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Abstract 

i 

ABSTRACT 

 

  The wetting properties of solids are important in many natural systems as well as in a 

wide range of technical applications. It is well-know that the wettability of a solid 

surface is governed by both the surface chemistry and the surface structure. 

  In this thesis, the wettability of TiO2-based ceramic coatings was studied. The 

coatings were prepared by utilizing sol-gel dip-coating technology. In the first part of 

the thesis, one component TiO2 coatings with random heterogeneities were studied. 

The topography of the coatings was varied by changing the synthesis conditions, e.g. 

calcination temperature and with the addition of additives. The topography of the 

coatings was described with a series of roughness parameters. It was shown that the 

often used root mean square roughness (RMS) is not sufficient enough to describe the 

topography of a surface. The influence of surface topography on the wetting 

properties was also studied. Furthermore, the combined effect of topography and 

surface wettability on the precipitation kinetics of calcium phosphate (CaP) on the 

coatings was investigated. It was found that a hydrophilic coating together with a 

specific surface structure is more favorable to initiate the formation of CaP. In the 

next step, strongly water-repellant coatings were prepared by the spontaneous 

formation of CaP followed by hydrophobization with a perfluorophosphate surfactant. 

The superhydrophobicity could be explained by the morphology of the coating, where 

the solid-liquid contact was minimized. 

  In the second part of the thesis, well-ordered nanopatterns of TiO2 on silica or gold 

substrates were prepared with the evaporation induced self-assembly (EISA) 

technique. The material consists of a very thin layer of titania, where the substrate is 

accessible through hexagonally ordered nanocraters aligned perpendicularly to the 

surface. Such nanopatterned surfaces are ideal model systems for detailed wettability 

studies, since the titania network and the substrate (SiO2 or Au) can be selectively 

functionalized with various organic molecules. The influence of the geometry (pore 

diameter, wall thickness, layer thickness) and hydrophilic-hydrophobic contrast on the 

wetting properties were studied. The experimental results could successfully be 

modeled with existing theories for the wetting of rough and heterogeneous surfaces.
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1. INTRODUCTION AND OUTLINE 

 

  Wettability, i.e. how liquids behave on solids, is an important phenomenon in nature 

as well as in many technical applications. Wetting phenomena play an important role 

in for instance painting, coating, and printing industries, or when designing 

windshields, waterproof clothing, cosmetics etc.
1
 On high-energy surfaces, most 

liquid droplets spread out on the surface in the form of a thin liquid film, while on a 

low-energy surface partial wetting occurs and most droplets form a spherical cap on 

the surface. The liquid/fluid interface meets the solid surface at an angle , called the 

contact angle, which is the measureable characteristic of a solid/liquid interface. A 

solid surface is defined as hydrophobic, when the contact angle of a water droplet is > 

90°, or hydrophilic, when the contact angle is < 90°. By chemically modifying a flat 

surface, a maximum water contact angle of roughly 120° can be achieved. To achieve 

higher apparent contact angles, one needs to modify the structure of the surface.
2
 This 

is something that nature effectively has taken advantage of. One classical example is 

the Lotus leaf, which exhibits so-called self-cleaning properties, seen as the removal 

of loosely adhered dust and dirt particles from the surface by rolling water droplets.
3
 

The rough surface structure together with the low surface energy results in the high 

water-repellency, also called superhydrophobicity.
1, 4

 Other examples of 

superhydrophobic surfaces in nature are the legs of the water strider, the wings of 

butterflies, and duck feathers. With the inspiration from nature, during the last decade 

a lot of effort has been made in designing artificial superhydrophobic surfaces for 

various applications. A large number of different routes and materials have been used 

for the fabrication of such surfaces.
4
 Properties like strength, toughness, hardness, 

flexibility, optical transparenncy, electrical conductivity etc. may be desired of the 

final material, and must therefore be taken into account when deciding on a suitable 

method of preparation. 
4
 

  The surface structure can also be used to improve the wettability of a surface. For a 

hydrophilic surface ( < 90°), roughening of the surface structure generally leads to 

an improved wettability. This is one of the bases for the creation of superhydrophilic 

surfaces, which means that a water droplet fully spreads and forms a film on the 

surface.
5
 If the surface is tilted, the liquid film flows off the surface, thus leading to 

another type of self-cleaning process.
2
 The formation of a thin film of water is for 

example desired in the designing of antifogging surfaces.
6
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  Titanium dioxide (TiO2) is one of the most widely studied materials in relation to 

self-cleaning because of its photocatalytic activity. 
7, 8

 When TiO2 is subjected to 

irradiation with energy greater than its band gap (3.0-3.2 eV), it has the ability to 

oxidize various organic compounds.
9, 10

 Additionally, TiO2 becomes strongly 

hydrophilic when subjected to UV irradiation, which has a positive effect on surface 

cleanability.
8
 TiO2 coatings are also biocompatible, and can therefore be used as 

dental or orthopedic implants.
11

 Furthermore, TiO2 coatings have both high 

mechanical and chemical stability and are fairly easy to prepare using various 

techniques. The TiO2-based surfaces studied in this thesis were prepared using sol-gel 

dip-coating technology. 

  The outline of this doctoral thesis is to first review the literature on the wetting of 

rough and heterogeneous surfaces. In the “Materials and methods” section the 

synthesis of the TiO2-based coatings is generally described. The most central surface 

characterization techniques are also described more in detail. The “Results and 

discussion” section can roughly be divided into two parts: TiO2 surfaces with random 

heterogeneity (Paper I-III) and Nanopatterned TiO2 surfaces (Paper IV-VI). The use 

of topographical roughness parameters for describing a series of randomly 

heterogeneous TiO2 surfaces in three dimensions is demonstrated in Paper I. The 

combined effect of surface topography and surface chemistry of a series of TiO2 

coatings on calcium phosphate precipitation kinetics was further investigated in Paper 

II. The understanding of what parameters that control the formation of inorganic 

deposits is important within several fields. For example, in many industrial processes 

the formation of inorganic scales is a severe problem, while in bioapplications rapid 

nucleation and growth of calcium phosphates is often desired.
12

 

  In paper III, a simple bioinspired approach was utilized to prepare a 

superhydrophobic coating. The coating is self-organizing through the spontaneous 

formation of calcium phosphate on a TiO2 substrate. The coating was hydrophobized 

with a perfluorophosphate surfactant.  

  Papers IV-VI deal with the preparation and characterization of well-ordered 

nanoperforated layers of TiO2 on silicon wafers or gold-coated wafers. The material 

consists of a very thin layer of titania, where the substrate is accessible through 

hexagonally ordered nanocraters aligned perpendicularly to the surface. Such 

nanopatterned surfaces are ideal model systems for detailed wettability studies, since 

the titania network and the substrate (SiO2 or Au) can be selectively functionalized 
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with various organic molecules. The wettability of selectively functionalized TiO2 on 

SiO2 and TiO2 on Au nanopatterns was studied in papers V and VI. The experimental 

results were also compared with existing theories for the wetting of rough and 

heterogeneous surfaces. The understanding of the wettability of nanostructured 

materials is important for applications within fields like microfluidics
13, 14

 and 

sensing.
15
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2. BASIC WETTING MODELS                                                                                   

 

2.1. Ideal, smooth surfaces 

 

2.1.1. The Young equation 

 

  The most common way to determine the surface energy of a solid surface is by 

measuring the contact angle, , of a probe liquid with known properties. The contact 

angle is defined as the angle between the tangent to the liquid-vapor interface and the 

tangent to the solid interface at the contact line between the three phases (Figure 1). 

The correlation between the contact angle and the interfacial tensions is known as the 

Young equation.
16

 

 

SLYLVSV cos    (1) 

 

where SV is the solid-vapor interfacial energy, LV the liquid-vapor interfacial tension, 

and SL the solid-liquid interfacial energy. This equation was developed for an ideal 

solid surface, which is defined as smooth, rigid, chemically homogeneous, insoluble, 

and non-reactive. The Young contact angle Y, is referred to as the ideal contact angle. 

For a real surface, the problem arises how to determine the Young contact angle.
17

 

This will be discussed in the next paragraph. 

B  B  

Y

LV

SL SV

 

Figure 1. A liquid droplet on an ideal, solid surface. 
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2.2. Rough and heterogeneous surfaces  

 

2.2.1. Contact angle hysteresis 

 

  A real, non-ideal surface is always to some extent rough and/or chemically 

heterogeneous, and the measured static contact angle turns out not to be unique. There 

may actually exist a wide range of practically stable apparent static contact angles. 

The apparent contact angle is defined as the equilibrium contact angle that the liquid 

makes with the solid surface as observed macroscopically. If liquid is added to a 

droplet, the apparent contact angle increases until the contact line advances. The 

contact angle observed when the liquid front is just set in motion is referred to as the 

advancing contact angle ( A). Similarly, if liquid is withdrawn, the contact angle 

observed when the contact line is just to retract is defined as the receding contact 

angle ( R). The difference between the advancing and receding contact angles is 

known as contact angle hysteresis, and can sometimes be very large. The hysteresis is 

generally attributed to chemical heterogeneities and/or roughness. Even in the absence 

of such imperfections, nearly all surfaces exhibit measurable hysteresis. This inherent 

hysteresis arises from the interaction between the liquid and solid that was created 

during spreading. If R > 0, the liquid completely dewets the solid, causing adhesive 

failure. Alternatively, if R  0 the adhesion between the liquid and the solid is larger 

than the cohesion of the liquid, leading to drop rupture when the liquid front 

recedes.
18, 19

  

  Another way of measuring contact angle hysteresis is to tilt the substrate and set the 

liquid droplet in motion. The advancing contact angle is measured on the downhill 

side of the droplet just before the liquid front moves, while the receding contact angle 

is determined in the similar way, but on the uphill side.
20

  

 

2.2.2. The Wenzel model 

 

  For a rough surface, the apparent contact angle may significantly differ from the 

actual contact angle, located locally on the surface. The actual contact angle, the 

Young contact angle, is the one needed for the assessment of the surface energy of the 
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solid.  In 1936, Wenzel
21

 developed the following equation for the relationship 

between the apparent ( A) and the Young contact angle ( Y) 

 

YA r coscos     (2) 

 

where r is the roughness ratio between the actual and the projected surface area. The 

Wenzel model is based on the assumption that the liquid completely wets the grooves 

of the rough surface (Figure 2). The equation thus states that a rough hydrophilic 

surface ( Y < 90
o
) should appear more hydrophilic, and a rough hydrophobic surface 

( Y > 90
o
) more hydrophobic than a smooth surface with the same chemical 

composition.  

 

 

Figure 2. A liquid droplet in the Wenzel state. 

 

 

2.2.3. The Cassie model 

 

  For a chemically heterogeneous surface, the surface energy varies from one location 

to another, leading to a different value for the Young contact angle at various 

locations on the surface. In the case of a flat, chemically heterogeneous surface, the 

wetting is typically described by applying the Cassie equation.
22

 For an ideally flat 

two-component surface the wetting is described by  

 

2211 coscoscos ffA     (3) 

 

where f1 and f2 are the area fractions of material 1 and 2, and 1 and  are the Young 

contact angles on pure materials 1 and 2, respectively. A schematic picture of this 
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case is given in Figure 3. When the chemical heterogeneities are of molecular size, 

another model has been suggested to better describe the wetting: 

 

2

22

2

11

2 )cos1()cos1()cos1( ffA   (4) 

 

This expression is known as the Israelachvili equation. 
23

 

 

 

Figure 3. A liquid droplet in the Cassie state. 

 

  A rough hydrophilic surface can be considered as a kind of porous material, and the 

liquid can penetrate the grooves of the surface. A droplet then finds itself on a 

composite surface of solid and liquid, with a liquid film ahead of the droplet. The top 

of the textured surface remains dry because of the partial wetting regime (Figure 4). 

The Cassie equation for this particular case is written 

    

SSSA ff 1coscos    (5) 

 

where fS is the fraction of solid material and S is the contact angle of pure solid 

material.
24, 25

 This model is later in the thesis referred to as the Bico model. Complete 

wetting of the substrate is only achieved if the substrate itself becomes wettable (  = 

0). 

 

 

Figure 4. A liquid film is formed ahead of the droplet, when the contact angle is 

between 0 and a critical value C. 
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  The critical contact angle C, that determines whether the wetting is described by the 

Wenzel equation (Eq.2) or Eq.5, is given by 

 

S

S

C
fr

f1
cos    (6) 

 

If the value of the contact angle lies between 0° and C, the wetting is described by 

Eq.5, i.e. a liquid film penetrates the texture and the droplet rests on a solid/liquid 

composite surface. On the other hand, if the value of contact angle lies between C and 

90°, the solid remains dry ahead of the droplet, and the wetting is described by the 

Wenzel equation.
24, 25

  

  In the case of a rough hydrophobic surface, air bubbles may be trapped in the voids 

of the rough surface ( 2 = 180 ), and since f1 + f2 = 1, the Cassie equation can be 

written as  

 

)1(cos1cos SSA f    (7) 

 

where fS is the fraction solid material and S is the contact angle of the solid material. 

