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Abstract 

 

Abstract 

 

The overall purpose of this thesis was to increase the knowledge on the 

biogeochemistry of rural acid sulphate (AS) soil environments and urban forest 

ecosystems near small towns in Western Finland. In addition, the potential causal 

relationship between the distribution of AS soils and geographical occurence of 

multiple sclerosis (MS) disease was assessed based on a review of existing literature 

and data. 

 

Acid sulphate soils, which occupy an area of approximately 17–24 million hectare 

worldwide, are regarded as the nastiest soils in the world. Independent of the 

geographical locality of these soils, they pose a great threat to their surrounding 

environment if disturbed. The abundant metal-rich acid drainage from Finnish AS 

soils, which is a result of sulphide oxidation due to artificial farmland drainage, has 

significant but spatially and temporally variable ecotoxicological impacts on 

biodiversity and community structure of fish, benthic invertebrates and macrophytes. 

This has resulted in mass fish kills and even eradication of sensitive fish species in 

affected waters. Moreover, previous investigations demonstrated significantly 

enriched concentrations of Co, Ni, Mn and Al, metals which are abundantly mobilised 

in AS soils, in agricultural crops (timothy grass and oats) and approximately 50 times 

higher concentrations of Al in cow milk originating from AS soils in Western Finland. 

Nevertheless, the results presented here demonstrate, in general, relatively moderate 

metal concentrations in oats and cabbage grown on AS soils in Western Finland, 

although some of the studied fields showed anomalous values of metals (e.g. Co and 

Ni) in both the soil and target plants (especially oats), similar to that of the previous 

investigations. The results indicated that the concentrations of Co, Ni, Mn and Zn in 

oats and Co and Zn in cabbage were governed by soil geochemistry as these metals 

were correlated with corresponding concentrations extracted from the soil by NH4Ac-

EDTA and NH4Ac, respectively. The concentrations of Cu and Fe in oats and cabbage 

were uncorrelated to that of the easily soluble concentrations in the soils, suggesting 

that biological processes (e.g. plant-root processes) overshadow geochemical variation. 

The concentrations of K and Mg in cabbage, which showed a low spread and were 

strongly correlated to the NH4Ac extractable contents in the soil, were governed by 

both the bioavailable fractions in the topsoil and plant-uptake mechanisms. The plant´s 
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ability to regulate its uptake of Ca and P (e.g. through root exudates) seemed to be 

more important than the influence of soil geochemistry. 

 

The distribution of P, K, Ca, Mg, Mn and S within humus, moss and needles in and 

around small towns was to a high degree controlled by biological cycling, which was 

indicated by the low correlation coefficients for P, K, Ca, Mg and S between humus 

and moss, and the low spread of these nutrients in moss and needles. The 

concentration variations of elements in till are mainly due to natural processes (e.g. 

intrusions, weathering, mineralogical variations in the bedrock). There was a strong 

spatial pattern for B in humus, moss and needles, which was suggested to be 

associated with anthropogenic emissions from nearby town centres. Geogenic dust 

affected the spatial distribution of Fe and Cr in moss, while natural processes governed 

the Fe anomaly found in the needles. The spatial accumulation patterns of Zn, Cd, Cu, 

Ni and Pb in humus and moss were strong and diverse, and related to current 

industry, the former steel industry, coal combustion, and natural geochemical 

processes. An intriguing Cu anomaly was found in moss. Since it was located close to a 

main railway line and because the railway line´s electric cables are made of Cu, it was 

suggested that the reason for the Cu anomaly is corrosion of these cables. 

 

In Western Finland, where AS soils are particularly abundant and enrich the metal 

concentrations of stream waters, cow milk and to some extent crops, an environmental 

risk assessment would be motivated to elucidate if the metal dispersion affect human 

health. Within this context, a topic of concern is the distribution of multiple sclerosis as 

high MS prevalence rates are found in the main area of AS soils. Regionally, the AS soil 

type in the Seinäjoki area has been demonstrated to be very severe in terms of metal 

leaching, this area also shows one of the highest MS rates reported worldwide. On a 

local scale, these severe AS soil types coincide well with the corresponding MS 

clustering along the Kyrönjoki River in Seinäjoki. There are reasons to suspect that 

these spatial correlations are causal, as multiple sclerosis has been suggested to result 

from a combination of genetic and environmental factors.                               
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Sammanfattning 

 

Den övergripande målsättningen med denna avhandling var att öka kunskapen om 

biogeokemin i jordbruksmarker belägna på sura sulfatjordar och skogsekosystem nära 

småstäder i västra Finland. På basis av tidigare forskningsresultat och insamlad data 

bedömdes även det potentiella orskakssambandet mellan utbredningen av sura 

sulfatjordar och den geografiska förekomsten av sjukdomen multipel skleros (MS) i 

Finland. 

 

Sura sulfatjordar, vilka globalt upptar en areal på ungefär 17–24 miljoner hektar, 

betraktas som en av de besvärligaste jordmånerna i världen. Oavsett det geografiska 

läget, utgör de sura sulfatjordarna ett stort hot för den omkringliggande miljön ifall de 

artificiellt torrläggs för uppodling. Den stora kvantiteten metallrikt surt 

avrinningsvatten från finländska sura sulfatjordar, en direkt påföljd av sulfidoxidation 

orsakad av dikning, har signifikanta, men spatiala och temporala varierande 

ekotoxikologiska effekter på biodiversiteten och samhällsstrukturen på fisk, bentiska 

invertebrater och makrofyter. Detta har bland annat resulterat i omfattande fiskdöd 

och utrotning av känsliga fiskarter. Metallerna Co, Ni, Mn och Al, vilka mobiliseras i 

stor omfattning i sura sulfatjordar, har i tidigare undersökningar visats vara kraftigt 

anrikade i grödor (timotej och havre) odlade på dessa jordar. Cirka 50 gånger högre 

koncentrationer av Al har också påvisats i komjölk härstammande från sura 

sulfatjordsområden i västra Finland. Resultaten som presenteras i denna avhandling 

påvisar dock relativt medelmåttiga metallkoncentrationer i havre och kål odlade på 

sura sulfatjordar i västra Finland, fastän några av fältena uppvisade kraftigt avvikande 

halter för bland annat Co och Ni i både mark och grödor (speciellt havre), i likhet med 

de tidigare undersökningarna. Resultaten indikerade att koncentrationerna av Co, Ni, 

Mn och Zn i havre, samt Co och Zn i kål, kontrollerades av markgeokemin eftersom 

metallhalterna uppvisade ett starkt samband med motsvarande koncentrationer 

extraherade från marken med NH4Ac-EDTA respektive NH4Ac. Koppar och Fe-

halterna i havre och kål var opåverkade av de motsvarande lättlösliga 

koncentrationerna i jordarna, vilket antyder att biologiska processer (växt-rot 

mekanismer) överskuggar variationer i markgeokemin. Koncentrationerna av K och 

Mg i kål, som uppvisade en låg spridning samt ett starkt samband med de NH4Ac-

extraherbara halterna, var reglerade av både den biotillgängliga fraktionen i ytskiktet 

samt av växtupptagningsmekanismer. Växtens förmåga att reglera dess upptag av Ca 
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och P (genom exempelvis rotexudat) föreföll däremot vara mer betydande än inverkan 

av markgeokemin. 

 

Fördelningen av P, K, Ca, Mg, Mn och S i humus, mossa och barr i närheten av 

småstäder kontrollerades till hög grad av biologiska kretslopp. Det här påvisades av 

de svaga korrelationskoefficienterna för P, K, Ca, Mg och S mellan humus och mossa, 

samt den låga spridningen av dessa näringsämnen i mossa och barr. 

Koncentrationsavvikelser för element i morän är i främsta hand beroende av naturliga 

processer (t.ex. intrusioner, vittring, mineralogiska variationer i berggrunden). I 

humus, mossa och barr uppvisade B ett starkt spatialt mönster, vilket antogs vara 

förknippat med antropogena emissioner från närbelägna städer. Geogent damm 

påverkade den spatiala fördelningen och det starka sambandet mellan Fe och Cr i 

mossa, medan naturliga processer associerades med den i barren förekommande Fe-

anomalin. De starka och olikartade spatiala ackumulationsmönstren för Zn, Cd, Cu, Ni 

och Pb i humus och mossa förknippades med dagens industrin, den tidigare 

stålindustrin, kolförbränning och naturliga geokemiska processer. En intressant Cu-

anomali påvisades i mossa och eftersom ackumulationsmönstret förekom i närheten av 

ett järnväggspår, vars elektriska kablar är Cu-baserade, föreslogs anomalin vara 

orsakad av korrosion av dessa kablar. 

 

Sura sulfatjordar ger upphov till förhöjda metallkoncentrationer i ytvatten, mjölk och 

till viss grad grödor och med hänsyn till sulfatjordarnas omfattande förekomst i västra 

Finland skulle en miljöriskanalys vara motiverad för att klarlägga huruvida 

metallspridningen påverkar människans hälsa. I detta sammanhang kan utbredningen 

av multipel skleros vara av väsentlig betydelse eftersom höga frekvenser av MS 

förekommer i det huvudsakliga området där sura sulfatjordar påträffas. Sura 

sulfatjordstypen i Seinäjokiregionen har visats vara mycket extrem i avseende på 

metalläckage och i motsvarande område förekommer en av de högsta i världen 

rapporterade MS frekvenserna. Den lokala förekomsten av dessa extrema sura 

sulfatjordar sammanfaller även väl med den motsvarande omfattande utbredningen 

av MS längs Kyrö älv i Seinäjoki. Det finns anledning att misstänka att dessa spatiala 

samband är kausala eftersom sjukdomsutvecklingen av MS har föreslagits vara en 

påföljd av både genetiska och miljöbetingade faktorer.  
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1. Introduction 

 

1.1 Acid sulphate soils in Finland 

 

Finnish acid sulphate (AS) soils, which have developed from fine-grained sulphide-

bearing marine sediments that have risen above the sea level as a result of the 

postglacial land uplift (up to 9 mm/year), are today found to a large extent (1600–3000 

km2) (Palko 1994, Yli-Halla et al. 1999) on the coastal plains of Western Finland (Fig. 

1a). These soils are very productive farmlands due to their favourable soil structure 

after drainage. Reclaimed AS soils require efficient drainage management for 

increasing the water outflow, hence keeping the ground water table well below the 

ground surface. Consequently, an aerated rooting zone, which is fundamental for the 

crops, is formed as excess water is rapidly discharged from the uppermost part of the 

soil profile. However, exposure of the formerly stable iron sulphides to air (as a result 

of drainage practise) trigger oxidation and consequently mobilisation of large 

quantities of sulphuric acid (H2SO4) and sulphide and silicate associated metals (e.g. 

Al, Cd, Mn, Ni) (Lin et al. 2001, Burton et al. 2006, 2008). The soil type that develops is 

an AS soil. There are significant spatial variations in the severity (e.g. pH and 

oxidation depth) of AS soils. Soils with high contents of sulphur that have only 

recently been drained (relatively little acidity has been leached) can in general be 

expected to be most severe, while, for example, high contents of organic matter may 

hamper the acidity (Österholm and Åström 2002). In the more severe Finnish AS soils 

pH drops below 3.5 (Yli-Halla et al. 1999, Österholm and Åström 2002). Moreover, 

intensification of drainage practises, especially the utilisation of modern subsurface 

drainage techniques, significantly increases the water outflow, thus maintaining a low 

water table and an aerated top- and subsoil, which in turn initiates large scale sulphide 

oxidation and increases the mobility of metals and acidity in these soils. Consequently, 

to enable cultivation on reclaimed AS soils efficient topsoil liming is required to 

counteract the acidity produced by sulphide oxidation. 

