through solution processing. It was therefore chosen 

as the primary target when developing the multilayer coating structure. The second 
demonstrator is an electrochromic pixel, which has previously been manufactured also 

on PE-coated paper by Acreo (91). The last demonstrators manufactured on paper in this 

work, oxygen sensor, hydrogen sulphide sensor and an ion-selective electrode, have 
previously been created by printing onto plastic substrates (161-163). The proof-of-

concept devices were designed and tested in cooperation with the Åbo Akademi 

Department of Physics, Laboratory of Physical Chemistry and Laboratory of Analytical 

Chemistry (19). 
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5.5.1. Transistors 

As a proof-of-concept, transistors were printed on the paper substrate and their 
performance was measured. The transistor type used here is a so-called hygroscopic 

insulator field effect transistor (HIFET), a type of ion-modulated OFET. Figure 27 

shows the top gate transistor schematic, the printed transistor, and the current-voltage 
characteristics for the printed transistor (160,164). The formation of a diffuse electric 

double layer, thanks to the ion motion in the polyanionic dielectric at normal room 

humidity, results in high capacitance and enables the low-voltage operation. The HIFET 

has also been shown to be rather insensitive to the thickness of the dielectric and to the 
surface roughness of the substrate. Therefore, ion-modulated transistors are excellent 

candidates for rough substrates and large scale manufacturing for all-printed OFETs 

operating below 2V. Transistors were first printed in a batch process on the multilayer 
coated paper substrate. The transistors consisted of inkjet-printed (drop spacing 25μm) 

silver source and drain electrodes, P3HT as semiconductor, poly(4-vinylphenol) (PVP) 

as insulator and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 
as gate electrode. The semiconductor and insulator layers were spin-coated and the gate 

was drop-cast. Figure 27 shows the output characteristics of such a batch process 

manufactured transistor.  Compared to transistors manufactured on a plastic substrate, 

the transistor shows lower current throughput, which might be due to poor 
semiconductor coverage or impurities of the paper degrading the charge transport (61). 

An advantage is the off-state at 0V, which is useful when building logic circuits 

(165,166). 
 

 

Figure 27. Output characteristics for the batch manufactured transistor. The schematic 

and the optical images show the structure, inkjet printed silver electrodes with 
spincoated P3HT (purple) and transparent insulator (PVP). The gate electrode (blue) is 

drop-casted PEDOT:PSS. 
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Transistors were also printed with the roll-to-roll hybrid printer (Figure 5) on the 

multilayer coated substrate. As a compromise to ensure adequate printability of both the 
silver electrodes and the semiconductor (Section 5.3.1.), a substrate with a 3g/m

2 
kaolin 

top-coating was used. The source and drain silver electrodes were printed using 

flexography. The electrode width was ca. 350μm, channel length ca. 300μm and channel 

width 12mm. The semiconductor (P3HT dissolved in (1:1:2) 
xylene:chlorobenzene:ortho-dichlorobenzene) was inkjet-printed. The insulator (PVP) 

was coated using the reverse gravure technique. The gate electrode (PEDOT:PSS) was 

printed with inkjet. The surface tension of the water based PEDOT:PSS was lowered by 
addition of surfactant (Triton X-100, 0.1 volume-%) in order to ensure adequate 

wettability. Figure 28 shows the gate electrode in blue (c), printed on top of the 

transparent insulator layer. Underneath is the purple semiconductor (b) printed on top of 
the silver electrodes (a).  

 

 
 

Figure 28. Schematic (left) and optical (right) images showing the structure of the roll-

to-roll printed transistor. The interdigitated silver electrodes (a) (channel length 

~300μm) are flexography printed. The purple semiconductor (b) (P3HT) is inkjet printed. 
A transparent insulator (PVP) is reverse gravure coated on top of the semiconductor. 

The gate electrode (c) (PEDOT:PSS) is inkjet-printed on top of the insulator. 

 
The output characteristics are shown in Figures 29.  While the roll-to-roll printed 

transistor functions, there is still a clear difference to those produced with the batch 

processing. One reason for this is the smaller design and narrower line widths enabled 
by the batch processing. 
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Figure 29. Output (A) and transfer (B) characteristics of the roll-to-roll printed 

transistor on the multilayer curtain coated paper. 

 

5.5.2. Electrochromic pixel 

To further demonstrate further the applicability of the multilayer coated paper as a 

printed electronics substrate, electrochromic (EC) pixels were fabricated onto it.  By 
flexography printing PEDOT:PSS electrodes and coating the electrolyte (Glyceline, 

Scionix, UK), low voltage (1.5V) driven EC pixels could be demonstrated (Figure 30). 

While PEDOT:PSS is dark blue in its reduced state, it becomes (almost) transparent 

upon oxidation. 