This formalism is generally referred to as the Cassie-Baxter equation.
26

 In this case, a 

composite surface of solid/vapor exists below the droplet. This type of wetting is 

schematically described in Figure 5. 

 

 

Figure 5. A liquid droplet in the Cassie-Baxter state. 

 

The criterion for air-pockets to form is given by the relation  
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S

S

fr

f 1
cos    (8) 

 

For a Young contact angle between 90° and a threshold value given by Eq.8, air 

pockets should be metastable.
24

 However, jagged profiles and slope discontinuities 

increase the possibility of air being trapped, and therefore increase the hydrophobic 

properties of a surface.
27

 The influence of the surface geometry on the entrapment of 

air was further demonstrated by Hoffman et al.
28

 By using rotating glass plates, the 

transition from complete to partial filling of voids as a function of changing shape of 

the solid surfaces was demonstrated. The entrapment of air into the grooves of a rough 

surface is the key when producing superhydrophobic surfaces. 

  As the Wenzel approach is only valid for homogeneous surfaces, and the Cassie 

approach is only valid for smooth surfaces, a combination of both equations is needed 

for a correct description of a rough multi-component surface in the wettable state. For 

a two-component surface, the roughness of both components of the surface can be 

accounted for by introducing the parameters r1 and r2 describing the respective ratios 

between the real area of the rough surface divided by the projected two-dimensional 

areas, and introduce these into the Cassie equation, which then becomes 

 

22112

2211

22
1

2211

11 coscoscoscoscos FF
rfrf

rf

rfrf

rf
A        (9) 

  

where F1 + F2 = 1. This formalism is referred to as the Cassie-Wenzel equation in the 

following. 

 

2.2.4. Transition between Cassie-Baxter and Wenzel states 

 

  Several authors have shown that a liquid droplet can be in either a Wenzel or a 

Cassie-Baxter state on a rough hydrophobic surface, depending on how the droplet is 

formed. Bico et al.
29

 reported that a liquid droplet could be transferred from a Cassie-

Baxter state to a Wenzel state when pressed physically. Patankar and co-workers 

showed that the contact angle of a water droplet that was gently deposited on a rough 
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hydrophobic surface could be modeled with the Cassie-Baxter equation.
30, 31

 When the 

droplet was released from some height on the same surface, the water contact angle 

was considerably lower. These studies suggest that transitions between two energy 

states can occur, and that the activation energy of the transition can be fairly low. The 

geometric parameters of the surface determine the global minimum energy state.
32

  

 

2.2.5. Validity of the Wenzel and Cassie models 

 

  Despite the fact that the theoretical values for the contact angles derived from either 

the Cassie or the Wenzel equations are often in good agreement with experimentally 

determined contact angles, this is not always the case. For example, Extrand
33

 showed 

that the contact angle measured for a heterogeneous surface cannot be described using 

the Cassie formalism when the size of the droplet is comparable to the length scale of 

heterogeneity of the surface, and suggested that the energy balance at the three phase 

contact line is the decisive parameter. Support for this view was also presented by 

Gao and McCarthy
34

, and they suggested that the Wenzel and Cassie equations are 

valid only to the extent that the structure of the contact area reflects the ground state 

energies of contact lines and the transition states between them. The contact line 

theory was also supported in a very recent theoretical study on chemically 

heterogeneous surfaces.
35

  

  Several authors have discussed under what conditions the Cassie and Wenzel models 

are applicable. McHale
36

 emphasized that the original Cassie surface fraction and 

Wenzel roughness parameter should be viewed as global properties of the surface 

rather than properties of the contact area below the droplet. Nosonovsky
37

 used a 

surface energy approach to show that the original Wenzel and Cassie equations are 

only valid for uniformly rough and heterogeneous surfaces. He suggested that 

generalized Wenzel and Cassie equations should be applied for nonuniformly rough 

surfaces. Several studies have shown that the Wenzel and Cassie equations are valid 

only when the scale of the roughness/heterogeneity is small compared to the length of 

the three phase contact line.
38-40

 Marmur
41

 emphasized that both the Wenzel and the 

Cassie equations are approximations, and that their validity increases when the drop 

size becomes larger with respect to the scale of chemical heterogeneity and roughness.  
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2.3. Surface free energy determination 

 

  A major problem arises when trying to determine the surface free energy of a solid 

with Young’s equation (Eq.1). The solid-liquid interfacial energy SL is unknown 

since it cannot be measured directly. The relationship between SL and the solid 

surface energy SV and liquid surface tension LV is given by the Girifalco-Good 

equation
42, 43

 

 

   LVSVLVSVSL 2    (10) 

 

where the interaction parameter  is a function of the surface energies. The combining 

of equation 10 with Young’s equation eliminates SL giving 

 

   LVSVYLV 2)cos1(    (11) 

 

However, the interaction parameter  still remains unknown. Several relationships of 

 have been suggested. Owens and Wendt
44

 used geometric averaging giving 

 

   p

LV

p

SV

d

LV

d

SVYLV 22)cos1(   (12) 

 

Wu
45

 used harmonic mean averaging giving 

    

   
)(

)(
4

)(

)(
4)cos1(

p

LV

p

SV

p

LV

p

SV

d

LV

d

SV

d

LV

d

SV

YLV  (13) 

 

Both Eq.12 and Eq.13 splits the surface energy to a dispersion component (d) and a 

polar component (p) according to 

 

     
pd
    (14) 

 

The solution of Eq.12 and Eq.13 requires the contact angle of at least two liquids with 

known surface tension components. van Oss, Chaudhury, and Good
46

 (vOCG) split 
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the surface energy into a Litfshitz-van der Waals component and an acid-base 

component according to 

 

     ABLW    (15) 

 

The LW-component (
LW

) consists of London-, Keesom-, and Debye forces, while the 

acid-base component consist of Lewis acid (
+
) and Lewis base (

-
) interactions, i.e. 

hydrogen bonding. These are related to the acid-base component (
AB

) by 

 

     2AB    (16) 

 

Eq.11 according to the vOCG model then becomes 

 

  LVSVLVSV

LW

LV

LW

SVYLV 222)cos1(  (17) 

 

Eq.17 requires the contact angle of at least three liquids with known surface tension 

components in order to solve
LW

SV , SV , and SV . van Oss, Chaudhury and Good 

divided the acid-base contribution of water into two equal (+ and -) contributions 

(25.5 mN m
-1

). However, this ratio has appeared to give exaggerated basicity for most 

solids. Therefore the choice of values of the surface tension components of the probe 

liquids has been under scientific debate. In order to better reflect the true balance 

between the acid-base characters of water, a strongly weighed acid contribution has 

been suggested on experimental and theoretical grounds by a number of authors.
47-50

 

Much care must also be taken in choosing the proper probe liquids to avoid erroneous 

results due to mathematical reasons. The difference of the ratios of the basic and 

acidic parts of the surface tension of the probe liquids should be large in order to 

obtain reliable results.
51, 52

 



Wetting of Chemically Heterogeneous Surfaces 

13 

3. WETTING OF CHEMICALLY HETEROGENEOUS SURFACES 

 

  Micro and nanopatterned surfaces have recently attracted a great deal of interest 

because of prospects for their wide range of applications, including 

microelectronics
53

, microfluidics
13, 14

 and sensing
15

 A wide range of different 

techniques have been used to pattern surfaces, as described in several reviews.
53-55

 

The wetting properties of patterned surfaces are immensely important in the 

preparation of microfluidic devices or for the specific targeting of molecules within 

bioapplications.  

  One of the most common methods to produce a flat, chemically heterogeneous 

surface is to use self-assembled monolayers (SAMs) together with some type of soft 

lithography technique. Patterning of SAMs has for example been carried out by 

microcontact printing (µCP).
56-58

 In µCP an elastomeric stamp (typically PDMS) is 

wetted with an “ink”, and brought into contact with a flat surface, generating a pattern 

of SAM. This technique was applied to prepare patterned surfaces in a wetting study 

by Drelich et al.
59

 A hydrophobic alkanethiol was assembled on a gold layer with a 

PDMS stamp, after which a carboxyl-terminated thiol was assembled to create a 

pattern with well-controlled free energies. Surfaces with alternating parallel 

hydrophilic (3 µm) and hydrophobic (2.5 µm) stripes and 3 µm  3µm hydrophilic 

squares in a hydrophobic field was created in this way. Experimental water contact 

angles were found to agree with those calculated from the Cassie equation (Eq. 3) 

when the stripes were tangential to the drop edge for the “parallel stripes” sample or 

when the drop edge was in the hydrophobic field for the “square” sample. However, 

when the stripes were normal to the edge for the “parallel stripes” sample or when the 

drop crossed the “square” pattern sample, the experimentally determined contact 

angles were much lower than those predicted by the Cassie equation. The authors 

attributed the divergence to corrugation of the contact line due to contribution of the 

line tension, and derived a modified Cassie equation that took this effect into 

consideration. In a later study from the same group on the same type of alternating 

parallel stripes surface the authors found that the Cassie equation failed to predict the 

measured contact angle for liquids that have a strong affinity for the hydrophilic 

stripes.
60

 Wetting anisotropy was also found on micropatterned stripes of 

fluoroalkylsilane monolayers prepared by UV photolithography.
61

 The authors 
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suggested that the anisotropy is due to the difference in the energy barrier of wetting 

between a line and its orthogonal directions, not the line tension or the asperity. 

  Another commonly applied method to create chemically heterogeneous surfaces is 

photolithography. Stevens et al.
62

 prepared patterned TiO2 surfaces by irradiating 

titania wafers with visible light to make them hydrophobic. Subsequently they were 

irradiated with UV light through photomasks consisting of differently spaced holes 

(10 µm in diameter) to make the holes hydrophilic. Advancing water contact angles 

on these surfaces gave good agreement with the Cassie equation. The same group 

prepared later SiO2-on-TiO2 patterns by a combination of standard photolithography 

and plasma-enhanced chemical vapor deposition.
63

 A photoresist was spincoated on a 

titania wafer and irradiated with UV-light through a photomask. A layer of silica was 

introduced through plasma-enhanced chemical vapor deposition whereafter the 

photoresist was removed by thermal lift-off. The resulting surface consisted of SiO2 

patches (10 µm in diameter) in a TiO2 network. The surface was further 

hydrophobized with a self-assembled monolayer of fluoroalkylsilane (FAS) and 

exposed to UV-light. The FAS layer was locally oxidized on the titania, resulting in a 

patterned surface with a high wettability contrast. Later, the effect of chemical defects 

on the wetting hysteresis on similar surfaces was investigated.
64

 For a hydrophobic 

surface with high-energy defects, it was observed that the advancing contact angle 

departed from the Cassie theory, while the receding was in close agreement. 

Conversely, for low-energy defects in a hydrophilic network, only the receding 

measurements showed significant departure from theory.  

  Experimental studies of wetting on chemically heterogeneous surfaces have mainly 

been restricted to surfaces where the length scale of the heterogeneities is on the 

micrometer or several hundred nanometers level. This is mainly because of the 

experimental difficulty in preparing homogeneous patterns on the sub-100 nm length 

scale. For example, with microcontact printing or standard photolithography it is very 

challenging to produce patterns of sub-100 nm size. Dip-pen lithography
65

 is an 

alternative method to pattern SAMs on a surface. In this technique, for example 

alkanethiol molecules are deposited on a gold surface by an AFM tip, which allows 

patterning down to nanometer size. However, this method is tedious and does not 

allow patterning of large macroscopic areas. Nanopatterned surfaces have been 

achieved by self-assembly approaches that were prematurely discontinued in order to 

yield incomplete surface coverage, thus resulting in patterned surfaces.
66

 Wetting 
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studies of nanopatterned surfaces prepared by spontaneous adsorption of 

octadecylphosphonic acid (OPA) on freshly cleaved mica gave good agreement with 

Cassie type of wetting.
67

 However, such approaches often suffer from inhomogeneous 

deposition, which can make it difficult to experimentally determine fractional areas 

with the high accuracy needed for quantitative theoretical analysis. Other methods to 

fabricate nanopatterned surfaces include the use of colloidal lithography. Titania 

pillars of 50-90 nm in diameter and 20 nm in height were prepared on silicon wafers 

by the use of colloidal polystyrene particles as a mask during etching.
15

 These 

materials were further used in biological sensing applications. Recently, the wetting 

behaviour of nanopatterned surfaces was reported, where nanodots of Au on SiOx 

films were prepared by ion-milling.
68

 The Au nanodots were further hydrophobically 

functionalized by immersion into a solution of thiol. This is one of the few wetting 

studies reported, where nanopatterned surfaces has been studied. The wetting of these 

materials followed Cassie-Wenzel type of wetting. 

  In addition to experimental wetting studies on chemically patterned surfaces, several 

theoretical studies have been performed.
39, 40, 69

  They all have in common that a 

successful modelling with the Cassie equation requires that the size of the 

heterogeneities should be small compared to the size of the liquid droplet.  
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4. SUPERHYDROPHOBIC SURFACES 

 

  The concept superhydrophobicity has been a known phenomenon since the 1940s, 

after the novel work of Cassie and Baxter.
26

 The interest in this field has expanded 

greatly during the last decade, much because of the wide range of applications, e.g. 

self-cleaning surfaces. It is well known that superhydrophobicity (strong water-

repellency) is achieved through a combination of low surface energy and roughness. 