 

The acidity problems of these soils have been fairly well known for quite some time 

(Kivinen 1944) and during the most recent decades conclusive evidence has been put 

forward regarding the acid-metal load and its devastating effects on surrounding 

aquatic environments (Callinan et al. 1993, Hyne and Wilson 1997, Hudd 2000, Gosavi 

et al. 2004, Powell and Martens 2005). Sundström et al. (2002) estimated that the 
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current amount of metal leakage (e.g. Co, Ni, Zn, Cd, Mn, Al) from Finnish AS soils is 

10 to 100 times higher than the effluent discharges from the entire Finnish industry 

(Fig. 2). This has caused severe environmental problems in streams and rivers (Hudd 

et al. 1984, Hildén and Hirvi 1987, Meriläinen 1989, Urho et al. 1990, Vuori 1996, 

Kjellman 2003, Teppo et al. 2004). While it is known that huge amounts of acidity and 

potentially toxic metals are leached from the Finnish AS soils, little is known about the 

metal uptake in crops grown on these soils. The present knowledge on the chemical 

composition of AS soil grown crops is mainly based on a few publications (Palko 1986, 

Yli-Halla and Palko 1987) only, which showed significantly elevated concentrations of 

a number of metals in timothy grass and oat grains. Exceptionally high concentrations 

of Al, a characteristic element mobilised in large quantities in AS soils, were also found 

in milk samples from cows grazing on AS soils (Alhonen et al. 1997). The lack of 

sufficient information on the biogeochemical pathways of mobilised metals within 

these soils is thus conspicuous. Such information would be of great importance since 

metal accumulation in AS soil derived food sources would serve as a direct link of 

metals to the human food chain and may thus pose a potential risk on human health.  

 
 

 
Fig. 1. a) Location of the study areas where (A.) represents the urban part consisting of forest sites near 

town centres (Paper I), (B.) the rural part consisting of eight agricultural fields located on AS soils within the 

Vaasa region (Paper III & IV) and (C.) part of the Kyrönjoki River located within the Vaasa and Seinäjoki 

area (Chapter 7). The shaded area represents the maximum extent of the former Litorina Sea, wherein AS 

soils can be found (Sohlenius 1996). b) Detailed map representing the sampling sites within the urban study 

area (A.), the location of town centres and number of inhabitants (in brackets) in corresponding towns.  
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Fig. 2. Estimated metal discharges in effluent from the Finnish industry (continuous line) and in runoff from 

acid sulphate (AS) soils (broken line) in 1978–2005, expressed as tonnes per year (t a-1). Data for Al during 

1978–1980 do not exist. Figure modified and updated from Sundström et al. (2002).  

 

 

1.2 Acid sulphate soils worldwide 

 

Acid sulphate soils currently cover a total of approximately 17–24 million hectare in 

the coastal regions worldwide, with major occurences in Africa, Australia, Asia and 

Latin America (Ritsemaa et al. 2000, Andriesse and van Mensvoort 2002). The 

occurence of AS soils in the Mekong Delta of South East Asia is very extensive and 

because of the high population pressure in these productive agricultural regions (an 

estimated 2.4 million Cambodians and 17 million Vietnamese live on the delta), AS 

soils are being reclaimed for agricultural production (Minh et al. 1997a, b, Husson et al. 

2000, Berg et al. 2007). The leaching of metal-rich acid drainage from AS soil farmlands 
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in these areas is extensive during monsoonal rains (the mean annual precipitation 

ranging from 1500–2400 mm). Adjacent and downstream waterways are severely 

affected, making this contaminated surface water unsuitable for irrigation purposes 

and domestic uses (Minh et al. 1997a, b). Ground water pollution of the Mekong Delta 

is another serious environmental effect associated with metal-rich acid leakage from 

AS soils (Berg et al. 2007, Buschmann et al. 2007).  

 

In other parts of the world, extensive drought periods, as was encountered in large 

parts of Australia in 2006, initiated development of AS soils. Earlier waterlogged 

sulphidic materials were oxidised due to the rapid drop of the ground water level 

(during a period of only 4 months), and as a consequence, ample sulphide oxidation 

and corresponding mobilisation of acidity and metals occurred (Fitzpatrick et al. 2008). 

The abundant amount of produced acidity and metals will eventually, as a result of 

heavy rains and/or tidal floods, be leached out to nearby waterways and/or be 

available for plant uptake at the upper soil profile.  

 

In summary, independent of the geographical locality of AS soils, they pose a great 

threat to their surrounding environment if disturbed. This has globally been 

recognised and a large amount of work has been published on the environmental 

effects of AS soils (e.g. Klepper et al. 1992, Callinan et al. 1993, Lin et al. 1995, Sammut 

et al. 1995, 1996, Hyne and Wilson 1997, Wilson et al. 1999, Callinan et al. 2005, Powell 

and Martens 2005, Berg et al. 2007, Chu et al. 2008, Nuttal et al. 2008, Choongo et al. 

2009).  

 

 

1.3 Local and regional biogeochemical mapping  

 

The number of geochemical studies in urban areas has increased in recent decades 

because of metal dispersion from different sources and/or human activities affecting 

the local ecosystem (Kohonen and Salminen 1993, Kelly et al. 1996, Salla 1999, Birke 

and Rauch 2000, Bityukova et al. 2000, Tijhuis et al. 2002, Peltola and Åström 2003, 

Cicchella et al. 2005, Fordyce et al. 2005). The purpose of these studies has been to 

assess metal accumulation in both urban and rural areas and to establish the origin and 

pathways of these pollutants. Sampling of top- and subsoil, and biological media (e.g. 

moss) has generally been used to determine the level of metal contamination and 

4
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general pollution stress over longer periods of time in these areas (Kelly et al. 1996, 

Poikolainen et al. 2004, Salemaa et al. 2004). These type of geochemical mapping 

and/or environmental monitoring studies carried out on a local and/or regional scale 

with higher sample density (Raitio and Kärkkäinen 2002, Raitio et al. 2002, Niskanen et 

al. 2003), are, in contrast to wide-spaced, low-density sampling studies (Peltola and 

Åström 2003), more suitable for reflecting local contamination, human impact and the 

fate and origin of elements.  

 

Large-scale regional geochemical surveys with low sampling density have been carried 

out in large extent. The most pronounced examples of typical ecogeochemical 

mapping and monitoring are the geochemical mapping of Europe, the Kola 

Ecogeochemistry- and Eastern Barents region projects (Niskavaara et al. 1996, Reimann 

et al. 1998, 2000, 2001a-c, de Caritat et al. 2001, Reimann and Melezhik 2001, Salminen 

et al. 2004, De Vos and Tarvainen 2006). The two latter surveys, which covered a total 

area of 188 000 km2 and 1 550 000 km2 at a sampling density of one site per 300 and 

1000 km2 respectively, included Finland, parts of Norway and Russia (see Salminen et 

al. 2004 and http://www.ngu.no/Kola for more detailed information). The purpose for 

carrying out these surveys was to develop geochemical baselines (and hence to obtain 

a consistent geochemical overview), and to elucidate how local pollution sources in the 

heavily industrialised parts of the Kola Peninsula in Russia affected the regional 

atmospheric deposition of heavy metals and the condition of the surrounding 

environment in the pristine parts of Northern Finland and Norway. Multi-media 

sampling, consisting of moss, needles, podzolic soil profiles, stream water and 

snowpack, was utilized in both surveys. The use of the multi-media approach gain 

insights into how the interplay between the atmosphere, biosphere, and lithosphere 

affect element cycling and distribution (Reimann et al. 2001b). It is therefore possible to 

determine the impact of anthropogenic pollution in relation to natural variations, and 

to map the extent of pollution in these various media on a regional scale.  

 

 

 

5



Objectives of the research 

 

 6 

2. Objectives of the research 

 

The overall purpose of this thesis was to increase the knowledge on biogeochemical 

processes in agricultural landscapes (Paper II-IV) and urban areas in the boreal region 

(Paper I). The landscape-oriented studies focus on the impact and dynamics of AS soils 

in agricultural use, and the urban-oriented study on metal-distribution patterns in and 

around small towns. The objective of the urban study was to elucidate how a variety of 

human activities and natural processes have affected metal dispersion and 

accumulation in moss, humus, till and needle samples from coniferous forests near 

town centres in Western Finland (Paper I). The objective of the agricultural landscape 

studies was to review available research information on the environmental risks and 

effects of metal mobilisation in AS soil areas (Paper II), and to assess the role of soil 

chemistry on metal concentrations in oats and cabbage grown on AS soils with varying 

geochemical characteristics (Paper III & IV). Moreover, on the basis of existing data, a 

discussion on the potential connection between the distribution of AS soils and the 

geographical occurrence of multiple sclerosis (MS) disease in Finland is given (Chapter 

7). The reason for the emphasis on geomedicine, defined as the science dealing with 

environmental factors influencing the geographical distribution of animal and human 

health (Låg 1980), is to establish a platform, not only intended for research and 

legislation purposes, but for public interest, discussion and further development. 
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3. Description of the study areas 

 

The study areas, which are located at high latitudes and characterised as lowlands 

close to the present sea level, are situated in the boreal zone of Western Finland (Fig. 

1a). The wind direction is highly variable with a slightly dominating (20%) SSW 

direction and the mean annual precipitation is ca. 500 mm. The mean annual 

temperature is approximately +3°C, with July and August as the warmest months 

(+15°C) and December to March the coldest (below 0°C) (Atlas of Finland 1987). 

Metamorphic granitoids, carbonate-poor mica gneisses and metasedimentary rocks 

(e.g. mica schists) are the primary bedrock types in these areas (Korsman et al. 1997). 

The different sampling sites within the study areas are divided into an urban (Paper I) 

and a rural (Paper III & IV) part consisting of forest sites near town centres and arable 

land located on AS soils, respectively (Fig. 1a, b). A more detailed description of the 

study sites is found in the corresponding papers (Paper I, III & IV) and only a brief 

overview is given below. 

 

The towns of Jakobstad and Nykarleby and parts of Larsmo and Bennäs (the latter 

representing the administrative centre of the town Pedersöre) municipalities 

represents the urban part of the study area (a total size of ca. 500 km2), which is located 

in Western Finland (Paper I; Fig. 1b). The main emitters (energy production-, metal-, 

pulp- and paper industries) are located in Jakobstad and Karleby (just outside the 

study area) whereas agriculture, forestry and fur farms are well established branches 

of business in Nykarleby and Bennäs. The forest vegetation is mainly made up of pine, 

spruce and to some extent of birch and mixed forest stands, typical of the boreal 

coniferous zone in the Northern Hemisphere. 

 

The eight agricultural fields in the rural part of the study area, which are located close 

to each other within the Vaasa region in Western Finland (Fig. 1a), are found on fine-

grained Holocene sediments (Paper III & IV). These fields are characterised as young 

since they relatively recently have emerged from the sea and thereafter been reclaimed 

(Nordmyr et al. 2006) and consequently developed into AS soils due to excavation 

works. Although these AS soils are at an early stage of development the soil profiles 

are still rather deep implying that soil forming processes have been swift. The quantity 

of anthropogenic pollution in this part of the study area is low since no big industries 
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are located in the vicinity. However, diffuse leakage from reclaimed AS soils may be 

substantial as agriculture is common in these rural parts of the study area.  