  

Figure 30. A: A printed EC pixel at three different biases – In the middle an un-

switched pixel is shown and to the left and right the pixel at -1.5V and +1.5V, 

respectively is shown. B: A voltamogram when switching the pixel. The asymmetry in 
the electrode areas makes this curve also unsymmetrical. 

A B 

A B 
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Comparing EC pixels fabricated onto ordinary coated fine paper to ones fabricated on 

the multilayer coated paper, less spreading and penetration of the electrolyte occurred on 
the multilayer coated, leading to more stable operation on the latter. Also the 

flexography printed PEDOT:PSS wets more uniformly and is more conducting on the 

multilayer coated paper than on ordinary coated fine paper or board (167). This type of a 

pixel can be used as a “display” for simple applications, e.g. for printed indicators. In a 
more elaborate approach, the EC pixels can be combined with transistors to make matrix 

addressed, pixelated displays (91,168). 

 

5.5.3. Oxygen sensor 

Oxygen is a key feature of respiration in most organisms, and the main reason for food 

spoilage, since oxygen allows for the growth of aerobic micro-organisms. An oxygen 

sensor can be made of methylene blue combined with photocatalytic titanium dioxide. 
The methylene blue works as a redox dye, being either blue or white in color. 

Irreversibility of this indicator can be achieved by using UVA-light activated 

nanoparticle titanium dioxide (161,169). The irreversible nature is important, if the 

sensor is to be used for example in modified atmosphere food packages. A minor 
leakage might let oxygen inside the package, but the microbe metabolism inside the 

package will consume the oxygen and fill it with carbon dioxide. Here, ethanol was used 

as the ink solvent, and the viscosity was adjusted to ca. 300mPas, which was optimal for 
flexographic printing. Printing was carried out on various substrates, Mylar plastic film, 

latex coated paper and multilayer coated substrates with different porous top-coatings. 

As shown in the inserted images in Figure 31, the print quality was strongly dependent 
on the substrate. While a high porosity clearly improved the print quality it also 

impaired the density decrease by the UVA-activation, since the methylene blue 

penetrated into the pores where the UVA-light could not reach it. As a good 

compromise turned out to be the multilayer coated paper with a low top-coating porosity. 
The ink adhesion to the Mylar and the latex coated paper was poor. 
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Figure 31. Drop in optical density (cyan) as a function of UV exposure (activation) 

followed by density recovery as a function of storage time in oxygen containing 

atmosphere (normal temperature and pressure, NTP). The flexographic print quality was 
strongly dependent on the substrate properties, especially porosity. A: Mylar, B: Latex 

coating, C: Low porosity multilayer coating, D: High porosity multilayer coating.   

 

5.5.4. Hydrogen sulfide sensor 

Manufacturing of sensors for hydrogen sulfide detection was demonstrated in a roll-to-

roll process. As counterpart to the oxygen detection in the previous section, anaerobic 

organisms generate hydrogen sulfide as a waste product of their metabolism. The sensor 

consists of two silver electrodes printed with flexography. The same interdigitated finger 
structure as for the transistor (with a finger width of 350μm and gap of 300μm) (Figure 

28, electrodes (a)) was used. Copper chloride and polyaniline (CuCl2/PANI) was applied 

by spray coating on top of the silver electrodes. In the presence of trace amounts (5-
10ppm) of hydrogen sulfide, the increase in the conductivity and color change of the 

sensing film (polyaniline/copper chloride) can be explained by the formation of copper 

sulfide with the subsequent protonation of polyaniline (15,163). Figure 32 shows the 
change in resistance measured as a function of the exposure to hydrogen sulfide.  

A B 

C D 
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Figure 32. The resistance of the sensor as a function of the exposure time to hydrogen 

sulfide is shown to the left. To the right, the roll-to-roll printed sensors, flexography 

printed silver electrodes with spray coated CuCl2/PANI on top (light blue). 

 

 

5.5.5. Ion-selective electrodes 

The last sensor application demonstrated on the multilayer coated paper was an ion-

selective electrode (170). In earlier work ion-selective electrodes and reference 

electrodes have been produced by screen printing on a plastic substrate (127,162). The 
electrodes consist of flexography printed carbon as electronic conductor and 

flexography printed UV-curable lacquer as an insulating layer (Figure 33). The ion-

selective membranes dissolved in tetrahydrofuran were added by drop casting. The 

slowly evaporating tetrahydrofuran sets high demands on the barrier properties of the 
substrate. Since ion-selective electrodes are used to determine ion activities in aqueous 

solutions at wide range of pH, barrier properties against water at different pH were 

evaluated and found to last for at least one hour against a 1M KCl solution. The 
requirement of the barrier properties of the substrate were therefore higher compared to 

the other demonstrated devices. The multilayer coated substrate used for the ion-

selective electrodes had a barrier structure consisting of two 10g/m
2
 platy 

kaolin/ethylene latex layers with one 10g/m
2
 polyolefin latex layer in between, as coated 

layer by layer with the reverse gravure technique. To ensure adequate printability, a 

5g/m
2
 kaolin layer was used as top-coating.  
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Figure 33. A: Schematic setup for an ion-selective electrode. B: Roll-to-roll printed 

(flexography) electrodes on multilayer coated paper. A pair of electrodes is needed for 

measurement: one electrode acts as a reference electrode while an ion-selective 

membrane is applied by drop casting on the other.  