Ever since the superhydrophobic, self-cleaning properties of the Lotus leaf was 

reported in the late 1990s
3
, there have been many attempts to synthetically produce 

materials with similar water repelling properties, employing methods such as 

solidification of alkylketene dimers
70

, phase separation
71, 72

, plasma polymerization
73

, 

photolithography
74

, electrochemical deposition
75

, and chemical vapor deposition
76

 

Different methods to prepare superhydrophobic surfaces were recently reviewed.
4
  

  A prerequisite for a surface to be superhydrophobic is the possibility to trap air 

within the porous structure. Hence the wetting of superhydrophobic surfaces has been 

successfully modeled with the Cassie-Baxter equation (Equation 7). In addition to a 

high static contact angle, a small contact angle hysteresis is essential for a surface to 

be truly superhydrophobic, as a small hysteresis leads to that a water droplet easily 

rolls off a surface. This roll-off behavior that Lotus leaves exhibits has been explained 

by the observed roughness on both micro- and nanometer length scale. This 

hierarchical roughness has shown to decrease the contact angle hysteresis, by 

lowering the transition states between metastable states.
77

 There have been several 

attempts to mimic this two-fold roughness.
78, 79

 Gao and McCarthy reported a strongly 

hydrophobic surface with virtually no contact angle hysteresis, which was prepared by 

treating silicon wafers with methyltrichlorosilane.
80

   

  In recent years much effort has been made in explaining the mechanisms of 

superhydrophobic wetting, including contact angle hysteresis and wetting transitions 

between the Cassie-Baxter and Wenzel states. Many of these studies were recently 

collected in a review about superhydrophobic wetting.
1
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5. INFLUENCE OF SURFACE ROUGHNESS AND SURFACE FREE 

ENERGY ON CALCIUM PHOSPHATE PRECIPITATION 

 

  The roughness and free energy of the surface are important factors in heterogeneous 

precipitation of minerals. In many industrial applications, it is important to prevent the 

formation of mineral scales. For example, in cooling water technology, desalination, 

paper industry and oil production, scale formation is a serious problem. The surface 

precipitation (i.e. heterogeneous nucleation) of carbonates, sulfates, phosphates and 

oxalates of alkaline earth metals is an often encountered problem.
12

 On the other hand, 

rapid nucleation of calcium phosphates may be desired on dental or orthopedic 

implants in order to enhance their integration to bone tissue, whereas undesirable 

nucleation occurring in vascular system may result in arteriosclerosis. Thus, control 

over biomineralization i.e. heterogeneous nucleation of minerals during tissue 

generation, is essential in modern medicine for developing new biomaterials as well 

as preventing undesired calcifications. Therefore it is of vital importance to 

understand the relation between the physicochemical properties of the surface and the 

heterogeneous nucleation and growth of inorganic deposits.
12, 81-83

  

  A large number of studies concerning the heterogeneous nucleation and growth of 

calcium phosphate (CaP) have been reported. Most of the studies have involved 

calcium phosphate growth on powders. Kinetic studies of nucleation and growth on 

dispersed particles and macromolecules from a wide range of supersaturated solutions 

have been performed using the constant composition method.
84-89

 Surface 

precipitation of calcium phosphate on planar surfaces has mainly been studied from 

solutions with a relatively high degree of supersaturation.
90-94

 Heterogeneous 

nucleation of calcium phosphate is generally believed to be initiated by the adsorption 

of calcium ions onto negatively charged surface sites.
86, 87, 92, 95

 TiO2 surfaces are good 

model surfaces for such studies in the sense that the isoelectric point (IEP) of titania is 

about 6, for both anatase and rutile, which means that the surface carries a net 

negative charge in aqueous solutions at pH > 6.
95

 Most CaP precipitation studies 

reported have been carried out at pH values where the TiO2 is negatively charged. 

Furthermore, the solubility of TiO2 is low, which makes the interpretation of the 

results more straightforward. A fast nucleation and growth of calcium phosphate on 

titania has previously been associated with a high Lewis base surface tension 

component of the substrate.
82, 96

 The surface topography at the nanometer level has 

also been shown to influence the calcium phosphate formation in simulated body 
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fluid. This phenomenon was related to the charge density and the topographical 

matching of the titania surface and CaP crystal size found in bone.
97-99

 Peltola et al. 

suggested that an average distance (15-50 nm) distribution between surface 

heterogeneities favored calcium phosphate precipitation.
98
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6. AIM OF THE STUDY 

 

  The main aim of the thesis was to study the influence of surface topography and 

surface chemistry on the wetting properties of TiO2-based ceramic coatings. In the 

first part of the study (Papers I-III), pure one component TiO2 surfaces were studied. 

The surfaces were prepared using sol-gel dip-coating technology. The aim was to 

create titania surfaces with various surface topographies by varying the synthesis 

parameters, e.g. calcination temperature, or with the addition of additives in the sol 

prior to film preparation. Since the topography might have a large influence on the 

wettability of a surface, a thorough three-dimensional characterization of the surface 

is essential. In paper I, the aim was to use standard topographical roughness 

parameters to describe the topographical characteristics of a series of titania surfaces. 

Furthermore, the effect of topography on the surface wettability of water was studied. 

The topographical parameters were calculated from three-dimensional image data 

captured by atomic force microscopy (AFM). The combined effect of surface 

topography and surface chemistry of TiO2 on calcium phosphate precipitation kinetics 

were investigated in paper II. The aim was to determine which surface topographical 

characteristics and surface chemical properties that either enhance or slow-down the 

precipitation kinetics of calcium phosphate.  

  In paper III the aim was to prepare a superhydrophobic coating by the use of a 

bioinspired bottom-up approach. The idea was to utilize the spontaneous formation of 

calcium phosphate on a TiO2 substrate, followed by hydrophobization through self-

assembly.  

  In the second part of the study (Papers IV-VI), well-ordered nanoperforated layers of 

TiO2 on silicon wafers or gold-coated wafers were prepared and characterized. The 

open pore structure allows selective functionalization of the TiO2 network and the 

substrate (SiO2 or Au) through self-assembly of organic molecules. The aim was to 

study how the geometrical parameters (pore diameter, wall thickness, layer thickness) 

and hydrophilic-hydrophobic contrast on the nanometer length scale affects the 

wetting properties of these materials. The high homogeneity both in terms of the 

patterning as well as the thickness makes it possible to experimentally determine the 

important parameters needed for the modeling of the wetting according to existing 

theories for the wetting of rough and heterogeneous surfaces. Despite the large 

number of publications on the wetting of rough and heterogeneous surfaces, the 
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number of wetting studies in the literature on surfaces with heterogeneities on the 

nanometer length scale is quite limited. The nanopatterned surfaces presented in the 

thesis are ideal model surfaces for wetting studies of nanostructured materials. 
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7. MATERIALS AND METHODS 

 

7.1. Sol-Gel Synthesis of TiO2 coatings  

 

  Sol-gel technology enables the production of novel nanomaterials with varying 

morphological and chemical properties. 
100

 Both organic (metal oxides) and inorganic 

(salts) can be used as building blocks in the sol-gel process. The precursor is 

polymerized through hydrolysis and condensation reactions, eventually ending up in 

the formation of a gel. The final ceramic structure is obtained after drying and/or 

calcination. Several process parameters (pH, temperature, concentration, aging time) 

and additives (templates of various kinds and amounts) may be utilized to tune the 

properties of the end product. In the preparation of sol-gel derived coatings by dip-

coating, the substrates are immersed into a dilute sol, and the gel-like coating is 

formed during substrate withdrawal as a result of solvent evaporation and drying. 

 

7.1.1. Preparation of nonporous and porous TiO2 coatings  

 

  The nonporous titania coatings in papers I-III were prepared by the sol-gel dip-

coating technique as described previously
97, 101, 102

, but with slight modifications. 

Briefly, the sol was prepared by mixing tetraisopropyl orthotitanate 

[Ti(OCH(CH3)2)4], ethanol, ethylene glycol monoethyl ether (C2H5OCH2CH2OH), de-

ionized water and hydrochloric acid at 0
o
C with vigorous stirring. The clear sol was 

kept at 0
o
C during aging and the dip-coating process. Microscope glass slides (Paper I 

and II) and commercially pure titanium (Paper II and III) were used as substrate 

material for the coatings. The dip-coated substrates were calcined at different 

temperatures and times to obtain morphologically different surfaces. For the 

preparation of the porous samples, various amounts of polyethylene glycol (PEG) and 

cetyltrimethylammonium bromide (CTAB) were added to the clear sol which was 

aged at 40
o
C prior to dip-coating. During the dipping process PEG, CTAB and the Ti-

sol phase separate and a porous structure is formed after calcination of the sample.  
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7.1.2. Preparation of nanopatterned surfaces with the EISA technique  

 

  Mesoporous, thin layers of TiO2 have been developed using the evaporation induced 

self-assembly (EISA) technique
103-106

, which is related to the surfactant templating 

technique first reported by the Mobil Oil company in 1992.
107

 This technique allows 

preparation of thin, nanopatterned inorganic films, by using surfactants as templates in 

the presence of the metal oxide precursor. By varying the size of the template, the 

diameter of the pores can be tuned.  

  Thin layers of porous TiO2 were prepared, by dip-coating the substrate into a 

solution containing water, ethanol, tetrahydrofuran (THF), the titania precursor 

(TiCl4), and block copolymers as the structure directing agent. This deposition 

technique offers the possibility to drastically reduce the layer thickness by increasing 

the initial solution dilution and by decreasing the quantity of solution to be 

evaporated. Starting from more and more diluted solutions, one must eventually end 

up with a homogeneous layer of TiO2 precursors, bearing a monolayer of periodically 

dispersed micelles, on the substrate surface. The hybrid monolayer was then heat-

treated to eliminate the organic template, which left a network of TiO2, with the 

substrate accessible through the nanometer sized craters. A scheme describing the 

synthesis procedure is given in Figure 6. TiO2 layers with a thickness between 2 and 

15 nm and with pore dimensions ranging from roughly 10 to 35 nm were prepared. 

Either silicon wafers or gold-coated silicon wafers were used as substrates. 
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Figure 6. A schematic overview of the formation of nanopatterned layers. 

 

  In paper IV and V EOn-b-[(E)B]m (poly(ethylene oxide)-block-poly(ethylene-co-

butylene) was used as the structure directing agent, while in paper VI a PB-b-PEO 

block copolymer (polybutadiene-b-polyethyleneoxide, P2325-BdEO, MWPB = 32 000 

g mol
-1

, MWPEO = 43 500 g mol
-1

) was used. Nonporous TiO2 reference films were 

prepared in a similar way as the porous films but in the absence of the block 

copolymer. Gold substrates were prepared by vapor deposition on silicon wafers. 

 

 

7.1.3. Selective functionalization of nanopatterned surfaces  

 

  Since the TiO2 network and the crater bottom (SiO2 or Au) have different chemistry, 

these can be selectively functionalized with self-assembled monolayers of various 

types. In paper IV, the selective functionalization was carried out by attaching two 

hydrophobic molecules to the TiO2 and SiO2 surface, respectively. A perfluorinated 

function, Zonyl FSE (F(CF2)n(CH2)2)2PO4NH4, n = 3-8, Sigma-Aldrich/Du Pont,) was 

bound to TiO2 through the phosphonate group, while vinyl-pentafluorostyrene-

diethoxy-silane, VPDS was bound to the SiO2 surface through the diethoxysilane 

group. The zonyl functionalization was carried out by immersing the nanopatterned 

film into an aqueous solution of Zonyl (~0.1 %) for 24 h at room temperature. VPDS 
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grafting was performed by leaving the sample for 24 h in a sealed flask containing a 

saturated vapor of VPDS. After both grafting steps the samples were washed with 

water and ethanol. Both grafting processes were completed by a thermal curing at 

130°C for 12 h. A schematic picture of the selective functionalization is shown in 

Figure 7. In paper V, Zonyl FSE was attached to titania while silica or gold was left 

unfunctionalized. In paper VI, a fluoroalkylsilane, FAS (CF3(CF2)5(CH2)2Si(OC2H5)3 

Sigma-Aldrich) was bound to both TiO2 and SiO2, by chemical vapor deposition for 

roughly 20 hours. The sample was rinsed with water after functionalization. Chemical 

patterning was induced by irradiation of the sample with UV light (  = 254 nm), since 

the FAS layer oxidizes much faster on titania than on silica. A schematic description 

of the UV-photopatterning process on the TiO2@SiO2 nanopattern is presented in 

Figure 8. 

 

Figure 7. Scheme of the selective funtionalization of a nanoperforated TiO2 layer on a 

SiO2 substrate. 
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Figure 8. Schematic representation of the photocatalytic decomposition on the 

TiO2@SiO2 nanopattern. 