 

All the AS soil studies referred to in Paper II (literature review) have been conducted 

within 62°30′-65°10′ N and 21°10′-26°30′ E, which represents the coastal regions of 

Western Finland.  
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4. Material and methods 

 

4.1 Existing multi-medium, multi-element data (Paper I) 

 

In 2000, a bioindicator monitoring programme of the air quality in forest sites near 

town centres in Western Finland was carried out by the Finnish Forest Research 

Institute (METLA) (Paper I; Fig. 1b). Moss, humus, needle and till samples from 

coniferous forests at 87–103 sites within the 500 km2 study area were analysed for P, K, 

Ca, Mg, Fe, S, B, Cu, Zn, Mn, Cd, Cr, Ni and Pb. The results of Paper I is based on this 

multi-media, multi-element data set provided by METLA. A brief overview of each 

medium, and the chemical analysis of these, is given below while a description of the 

sampling, sample preparation and quality control is given in the corresponding paper.  

 

Terrestrial moss, which has been extensively used in bioindicator studies in 

Scandinavia over the last 30 years, was selected because of its relatively good reliability 

as a monitoring tool for atmospheric deposition (Reimann et al. 2001b). The element 

content in moss is apart from deposition fallout also affected by a multitude of other 

factors, such as ion exchange processes, element-specific processes (tendency of 

accumulation, natural cycling processes), climatic conditions, the mineral composition 

of soil dust, moss species etc. (Berg et al. 1995, Ford et al. 1995, Steinnes 1995, Reimann 

et al. 2001a). The humus horizon (organic layer of the forest soil), which reflects the 

interaction between the lithosphere, biosphere and atmosphere, normally acts as a sink 

for elements in northern ecosystems (Reimann et al. 2001b). The chemical composition 

of the humus layer is affected by the atmospheric addition of elements (geogenic and 

anthropogenic dust and emissions), the composition and productivity of the 

vegetation, the climate and the character of the bedrock or soil parent material 

(Reimann et al. 2000). Pine needles act as a nutrient reserve for the tree and 

concurrently take part in the cycling of elements in pine forest ecosystems (Lamppu 

and Huttunen 2003). The chemical composition of pine needles is to a great extent 

affected by root uptake and translocation processes and less by absorption of elements 

from atmospheric deposition (Čeburnis and Steinnes 2000). Chemical characterisation 

of needles makes it possible to assess the relationship between cause and effect in 

forest damage, trace changes of the nutrient condition in the ground and assess the 

condition of the forest (nutrient shortage and condition of toxicity) (Raitio and 

Kärkkäinen 2002). In addition to these three media above, till data from the 
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corresponding area, but from different sample plots, were obtained from the 

Geological Survey of Finland (GTK). The till or the unsorted mineral soil consists of 

crushed bedrock material and superficial deposits developed on glacial drift (Koljonen 

1992). The bedrock and natural geological processes (deposits, intrusions and 

weathering) are the main sources of the element accumulation and spread in till 

(Reimann et al. 2001b).  

 

The humus samples were analysed for acidity (pH) on a water extract (15 ml 

powder/25 ml distilled water) according to the directives of the European programme 

on assessment and monitoring of air pollution effects on forests (ICP Forests Manual 

2006). Samples of moss, humus and needles were digested in a mixture of HNO3:H2O2 

and P, K, Ca, Mg, Fe, S, B, Cu, Zn, Mn, Cd, Cr, Ni and Pb were determined by ICP-

AES. The digestion, using 0.5 g of sample material, was carried out in a microwave 

oven using MDS 2000-equipment. The till samples were dry-sieved and the fine 

fraction (< 0.062 mm) was used in the analyses. The samples were dissolved in aqua 

regia at 90°C for one hour and afterwards diluted with distilled water to a 1:100 ratio. 

The solution was analysed by ICP-AES for P, K, Ca, Mg, Fe, Cu, Zn, Mn, Cr, Ni and Pb. 

 

 

4.1.1 Data analysis 

 

The application of various statistical analysis and GIS maps on this multi-medium, 

multi-element data facilitates the illustration of metal deviations through spatial 

accumulation patterns and establishment of origin of specific metals. On the basis of 

this, it was possible to elucidate how a variety of natural and anthropogenic processes 

had affected metal dispersion and accumulation within this boreal ecosystem. The 

utilization of box plot comparison of different media is a convenient way of displaying 

important information (e.g. spread) in data sets at a glance. The box plot shows the 

median and/or mean (marked with a line within the box), the quartiles/hinges (25% 

and 75%, the ends of the box), minimum and maximum values/whiskers (vertical lines 

outside the box), mild outliers (> 1.5 x hinge spread, marked as an unfilled dot) and 

extreme outliers (> 3.0 x hinge spread, marked as a filled dot). The use of percentiles 

(P25, P50, P75 and P90) for class selection for each medium makes growing symbol maps 

directly comparable and independent of extreme values. These maps graphically 

display spatial variation and this mapping technique is an efficient tool for the 
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interpretation of geochemical distribution patterns. Additionally, Spearman correlation 

analysis (significant at P = 0.01) was adopted in the present study for comparing 

element concentrations between and within media at the studied sites. Each significant 

element association was verified in XY-plots confirming these relationships were not 

artefacts.   

 

 

4.2 Literature review (Paper II) 

 

During the last decades a substantial amount of work has been published on Finnish 

AS soils and their associated environmental impacts (van Breemen 1973, National 

Board of Waters 1973, Hudd et al. 1984, Hildén and Hirvi 1987, Urho et al. 1990, Palko 

1994, Vuori 1996, Åström 2001a, Sohlenius and Öborn 2004, Österholm 2005, Nordmyr 

et al. 2008a, b). This relatively scattered research information, which principally 

concerns metal uptake in biota and is compiled here to a literature review (Paper II), 

involves internal reports from Finnish regional environment centres and similar 

institutes (published in Swedish, Finnish and/or English), conference proceedings, 

PhD-theses and articles in scientific journals. The majority, if not all of these works 

have recognised the nuisance and environmental risks (e.g. serious damage on aquatic 

biota) related to the disturbance of AS soils. Moreover, these AS soil related problems 

have attracted much attention in the Finnish mass media, primarily through the 

recurring mass fish kills in affected streams. Despite the knowledge of the huge 

amounts of acidity and potentially toxic metals mobilised in and leached from these 

soils, little attention has been paid to metal accumulation in terrestrial crops. Only a 

few studies, focusing on metal concentrations in crops cultivated on AS soils, have 

been conducted and they all indicate significantly enriched concentrations of a series of 

metals (Palko 1986, Yli-Halla and Palko 1987). This subject is of public concern as 

enriched concentrations of potentially toxic metals in plants may pose negative effects 

on human health due to chronic exposure. Thus, the reason for carrying out this 

review was to compile relevant and essential literature on the environmental risks and 

effects (principally metal uptake in biota) of metals mobilised in Finnish AS soils and 

to discuss potential effects on human health. In addition, a literature study on AS soils 

has yet to be done, which in turn was a strong motive for this work. Finally, this 

compilation can be regarded as a contribution both to the general public, providing a 

better understanding of the complexity of problems related to AS soils, and to the 
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science community for future research needs on geochemical and -medical related 

associations. 

 

 

4.3 Soil sampling and chemical analysis (Paper III & IV) 

 

During the late summer of 2005 and 2006, a total of 36 topsoil samples (0–20 cm) and 

25 subsoil- (20–100 cm) and three whole soil profiles (~0–260 cm) were collected with 

an auger from 36 subsites from eight agricultural fields located on AS soils in the 

coastal areas of Western Finland (Paper III & IV; Fig. 1a). These soil profiles were 

subdivided into 20 cm section splits of which pH was determined afterwards in the 

laboratory with a Mettler Toledo inlab 426® sediment electrode, which was inserted in 

the soil. Deionised water was added to each subsample to assure contact with the 

electrode and the soil (Puustinen et al. 1994). These soil sample splits were dried at 40–

60°C for five days and subsequently milled in a quartz mortar to a fine powder.  

 

A 1.0 g portion of the top- and subsoil splits was analysed for Ca, Co, Cu, Fe, K, Mg, 

Mn, Ni, P and Zn by ICP-ES/MS after extraction in 10 mL ammonium acetate (0.5 N 

ammonium acetate 0.5 N acetic acid, below referred to as NH4Ac) and acid ammonium 

acetate-EDTA (0.5 N ammonium acetate 0.5 N acetic acid 0.02 M EDTA, below referred 

to as NH4Ac-EDTA) solution at pH 4.65 for one hour. The purpose of these methods 

was to extract the exchangeable and readily soluble fraction of chemical elements, thus 

simulating the easily available (bioavailable) fraction found in the soil. It has been 

shown that the extraction of Ca, K and Mg is suitable with either NH4Ac or NH4Ac-

EDTA as the same amounts are extracted regardless of method used (Lakanen and 

Erviö 1971, Borgaard 1976), however, somewhat higher trace element concentrations 

might be extracted by the efficient complexing agent, EDTA, as to that of NH4Ac alone 

(Menzies et al. 2007). Nevertheless, there is no universal single extractant suitable for 

perfectly assessing the easily available concentrations of multi-elements found in the 

soil. 

 

A 0.5 g portion of soil samples, representing whole soil profile (Paper IV) and 40–60 cm 

section splits (Paper III), was analysed for the above mentioned elements plus S by 

ICP-MS after partial digestion in 3 mL 2:2:2 HCl:HNO3:H2O (aqua regia extraction) at 

95°C for one hour. The aqua regia digestion dissolves several phyllosilicates, organic 
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material and metal sulphides, however, the most weathering resistant minerals, e.g. 

quartz, feldspars and crystalline oxides, are poorly dissolved (Räisänen et al. 1992). 

 

A 1.0 g aliquot of the topsoil splits was analysed for Ca, Co, Cu, Fe, K, Mg, Mn, Ni, P 

and Zn after extraction in 10 mL 0.25 M hydroxylamine (NH2OH) digested at 90°C for 

two hours followed by analysis with ICP-ES/MS. Fe-oxides are found in large 

proportions in these soils (Åström 1998b) and they are well known sinks for mobile 

trace elements in surface environments (Kabata-Pendias 2001). The metal fraction 

bound to Fe- and Mn oxides is mobilised through dissolution of these with the strong 

0.25 M hydroxylamine reductant (Hall 1998, Filgueiras et al. 2002).  

 

The organic matter content of the whole soil profile splits was estimated as loss on 

ignition (LOI) by combusting 1.0 g of dried sample for four hours in 500°C (Radojević 

and Bashkin 1999). LOI, which is a relatively rapid and accurate method for the 

estimation of the organic matter concentration present in a sample, is suggested to be 

proportional to the content of organic carbon (Ball 1964, Heiri et al. 2001). 