A potassium-selective membrane containing valinomycin as ionophore was deposited 

on one printed carbon electrode and a reference-electrode membrane containing 
tetrabutylammonium tetrabutylborate as equitransferent salt was deposited on the 

adjacent printed carbon electrode (171). This resulted in an all-solid-state K
+
 selective 

electrode and a reference electrode adjacent to each other on the paper substrate. The 
potentiometric response of the sensor to K

+
 ions at concentrations from 10

-6
 to 10

-1
M at 

a constant ionic background of 0.1M NaCl is shown in Figure 34. The sensor responds 

to K
+
 ions in a selective manner, which is regarded as a proof-of-concept. As can be 

seen in Figure 33 (top) the sensor shows sub-Nernstian behaviour (slope 
<59mV/decade) when the potential is recorded after 5 min in each solution. This is 

related to potential drift illustrated in Figure 34 (bottom). If the potential value is taken 

immediately after changing the KCl concentration the response will be close to 
Nernstian. 

 

B A 
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Figure 34. Potentiometric response of the all-solid-state sensor to potassium ions. 

Calibration plot (top) and potential vs. time curves (bottom) are shown for KCl 

concentrations from 10
-6

 to 10
-1

M in a background electrolyte of 0.1M NaCl. 
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6. Concluding remarks 

Manufacturing electronic features by printing and coating requires detailed 

understanding of the ink - application method - substrate compatibility. These all may be 

tuned and optimized separately, but the main focus in this work has been set on the 
substrate. Paper as substrate allows for wide tunability, by choice of coating structure 

and surface properties, but is also challenging especially regarding requirements for 

barrier properties and dimensional stability. Furthermore the devices, whether they are 
electronic or in other ways functional, must be designed keeping in mind the robust 

manufacturing conditions and methods. The understanding of the interactions between 

functional materials formulated and applied on paper as inks, however makes it possible 

to create a paper-based substrate that can be used to manufacture printed electronics-
based devices and sensors on paper. The multitude of functional materials and their 

complex interactions make it challenging to draw general conclusions in this topic area. 

The results become partially specific to the device chosen and the materials needed in its 
manufacturing.  

Based on the results, it is clear that for inks based on dissolved or small size functional 
materials, a barrier layer to limit the material penetration deep into the paper, is essential 

and ensures the functionality of the printed material in a device. When manufacturing 

functional devices on paper, the required active barrier life time depends on the used ink 

solvents and their volatility. The targeted end-use application, e.g. in sensoring of 
liquids, can also determine what kind of the barrier properties are needed. High aspect 

ratio mineral pigments, which create tortuous pathways and physical barriers within the 

barrier layer limit the penetration of solvents used in functional inks.  

The surface pore volume and pore size can be optimized for a given printing process and 

ink through a choice of pigment type and coating layer thickness. However, when 
manufacturing multilayer functional devices, such as transistors, which consist of 

several printed layers, compromises have to be made. E.g., while a thick and porous top-

coating is preferable for printing of source and drain electrodes with a silver particle ink, 

a thinner and less absorbing surface is required to form a functional semiconducting 
layer.  

With the multilayer coating structure concept developed in this work, it was possible to 
meet the above listed criteria and requirements, and thereby make the fiber based paper 

substrate suitable for printed functionality. The possibility of printing functional devices, 

such as transistors, sensors and pixels in a roll-to-roll process on paper is demonstrated. 
All the demonstrated devices are manufactured on top of the multilayer coated substrate 

whereby the porosity of the fiber based basepaper structure is not utilized. Standalone 

electronic devices require some kind of power source, and in the case where a printed 

battery or capacitor is to be integrated, also the use of basepaper porosity as electrolyte 
carrier could potentially be utilized.  
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For industrial production of paper for printed electronics, curtain coating is a suitable 

coating technique allowing extremely thin top-coatings to be applied simultaneously 
with a closed and sealed barrier layer. However, industrial production of functional 

devices or sensors is still quite limited. One reason for the currently relatively limited 

use of paper for printed electronics is the dusting issue. Paper is generally not accepted 

in cleanrooms where most of the printed electronics production today is carried out. The 
lack of commercial products has also been a limiting factor, but the situation is expected 

to change along with the market increase for functional packages. Various chemical and 

biomedical sensors are also expected to reach the market, however from a paper 
manufacturing point of view, volumes will not be comparable with traditional paper 

grade production.   
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