 

 

7.2. Precipitation of calcium phosphate on sol-gel derived TiO2 coatings  

 

  Supersaturated calcium phosphate solution was prepared by dissolving reagent grade 

chemicals of NaCl, CaCl2 2 H2O (Fluka) and Na2HPO4 (Fluka) into distilled, ion 

exchanged water. The molar concentration of calcium was 3.0 mM, phosphate 1.2 

mM and sodium chloride 150 mM. The pH was buffered at 7.4 with 

tris(hydroxymethyl)aminomethane and 1 M HCl. The solutions were stable for a 

period of at least 3 weeks. The solution was filtered through 0.22 µm filters before 

use. The sol-gel prepared titania coatings were cut into pieces having dimensions of 1 

 1 cm
2
. The coatings were ultrasonically cleaned in acetone, ethanol and water for 5 

+ 5 + 5 minutes. The films were then dried in an oven at 40 C for about 4 hours 

before immersion in 20 ml of supersaturated calcium phosphate solution to give a 

surface area to solution volume ratio of 0.1. The solutions were kept in polyethylene 

bottles covered with a tight lid and placed in a shaking water bath at 25 C for a period 

up to 14 days. At the end of the experiment the coatings were washed with distilled, 

ion exchanged water and dried at room temperature prior to characterization. 
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7.2.1. Hydrophobic functionalization of calcium phosphate coatings 

 

  In the preparation of the calcium phosphate coatings for the wetting studies in paper 

III, a higher degree of supersaturation of the calcium phosphate solution was utilized, 

in order to increase the crystallization rate. The molar concentration of calcium was 

3.75 mM, phosphate 1.5 mM (that is 1.5 times the concentration of calcium and 

phosphate in simulated body fluid (SBF)). The sol-gel prepared titania coatings were 

irradiated with a low-pressure UV lamp for about 1 hour before immersion in the 

supersaturated calcium phosphate solution. The solutions were kept in polyethylene 

bottles covered with a tight lid at 40 C for 5 days, after which an even layer of 

calcium phosphate had precipitated on the film. At the end of the experiment the 

coatings were washed with Milli Q water and dried at 40 C. Hydrophobic 

functionalization of the CaP layer was carried out by immersing the coating in a 0.1 

%wt solution of a commercial biodegradable perfluorophosphate surfactant Zonyl 

FSE (Sigma-Aldrich/Du Pont) in absolute ethanol for 24 hours at room temperature. 

According to the manufacturer the chemical structure of Zonyl is 

(F(CF2)n(CH2)2)2PO4NH4, where n = 3-8. The concentration of the 

perfluorophosphate surfactant was kept low in order to get surfactant attachment only 

on the CaP surface without formation of intercalated, lamellar structures. 

 

7.3. Surface Characterization Techniques 

 

  The most central characterization techniques used in the thesis are described more in 

detail in this chapter. Additional techniques that will be mentioned in the “Results and 

discussion” part are X-ray diffraction (XRD), ellipsometry, and cyclic voltammetry. 

 

7.3.1. Contact angle measurements 

 

  The most common way of determining contact angles is the sessile drop method. In 

this technique the profile of a drop suspended on a solid substrate is optically 

measured with a contact angle goniometer instrument. Modern instruments utilize 

high resolution cameras and computer analyses to determine the contact angle. 

Advancing and receding contact angles are generally measured by adding or removing 
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liquid from the droplet with a syringe. Another way of measuring dynamic contact 

angles is to tilt the substrate and thereby set the droplet in motion.  

  In this thesis a CAM 200 contact angle goniometer (KSV instruments Ltd., Helsinki, 

Finland), a Krüss contact angle goniometer, and a DAT 1100 Fibro System were used 

for determination of contact angles. A liquid droplet was deposited on the solid 

surface and the static contact angle was determined after a few seconds. Liquid was 

then added to the droplet and the advancing contact angle was determined just when 

the liquid front was set in motion. Subsequently, liquid was removed from the droplet 

and the receding contact angle was determined just when the liquid front was to 

retract. The contact angles were determined by the software supplied with the 

instrument.  

 

7.3.2. Atomic force microscopy (AFM) 

 

  Atomic force microscopy (AFM) belongs to the family of scanning probe 

microscopes (SPMs), which cover several related techniques for three-dimensional 

imaging and probing a surface. The precursor to AFM, Scanning Tunneling 

Microscope (STM), was invented by Binning et al.
108

 in 1982 and allowed imaging of 

conducting samples down to atomic resolution. In 1986, Binning, Quate and Gerber 

presented the atomic force microscope, which enabled imaging of insulator 

surfaces.
109

 With its wide range of applications, AFM is nowadays the dominating 

technique within scanning probe microscopy. The biggest advantage of AFM is that 

most samples can be investigated in their natural state, which is usually not the case 

by electron microscopy methods. 

  In AFM, a probe consisting of an extremely sharp tip connected to a flexible 

cantilever is scanned over the sample surface using xyz-piezoelectric scanners, which 

enables very precise and accurate movement. The cantilever is typically silicon or 

silicon nitride with a tip radius of curvature on the order of nanometers. The 

interactions between the tip and the surface causes cantilever bending, which is 

monitored with a laser beam and a photodiode detector. In contact mode AFM, the 

cantilever deflection is usually kept constant during scanning by a feedback loop 

between the z-piezo and the photodiode. Hence any change in cantilever deflection 

due to height differences on the sample surface is compensated by a corresponding 
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change in the z-piezo position. The feedback loop between the piezoelectric scanner 

and the photodiode thus generates a 3D image of the surface. 

  In tapping mode AFM
110

, the cantilever is driven to oscillate with predetermined 

amplitude at or close to its resonance frequency by a piezocrystal mounted in the 

cantilever holder. The tip is then brought closer to the surface until it begins to lightly 

tap the surface during each oscillating cycle. The amplitude is altered when the tip is 

approaching the surface due to tip-sample interactions. The relative height position of 

the cantilever with respect to the sample is therefore adjusted to maintain a constant 

set-point amplitude during scanning, thus providing the feedback signal for 

topographical imaging. Tapping mode AFM is more appropriate for imaging soft 

samples than contact mode AFM, which easily can cause surface damage. Another 

advantage with tapping mode is the possibility to detect changes in the phase angle of 

the cantilever probe interacting with the sample. Measured phase-shifts can produce 

high contrast phase-images, which can give information about material properties, 

such as stiffness, viscoelasticity, and chemical composition.  

  The AFM measurements in this thesis were performed in tapping mode in air with a 

Nanoscope IIIa and V microscope, (Veeco Instruments Inc., Santa Barbara, CA, 

USA). A SPIP image analysis program
111

 were utilized for the image analysis. 

 

Figure 9. A schematic view of the AFM setup. 
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7.3.2.1. Topographical roughness parameters 

 

  A set of roughness parameters has been developed and standardized for versatile 

characterization of various surface properties on three dimensions.
112

 The parameters 

are available e.g. in the commercial SPIP image analysis program
111

, that has been 

utilized in this thesis for the characterization of sol-gel derived samples. A list of 

selected roughness parameters are given in Table 1.  

  The Root-Mean-Square (RMS) roughness Sq is the most widely used amplitude 

roughness parameter that actually gives the standard deviation of height. The two 

other amplitude parameters in Table 1 tell about the extreme height differences within 

an image. Obviously, both the peak-peak and ten point height parameters are rather 

sensitive to noise, i.e. erratic maxima or minima, but the latter is more reliable in this 

sense because it is calculated as a mean height value of five local maxima and five 

local minima. For a normally behaving surface the value of Sz is ca. 10-20 % lower 

than Sy. A difference larger than this is a clear sign that the values should only be 

considered as indicative.  

  Two more useful amplitude distribution parameters are introduced. Surface 

skewness Ssk describes the asymmetry of the height distribution. A skewness value 

equal to 0 represents a Gaussian-like surface. Negative values of Ssk refer to a surface-

porous sample, i.e. the valleys dominate over the peak regimes. Respectively, the 

local maxima dominate over the valleys for Ssk > 0. Surface kurtosis Sku gives a 

measure for the sharpness of the surface height distribution. A Gaussian value for this 

parameter is 3.0, much smaller values indicate a very broad (heterogeneous) height 

distribution whereas values much larger than 3.0 refer to a surface with almost 

quantized height values. 

  The number of local maxima per unit area is given by the spatial parameter Sds. 

Besides the number also the form of the local maxima (summits) is of certain interest. 

Two hybrid parameters have been developed to especially describe the form of the 

summits: the mean summit curvature, Ssc, and the RMS value of the surface slope, 

Sdq.  

  Most of the above parameters contribute to the effective surface area: the absolute 

height difference, the number and form of local maxima, among others. A measure for 

the effective surface area with respect to the projected area is given in percents by the 

surface area ratio parameter Sdr.  
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  Considering the wetting/nonwetting characteristics of a surface, two more 

parameters should be included. The fluid (or gas) retention indexes indicate the ability 

of the surface for fluid/gas retention. For a more accurate evaluation the surface is 

subdivided into two regions in the height scale represented by two different 

parameters: the core fluid retention index Sci (the core zone = 20-95% of the total 

height scale calculated from the absolute minimum) and the valley fluid retention 

index Svi (the valley zone = 0-20% of the total height scale calculated from the 

absolute minimum). The Gaussian values for these parameters are 1.56 and 0.11, 

respectively. 

 

Table 1. List of selected roughness parameters 

Symbol Name Description 

Sq RMS roughness Standard deviation of the height values 

Sy Peak-peak height Height difference between highest and lowest 

pixel 

Sz Ten point height Average of five highest local maxima and five 

deepest local minima 

Ssk Skewness Height distribution asymmetry 

Sku Kurtosis Height distribution sharpness (peakedness) 

Sds Density of summits Number of local maxima per unit area 

Ssc Mean summit curvature Principal curvature of local maxima 

Sdq RMS slope RMS values of the surface slope  

Sdr Developed interfacial area 

ratio 

Ratio of the increment of the interfacial and 

projected area  

Sci Core fluid retention index Measure of fluid volume in core zone 

Svi Valley fluid retention index Measure of fluid volume in valley zone 

 

 

7.3.3. Scanning electron microscopy (SEM) 

 

  In electron microscopy an electron beam is used to form magnified images of 

specimens. The use of electrons instead of light to form images enables a huge 

improvement in resolution. The resolving power of a modern light microscope is 

roughly 200 nm, while for a scanning electron microscope it is 1-20 nm, depending on 

the instrument. The first electron microscopes were developed in the 1930s and 

1940s, while the first commercial SEM was introduced in the mid 1960s.
113
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  The electrons are usually generated by a tungsten-hairpin gun, and are accelerated 

through a column towards the sample in the sample chamber.  The acceleration is 

driven by a potential difference (normally 5-20 kV) between the tungsten filament and 

an anode, called accelerating voltage. Other types of electron sources are Lanthanum-

Hexaboride guns and Field-Emission guns, which offers the best resolution.  

  The beam of electrons is condensed by a condenser lens and focused to a very fine 

point on the sample by an objective lens. The beam passes through scanning coils 

located within the objective lens, which deflect the electron beam back and forth in a 

controlled pattern called a raster. In order for the electrons to hit the sample, both the 

column and the sample chamber must be kept under vacuum. 

  The most common imaging mode in SEM is the detection of low-energy secondary 

electrons. The secondary electrons are ejected from the conduction band of the 

specimen atoms by inelastic scattering interactions with incident electrons. Since the 

secondary electrons have such a low energy, only the electrons produced near the 

surface can escape to the detector. The small sample volume provides and image of 

high resolution. The electrons are usually detected by an Everhart-Thornley detector, 

which is a type of scintillator-photomultiplier system. The scintillator converts the 

secondary electrons into a photon of light, while the photomultiplier produces an 

amplified electrical signal. This signal is displayed as a two-dimensional intensity 

distribution, which can be viewed as an image. A large number of secondary electrons 

are displayed as bright spots, while darker spots are generated by fewer secondary 

electrons. Small projections on the sample surface appear bright due to the larger area 

of shorter path length for the escape of secondary electrons than for flat areas. This is 

the reason behind the three-dimensional appearance in the SEM image. 

  Another imaging mode in SEM is the detection of backscattered electrons (BSE). 

Backscattered electrons are beam electrons that have scattered backward. These 

electrons have a high energy and require a special detector. Backscattered electrons 

show differences in atomic number within the sample, since heavier nuclei refract 

more electrons than lighter nuclei. The BSE image is more of a depth image, 

compared to the secondary electron image which gives better resolution of the 

surface. 

  Apart from the required vacuum conditions in SEM, the sample has to be 

conductive. Insulating samples have to be coated with a conductive layer of carbon, 
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gold or platinum. An advantage with SEM compared to scanning probe microscopy is 

the possibility to scan large areas of the sample.  