 

 

4.4 Plant sampling and chemical analysis (Paper III & IV) 

 

A total of 26 oat (Avena sativa L. cv. Fiia; Paper III) and 11 white cabbage (Brassica 

oleracea L. var. capitata; Paper IV) samples were collected adjacent to the soil sample 

pits in the late summer of 2005 and 2006 (Photo 1). Each oat sample (approximately 300 

g) was collected from all cardinal points within a radius of 0.5 m from the centre of the 

soil sampling point. The oat samples were stored in plastic bags in a freezer at −18°C 

and dried at 60°C for 72 hours before pre-treatment. The oat leaflets and grains were 

separated with an aspirator at MTT Agrifood Research Finland in Jokioinen. The 

grains were sorted with a 2 mm sieve, thus obtaining an uniform grain size sample, 

and subsequently weighed and milled in a quartz mortar by hand. Similar to that of 

the oat samples, the outer leafs of the cabbage were cut off to avoid soil contamination 

of the samples. Subsamples were congregated from a transect representing the main 

inner part of the cabbage sample, thus obtaining an uniform bulk sample. These 11 

bulk samples were stored in a refrigerator (5°C) until freeze-dried and analysed. 
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A 1.0 g portion of the oat and cabbage samples was digested with 2 mL HNO3 for one 

hour following a 6 mL digestion in 3 mL 2:2:2 HCl:HNO3:H2O (HNO3 + aqua regia) at 

95°C for one hour and analysed by ICP-MS for Ca, Co, Cu, Fe, K, Mg, Mn, Ni, P, and 

Zn. The HNO3 + aqua regia digestion extracts near-total element concentrations bound 

in the plant material. Randomly selected replicates for each of the respective soil and 

plant extractions were determined for analytical reliability according to the method by 

Gill (1997) and are found in the corresponding papers (Paper III & IV). 

 

 

 
Photo 1. Oats cultivated on AS soils in the typically flat landscapes of Western Finland, Ostrobothnia. 
Cabbage sample adjacent to AS soil sample pit.  

 

 

4.5 Reference data for corresponding soil and plant material 

 

In 1974 a total of 2015 topsoil samples (0–20 cm) were collected from cultivated soils 

representing 12 different soil types throughout the country (Sippola and Tares 1978). 

During 1972–1976, a multitude of different fresh vegetables (e.g. Brassica oleracea, n=5) 

from wholesale stores of five regional vegetable growers´ associations (Varo et al. 

1980a) and oat samples (Avena Sativa, n=36) from 10 national granary stores and five 

commercial mills were collected (Varo et al. 1980b). The sampled crops originated from 

the main growing areas in the country and represented the vast bulk for Finnish 

consumption. These studies were a part of the general inventory of the mineral 

element survey of Finnish foods, and the aim was to gather background data on the 
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mineral element concentrations of Finnish crops and cultivated soils (Sippola and 

Tares 1978, Varo et al. 1980a, b). While it is possible that AS soils and crops grown on 

them might be included in the reference data sets, their effect on the concentration 

levels will be of minor importance since the reference samples represent the whole of 

Finland (relatively small proportion of AS soils). The mean values of elements in these 

studies (Sippola and Tares 1978, Varo et al. 1980a, b) are used as a reference and 

termed Finnish average values (FAV) in this thesis (Paper III & IV). 

 

The soil samples (n=2015) were analysed for Ca, Mg, P and K after NH4Ac-extraction 

(0.5 N ammonium acetate 0.5 N acetic acid) (Vuorinen and Mäkitie 1955) and for Co, 

Cu, Fe, Mn, Ni and Zn after NH4Ac-EDTA extraction (0.5 N ammonium acetate 0.5 N 

acetic acid 0.02 M EDTA) at pH 4.65 for one hour with a volume ratio of soil/extractant 

of 1:10 (Lakanen and Erviö 1971, Sippola and Tares 1978). Calcium and K were 

determined with flame photometry, P colorimetrically and Mg, Co, Cu, Fe, Mn, Ni and 

Zn with AAS (Sippola and Tares 1978). The oat grain samples (n=36) were analysed by 

AAS after dry ashing for 40 hours at 500°C following digestion in HCl-HClO4- (Cu, Fe, 

Mn and Zn) and HNO3-HClO4 (Co, Ni) solution (Saari and Paaso 1980). The cabbage 

samples (n=5) were assorted, washed with tap water and in some cases peeled. The 

cabbage leaves, which were cut in small 0.5 cm pieces, oven dried and subsequently 

homogenised, were analysed with AAS after dry ashing for 40 hours at 500°C and 

450°C following digestion in HCl-HClO4- (Ca, Cu, Fe, K, Mg, Mn and Zn) and HNO3-

HClO4 (Co, Ni) solution, respectively (Saari and Paaso 1980).  

 

The same soil extraction methods were used for the reference material (FAV) and in 

the present studies to simulate the easily available concentrations of Co, Ni, Zn, Mn, 

Cu and Fe (NH4Ac-EDTA, Paper III), and Ca, K, Mg and P (NH4Ac, Paper IV) and 

hence, a comparison between results should be fairly applicable. In contrast, different 

extraction- and pre-treatment methods were used for the reference material for the 

analysis of the chemical composition of oats and cabbage. Nevertheless, the extraction 

methods used here and for the reference material are designed to provide near total 

concentrations bound in the biological material. Despite the analytical differences 

between these studies, it is reasonable to assume that these differences are not crucial 

in terms of element amounts extracted, and thus, the FAV is used here as a rough 

indicator of the total element concentrations in oats and cabbage and hence serves as a 

rough background estimate. All matters considered, direct comparisons of results 
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obtained by different soil extraction methods, sampling methods, analytical 

techniques, time period between studies and inter-laboratory differences should be 

done with utmost discretion and without attention on fine details. 
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5. Extended abstracts of Paper I-IV 

 

5.1 Paper I 

 

High-density sampling of till, humus, moss and needles from coniferous forests at 87–

103 sites was carried out by the Finnish Forest Research Institute (METLA) in a 500 

km2 area in Western Finland (Fig. 1a, b) to elucidate the effect of anthropogenic 

emissions and natural processes on accumulation patterns and spatial dispersion of P, 

K, Ca, Mg, Fe, S, B, Cu, Zn, Mn, Cd, Cr, Ni and Pb in the environment. The multi-

medium, multi-element approach in connection with high-density sampling on a local 

and/or regional scale is useful in reflecting (i) element distribution affected by human 

activity and/or anthropogenic emissions and (ii) impact of natural processes on 

element cycling and -accumulation patterns, and is thus an essential tool explaining 

origin and pathways of pollutants. Furthermore, the utilization of box plots, 

correlation matrices and growing symbol maps is a convenient way of displaying and 

interpreting spatial variation, spread, natural processes and fate of elements.   

 

No distinct spatial patterns were found for P, K, Ca, Mg, S and Mn in the four analysed 

media. The relative quantity (mg kg-1) of these elements (except Mn) are generally 

found in the following order in all plants, K > Ca > Mg > P > S (Reimann et al. 2001c), 

which also is the case in this study for moss and needles, except Mg that was found in 

penultimate or last position. These elements showed low concentration variations in 

both moss and needles and low correlation coefficients between humus and moss, 

indicating effective biological recycling.  

 

Distinctive spatial patterns were observed for B in humus, moss and needles, however, 

no significant correlation existed between these media. These accumulation patterns, 

which in humus was pronounced in the central part of the study area, around the town 

of Jakobstad, and in moss and needles in the northern rural parts of the study area, are 

attributed to anthropogenic emissions from the industrial towns of Jakobstad and 

Karleby (NE of the study area) (Fig. 1b, Fig. 3). The concentrations of B in humus, moss 

and needles were not correlated with the distance to the coast (brackish water), 

suggesting that these B patterns are unaffected by deposition of marine salts. 
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Fig. 3. Spatial distribution of B in humus, moss and needles. 

 

 

Significant correlation existed between Fe and Cr in till, humus and moss, however, 

only the latter medium delivered a clear spatial pattern characterised by elevated 

concentrations of these elements in the central parts (the town of Jakobstad and 

Bennäs) (Fig. 4). It was argued that dust input governs the observed anomaly in moss 

for Fe and Cr, since a large spread of these elements in this medium is indicative of 

such a pathway (Reimann et al. 2001a, c). Similar to that of Fe and Cr in moss, a 

corresponding spatial accumulation pattern for Fe was observed in the needles (Fig. 4). 

This Fe pattern may partly be associated with the ability of the wax layer of the needles 

to retain the corresponding element (Čeburnis and Steinnes 2000). 

 

18



Extended abstracts – Paper I 

 

 19 

 

 
Fig. 4. Spatial distribution of Fe and Cr in moss and Fe in needles. 

 

 

No spatial accumulation patterns were observed for Zn, Cd, Cu, Ni and Pb in till (not 

shown). However, the concentrations of these metals (except Pb) in humus were 

enriched in the northern part of the study area (Fig. 5). This accumulation pattern is 

partly associated with atmospheric deposition originating from the heavy industry in 

Karleby, where maximum concentrations of Zn, Cd, Cu and Ni in humus (Niskanen et 

al. 2003) exceed corresponding concentrations in this study up to 24 times, 

respectively. In humus, Pb showed a corresponding spatial pattern as to that of B with 

enrichment in and around Jakobstad (Fig. 5). This Pb anomaly could be due to 

deposition from a former metallurgic industry situated in the town. Furthermore, long-

range transport from neighbouring countries as well as biologically and chemically 
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related processes (e.g. organic complexing) may also to some extent explain this Pb 

pattern in humus (Reimann et al. 2001b). 

 

In moss, the low concentrations of Zn, Cd, Cu, Ni and Pb in the south are explained by 

the sparse establishment of industry in this particular part of the area (Fig. 5). The 

enriched concentrations of Cu, Ni and Pb in the central part of the study area, similar 

to that of Fe and Cr, can be attributed to increased dust and deposition levels from the 

iron and steel industry, coal combustion and traffic (Raitio and Kärkkäinen 2002, 

Peltola and Åström 2003). Additionally, an intriguing Cu anomaly (6.7–79 mg kg-1) in 

moss, which showed approximately twice as high maximum concentrations as 

compared to corresponding Cu concentrations (40 mg kg-1) close to the heavy industry 

in Karleby (Niskanen et al. 2003), was observed around the railway line in the SE of the 

study area (Bennäs) (Fig. 5). It was hypothesized that corrosion of the Cu-based 

railway line´s electric cables is the main cause for this spatial Cu anomaly. 

 

No clear spatial patterns were observed for Cu, Cd or Zn (Pb not analysed) in the 

needles, however, Ni displayed an apparent anomaly in the north (not shown). 

Natural biological processes (e.g. translocation) and antagonistic effects of Ni 

preventing root uptake of Cu, Cd and Zn (Rautio and Huttunen 2003) may partly 

explain these different spatial patterns observed in the needles.  
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Fig. 5. Spatial distribution of Zn, Cd, Cu, Ni and Pb in humus and moss. 
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5.2 Paper II 

 

The main aim of this study was to review the current available research information on 

the environmental risks and effects of metals mobilised in Finnish AS soils. 

 

From an environmental point of view, AS soils are regarded as the most problematic 

soils in the world (Dent and Pons 1995). These soils currently cover a total of 

approximately 17–24 million hectare in the coastal regions worldwide. In Europe, the 

largest AS soil occurrences are found in Finland (1600–3000 km2) with their major 

distribution along the coastal areas in the mid-western parts of the country (Fig. 1a) 

(Palko 1994, Yli-Halla et al. 1999, Andriesse and van Mensvoort 2002). Finnish AS soils 

develop where sulphide-bearing fine-grained sediments, deposited during the 

Holocene in the brackish Baltic Sea, are exposed to atmospheric oxygen, subsequently 

initiating sulphide oxidation and formation of sulphuric acid, resulting in low soil pH 

(2.5–4.5). The oxidation of these sulphide-rich sediments, which have risen above the 

sea level as a result of isostatic land uplift, have occurred as a result of artificial 

farmland drainage (Palko 1994, Österholm and Åström 2002, Österholm 2005). Soil 

acidification, which promote and consequently accelerate mineral weathering, 

abundantly mobilise metals bound in sulphides (e.g. Ni, Cd, Mn) and other minerals 

such as metal-bearing aluminosilicates (e.g. Al), thus making these potentially toxic 

metals available for transport and leaching. However, the quantity of metal-rich acid 

drainage originating from these soils, which vary in time and space, depend upon, for 

instance, the oxidation stage of the soil profile, inherent S content and drainage 

effectiveness. 

 

Aluminium, which occurs in Finnish AS soils in the order of several percent as 

aluminosilicate and probably Al-hydroxide, is very mobile due to the acidic conditions 

promoting aluminosilicate weathering and Al-hydroxide dissolution and thus Al 

solubilisation and transport. Aluminium, which mainly exist in cationic form in AS soil 

affected waters (Åström and Corin 2000), is one of the most enriched elements in 

drainage water from typical soils and concentrations up to 260 mg l-1 have been 

observed (Åström and Björklund 1995). 

 

The oxidation and weathering of sulphides, which results in soil acidity and increasing 

redox potentials, increases the mobility of Co, Ni, Zn, Cd and Mn in these soils (Palko 
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and Yli-Halla 1988, 1990). Furthermore, weathering of other minerals (e.g. 

aluminosilicates) also contributes to the increased mobilisation of these metals 

(Sohlenius and Öborn 2004). This eventually results in extensive leaching of Co, Ni, 

Zn, Cd and Mn to nearby watercourses, in particular during heavy rainfall in autumn 

and snow melting in spring, resulting in concentrations that are up to 50, 30, 20, 10 and 

30 times higher, respectively, than typical background values of the region (runoff 

from areas covered by forests underlain mainly with till, peat and/or glaciofluvial 

material) (Åström and Björklund 1996, Åström 2001a, b, Roos and Åström 2005, 

Österholm et al. 2005). Furthermore, the concentrations of Co, Ni, Zn, Cd, Mn and the 

above mentioned Al, are very high in streams affected by AS soils as compared with 

average values for Finnish and Fennoscandian rivers (Edén and Björklund 1993, 

Lahermo et al. 1996, Åström 2001a, b). These metals are generally associated with the 

cationic fraction in waters draining AS soils (Åström and Corin 2000). 

 

Chromium and Fe are generally mobilised to a limited extent upon oxidation and 

acidification, and thus only weakly enriched in AS soil affected waters (Åström and 

Björklund 1995, Åström and Åström 1997). However, high concentrations of both 

elements have been observed in some particularly acidic (pH 2.5–3.5) AS waters. These 

metals are predominantly associated with the anionic fraction (Åström and Corin 

2000). 

 

Phosphorus and Ca are enriched in the plough layer of cultivated AS soils due to 

recurring fertilisation and liming treatments, respectively (Österholm and Åström 

2002). Magnesium, K and Ca are leached out from AS soils in moderate to large 

amounts (Åström and Björklund 1995, Åström and Åström 1997, Österholm and 

Åström 2002, 2004), while the leaching of P is limited (Åström 1998a). A significant 

portion of Mg, K and Ca in AS soil affected waters may originate as sea salts once 

trapped in the pores of the parent sediments of these soils. 

 

Palko (1986) and Yli-Halla and Palko (1987) studied the chemical composition of 

timothy and oats grown on AS soils in Western Finland and compared these results to 

Finnish average values (FAV) for the corresponding crops (Paasikallio 1978, Kähäri 

and Nissinen 1978, Varo et al. 1980b). Palko (1986) found timothy samples enriched in 

Ni (AS soils 1.8 mg kg-1 and FAV 0.34 mg kg-1), Co (0.27/0.06), Al (23/12), Mn (95/67) 

and Cr (1.1/0.23) and Yli-Halla and Palko (1987) found elevated concentrations of Fe 
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(142/60), Mn (136/72), Co (0.50/0.08) and Ni (6.4/2.8) in oat grains. Consequently, 

timothy and oat grown on AS soils were both enriched in Mn, Co and Ni, metals 

which are mobile in these soils. Although Fe and Cr are only mobilised to a limited 

extent in these soils they were still enriched in both crops. Based on the above 

mentioned results, one could hypothesize that plant-root biochemistry is responsible 

for the Fe enrichment in oats, while Mn-oxides enhancing Cr solubility partly may 

explain the enrichment of Cr in timothy. 

 

Only one study has been published on metal levels in cow milk originating from AS 

soil farms (Alhonen et al. 1997), and it revealed significantly elevated concentrations of 

Al  to that of the reference material (AS soils 2400 µg kg-1 and reference material 50 µg 

kg-1). It should be pointed out that no attention was paid to neither the geochemistry of 

the AS soils nor the chemical composition of the forage or vegetation on the pasture-

ground, making interpretation of the origin of these elements difficult. Furthermore, 

the scanty number of data makes the Al pattern outlined above indicative only. 

Although shortcomings were encountered in the study by Alhonen et al. (1997) it 

certainly highlights the need for more studies on metal biogeochemistry in these 

landscapes. At present, therefore, we have very little knowledge to what extent and 

how the AS soil affect metal concentrations in animals, except for the obviously high 

contents of Al in cow milk. 

 

Bioindicator studies, using aquatic mosses and -insect larvae in AS soil environments, 

demonstrated high concentrations of Al, Fe, Cu and Zn (the latter metal only in larvae) 

in these species (Vuori and Kukkonen 1996, Vuori 2002). Consequently, the 

accumulation of Al in crops, cow milk, stream-water, aquatic mosses and -insect larvae 

is an effect of the AS soil and its management. Iron, on the other hand, which is 

liberated and leached only to a limited extent from these soils according to existing 

hydrochemical and geochemical data, still seems to become enriched in several plant 

and animal species existing in areas underlain with these soils. This contradiction 

warrant further investigation to clarify the biogeochemistry of Fe in these settings. 

 

Existing research evidence shows that AS soils pose adverse effects on aquatic plant 

and animal communities and populations in stream and estuarine environments. The 

abundant metal-rich acid drainage from these soils has significant, but spatially and 

temporally variable ecotoxicological impacts on biodiversity and community structure 
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of fish, benthic invertebrates and macrophytes (Nyman et al. 1986, Meriläinen 1989, 

Urho et al. 1990, Vuori 1996, Hudd 2000, Kjellman 2003). Although recovery has been 

demonstrated, the fact that even a single short-term exposure to low pH and high 

metal concentrations can cause decreased population sizes and absence of sensitive 

fish and macroinvertebrate species stresses the importance for decreasing loading of 

acidity and metals from AS soils. Although the knowledge on ecotoxicological impacts 

of AS soils is based on a few river and estuary sites only, they highlight the need for 

more research on the effects of these soils on their surrounding aquatic environment.  

 

A multitude of studies have been conducted during the last decade linking exposure to 

specific elements with the widespread neurodegenerative disorders, Alzheimer´s (AD) 

and Parkinson´s (PD) disease, respectively (Gorell et al. 1997, Rogers and Simon 1999, 

Rondeau et al. 2000, Flaten 2001, Zatta et al. 2003, Michalke et al. 2009). Significant 

positive association was observed in 9 out of 14 studies linking Al in drinking water 

with AD, however, others failed to find a significant relationship (Forster et al. 1995, 

Martyn et al. 1997). A statistically significant relationship was found with elevated 

amounts of Zn and Fe in the brain and AD, but not in the pituitary gland (Cornett et al. 

1998a, b) nor in the hair and serum for the latter element (Shore et al. 1984). 

Epidemiological evidence point to a significant increase of PD for those occupationally 

exposed to Mn, increased risk was also observed for exposure to combined metals (e.g. 

Fe-Cu) (Gorell et al. 1997, 1998, 1999, Gorell and Checkoway 2001). Other studies 

showed no significant association with occupational exposure of metals or 

combination of these and PD (Seidler et al. 1996, McDonnell et al. 2003, Jankovic 2005).  

 

These above mentioned studies show variable results for the association between 

exposure to metals and development of AD and/or PD, but they certainly highlight the 

need for further investigation linking chronic exposure of specific metals, or 

combination of metals, as risk factors implicated with these neurodegenerative 

diseases. Based on the literature review it is hypothesized that chronic exposure is 

plausible in areas in Western Finland where the occurrence of AS soils is abundant and 

affect metal concentrations in stream waters, crops and milk. Thus, an obvious risk 

group would consist of people deriving their food, raw products and drinking water 

from local farmland consisting of these soil types. The literature review also revealed 

that a systematic risk assessment on the possible health outcome in AS soil landscapes 

should be undertaken. 
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5.3 Paper III 

 

The role of soil chemistry on the concentrations of Co, Ni, Zn, Mn, Cu and Fe in oats 

(Avena sativa L. cv. Fiia) grown on Finnish acid sulphate (AS) soils with varying 

geochemical characteristics was studied. A total of 22 soil profiles, which were 

sampled to a depth of 1 m at corresponding plant sample sites, were collected on five 

agricultural fields (F1-F5) in mid-western Finland and analysed for pH, S content and 

NH4Ac-EDTA extractable (easily available) metal concentrations. The multi-element 

concentrations in soil and oats were compared with corresponding Finnish average 

values (FAV).   

 

The pH, which decreased down the AS soil profile in all fields, were in the order: F5 < 

F3 = F1 < F4 < F2 (Table 1). The higher pH towards the surface is a result of heavy 

topsoil liming and a rather high organic matter concentration while the lower pH 

further down the soil profile is caused by oxidation of sulphides and low inherent 

carbonate concentrations (Palko 1994, Österholm 2005). The pH of the AS soil profiles 

(the upper meter) in this study can be considered relatively high as compared to that of 

other studies where pH can drop below 3.5 (Yli-Halla et al. 1999, Österholm and 

Åström 2002).  

 

The aqua regia extractable S content differed significantly between the fields (not 

shown) with concentrations up to 7400 mg kg-1 in F4. The large S variation is explained 

by differences in inherent concentrations and extent of leaching.  

 

The mean NH4Ac-EDTA extractable concentrations of Co, Ni, Zn, Mn and Cu in F1-F5 

were relatively similar between the top- and subsoil, with the exception of Fe, which 

was enriched in the subsoil (Table 1). The influence of the subsoil on the oats may have 

been relatively large due to the exceptionally dry growing season in 2006. 

 

The variation of the NH4Ac-EDTA extractable concentrations of Co, Ni, Zn and Mn in 

the soil profiles was much larger between-fields than within-fields (Table 1, Fig. 6). F3 

was enriched in Co and Ni, while F5, in which pH was lowest, showed the highest 

concentrations of Zn and Mn (Table 1). All these metals are chalcophilic and in the AS 

soils thus associated with sulphides (Öborn 1994). However, in comparison with the 

FAV, F1-F5 showed relatively similar values of NH4Ac-EDTA extractable Co, Ni and 
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Zn (except Ni in F3), and was even depleted in Mn (Table 1). This indicates that once 

released from sulphides, these four metals are not generally retained in the acidic soils 

but are flushed into drains. This is consistent with the abundance of these metals in 

streams draining AS soils (e.g. median concentrations of 110 µg l -1 Co, 180 µg l-1 Ni, 

5700 µg l-1 Mn and 330 µg l-1 Zn reported by Åström and Åström 1997, Österholm et al. 