  The interaction of electrons of high energy with the atoms of the sample also 

produces X-rays, which are characteristic for the elements present in the sample. The 

measurement of the energy of these X-rays is generally known as Energy dispersive 

X-ray spectroscopy (EDS). An EDS unit is often attached to an SEM, therefore the 

abbreviation SEM-EDS. The detection of the number and energy of the X-rays 

enables quantitative analysis of the sample. The sampling depth of SEM-EDS is 1-2 

µm, making it more of a bulk method compared to the surface sensitive X-ray 

Photoelectron spectroscopy, XPS. The detection limit of EDS is usually measured in 

parts per thousand. A FE-SEM (JSM-6335F, JEOL Ltd., Tokyo, Japan) equipped with 

a Link Inca (Oxford Instruments, Great Britain) EDS unit was used in this thesis. The 

accelerating voltage during secondary electron imaging and EDS acquisition was 10 

kV and 20 kV, respectively. 

 

7.3.4. X-ray Photoelectron spectroscopy (XPS) 

 

  X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for 

chemical analysis (ESCA), is a highly surface sensitive technique for chemical 

characterization of the outermost layer of a sample.
114

 The technique was invented in 

the 1950s, while the first commercial instrument appeared in 1969. In XPS the sample 

is irradiated with soft x-rays usually generated by either Mg K  (1253.7 eV) or Al K  

(1486.6 eV) excitation sources under ultra-high vacuum conditions. The photons 

interact with atoms in the surface region, resulting in emission of photoelectrons 

whose energies are characteristic of the elements within the sampling volume. The 

sampling volume extends from the surface to a depth of approximately 5-10 

nanometers. The number and kinetic energy of the emitted photoelectrons is detected, 

which enables quantitative analysis of the sample. The kinetic energy (KE) of the 

photoelectron is usually converted into binding energy (BE, the energy between the 

core level and Fermi level) according to 

     

    SKEhvBE     (18) 
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where hv is the energy of the incident x-rays and S is the work function of the 

instrument i.e. the energy between the Fermi level and the vacuum level. The binding 

energy is characteristic of each element but is also influenced by the chemical 

environment of the atom. XPS is thus a useful tool for obtaining information about 

chemical states of the elements at the surface of the sample. XPS is applicable to a 

wide range of materials, also insulating samples. The detection limit for most of the 

elements is in the parts per thousand range.   

  The XPS measurements in this thesis were performed with a Physical Electronics 

Quantum 2000 instrument equipped with a monochromatic Al K X-ray source. An 

operating power of 25 W was used with a spot diameter of 100 µm. An electron flood 

gun and a low energy ion gun were used for charge compensation. The detector 

position was at an angle of 45° in relation to the sample surface. The pass energy in 

the low and high resolution spectral acquisitions was 117.4 and 23.5 eV, respectively. 

The measured spectra were analyzed with a Multipak 6.1 software. 
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8. RESULTS AND DISCUSSION 

 

8.1. TiO2 surfaces with random heterogeneity  

 

8.1.1. 3-dimensional characterization of TiO2 surfaces by utilizing topographical 

roughness parameters 

 

  TiO2 surfaces with different morphology and porosity were synthesized by varying 

the calcination time and the amount of additive. AFM images of four different 

samples are presented in Figure 10. The image size is 3 µm  3 µm and the pixel 

resolution 512  512, which results in a sampling interval of 5.86 nm. A smaller 

image size would not give any additional topographical information in the lateral 

direction since the radius of curvature of the AFM tips used here was roughly 10 nm. 

The samples appear to have quite different surface morphology. By utilizing advanced 

image analysis, the surface properties of the samples can be described by a set of 

roughness parameters, previously introduced in chapter 7.3.2.1. A selected number of 

calculated roughness parameters for the samples in Figure 10 are listed in Table 2. 

  The RMS roughness (Sq) and absolute height (Sy) are increasing from sample A to 

sample D. The average height parameter Sz is only slightly smaller than Sy, indicating 

that the values may be regarded as reliable.  Sample A appears to be nonporous, 

which is also seen in the clearly positive skewness (Ssk) value. The very high kurtosis 

(Sku) value of sample A demonstrates that the peaks have a very narrow height 

distribution. Also the low valley fluid retention index Svi and the fairly high number 

of local maxima per unit area Sds demonstrates the nonporous character of sample A. 

Sample B, C and D appear all to be porous. According to the skewness values, 

however, only sample C shows strong porosity (a clear negative value means that the 

valleys dominate over the peaks). Sample C also has a large valley fluid retention 

index Svi and a small core fluid retention index Sci. Sample B is weakly porous, 

explained by the slightly negative skewness value and the volume index parameters. It 

is worth noting that surface porosity does not follow the trend of the RMS roughness. 

For sample D, despite the large depth of the pores, their small volume is not enough to 

contribute to the height asymmetry. This conclusion is supported by the volume index 

parameters Sci and Svi which are both close to the Gaussian values. Despite the small 
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pore volume of sample D, the deep pores, with rather long perimeters and, hence, a 

large wall area, do contribute to the effective surface area.  

   

   

Figure 10. AFM top-view images (3µm 3µm) of different TiO2 samples. Sample A 

is prepared without additives. The mass ratios of PEG:CTAB in sample B was 

1.25:1.5, sample C 1.25:0.5, and sample D 1.75:0, respectively. Sample A was 

calcinated at 500°C for 10 min, sample B to D 500°C for 60 min. 

 

The wetting properties of the samples in Figure 8 were studied by measuring static 

contact angles of water. The values are included in Table 2. According to Wenzel, the 

relation between the roughness-dependent apparent contact angle A and Young’s 

contact angle Y corresponding to an ideally flat surface is given by 

 

     YA r coscos    (2) 

 

where r is the roughness ratio between the actual and the projected surface area. Since 

the Sdr parameter gives the increment in surface area related to the projected surface 

area, it can be utilized to calculate the r value in the Wenzel equation according to 

A 

C 

B 

D 
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     100/1 drSr    (19) 

 

Table 2. Values of Roughness Parameters and water contact angles for samples of 

Figure 10. 

 Sample A Sample B Sample C Sample D 

Sq (nm) 0.5 4.0 18 21 

Sy (nm) 12.4 37.7 177 245 

Sz (nm) 8.5 32.1 170 230 

Ssk 3.36 -0.23 -1.29 -0.08 

Sku 50.5 3.1 5.9 4.6 

Sds (µm
-2

) 815 576 184 343 

Sdr (%) 0.06 4.9 12.1 7.3 

Sci 1.42 1.43 1.09 1.61 

Svi 0.092 0.125 0.192 0.123 

A (deg) 33 44 43 50 

Y (deg) 33 46 50 52 

 

    The calculated values of Y are included in Table 2. The correction is largest for the 

most porous sample and smaller for the other two porous samples. No correction is 

needed for the smooth, nonporous sample A. The more hydrophilic nature of Sample 

A compared to the other samples could be explained by the shorter heat treatment at 

500° C, possibly resulting in a larger number of remaining OH-groups on the surface. 

The measured contact angles are still unexpectedly high for a high-energy metal oxide 

surface as TiO2. However, high energy surfaces do get contaminated quite fast in a 

laboratory atmosphere and it appears that cleaning of the surface by sonication in 

acetone, ethanol and water does not remove all contaminants.
62, 115
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8.1.2. Effect of topography and surface free energy of sol-gel derived TiO2 coatings 

on calcium phosphate precipitation 

 

  The precipitation of calcium phosphate on sol-gel derived nonporous TiO2 coatings 

was studied in Paper II. The properties of the studied surfaces were tuned by heat 

treatment at a different temperature and length of time. The studied coatings were 

characterized by AFM and contact angle measurements prior to immersion in 

supersaturated calcium phosphate solution. Contact angles of three different liquids 

(water, ethylene glycol, diiodomethane) were determined on the coatings and the 

surface energy components were calculated according to the van Oss-Chaudhury-

Good (vOCG) standard method (Eq.17).
46

 In Figure 11 the contact angle of water is 

plotted against the Lewis base component of the surface free energy and the total 

surface free energy of the studied coatings.  The variation in total surface free energy 

is quite small, while the differences in the base values are significant. The base 

component of the surface free energy gives a linear relationship to the water contact 

angle, which indicates that the interaction with water gives rise to the difference in the 

base parameter. The base component of the surface free energy has previously been 

shown to correlate with the kinetics of calcium phosphate formation; a high value of 

the base parameter leads to faster surface precipitation of calcium phosphate.
82, 96 

All 

of the studied coatings exhibited Lewis acid components of the surface free energy 

very close to zero. This seems somewhat surprising, since very hydrophilic surfaces 

should contain a high number of Lewis acidic Ti-OH groups.
116

 Furthermore, the low 

magnitude of the Lewis acid component results in an acid-base (AB) component very 

close to zero. Therefore it is noted that the values obtained for the base component 

may be erroneous, due to the inherent sensitivity of the model when the LW-

component of the surface free energy is very dominant, as in the present case.  
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Figure 11.  Plot of water contact angle versus total surface energy and Lewis base 

component of the surface energy for a series of titania coatings. 

 

  The combined influence of surface polarity and topography on the precipitation of 

CaP on a series of TiO2 coatings is demonstrated in Figure 12. The water contact 

angle was used in the plot instead of the often used Lewis base component of the 

surface energy, due to the above discussed reasons. In paper I the influence of 

topography on CaP formation was studied. The best correlation was found between 

the precipitated amount and the number of local maxima per unit area (Sds parameter) 

on the substrate. A high number (high Sds value) enhanced CaP formation. Here, the 

aim was to develop the analysis by considering not only the density (peak-peak 

distance) but also the amplitude (height) of the local summits. The product of the Sds 

and RMS roughness (Sq) represents the roughness in the plot. It was found that CaP 

precipitated only on the coatings within the shadowed window during a period of 14 

days, evidenced by SEM and XPS. It is worth mentioning that the Sq parameter alone 

gave no such correlation. An interesting result is that coatings with a low water 

contact angle but insufficient roughness precipitated no CaP within two weeks. 

Respectively, coatings with a high roughness value but fairly high contact angles were 

equally inactive within this time frame. Also the amount of precipitated CaP increased 

when moving from the low right hand corner to the upper left hand corner of the 
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window, hence the gradual shading of the window. Additionally, all coatings within 

the window were mainly of anatase form. No direct correlation between the crystal 

size and the precipitation was found. The reported Sq and Sds values are taken as a 

mean from 5-10 AFM images. For some coatings the standard deviation of the 

roughness values was quite large, up to 20 percent. However, the trend is clearly seen 

from the figure.  
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Figure 12. Plot of Sds Sq roughness parameter as a function of the water contact 

angle for a series of titania coatings. 

  

  Thus, it is suggested that the good correlation observed between CaP precipitation 

kinetics and the combination of the water contact angle, which is a direct measure of 

the hydrophilicity of the surface, and surface roughness parameters may be a better 

explanation for the enhanced surface precipitation kinetics. A more detailed study into 

the effect of probe liquids and calculation models on the surface energy components 

of TiO2 and SiO2 surfaces is presented in Supporting paper 4.  

 

8.1.3 Wettability studies of hydrophobically functionalized calcium phosphate 

coatings 

 

  An SEM image of a precipitated calcium phosphate (CaP) coating on a TiO2 

substrate is shown in Figure 13. Here, the TiO2 had been immersed in a supersaturated 
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calcium phosphate solution for 5 days, where the calcium and phosphate 

concentrations were 1.5 times higher than those used in biological in vitro 

experiments in order to enhance the kinetics of CaP formation. The CaP film is highly 

porous and consists of platelets aligned at a fairly steep angle relative to the surface. 

The thickness of the platelets is roughly 200 nm. The CaP layer thickness in this case 

is about 20 m, but the CaP film thickness is naturally determined by the time 

allowed for nucleation and growth of the CaP layer. The observed platelet 

morphology is comparable to that previously observed for calcium phosphate growth 

on titania surfaces from solutions with similar compositions and pH.
91, 117, 118

 If 

hydrophobized, such a platelet structure should give rise to a small solid-liquid 

contact between a water droplet and the material, i.e. a small fS value in the Cassie-

Baxter equation (Eq.7), and thus represent a self-organizing superhydrophobic 

surface. Furthermore, the superhydrophobicity should be enhanced as a continuous 

contact line cannot take form on this plate-like structure, which should lead to a small 

contact angle hysteresis.
73

 

 

Figure 13. SEM image of a titania coating immersed in supersaturated calcium 

phosphate solution for 5 days. 

  Figure 14 shows thin-film X-ray diffraction (XRD) patterns of the precipitated CaP 

coating. The platelet morphology has previously been observed for octacalcium 

phosphate (OCP)
117

, or a mixture of OCP and hydroxyapatite (HA)
91, 118

, which is 

consistent with the XRD results. The reflection at around 16° (2 ) is characteristic of 

OCP, while the reflections at 26° and 32° could originate from both OCP and HA. 