2005) and accumulation close to the ground-water table (Åström 1998b, Österholm and 

Åström 2002).  

 

The concentrations of Co, Ni, Zn and Mn in the oats were strongly correlated to those 

in both the top- (Fig. 7) and subsoil. This indicate that the uptake of these four metals 

in oats grown on Finnish AS soils is not efficiently regulated by the plant but largely 

controlled by the concentrations of easily available fractions in the soil. However, the 

concentrations of Co, Ni, Zn and Mn were not in general elevated in the soils nor 

grains, with the exception of the two former metals in F3, which showed up to four 

times higher concentrations as compared to the FAV (Table 2, Fig. 7). Yli-Halla and 

Palko (1987) found similar anomalous soil (NH4Ac-EDTA extractable) and oat grain 

concentrations of Co and Ni, as compared to the FAV, in AS soils located in Western 

Finland. In F4, both the soil and oat concentrations of Co, Ni, Zn and Mn were low 

(Table 1, Fig. 7) while the aqua regia extractable S concentration in the soil was high. It 

is suggested that this particular field has undergone limited oxidation and leaching, 

and thus has the potential for future metal release and, as shown in this study, possible 

uptake in oats. These results indicate strong spatial variability between AS soils, hence, 

mobilisation of chalcophilic metals and subsequent bioaccumulation vary locally and 

is affected by soil geochemistry and most probably land-use practise. 
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Fig. 6. Mean NH4Ac-EDTA extractable concentrations (mg kg-1) of elements in the soil profiles of F1-F5. 

 

 

The NH4Ac-EDTA extractable concentration of Cu was stable downwards the profile 

in all fields, whereas the Fe concentration increased slightly downwards in several 

profiles (Fig. 6). Overall, the concentration of Fe and Cu in F1-F5 were lower than the 

FAV (Table 1). The Fe concentration and pH were inversely correlated (not shown), 

indicating that the abundance of the NH4Ac-EDTA extractable Fe fraction is controlled 

by soil acidity. It is however notable that although Fe is mobilised within the AS soil, it 

is only leached to a limited extent since it is abundantly reprecipitated on surfaces of 

oxic soil aggregates and cracks as amorphous oxide (Fe oxyhydroxides) coatings 

(Österholm and Åström 2002) to which Cu also is readily absorbed (Kabata-Pendias 

2001). It has been suggested that plant roots are able to reduce Fe3+ to Fe2+ which is 

more readily absorbed by plants (Christ 1974, Kabata-Pendias 2001). Additionally, 

plant roots are capable of releasing Fe and Cu via the secretion of fytosiderophores, 
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which enhance metal solubility through chelation (Shenker et al. 2001). The extraction 

of Cu and Fe with NH4Ac-EDTA may therefore underestimate the easily available 

fraction due to the inability to dissolve the Fe(III) phases. Although Fe and Cu were 

not abundantly released by NH4Ac-EDTA (except Fe in F5), they were somewhat 

elevated in the oats as compared to the FAV (Table 2), and it was therefore argued that 

biological processes (e.g. plant-root processes) overshadow geochemical variation. This 

in turn is consistent with the suggestion that NH4Ac-EDTA is not an efficient 

extractant of Fe and Cu in these soils, and that oxides, which are abundant in AS soils, 

are a significant carrier of these metals from which they may be available for plant 

uptake.  
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Fig. 7. NH4Ac-EDTA- (Paper III) and NH4Ac extractable (Paper IV) concentrations (mg kg-1) of elements in 

topsoil (0–20 cm) in each of the studied fields (F1-F5, F6-F8) versus total concentrations (mg kg-1) in oat 
grains and cabbage. All of the above presented element associations are significant (P ≤ 0.05) except Ni and 

Mn in cabbage. 
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5.4 Paper IV 

 

The purpose of this study was to investigate the influence of soil geochemistry on the 

concentrations of Ca, K, Mg, P, Co, Ni, Zn, Mn Cu and Fe in cabbage (Brassica oleracea 

L. var. capitata) grown on acid sulphate (AS) soils in mid-western Finland. A total of 

11 topsoil samples (0–20 cm) and corresponding cabbage samples and three whole soil 

profiles (~0–260 cm) were collected from three agricultural fields (F6-F8). These soil 

samples were analysed for NH4Ac (easily available)-, hydroxylamine (oxide-bound)- 

and aqua regia extractable metal concentrations. Additional soil characteristics 

determined were pH, LOI and oxidation depth. These results (metal content in 

cabbage and NH4Ac extractable concentrations of Ca, K, Mg and P in topsoil) were 

compared with corresponding Finnish average values (FAV) of other soils.  

 

Soil pH decreased and S content (aqua regia extractable) increased down the profile in 

all fields and eventually levelled off at the deeper section of the profile, respectively 

(Fig. 8). The almost neutral pH (~6–7) in the topsoil (0–20 cm), a necessity for the 

cultivation of cabbage, is attributed to efficient liming management and the strongly 

acidic conditions (~3.5–4.5) in the subsoil (~20–100 cm) is a feature of abundant 

sulphide oxidation. The transition zone, which is situated below the subsoil (>140 cm), 

is characterised by partly oxidized and reduced conditions and by a swift increase in 

pH (~6). The oxidation depth (boundary where pH exceed 6.5), which in these soils is 

located at ~160–200 cm and decreased in the order: F6 < F7 = F8 (Fig. 8), is mainly 

affected by the depth and efficiency of drainage system utilized within these 

agricultural fields. In the parent material (below 160–200 cm), where reducing 

conditions prevail, the pH is ca. 7–8. The low S concentration in the top- and subsoil 

(oxidized layer) compared to the sharp increase in the transition zone and parent 

material (mainly reducing conditions) (Fig. 8) is due to ample leaching (Österholm and 

Åström 2002). The inherent S concentrations of the parent material (0.9–2.0%) were 

notably higher, and pH similar, to that of other AS studies conducted in Western 

Finland (Åström and Björklund 1997, Österholm and Åström 2002, Joukainen and Yli-

Halla 2003, Nordmyr et al. 2006, Boman et al. 2008).  
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Fig. 8. Vertical variation of aqua regia extractable S and Fe concentrations, pH and oxidation depth (OD) in 

F6-F8. 

 

 

The mean LOI concentrations of both the top- and subsoils were in the order: F7 < F8 < 

F6 (Table 1). The LOI contents recorded here are similar to those of other regionally 

representative AS soil studies (Nordmyr et al. 2006, Bärlund et al. 2004, Sohlenius and 

Öborn 2004). The higher LOI in F6 to that of F8 was unexpected since the latter had a 

remarkably brownish subsoil, indicating organic matter of different composition and 

origin.  

 

The NH4Ac extractable concentrations of Ca, Mg and P in F6-F8 were considerably 

higher and K similar to that of the FAV, respectively (Table 1). This indicate that input 

of easily available Ca, Mg and P through replenishment via fertilisation and liming is 

relatively high as compared to output through leaching and plant uptake (Åström and 

Björklund 1995, Åström et al. 2007).  
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Cabbage grown on AS soils showed somewhat enriched concentrations of Ca, Mg and 

P and similar concentrations of K to that of the FAV, respectively (Table 2). Common 

for these macronutrients in cabbage was their overall low spread, which is indicative 

of biological processes controlling uptake (Reimann et al. 2001b). Moreover, the 

concentrations of Ca and P in cabbage were uncorrelated with corresponding NH4Ac 

and hydroxylamine extractable concentrations in the topsoil. It has also been shown 

that cabbage (Brassica oleracea L. var. capitata) is efficient in increasing its P uptake 

through exudation of organic anions (e.g. citrate), which effectively dissolve phosphate 

bound on amorphous surfaces of Fe and Al (Dechassa and Schenk 2004, Schenk 2006). 

These results indicate that the plant´s ability to regulate its Ca and P absorption 

(through e.g. root exudates) seems to be more important than the influence of AS soil 

geochemistry. The concentrations of K and Mg in cabbage on the other hand, which 

were strongly correlated to that of the NH4Ac extractable concentrations in the topsoil, 

are suggested to be governed by both the easily available fractions and plant-uptake 

mechanisms. 

 

The variations of the NH4Ac extractable concentrations of Co, Ni, Zn and Mn were 

relatively large between the fields. F6, in which pH was the lowest, was enriched in 

Co, Ni, Zn and Mn in the subsoil and the former two elements in the topsoil while F7 

demonstrated remarkably low concentrations of Co and Ni throughout the profile (Fig. 

9).  

 

The concentrations of Co and Zn in cabbage were correlated to those in the topsoil of 

F6-F8 (Fig. 7), indicating that uptake of these elements in cabbage is largely governed 

by soil geochemistry. Yet, the concentrations of Co and Zn in cabbage were not in 

general elevated to that of the FAV, although some AS soils showed enriched 

concentrations of these metals in both soil and cabbage. This is consistent with the 

results of Paper III, which showed generally similar mean micronutrient 

concentrations in oat grains cultivated on five AS soils, but clearly enriched contents in 

oats in one of these fields as compared to the FAV. The concentrations of Ni and Mn in 

cabbage were uncorrelated to those in the topsoil of F6-F8 and lower to that of the FAV 

(Fig. 7, Table 2). On all fields, the mean Ni concentrations in cabbage were 

exceptionally similar although the corresponding NH4Ac extractable concentrations 

differed markedly (Table 1, 2). This may imply that the plant effectively can regulate 

its relative uptake through rejection of this potentially toxic metal and is thus 
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independent of the easily available Ni concentrations in the soil. On the contrary, an 

“on demand” mechanism by exudation of organic acids could be initiated by the plant 

when the concentrations of easily available Ni are low (Kabata-Pendias 2001). 

Oxidation depth affected neither the easily available concentrations of Co, Ni, Zn and 

Mn in the topsoil nor the concentrations in cabbage. Nevertheless, the subsoil with a 

lower oxidation depth, which is to a smaller extent affected by leaching, may partly be 

enriched in these metals, however, these were not reflected as enriched concentrations 

in cabbage. 

 

The NH4Ac extractable concentrations of Fe in F6-F8, which were depleted in the 

heavily limed topsoil and enriched in the acidic subsoil, were inversely correlated with 

soil pH (Table 1, Fig. 9). Iron (as well as Cu) is in general only leached to a limited 

extent upon mobilisation in boreal AS soils, however, the depletion of Fe in the topsoil 

of each field may, except pH, be an indication of efficient downward leaching and 

subsequent reprecipitation as immobile oxyhydroxides (Österholm and Åström 2002). 

A vertical translocation of easily soluble Fe from the topsoil to a less soluble fraction 

(e.g. amorphous Fe oxide) in the subsoil was indicated as a concentration peak of aqua 

regia extractable Fe in the 50–70 cm section of the profile in F6-F8 (Fig. 8). The NH4Ac 

extractable Cu concentrations, which showed differing vertical patterns in each of the 

three soil profiles (not shown) and were uncorrelated with pH, showed a significant 

inverse relationship with the LOI concentrations, indicating that the Cu bioavailability 

is controlled by the organic matter content (Kabata-Pendias 2001). Consequently, the 

organic-rich F6 showed an overall low concentration of easily available Cu (Table 1). 

 

The variations of the hydroxylamine extractable concentrations of Cu and Fe in the 

topsoil were relatively large between the fields. F6, which was enriched in Fe, showed 

low concentrations of Cu while F8 demonstrated two times lower and three times 

higher contents of Fe and Cu to that of F6, respectively. The relatively high extent of 

hydroxylamine extractable Fe in F6, indicating enriched contents of Fe oxyhydroxides, 

may trap abundant amounts of metals and thus serve as a possible sink of metals. The 

hydroxylamine extractable concentrations of Cu and Fe in the topsoil of F6-F8 were 

strongly correlated with the easily soluble fraction, which was observed as an 

abundance of bioavailable and hydroxide-bound Fe in F6 and Cu in F8, respectively 

(Table 1). However, neither the hydroxylamine- nor NH4Ac extractable concentrations 

of Fe and Cu in the topsoil of F6-F8 were correlated to those in cabbage, indicating that 
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uptake is not to a significant extent governed by the oxide- bound- or easily soluble 

content of these elements in the soil. Interesting to note was the rather low spread of 

these metals in cabbage, similar to that of the macronutrients, and their comparable 

concentrations to that of the FAV (Table 2). Based on these findings it is suggested that 

cabbage can regulate, and thus optimize its concentrations of Cu and Fe and is 

independent of the soil extractable contents of these metals. Consequently, the large 

amounts of metals mobilised in Finnish AS soils seem to be easily lost to drains, 

subsequently contaminating nearby waterways and estuaries (Åström and Åström 

1997), and only partly enriched in cabbage grown on typical AS soils. 
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6. Biogeochemical pathways of metals released in acid 

     sulphate soils – integration of results from Paper II-IV 
 

The above discussion shows that regional and local transfer pathways of metals in the 

urban and rural study area are governed by a multitude of different processes. Metal 

anomalies observed in moss in and around town centres (Paper I) are predominantly 

governed by anthropogenic point sources, dust input and biological processes. The 

abundant quantity of mobilised metals in AS soils is, on the other hand, a direct 

consequence of artificial drainage management (Paper II-IV). The main difference 

between these two settings is that the disturbance of these soils for agricultural 

purposes by reclamation, which results in abundant amounts of mobilised acidity and 

potentially toxic metals, has widespread major impacts on the surrounding 

environment (e.g. mass fish kills) compared to that of local metal pollution by diffuse 

industrial emissions in these western parts of Finland. The main biogeochemical 

pathways, and thus potential human exposure routes, of the large pool of potentially 

toxic metals (e.g. Ni, Mn, Cd and Al) released in AS soils are depicted below in a 

conceptualized model (Fig. 10). 

 

As the soil substrate is the main source of chemical elements to plants, the large 

proportion of mobilised metals in AS soils can induce excessive metal uptake in 

cultivated crops grown on typical soils. Previous investigations have demonstrated 

anomalous concentrations of Al, Co, Ni and Mn in both oats and timothy grass grown 

on AS soils in Northern Ostrobothnia, Western Finland (Palko 1986, Yli-Halla and 

Palko 1987). However, the results presented here (Paper III & IV) demonstrated in 

general relatively moderate metal concentrations in oats and cabbage grown on AS 

soils in Western Finland, although some of the studied fields showed anomalous 

values of metals (e.g. Co and Ni) in both the soil and target plants (especially oats), 

similar to that of the results by Palko (1986). It is hypothesized that differences in AS 

soil geochemistry and plant uptake (species-specific and part of the plant used for 

analysis) are contributing factors explaining these variations in plant chemistry. 

Therefore, it would be ill-advised to generalize about metal uptake in agricultural 

crops grown on Finnish AS soils as our knowledge still is limited and the results 

presented here are partly contradictory to that of earlier investigations (Palko 1986, Yli-

Halla and Palko 1987).  
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Fig. 10. A simplified conceptual model illustrating the main biogeochemical pathways of metals released in 

AS soils and potential routes of human metal exposure. 

 

 

A previous investigation on cow milk originating from AS soil farms in the drainage 

basin of Kyrönjoki River in Western Finland revealed up to 50 times higher Al 

concentrations in milk samples from cows with outdoor feeding as compared to 

reference concentrations (Alhonen et al. 1997). Aluminium is highly mobile in these 

soils so its occurrence as high levels in cow milk is not surprising and indicates an 

important pathway for this potentially toxic metal, i.e. soil →  plant →  milk (Fig. 10). It 

should be pointed out that inorganic Al (Al3+) is highly toxic and association with, for 

example, hydroxides detoxifies it. The speciation of Al in cow milk was not 

determined by Alhonen et al. (1997).  

 

Although these mobilised metals are to some extent absorbed in cultivated crops and 

cow milk, it is obvious that an abundant quantity is readily flushed out to nearby 

drains and waterways. Previous AS soil studies have shown that extensive leaching of 
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Co, Ni, Zn, Cd and Mn to nearby watercourses has resulted in 10 to 50 times higher 

concentrations than typical background values of the region (runoff from areas 

covered by forests underlain mainly with till, peat and/or glaciofluvial material) 

(Åström and Björklund 1996, Åström 2001a, b, Roos and Åström 2005, Österholm et al. 

2005). The concentrations of Co, Ni, Zn, Cd, Mn and the above mentioned Al, are also 

very high in streams affected by AS soils as compared to average values for Finnish 

and Fennoscandian rivers (Edén and Björklund 1993, Lahermo et al. 1996, Åström 

2001a, b). The extensive leaching from these soils has resulted in deposition of 

significant amounts (up to 100 times higher compared to background levels) of these 

above mentioned metals in sediments of rivers and estuaries (Nordmyr et al. 2008a, b). 

Hence, one could assume that aquatic bottom-feeding organisms (e.g. fish, benthic 

invertebrates) are likely to be subject to bioaccumulation of these sediment-bound 

contaminants. Furthermore, the ongoing isostatic land uplift (up to 9 mm/year) of the 

coastal regions of Finland causes fresh Holocene sediments and these metal-rich 

depositions to rise above the sea level, thus making them a future environmental 

nuisance (Fig. 10). The massive metal-rich acid load from these AS soils, which is most 

severe after heavy rains and snowmelt, causes ecotoxicological effects in aquatic 

plants, macroinvertebrates and fish in affected watercourses (Nyman et al. 1986, 

Meriläinen 1989, Urho et al. 1990, Callinan et al. 1993, Kjellman et al. 1994, Vuori 1996, 

Hudd 2000, Powell and Martens 2005). Numerous cases of mass fish kills, but even 

eradication of species (burbot, smelt), have occurred in these AS soil affected waters 

(Hildén et al. 1982, Hudd et al. 1984). Consequently, one could assume that fish 

originating from AS soil affected waters may demonstrate elevated levels of associated 

metals (e.g. Al, Ni, Mn), however, no investigations to my knowledge, on metal 

concentrations in fish, have yet to be conducted. Hence, the soil →  water →  fish 

pathway may constitute a route of human metal exposure (Fig. 10).  

 

Clearly elevated metal concentrations (e.g. Al, Cd) were found in ground water 

derived from AS soil landscapes in Western Australia (Hinwood et al. 2006). The 

ground water was mainly used for irrigation of home grown produce indicating 

potential bioaccumulation, which in turn, may result in human exposure through 

dietary intake. Similarly, As and Mn pollution of ground water, which mainly is used 

for drinking water needs, derived from the Mekong Delta area of South East Asia 

containing an abundance of AS soils, was identified (Husson et al. 2000, Berg et al. 

2007, Buschmann et al. 2007). Chronic exposure to elevated As concentrations in 
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drinking water pose a serious health threat to people living in these regions. Similar 

studies focusing on the potential effect of metal leakage from Finnish AS soils to 

ground water aquifers are limited. One could speculate that shallow aquifers may be 

more easily affected by these soils as the dilution effect of water passing through the 

soil would be less pronounced, and the ground water could thus contain larger 

amounts of metals. Moreover, the abundance of acidity produced within these soils, as 

a consequence of sulphide oxidation, could drastically lower the pH in the ground 

water aquifer, which in turn could result in higher concentrations of mobile, inorganic 

metals (e.g. Ni2+, Cd2+). This is supported by Åström and Corin (2000), who suggested 

that Co, Ni, Zn, Mn, Cd and Al are generally associated with the cationic fraction in AS 

soil affected acidic waters. The amount of private wells are, however, less common 

today and these are possibly to some extent utilized for irrigation of farmlands and 

drinking water for livestock. In areas were ground water aquifers are uncommon, 

drinking water generally originates from surface water of rivers, which before 

distribution to the municipal waterworks, undergoes several purification treatments 

(e.g. chlorination, flocculation with aluminium sulphate). Water samples (n=10), which 

originated from areas with AS soil affected waters in Western Finland, were taken at 

different municipal water treatment facilities after purification (unpublished data, 

Österholm et al.). The results showed no deviating metal concentrations of the tested 

water, thus assuming purification and/or dilution of the AS soil affected surface water 

had been significant. Due to the limited knowledge on ground water quality in AS soil 

landscapes more detailed investigations on metal composition and speciation of well 

water should be conducted. 

 

Another possible human exposure route, which may be of minor importance, would 

consist of dermal contact (and subsequent absorption through the skin and/or lungs) 

via dust exposure from AS soil farmlands (Fig. 10). However, recreational activities, for 

instance swimming in AS soil affected waters, can not be considered to expose 

individuals to excess metals.  

 

Due to the large flow of mobilised metals in these soils, which are transferred to 

different biological compartments in various extent, an environmental risk assessment 

would be motivated to elucidate if metal concentrations are enriched in people 

residing in these areas and in livestock grazing on AS soils. As the most significant 

exposure route of metals for the general population is through dietary intake (Adriano 
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2001), metal imbalances in AS soil derived produce and/or milk could be of concern for 

people with unbalanced diet habits relying abundantly on local food sources 

originating from these landscapes (Fig. 10). Consequently, in Western Finland, where 

these soils are particularly abundant and affect the metal concentrations of stream 

waters, milk and to some extent crops, it is reasonable to assume that, at least locally 

on some temporal scale, metal (e.g. Al, Ni) uptake by humans could be elevated. 

However, strong variations in the metal concentrations of crops grown on typical soils 

are likely to be demonstrated as a result of AS soil heterogeneity, differences in metal 

uptake by plant species and part of plant analysed. Therefore, future research is 

needed and should include: (i) chemical composition of other food sources (e.g. edible 

parts of crops and vegetables, forage, cow milk, fish) originating from AS soil 

landscapes, (ii) other toxic chemical elements (e.g. Cd, As) potentially enriched in these 

products and (iii) differences between drainage techniques in AS soil farmlands and 

metal concentrations in target plants. More research is also needed on metal 

concentrations and speciation of potentially toxic elements in ground water (utilized 

for e.g. irrigation) in these areas.  
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7. Acid sulphate soils, a predisposing environment in the 

development of multiple sclerosis? 