The high intensity of some reflections is due to the plate-like morphology of the 

10 m 
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precipitated CaP. OCP will typically convert to the more stable HA upon further 

ageing in solution. Because of the similarities between the structures of OCP and HA 

epitaxial overgrowths of these phases will easily occur, and the presence of HA 

cannot be excluded, although the main phase appears to be OCP.
119, 120
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Figure 14. XRD pattern of a titania coating immersed in supersaturated calcium 

phosphate solution for 5 days. (OCP = octacalcium phosphate, HA = hydroxyapatite) 

 

  The successful attachment of zonyl ((F(CF2)n-CH2CH2O)2POO
-
, n = 3-8) to the 

calcium phosphate coating was confirmed by X-ray photoelectron spectroscopy, XPS. 

The corresponding surface concentrations were 20.06 % C, 33.92% O, 26.99% F, 

9.26% P, and 9.77% Ca, the values given in atomic percent. The fitted high-resolution 

spectra of the carbon C1s signal confirmed the presence of CF2, CF3, C-O, and C-C 

(Figure 15). The observed C=O signal most likely originates from surface 

contaminants.  The area ratio of the CF2 peak to the CF3 peak of about 5.5 indicates 

that the mean number of carbon atoms attached to fluoro-groups in one chain is n = 

6.5, which is at the higher end of the range 3-8 given by the manufacturer. This results 

in a mean fluorine: phosphorus-ratio of 28:1 for one zonyl molecule, which allows us 

to calculate the portion of phosphorus originating from the zonyl function. By 

subtracting this contribution from the total amount of phosphorus, a Ca/P ratio of 

about 1.2 was obtained. The value is close to the Ca/P ratio of 1.3 obtained from 

SEM-EDS measurements. This ratio is lower than the theoretical value for 

hydroxyapatite (1.67), but close to the theoretical value of octacalcium phosphate 

(1.33), again suggesting that OCP is the main calcium phosphate phase. The 
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morphology of the CaP as judged by SEM and XRD remained unchanged upon 

surface functionalization (results not shown). 

 

Figure 15. XPS C1s  spectra of zonyl-functionalized calcium phosphate. 

 

  The wetting properties of the coating are demonstrated by the advancing (>165°) and 

receding (>150°) water contact angles (Figure 16). No exact value is reported for the 

contact angle, since it becomes extremely difficult to accurately measure such high 

contact angles using the sessile drop technique. However, the contact angle values 

were significantly higher than those previously reported for fluorocarbon-

functionalized hydroxyapatite coatings for which advancing water contact angles of 

115
o
 or lower have been reported.

121
 This difference is mainly attributed to the 

difference in structural properties between our precipitated calcium phosphate coating 

and that of coatings prepared by solution deposition of hydroxyapatite particles. The 

low contact angle hysteresis demonstrates the superhydrophobic properties of the 

coatings, which was also supported by the observation of free-falling water droplets 

that bounced and finally rolled off the surface. Non-functionalized CaP surfaces were 

superhydrophilic, as expected for rough hydrophilic surfaces, and a deposited water 

droplet fully wetted the coating. The surface functionalization step can also be 

performed from water, but in that case some re-organization of the CaP film occurred 

during functionalization, most probably due to dissolution-reprecipitation reactions of 

the calcium phosphate coating. This leads to a larger contact angle hysteresis than in 
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the case of the coatings functionalized from ethanol, but also in this case the 

advancing and static contact angles exceeded 160
o
.  

 

Figure 16. Advancing (a) and receding (b) water droplets on zonyl-functionalized 

calcium phosphate coatings. 

 

8.2. Nanopatterned TiO2 surfaces prepared by the EISA technique 

 

8.2.1. Nanopatterned layers with large Wenzel r-values 

 

The nanopatterned surfaces presented in this chapter were prepared using EOn-b-

[(E)B]m [poly(ethylene oxide)-block-poly(ethylene-co-butylene) as the structure 

directing agent. The Wenzel r-values were in the range 1.7-2 for these films. 

 

8.2.1.1 Determination of f- and r-values 

 

  Initially, a detailed structural evaluation of the nanopatterned layers has to performed 

in order to define all parameters necessary for a correct estimation of the critical 

parameters needed for evaluation of the contact angle data. In Figure 17 SEM pictures 

and AFM images of small (mean diameter 11 nm) and large crater (mean diameter 30 

nm) TiO2@Au- and TiO2@SiO2 composite surfaces are shown. For the small crater 

layers one can clearly see a nice ordering of the craters with a narrow crater size 

distribution and homogeneous crater wall thickness. The crater size distribution is 

wider for the larger crater layers, but also in this case the layers are homogeneous and 

of an even thickness. The mean wall thickness was 10 nm for the small crater films, 
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15 nm for the large crater TiO2@SiO2 surfaces, and 18 nm for the large crater 

TiO2@Au surfaces. The mean crater sizes and crater size distributions are very similar 

regardless of whether gold or silica constitutes the substrate. The film thicknesses 

were also determined by ellipsometry, and were generally in good agreement with 

those obtained from the AFM measurements. The small crater films had a thickness of 

5.5 nm, while the large crater film thickness was 11 nm.  

 

 

   

Figure 17.  AFM images and SEM micrographs of small and large crater TiO2 films 

on gold and silica substrates. A) 1µm*1µm AFM image of small crater TiO2-film on 

gold, Z-range 16.4 nm, B) 1µm*1µm AFM image of small crater TiO2-film on silica, 

Z-range 13.6 nm, C) 1µm*1µm AFM image of large crater TiO2-film on gold, Z-

range 26.6 nm, D) 1µm*1µm AFM image of large crater TiO2-film on silica, Z-range 

18.8 nm, E) SEM picture of large crater TiO2-film on gold, F) SEM picture of large 

crater TiO2-film on silica. 
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  In order to determine the decisive parameters (r- and f-values) in the Cassie-Wenzel 

(Eq.9), Bico (Eq.7) and Cassie-Baxter equations (Eq.5), one unit cell of the 

nanoperforated layer is approximated as shown in Figure 18. 

 

 

 

Figure 18. Schematic representation of one unit cell of a nanopatterned film. (R = 

crater radius, w = wall thickness, h = crater height) 

 

The projected area A2D of the hexagon is given by 
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2

32
w
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Taking the contribution of the crater height h (i.e. the surface layer thickness) 

 

hRAporeheight 2     (21) 

 

to the overall amount of accessible titania into account, yields the total 3D surface 

area of the unit cell 
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2
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The accessible area of the substrate (Au or SiO2) of the unit cell is given by 
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2RAsubstrate    (23) 

 

This gives an overall expression for the accessible titania surface ATiO2-3D of 
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or, if one takes only the projected area into account 
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The projected area fraction of titania,  fTiO2, is then given by 
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Finally, the r-value in the Wenzel equation (Eq.2) is given by 
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Since the substrate (SiO2 or Au) is considered to be flat, the Cassie-Wenzel equation 

(Eq.9) is written as follows: 
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where f2 is the fraction of SiO2 or Au. The accessible fraction of the substrate area 

measured for macroscopic dimensions can also be estimated by cyclic voltammetry 

curves for the TiO2@Au films, as the Au substrate is electrically conducting. The 
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calculated f and F values by both means are presented in Table 3. The larger area of 

accessible substrate measured by the electrochemical characterization can possibly be 

explained by the presence of microcracks in the TiO2 network that were observed by 

SEM but not taken into account in the fractional area determination based on the 

AFM and SEM results. 

 

Table 3. Mean crater diameter D, wall thickness w (both obtained from AFM and 

SEM images), surface layer thickness h (measured with ellipsometry and AFM) and 

calculated r, fTiO2 and FTiO2 values for the different composite nanoperforated layers. 

 
a
calculated with eq. 27. 

b
calculated from AFM and SEM data with eq. 26. 

c
determined with cyclic 

voltammetry. 
d
calculated with eq. 28. 

 

8.2.1.2. Wetting studies of unfunctionalized nanopatterns 

 

  Water contact angles on unfunctionalized TiO2@SiO2 and TiO2@Au nanopatterns 

were initially determined. The surfaces were cleaned by heat treatment prior to 

measurement of the contact angle. Water contact angels on single component TiO2, 

SiO2, and Au surfaces were also determined in order to model the wetting of the 

composite films according to existing theories for wetting of rough and heterogeneous 

surfaces. These values are listed in Table 4. 

 

 

 

 

 

 

Sample D 

[nm] 

w 

[nm] 

h 

[nm] 

r
a
  fTiO2 (Cassie-Baxter, 

Bico)                   

geometric
b
     cycl.volt.

c
 

FTiO2 (Cassie-Wenzel)    

 

geometric
d
      cycl.volt

 d
 

TiO2@Au  

small craters 
11 2 10 2 5.5 1.66 0.75 0.78 0.83 0.85 

TiO2@Au  

large craters 
31 7 18 3 11 1.79 0.65 0.44 0.76 0.58 

TiO2@SiO2 

 small craters 
11 2 10 1 5.5 1.66 0.75 - 0.83 - 

TiO2@SiO2 

 large craters 
29 7 15 1 11 1.96 0.63 - 0.76 - 
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Table 4. Static, advancing, and receding water contact angles on reference surfaces 

references stat (deg) adv (deg) rec (deg)

TiO2 < 5 < 5 0 

SiO2 7 
  
3 10  2 0 

Au 80  4
 
 88  1 42  3 

Zonyl-TiO2 88  4
 
 100  1 60  2 

Zonyl-SiO2 25  1 28  1 0 

Zonyl-Au 69  2 81  1 37  4 

 

  The wetting results on large crater TiO2@Au and on TiO2 and Au reference surfaces 

are presented in Figure 19. Nearly full spreading was observed on the nanopatterned 

surface, even though the pure Au reference showed a fairly large contact angle. It 

appears that the continuous network of strongly hydrophilic titania governs the 

wetting. Theoretical predictions of the wetting were calculated by using r and f values 

in Table 3 together with the measured contact angles on the reference surfaces. The 

Cassie-Wenzel model, represented by the dotted line, clearly overestimates the 

contact angle. The Bico model (Eq.5) seems however to give good agreement with the 

experimentally determined contact angle. This model states that the liquid droplet 

rests on a composite surface of solid and liquid, with a liquid film ahead of the 

droplet.  The wetting results on all unfunctionalized surfaces presented in Table 3 

together with theoretical predictions according to the Cassie-Wenzel and Bico models 

are given in Table 5. The full wetting of the composite surfaces is referred to contact 

angles <5 degrees.   
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Figure 19. Static water contact angles on TiO2, Au, and TiO2@Au nanopattern with 

large craters. The dotted line and the dashed line represent the theoretical contact 

angle predicted by the Cassie-Wenzel model and the Bico model, respectively.     

 

 

 

Table 5. Experimental water contact angles and theoretical contact angles predicted 

by the Bico and Cassie-Wenzel models on TiO2@Au and TiO2@SiO2 nanopatterns.  

Sample Contact 

angle (H2O) 

 

Bico (deg) 

     geometric             cycl. volt. 

stat    adv   rec    stat   adv     rec 

Cassie-Wenzel (deg) 

      geometric               cycl. volt. 

stat       adv    rec    stat     adv   rec       

TiO2@Au  

small crater Full wetting 4
 

4 0 4 4 0 31 34 17 29 32 16 

TiO2@Au  

large crater Full wetting 4 4 0 3 3 0 37 40 20 49 54 27 

TiO2@SiO2 

small crater Full wetting 4 4 0 - - - 5 6
 
 0 - - - 

TiO2@SiO2 

large crater Full wetting 4 4 0 - - - 6 7 0 - - - 

 

 

 

8.2.1.3. Wetting studies of hydrophobic-hydrophilic nanopatterns prepared by 

selective functionalization of TiO2  

 

 In the next step, a perfluorophosphate surfactant, Zonyl FSE, was selectively attached 

to the titania portion of the composite films. The selectivity of Zonyl to titania was 

verified with water contact angle measurements of one-component TiO2, SiO2, and 

Au reference surfaces (see Table 4). Static, advancing, and receding water contact 

angles on Zonyl-functionalized small crater TiO2@Au and corresponding references 

samples are presented in Figure 20. A small droplet (V = 2 µL) was gently deposited 
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on the film, and the advancing and receding contact angles were determined by 

adding or removing liquid from the droplet. The static and advancing contact angles 

on the composite surface were higher than any of its constituents, and the wetting 

could be modeled with high accuracy according to the Cassie-Baxter theory. Thus, 

despite the very thin film thickness, it is suggested that air is trapped in the craters, 

resulting in a solid-vapor composite surface. The receding contact angle could not be 

modeled accurately using the Cassie-Baxter theory. Instead, the Cassie Wenzel theory 

fitted the experimental results better, though some divergence was still present. This 

result raises some doubts about whether air was actually located in the craters below 

the static and advancing water droplets. The Cassie-Baxter state is often referred to as 

a “slippery” state, in which the hysteresis is small and a droplet easily rolls of a 

surface. On the contrary, the Wenzel state, in which the hysteresis is large, is called a 

“sticky” state. However, several authors have stressed the influence of the surface 

geometry on contact angle hysteresis.
73, 122, 123

 For example, on a surface consisting of 

separated posts, a short discontinuous contact line can take shape, causing less 

pinning when the contact line is moved. Subsequently, the observed hysteresis is 

small.
73

 Here, on the other hand, a fairly long continuous contact line can take shape 

on the continuous TiO2 network, causing pinning when the contact line is moved. 

Dorrer and Rühe
122

 showed that the receding motion of the contact line is a 

complicated process and that the geometry of the surfaces strongly affects the 

receding contact angle. Static, advancing, and receding water contact angles of gently 

deposited small (V = 2µL) droplets on Zonyl-functionalized TiO2@Au and 

TiO2@SiO2 surfaces are collected in Table 6. 
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Figure 20. Static, advancing, and receding water contact angles on Zonyl-

functionalized small crater TiO2@Au nanopattern with small craters and Zonyl-

treated TiO2- and Au reference surfaces. The droplet size for the static contact angles 

was 2 µL. The dotted lines represent the theoretical contact angles predicted by the 

Cassie-Baxter model, the dashed lines represent the theoretical contact angles 

predicted by the Cassie-Wenzel model. 

 

Table 6.  Static, advancing, and receding water contact angles on Zonyl-

functionalized nanopatterns together with predicted contact angles according the 

Cassie-Baxter and Cassie-Wenzel models. 

Sample Contact angle 

H2O (deg)  

stat     adv     rec 

Cassie-Baxter (deg) 

     geometric                cycl. volt. 

stat    adv     rec     stat    adv      rec 

Cassie-Wenzel (deg) 

     geometric            cycl. volt. 

stat      adv   rec     stat    adv   rec       

Zonyl-   

TiO2@Au  

small crater 

103 112 44  103 112 83 101 111 80 85 97 57 85 97 57 

Zonyl-   

TiO2@Au   

large crater 

119 127 23 109 118 91 123 130 110 84 95 55 80 92 51 

Zonyl-

TiO2@SiO2 

small crater 

107 116 47  103 112 83 - - - 79 90 54 - - - 

Zonyl-

TiO2@SiO2 

large crater 

121 128 13 110 119 93 - - - 76 85 52 - - - 

 

  To further investigate the wetting characteristics of the nanopatterned surfaces, 

larger droplets ( 6.5 µL) were released from some height onto the Zonyl-

functionalized nanopatterned layers. The static contact angles measured for both small 

and large crater nanoperforated layers were significantly lower (<90 ) than for the 

gently deposited small droplets. As an example, snapshots measured for small crater 

Zonyl-TiO2@Au surfaces are shown in Figure 21. It thus seems to be a transition 
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from a Cassie-Baxter state to a Cassie-Wenzel state, suggesting that the craters 

become filled with liquid when a larger droplet is free-falling onto the surface. Similar 

tests were also done on smooth TiO2 and Au-reference surfaces, and no difference in 

contact angle compared to the gently deposited droplets was observed. For these 

larger droplets, the static contact angles of the zonyl-functionalized composites are 

better described by the Cassie-Wenzel theory, suggesting that the energy barrier 

between the Cassie-Baxter and the Cassie-Wenzel states is low. This activation 

energy can be overcome by letting a larger droplet fall from some height onto the 

surface, which is in agreement with both experimental observations
30, 31 

and 

theoretical predictions.
124

 Very interestingly though, if more liquid was added to this 

large droplet, the advancing contact angle increased to similar values as for the small 

droplets. The situation is illustrated in Figure 22 for small crater TiO2@Au. This 

result, together with the receding contact angle data, gives some indication that the 

craters could be filled with liquid below the droplet, and that the three-phase contact 

line is the decisive factor determining the contact angle.
33, 34

 The good agreement 

between the experimentally determined contact angle values and those derived based 

on either the Cassie or the Wenzel equations would in that case be related to the fact 

that the area fractions describe the surface composition along the three phase contact 

line well for these nanopatterned films. 

 

 

 

 

Figure 21. Water droplets on Zonyl-TiO2/Au films with small craters a) small water 

droplet (Drop volume  2 µL, stat = 103º) gently deposited and b) large droplet 

dropped from some height (Drop volume  6,5 µL, stat = 85º). 

 

A B 
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Figure 22. Static and advancing water contact angles on Zonyl-functionalized small 

crater TiO2@Au nanopattern and Zonyl-treated TiO2- and Au reference surfaces. The 

droplet size for the static contact angles was 6.5 µL and the droplet was free-falling on 

to the surface. The dotted lines represent the theoretical contact angles predicted by 

the Cassie-Baxter model, the dashed lines represent the theoretical contact angles 

predicted by the Cassie-Wenzel model. 

 

 

8.2.2. Nanopatterned layers with small Wenzel r-values 

 

  For the preparation of the TiO2@SiO2 nanopatterns presented in this chapter a PB-b-

PEO block copolymer (polybutadiene-b-polyethyleneoxide) was used as the structure 

directing agent. The Wenzel r-values of these films were close to 1. 

   

8.2.2.1.Wetting studies of hydrophilic-hydrophobic TiO2@SiO2 nanopatterns 

prepared by UV-photopatterning 

 

  AFM images of a thin nanopatterned TiO2@SiO2 composite surface is presented in 

Figure 23. The images show hexagonally ordered craters of silica in a network of 

titania. The mean crater diameter and wall thickness is roughly 30 nm as determined 

from image analysis. The estimated film thickness obtained from AFM cross section 

analysis is approximately 2 nm. These structural dimensions give rise to a fraction of 

titania of roughly 80% in the composite film, by approximating one unit cell as 

described in chapter 8.2.1.1. Furthermore, these dimensions give rise to a roughness-

value according to Wenzel of 1.08, to compare with r-values of 1.7-2.0 for the thicker 
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nanopattern films presented in chapter 8.2.1. An r-value close to 1 suggests that the 

influence of roughness on the wetting should be small for this type of nanopatterned 

surface. 

 

        

Figure 23. 3 µm  3 µm (A) and 1 µm 1 µm (B) AFM images of a TiO2@SiO2 

nanopatterned surface. The Z-range in the images is 1.93 and 3.40 nm, respectively. 

 

  The nanopatterned TiO2@SiO2 film was hydrophobized by the formation of self-

assembled monolayers of a fluoroalkylsilane (FAS), as described in chapter 7.1.3. The 

successful attachment was verified with XPS. Furthermore, the decomposition of FAS 

as a function of UV irradiation time was studied with XPS. XPS spectra of the F 1s 

signal are presented in Figure 24. As expected, the intensity of the F peak decreases as 

a function of UV exposure. The area fraction of covered FAS, fFAS, was then 

calculated from the F/Ti ratio, normalized against the F/Ti ratio before UV treatment 

and by assuming full initial coverage of FAS. XPS derived F/Ti ratios and fFAS-values 

as a function of UV exposure are listed in Table 7. The calculation of fFAS-values from 

F/Si ratios resulted in the same f-values within the experimental error, showing that 

any influences of the differences in X-ray sampling volume induced by the presence 

or absence of FAS on the f-values can be neglected. 

 

Table 7. XPS derived F/Ti ratios and calculated fFAS-values as a function of UV 

irradiation time for FAS-functionalized TiO2@SiO2 nanopatterns. 

UV time [min] 0 5 15 30 60 120 

F/Ti 2.34 2.03 0.91 0.72 0.42 0.32 

fFAS 1 0.87 0.39 0.31 0.18 0.14 

 

A B 
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Figure 24. XPS spectra of the F 1s signal on FAS-functionalized TiO2@SiO2 

nanopatterns as a function of UV irradiation time. 

 

  The decomposition of FAS as a function of UV treatment time was also studied by 

water contact angle (CA) measurements on FAS-functionalized composite, titania-, 

and silica reference samples. Results on static water contact angles are presented in 

Figure 25. Before UV treatment, all FAS-functionalized surfaces were hydrophobic 

with static water contact angles of 109˚ (FAS-TiO2 ˚ FAS-SiO2 and 

108˚ FAS-TiO2@SiO2). These contact angle values are very close to values typically 

observed on fully fluorinated surfaces, which indicates that full coverage of the 

fluoroalkylsilane layer on all surfaces is attained.
63

 The close agreement between the 

contact angles suggests that the surface roughness of the TiO2@SiO2 composite has a 

negligible effect on the wetting. The water contact angle on a FAS-functionalized 

SiO2 reference remained unchanged even after several hours of UV treatment, which 

shows that the FAS layer is perfectly stable on a pure silica surface. On the other 

hand, the water contact angle on the FAS-functionalized TiO2 reference sample 

decreased to below 5 degrees after only 5 minutes of UV treatment. The very different 

behavior of silica and titania is due to the large difference in photocatalytic activity of 

the two oxides.
63, 125, 126

 For the FAS-coated TiO2@SiO2 composite sample, the water 

contact angle decreased gradually as a function of UV treatment time. If assuming a 

TiO2 portion of 80%, as estimated from the AFM image analysis, one would expect a 

water contact angle of roughly 40° (according to Eq.3) on the composite surface when 

the FAS layer has oxidized from the TiO2 part. After 2 hours of UV irradiation, a 
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static water contact angle of 32° was measured on the composite surface, which could 

be an indication of that the FAS layer has started to oxidize also from the silica part of 

the composite film. The water contact angle continued indeed to decrease at longer 

than 2 hours of UV irradiation (results not shown here). In a previous study on the 

decomposition of octadecyltrichlorosilane (OTS) on micrometer sized TiO2@SiO2 

patterns, the authors suggested that at prolonged UV irradiation oxidizing species 

photogenerated on the TiO2 surface reach and attack OTS chains on the SiO2 

domains.
126

 This effect could possibly be magnified when the SiO2 domains are of 

nanometer size, even though a fluoroalkylsilane (FAS) should be much more stable 

than an alkylsiloxane against UV irradiation. 
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Figure 25. Static water contact angles (CA) as a function of UV irradiation time on 

FAS-functionalized TiO2@SiO2 composite-, TiO2, and SiO2 surfaces. 

 

  Advancing CA, receding CA, and CA hysteresis on the FAS treated TiO2@SiO2 

composite as a function of UV irradiation time is presented in Figure 26. Before UV 

treatment, the degree of hysteresis on the FAS-functionalized TiO2- and SiO2 

references was very similar to the composite, again indicating that the roughness of 

the nanopatterned layer has a minimal influence on the wetting. The low hysteresis 

prior to UV irradiation also indicates full coverage of the FAS layer. The CA 

hysteresis increases initially with longer UV irradiation time and reaches a maximum 

value at around 40° between approximately 30 min and 1 h of UV irradiation, 

whereafter a small decrease could be observed. While there are a large number of 

publications on the hysteresis behavior on rough, hydrophobic surfaces (see
73, 122, 

127
and references therein), the number of similar studies on flat, chemically 
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heterogeneous surfaces is more limited. Most of the work has been restricted to 

materials with heterogeneities on the micrometer length scale, mainly because of the 

experimental difficulty in preparing homogeneous patterns of sub-100 nm length 

scale.
59, 60, 64

 In a theoretical study on the hysteresis behavior on alternatively aligned 

horizontal apolar ( = 70˚) and polar stripes ( = 0˚), Fang et al.
128

 suggested that the 

hysteresis vanishes at a critical stripe width between 6 and 12 nm. The authors also 

suggested that the contact angle hysteresis attains its maximum value at a fraction of 

apolar material of roughly 0.5 at a stripe width of 37.8 nm, and both increasing and 

decreasing f-values reduces the hysteresis. A shift of the maximum hysteresis value 

towards lower fraction of apolar material was observed for increasing stripe width. 

The hysteresis behavior of the FAS-functionalized TiO2@SiO2 nanopattern as a 

function of UV irradiation time appears to follow a similar pattern as in reference 128. 

The degree of hysteresis is also dependent on the difference in surface energy between 

the heterogeneities. Here, the maximum wettability contrast between the FAS-layer 

and the oxidized titania part is most probably magnifying the hysteresis. 
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Figure 26. Advancing (up-triangles) and receding (down-triangles) water contact 

angels together with the contact angle hysteresis (squares) on the FAS-functionalized 

TiO2@SiO2 composite as a function of UV irradiation time. (CA = contact angle) 

 

  In order to study the decomposition of FAS, existing theories for the wetting of 

chemically heterogeneous surfaces were applied. The area fraction covered with FAS, 

fFAS, on the TiO2@SiO2 composite after a certain time of UV exposure, was calculated 

according to the theories of Cassie (Eq.3) and Israelachvili (Eq.4), by inserting 
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measured water contact angles on the composite and corresponding reference samples 

into the equations. The fFAS-value according to Cassie is given by 

 

    
2

2

coscos

coscos

TiOFAS

TiOCOMP
FASf    (29) 

 

and according to Israelachvili by 
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where COMP is the water contact angle on the composite surface, TiO2 is the contact 

angle on the UV treated TiO2 reference surface, and FAS is the contact angle on the 

hydrophobic FAS layer. The result of such calculations is presented in Figure 27 and 

28. Fractions of remaining FAS were calculated from static, advancing and receding 

water contact angles according to both theoretical models. The static contact angles 

used in the calculations are presented in Figure 25, while advancing and receding 

contact angles on the composite surface are given in Figure 26. 112° and 100° were 

used as advancing and receding contact angles for the hydrophobic FAS-layer, while 

5° and 0° was used for the UV treated TiO2 reference surface. Due to contact angle 

hysteresis, advancing and receding contact angles give rise to different fFAS-values. 