 

It is well known that chronic exposure to Al and Mn, which affect brain development, 

can induce neurotoxicity (Bjertness 1994, Oliver 1997, Zatta et al. 2003, Jankovic 2005, 

Michalke et al. 2009). Research on environmental risk factors (e.g. metal exposure) 

implicated in the etiology of different type of diseases (e.g. Alzheimer´s- and 

Parkinson´s disease, multiple sclerosis, amyotrophic lateral sclerosis) has gained 

considerable interest the last decades (Kurtzke 1977, Häsänen et al. 1986, McLachlan et 

al. 1996, Gorell et al. 1997, Flaten 2001, Sumelahti et al. 2001, Zatta et al. 2003, Roos et 

al. 2006, Michalke et al. 2009). Although results connecting metal exposure as a 

contributing cause for disease development are conflicting, they certainly highlight the 

need for further investigation on the role of chronic exposure of specific metals, or 

combination of these, in the etiology of multifactorial diseases. The etiology of multiple 

sclerosis (MS) is considered multifactorial, with both genetic and environmental 

factors involved in disease development. It is assumed that genetic susceptibility to MS 

and the interaction with still unknown, exogenous environmental factors trigger the 

onset of the disease (Ebers 2008). A brief geomedical overview of the distribution of AS 

soils in relation to the geographical occurrence of MS in Finland is presented below.  

 

 

7.1 General characteristics of MS  

 

MS is an autoimmune disorder affecting the central nervous system by damaging the 

nerve-insulating myelin sheath, subsequently affecting nerve signalling negatively. 

The disease is common among young adults with an age of onset between 20 to 30 

years and it has been reported to occur more frequently in women than men 

(Sadovnick et al. 1997). The frequency of a disease (in this case MS) is often presented 

as prevalence, which is the total number of MS cases in a population at a given time 

and/or as incidence, referring to the number of new MS cases in a population at a given 

time. Furthermore, depending on study design, the relative MS incidence or 

prevalence rate is often adjusted for specific age groups, sex and/or disease course and 

calculated, for instance, with confidence intervals and age standardisation. MS 

prevalences below 5/105 (the numerator corresponds to the total number of MS cases, 

the denominator the population) are mostly found in Latin America, Africa and Asia, 
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and they are characterised by a low risk of developing MS. The distribution reflecting 

high risk areas (>30/105) include Northern Europe, especially the Nordic countries, 

other high risk zones include Northern United States, southern parts of Canada, 

Australia, New Zeeland, Ireland and Scotland (Kurtzke 1977, Marrie 2004). The uneven 

geographical distribution of MS, which is considered to be the epidemiological 

hallmark of the disease, and the risk reduction with migration from high to low risk 

areas indicate that environmental causal factors exist and genetic factors can only to 

some extent explain MS epidemiology (Marrie 2004, Ascherio and Munger 2007, Ebers 

2008).  

 

 

7.2 Prevalence and incidence rates of MS in Finland 

 

Numerous MS studies conducted the last 40 years all point to high prevalence rates 

and marked regional and temporal differences between the western and southern 

parts of Finland (Rinne et al. 1966, Wikström 1975, Kurtzke 1977, Kinnunen et al. 1983, 

Sumelahti 2002). The Seinäjoki district, located in Western Finland (ca. 50 km southeast 

of the rural study area in Fig. 1a), showed the highest rates of MS whereas the 

neighbouring Vaasa region and parts of Southern Finland, the Uusimaa district (the 

latter used as a reference), showed significantly lower prevalence rates (Fig. 1a, Table 

3) (Sumelahti 2002, Sumelahti et al. 2001). Significant temporal and regional incidence 

fluctuations were also observed in these areas. During the period 1979–1993 the 

incidence rate (age-adjusted, 10–69 years) more than doubled in Seinäjoki (11.6) 

compared to Vaasa (5.2) and Uusimaa (5.1), and in the early 1990s a significant increase 

was observed in Seinäjoki (13/105 person-years) compared to the two other areas, 

which showed figures of 3/105 and 5/105, respectively. The significant variation in 

incidence during the 15 year period was partly explained by the increased incidence 

rate among men in Seinäjoki, a decrease for both men and women in Vaasa and a 

stable trend for both genders in Uusimaa (Sumelahti 2002, Sumelahti et al. 2000, 2003). 

These incidence and prevalence rates in the high risk area of Seinäjoki are amongst the 

highest reported worldwide (Sumelahti et al. 2001). Although the MS frequency has 

increased in Finland during the last decades, and is still today increasing (personal 

communication with Marja-Liisa Sumelahti), improved case recognition and 

diagnostics (e.g. availability of MRI) may to some extent positively affect incidence and 

prevalence rates. Swift regional and temporal variations in MS incidence and 

47



AS soils, a predisposing environment in the development of MS? 

 

 48 

prevalence can not solely be associated with genetics, as such changes in populations 

are slow, but would further support the hypothesis of an exogenous factor(s) involved 

in disease etiology. 

 

 

Table 3. The prevalence (per 100 000) of definite MS cases  

for men and women in Uusimaa, Vaasa and Seinäjoki during  

1964–1993 (Rinne et al. 1966,Wikström 1975, Sumelahti 2002). 

Year Uusimaa Vaasa Seinäjoki

1964 13 23 36

1972 44 61 -

1983 69 102 116

1993 93 107 188

 
 

 

7.3 Regional and local distribution of AS soils and MS 

 

During the last decades, a great deal of research has been conducted on AS soils 

located in the Vaasa and Seinäjoki district of Western Finland (Erviö 1975, Heikkilä 

1991, Åström 1998a, b, Österholm and Åström 2002, Joukainen and Yli-Halla 2003). 

The extensive occurrence of typical soils in these areas coincide relatively well, at least 

on a regional scale, with the high MS frequency in these corresponding districts, 

respectively. The AS soil type in the Seinäjoki area has been demonstrated to be very 

severe in terms of metal leaching (Österholm and Åström 2002, 2004). This particular 

region also show one of the highest MS rates reported worldwide (Sumelahti et al. 

2001). Further evidence, which may support the hypothesis of a causal relationship 

between AS soil environments and MS occurrence, are those by Häsänen et al. (1986) 

who compared regional geochemistry with MS prevalence in Finland. Topsoil samples 

from arable land in the rural communes of Western (Seinäjoki- and Vaasa region) and 

Southern Finland (Uusimaa district) were analysed for pH, organic carbon, electrical 

conductivity, easily soluble content of macro- (NH4Ac extractable) and micronutrients 

(NH4Ac-EDTA extractable) (Sippola and Tares 1978), and compared with prevalence 

figures of clinically definite MS cases. Lower pH, higher organic carbon content and 

electric conductivity, elevated concentrations of easily soluble Fe, Cr, Zn, Al, but 

decreased amounts of Ca, K and Mg was observed in the high prevalence rate area of 

Western Finland compared to that of the lower prevalence rates in Southern Finland, 
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respectively. The association between soil geochemistry and MS frequency gives 

reason to suspect the influence of AS soils as they liberate abundant amounts of metals 

(e.g. Al, Zn) and acidity to that of other soil types in the country. The sparse 

distribution of AS soils in the south may, at least partly, be explained by the smaller 

land area covered by the former Litorina Sea in these parts to that of the coastal parts 

of Western Finland (Fig. 1a). Consequently, as these fine-grained sulphide-rich 

sediments once have emerged from the former Litornia Sea, one can assume that the 

occurrence of AS soils in the northern and eastern parts of Finland is significantly 

lower (Fig. 1a), which also corresponds to the lower MS frequency in these parts of the 

country (Rinne et al. 1966). Apart from Finland, abundant occurrence of AS soils is also 

found in other areas of high MS prevalences, these include: NE Sweden, Southern 

Canada and Australia (e.g. Hammond et al. 1988, Warren et al. 2008), other high-risk 

regions of MS with potential for AS soil occurrence include NW United States. 

 

Regional MS mapping provides an excellent basis for supplementary investigations on 

the distribution of the disease on a local scale. Local mapping is therefore effective in 

pinpointing MS clusters within high-risk areas, and can in this sense be utilized as a 

high resolution tool reflecting potential contributory environmental factors involved in 

MS etiology. Results from a local mapping study on MS distribution, which 

represented the high-risk area of the Seinäjoki district, showed that villages with a high 

MS frequency were located along the Kyrönjoki River (Fig. 1a) and its branches. It was 

hypothesized drinking water being a possible exogenous factor associated with the 

pronounced MS clustering along the Kyrönjoki River (Wikström 1975). Similar to that 

of Wikström (1975), Sumelahti et al. (2001) found the highest MS prevalence (200–

300/105) in the western and southern part of the high-risk area of Seinäjoki, where the 

Kyrönjoki River and its branches is located. Previous (hydro) geochemical 

investigations have shown that large areas of the Kyrönjoki catchment consist of AS 

soils. Disturbance of these soils through efficient drainage practise has resulted in 

exceptionally high concentrations of Al, Cd, Co, Ni, Zn, Mn, Tl and acidity in drains 

and tributaries and thus elevated concentrations of these metals also in the Kyrönjoki 

River (e.g. Erviö 1975, Österholm and Åström 2004). It seems that these severe AS soil 

types, which are found in the Kyrönjoki catchment area, coincide rather well with the 

corresponding local MS clustering along the river.  
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The above outlined results show there are indications of noticeable associations 

between regional and local distribution of AS soils and the geographical occurrence of 

MS in Finland, however, as the severity of these soils vary both locally and temporally, 

a potential causal connection between AS soils as a predisposing environment and MS 

frequency could be difficult to corroborate. Consequently, future studies should focus 

on locally occurring severe AS soils within MS clusters, which have been well-studied 

(e.g. the Kyrönjoki area; Fig. 1a), to confirm a probable association between typical soil 

type and disease. Furthermore, if a potential association could be confirmed, follow-up 

studies should elucidate: (i) the possible metal exposure source(s)/hazard(s) and 

route(s) (e.g. ingestion and/or inhalation) in these settings, (ii) locality and distribution 

pattern of this potential source(s)/hazard(s), and (iii) the group at highest risk of 

chronic metal exposure. One way of indirectly assessing the potential effects of 

environmental exposure sources on MS frequency could be by retrospective birth 

cohort studies. The purpose of such a study would be to identify potential differences 

between MS incidence rates in certain age groups within the Kyrönjoki area. 

Pinpointing the age group most susceptible to developing MS in this given area would, 

in follow-up studies, facilitate the potential determination of local environmental 

exposure source(s)/hazard(s) (e.g. single and/or multi-metal exposure through 

contaminated ground water) among these people. In this context, some important 

questions should be addressed: which exposure source(s) can be linked to this group 

of people? Are they dependent on local food sources and/or drinking water? Can 

occupational exposure be a mutual risk factor? Is this group of people mainly exposed 

to one kind of metal or mixtures of metals? What are the effects of and difference 

between single metal and/or multi-metal exposure? For instance, can chronic exposure 

to low concentrations of multi-metals give rise to toxic effects as a result of synergistic 

interactions? How can such effects of metal-mixtures be recognised and predicted? 

There are several uncertainties involved in the assessment of hazard, exposure and risk 

influencing the outcome and quality of significant geomedical observations (Ramsey 

2009, Stewart and Carter 2009). One of the most important criteria required for 

undertaking such an interdisciplinary study is the broad knowledge and expertise 

from different scientific fields, including, geochemists, medical geologists, 

epidemiologists, statisticians, public health scientists and toxicologists. 
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