The Cassie model (Figure 27) generates slightly smaller fFAS-values than the 

Israelachvili (Figure 28) model. Furthermore, to test the validity of the wetting models 

on the TiO2@SiO2 nanopattern, fFAS-values calculated from the contact angle data 

were compared with fFAS-values determined with XPS. The area fraction of FAS 

according to XPS measurements gave generally a good agreement with fFAS-values 

determined from the static contact angles, with a slightly better fit to the Cassie theory 

compared to the Israelachvili theory, at least at longer times of UV exposure. This is 

quite expected since the Israelachvili model was derived for chemical heterogeneities 

of atomic or molecular dimensions. The Israelachvili theory also produces a larger 

difference between the fFAS-values derived from advancing and receding contact angle 

data. The good fit of the f-values derived from the Cassie and Israelachvili models to 

the XPS results suggests that these models are valid to describe the wetting on our 
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nanopatterned surfaces, where the length scale of the heterogeneities is very small 

compared to the size of the droplet. Several studies have shown that the Cassie 

equation is valid only when the scale of the heterogeneity is small compared to the 

length of the three phase contact line.
38-40

 It has also been emphasized that the Cassie 

equation is an approximation that improves when the drop size becomes larger with 

respect to the scale of chemical heterogeneity.
41
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Figure 27. fFAS-values calculated from static (diamonds), advancing (up-triangles) and 

receding (down-triangles) contact angles according to Cassie’s model together with 

XPS derived fFAS-values (filled squares) on FAS-functionalized TiO2@SiO2 

nanopatterns as a function of UV irradiation time. The solid lines fitted to the contact 

angle derived fFAS-values are included as guidance for the eye. 
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Figure 28. fFAS-values calculated from static (diamonds), advancing (up-triangles) and 

receding (down-triangles) contact angles according to Israelachvili’s model together 

with XPS derived fFAS-values (filled squares) on FAS-functionalized TiO2@SiO2 

nanopatterns as a function of UV irradiation time. The solid lines fitted to the contact 

angle derived fFAS-values are included as guidance for the eye. 

 

  Since the fraction of FAS calculated from static water contact angles in most cases 

gave the best agreement with XPS derived fFAS-values, it is suggested that the static 

CA is a good approximation of the most stable contact angle. Modeling of the wetting 

according to advancing CA data and receding CA data deviates from the XPS derived 

fFAS-values, apart from a few exceptions. Assymetric wetting hysteresis has previously 

been reported on chemical defects of micrometer size.
64

 It was found that the Cassie 

equation gave a good fit to measured receding water contact angles for high-energy 

defects in a low-energy network, while the advancing contact angle departed from 

theory. Conversely, the advancing contact angle gave good agreement with Cassie’s 

theory for hydrophobic defects in a hydrophilic network, while the receding 

measurements deviated. However, the advancing contact angle reported in these 

studies was a static advancing contact angle, defined as the contact angle when the 

movement of the liquid front ceases. The static contact angles reported here are 

comparable to the static advancing contact angles reported in reference 64. In another 

recent work, the effect of length scale on the hysteresis behavior on chemically 

heterogeneous surfaces was studied by the use of a phase field theory.
129

 It was 

concluded that the Cassie theory is applicable for both advancing and receding contact 

angles only in the limit of vanishing length scale. For heterogeneities of micrometer 



Results and Discussion 

61 

length scale, both advancing and receding CAs deviated from Cassie behavior. The 

deviation was found to be asymmetric and depended on the energy of the defect with 

respect to the continuous phase. However, the wetting contrast between the 

component materials in ref. 129 was very different ( = 145˚ and = 95˚) than for 

the UV-photopatterned TiO2@SiO2 surface. The large wetting contrast between the 

oxidized titania part ( stat  0°) and the FAS-layer ( stat = 108°) probably affects the 

degree of hysteresis, even though the length scale of heterogeneity is small. The use 

of static CA in the Cassie equation seems therefore to give a better estimation of the 

remaining fraction of FAS, as these f-values give a good agreement with fractions 

determined by XPS.  
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9. CONCLUSIONS AND OUTLOOK 

 

 

The effect of surface roughness and surface chemistry on the wetting properties of 

sol-gel derived TiO2-based ceramic coatings has been studied. The topography of one-

component TiO2 coatings with random heterogeneities was described with a set of 

roughness parameters, obtained from image analysis of AFM micrographs. It was 

shown that the most commonly used parameter, the RMS roughness, is not specific 

enough to describe the complex relation between various surface features and 

phenomena such as wetting and precipitation. The combined effect of topography and 

surface wettability on the precipitation kinetics of calcium phosphate (CaP) on the 

coatings was further investigated. It was found that a hydrophilic coating together 

with a high roughness value is more favorable to initiate the formation of CaP. The 

roughness was represented by the product of the RMS roughness and the number of 

local maxima per unit area. 

  The preparation of a superhydrophobic coating by utilizing a simple bioinspired 

bottom-up approach was further demonstrated. The coating is self-organizing by the 

spontaneous formation of CaP on sol-gel derived TiO2 coatings. The CaP coating was 

hydrophobized by self-assembly of a perfluorophosphate surfactant. The coating 

exhibited extreme water-repellency, as a result of the topography of the low-energy 

surface. The CaP coating consisted of platelets aligned at a fairly steep angle relative 

to the surface, which resulted in a minimized solid-liquid contact between a deposited 

water droplet and the hydrophobized surface. The described methodology could also 

be extended to calcium carbonate surfaces, thus widening the applicability to 

industrially relevant surfaces. For example, the methodology could be used to modify 

calcium derived scales at an early stage of scale formation, thus preventing further 

scale formation. 

  In the second part of the thesis, the wettability of well-ordered nanopatterns of TiO2 

on silica and Au substrates was studied. Nanopatterned films were produced by 

evaporation-induced self-assembly (EISA) using dip-coating. EISA involves 

nanopatterning via the liquid deposition of condensable inorganic precursors in the 

presence of surfactant micelles. Dilute precursor solutions were used so that only a 

monolayer of micelles were deposited, and a nanopatterned surface was obtained 

upon drying-induced collapse of the micelles. The organic template was finally 
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removed by calcination. The crater dimension can be tuned between roughly 10 and 

50 nm depending on the molecular weight of the surfactant used as the template. This 

approach can easily be scaled to the production of nanopatterned coatings on large-

area substrates without compromising film homogeneity. The open pore structure of 

the nanopatterned surface prepared by the EISA technique enables selective 

functionalization of the continuous metal oxide network and the substrate with self-

assembled monolayers (SAM). 

  In the thesis, wetting results on unfunctionalized and selectively hydrophobized 

nanopatterns were presented. The influence of the geometrical parameters (pore 

diameter, wall thickness, layer thickness) and hydrophilic-hydrophobic contrast on the 

nanometer length scale on the wetting properties of these materials were studied. The 

high homogeneity both in terms of the patterning as well as the thickness made it 

possible to experimentally determine the important parameters needed for the 

modeling of the wetting according to existing theories for the wetting of rough and 

heterogeneous surfaces. Superhydrophilicity was observed on unfunctionalized 

nanopatterns with Wenzel r-values between 1.7 and 2. The results could be modeled 

according to the theory of Bico et al., which suggests that the liquid droplet rests on a 

composite surface of solid and liquid. For the same nanopatterns, where the TiO2 

network was hydrophobized with a fluorinated organophosphonate (Zonyl), the 

wetting behavior was dependent on the type of water droplet deposition. For gently 

deposited small droplets, the measured static and advancing contact angles were 

higher than those for either of its constituents. The results could be modeled with the 

Cassie-Baxter equation, which assumes that air is trapped in the craters. When larger 

droplets were free-falling onto the surface, the measured contact angles were 

considerably smaller. These results fitted better to the Cassie-Wenzel theory, which 

assumes contact between the liquid and the surface. A large contact angle hysteresis 

was observed on the Zonyl-functionalized nanopatterns, which was ascribed to the 

continuity of the TiO2 network. An important finding was that a layer thickness in the 

range of 5.5-11 nm had a significant effect on the wetting behavior. 

  Finally, the wettability of very thin nanopatterned layers of TiO2 on SiO2 was 

studied. The nanopatterns had r-values close to 1, and the hydrophilic-hydrophobic 

contrast was tuned with UV-photopatterning. A fluoroalkylsilane (FAS) was self-

assembled onto the TiO2@SiO2 nanopattern, after which the film was exposed to UV 

irradiation. UV-photopatterning was possible because of the very different 
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photocatalytic properties of TiO2 and SiO2. The FAS layer was decomposing quite 

fast on the TiO2 part of the patterned surface, while FAS was stable for longer periods 

of time on the SiO2 part. The hydrophilic-hydrophobic contrast was tuned by varying 

the length of UV irradiation time. The fraction of remaining FAS, fFAS on the 

TiO2@SiO2 nanopattern was determined with XPS. fFAS –values was also calculated 

from water contact angle measurements of the composite and corresponding reference 

samples, by using existing wetting models for heterogeneous surfaces. fFAS–values 

determined from static water contact angle measurements gave the best agreement 

with the XPS results, while fFAS–values calculated from advancing and receding 

contact angles overestimated and underestimated the XPS-derived fFAS–values, 

respectively. The Cassie model gave a slightly better fit to the XPS data than the 

Israelachvili model. 

  The results presented in the thesis are believed to improve the understanding of the 

wettability of surfaces with heterogeneities on the nanometer length scale. This 

knowledge hopefully facilitates the fabrication of future devices within 

nanotechnology. Hydrophobically/hydrophilically nanopatterned surfaces are for 

instance promising materials for the manipulation of the flow of small volumes of 

liquid in the field of microfluidics.
2
 Microfluidic devices have promising applications 

in bioassays, microreactors, and in chemical and biological sensing.
13

Future 

interesting work on nanopatterned ceramic surfaces could include the fabrication of 

hierarchically patterned surfaces. For example, by exposing a hydrophobized 

TiO2@SiO2 nanopattern to UV-light through a photomask, micrometer sized 

hydrophilic stripes or patches with nanosized hydrophobic islands could be prepared 

within an otherwise hydrophobic network. The flow of liquid on such materials could 

be controlled by the micropatterned structure, while some desired functionality of the 

material could be introduced by the nanosized islands. 
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12. SAMMANFATTNING PÅ SVENSKA 

 

  Vätning av fasta ytor är ett viktigt fenomen i såväl naturen som i en lång rad av 

industriella tillämpningar. Det är allmänt känt att vätningen av en fast yta styrs av 

ytans kemi samt struktur. I avhandlingen studerades vätningsegenskaper hos 

titandioxid-baserade kerama ytor. Ytorna framställdes med hjälp av en sol-gel 

process, där substratet bestryks genom att doppas i en lösning innehållande 

titandioxidkällan, varefter den oorganiska strukturen stabiliseras genom kalcinering 

vid hög temperatur. I den första delen av avhandlingen studerades ytor med icke 

väldefinierad heterogenitet. Ytans topografi varierades genom att ändra på 

syntesparametrarna t.ex. kalcineringstemperaturen eller tillsättning av tillsatsämnen. 

Ytans egenskaper kunde beskrivas med hjälp av en serie ytråhetsparametrar, som 

erhölls från atomkraftsmikroskopimätningar (AFM). Resultaten visade att en ytas 

struktur inte i tillräcklig utsträckning kan beskrivas med den ofta använda RMS 

ytråhetsparametern, dvs. standardavvikelse på höjden, utan att även andra parametrar 

behövs för att beskriva fenomen som vätning och utfällning av oorganiskt material. 

Den kombinerade effekten av ytkemi samt ytstruktur på en ytas vätningsegenskaper 

studerades vidare genom tillverkning av superhydrofoba (vattenavstötande) material. 

Dessa ytor framställdes genom utfällning av kalciumfosfat på titandioxidfilmerna som 

därefter hydrofoberades med en fluorbaserad surfaktant. Ytans extrema 

vattenavstötande egenskaper kunde förklaras med kalciumfosfatets ytstruktur, som 

efter hydrofobering ledde till en minimal kontakt mellan vätskan och det fasta 

materialet.  

  I den andra delen av avhandlingen studerades väldefinierade ”nanomönstrade” ytor. 

Materialet bestod av tunna filmer av titandioxid, där substratet (kiseldioxid eller guld) 

var tillgängligt genom hexagonalt ordnade nanokratrar av storleken 10-50 nm. Dessa 

material var väl anpassade som modellytor för studier på hur heterogenitet på 

nanometernivå påverkar vätningsbeteendet, eftersom titandioxidnätverket och 

substratet selektivt kunde funktionaliseras med organiska molekyler. Effekten av 

ytans geometri (kraterdiameter, väggtjocklek, filmtjocklek) samt den hydrofila-

hydrofoba kontrasten i materialet studerades. Resultaten kunde framgångsrikt 

modelleras med existerande teorier för vätning av heterogena ytor. 
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