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Svenskt sammandrag

Global optimering är ett område inom den tillämpade matematiken som fått allt större
betydelse i takt med att förutsättningarna för numeriska beräkningar blivit bättre. Efter-
som optimeringsproblem som baserar sig på exempelvis modeller av processer i industrin
kan vara oerhört komplexa, krävs bra metoder för att kunna lösa dem effektivt. Speciellt
optimeringsproblem som innehåller ickelinjäriteter och heltalsvariabler, så kallade
MINLP- (Mixed integer nonlinear programming) problem, orsakar ofta svårigheter. Om
problemet därtill inte är konvext kan det visa sig vara oerhört svårt att hitta den bäs-
ta lösningen. Sådana problem är vanligt förekommande i tillämpningar och därför är
utvecklandet av lösningsmetoder för ickekonvexa MINLP-problem av stor betydelse.

I denna avhandling behandlas lösningsmetoder för en speciell klass av MINLP-
problem, nämligen problem som innehåller så kallade signomialfunktioner. Eftersom
alla polynom, och dessutom bi- och trilinjära termer kan anses vara specialfall av denna
typ av funktion, är signomialfunktioner allmänt förekommande i optimeringsproblem.
Signomialfunktioner är allmänt sätt olinjära och oftast inte konvexa, men det är dock
möjligt att genom olika transformationer överföra det ickekonvexa problemet till en kon-
vex relaxerad form, vars lösningsområde approximerar och överskattar det ursprungliga
problemets.

Vilka transformationer som används har direkt inverkan på approximationens
kvalitet, och därför är lösningseffektiviteten starkt beroende av vilken typ av trans-
formationer som används. Härmed kan även stora prestandavinster erhållas genom
att välja vissa typer av transformationer. I avhandlingen presenteras därför ett antal
teoretiska resultat om de olika transformationernas approximeringsegenskaper, bland
annat bevisas att vissa typer av transformationer alltid är bättre än andra.

Förutom dessa teoretiska bevis, presenteras en algoritm för att hitta den globala
lösningen för MINLP problem som innehåller signomialfunktioner. Algoritmen är en
vidareutveckling av en annan algoritm; det som är unikt för den nya algoritmens är
att den innehåller en metod för att automatiskt bestämma en optimerad mängd av
transformationer som överför problemet på en konvex överskattad form. Detta görs
genom att lösa ett så kallat MILP- (Mixed integer linear programming) problem, alltså ett
linjärt diskret optimeringsproblem. Slutligen presenteras i sista delen av avhandlingen
SIGOPT, en numerisk lösare som använder sig av denna algoritm.
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CHAPTER1
Introduction

The universe we live in is to a large extent nonlinear. Therefore, it is only natural that
mathematical models trying to mimic the behavior of complex systems or processes also
need to be nonlinear to provide an accurate interpretation. In global optimization, i.e.,
when trying to find the global optimal solution to an optimization problem subject to
certain constraints, nonlinear functions often lead to nonconvex problems. These types
of problems have the property that they may have local solutions which are not globally
optimal, and hence, it is usually not possible to say whether a solution found actually is
the best one. Thus, special techniques are required for solving nonconvex problems.

Different methods for handling nonconvex problems exist; one such method is the
main topic of this thesis: By replacing the nonconvex functions in the constraints with
convex underestimators, i.e., convex functions underestimating the original ones, a
problem overestimating the original nonconvex one is obtained. This new problem is
convex if all nonconvex functions have been replaced with convex underestimators, and
thus, the problem can be solved with standard algorithms for convex problems. If the
solution also fulfills the constraints in the original problem, it is also the global solution
of the nonconvex problem, since the original problem is contained in the overestimated
one.

In this thesis, a special class of optimization problems are considered, namely mixed
integer nonlinear programming (MINLP) problems containing signomial functions. As
the name states, MINLP problems can contain both integer and real variables. Integer
variables are important for modeling discrete choices, e.g., whether a certain machine is
used or not in a plant. Problems involving integer variables are generally much harder
to solve than problems with only real variables, since in theory, every combination of
the values of the variables must be examined. In practice, however, methods exists that
often cut down the number of combinations drastically.

The considered class of problems contains, as previously stated, signomial functions.
This class of functions is rather common, because it includes, for example, polynomials
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2 CHAPTER 1. INTRODUCTION

as well as bilinear and trilinear terms. Since signomial functions often are highly
nonlinear and nonconvex, optimization problems involving these are difficult to solve
to global optimality, although several methods for solving such problems do exist.
The transformation technique for signomial functions presented in this thesis involves
applying certain types of single-variable transformations x = T (X) to the individual
variables in the signomial terms. The relations between the original variables x and
transformation variables X are then approximated by linear functions. Since only the
part of the problem involving the nonconvex signomial functions is altered, the result is
a flexible technique for transforming the problem to a convex overestimated form.

As will be shown, there are many degrees of freedom when selecting the single-
variable transformations. Since different types of transformations lead to different
convex underestimators, it is important to know what impact the transformation types
have on the errors appearing when the underestimators are introduced. Therefore, some
theoretical results are presented regarding the underestimation errors of the different
transformation types discussed. Also, the transformations are compared to other convex
underestimators through some numerical examples.

Since the transformation technique is meant to be used as an integrated part of a
global optimization algorithm, a method for automatically determining the transforma-
tions required for convexifying an MINLP problem involving signomial functions is also
needed. The method described in the thesis is based on solving a mixed integer linear
programming (MILP) problem and it provides an efficient way of obtaining an optimized
set of transformations. Several properties of the transformation sets can be emphasized,
e.g., sets with as few transformations as possible or with certain types of transformations
can be favored.

In the last part of the thesis the signomial global optimization (SGO) algorithm is
presented. This algorithm for solving nonconvex MINLP problems containing signomial
functions to global optimality utilizes the MILP method as a preprocessing step. The
nonconvex problems are solved as sequences of overestimated convex subproblems
which are the results of applying the single-variable transformations to the signomial
terms. By improving the linear approximation of the nonlinear relation between the
original and transformation variables in each iteration, the feasible region and solution
of the overestimated problems will converge to the corresponding one of the nonconvex
problem.
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CHAPTER2
Global optimization

preliminaries

In this chapter, some important definitions and results from convex analysis and global
optimization are summarized. In the first section, the notions of convex sets and func-
tions are described and after this, the concept of convex underestimators of nonconvex
functions is briefly discussed. Furthermore, the signomial functions — the main focus of
this thesis — and a class of optimization problems containing this type of functions are
defined. Finally, some techniques for formulating piecewise linear functions are given.

The definitions and theorems presented in this chapter are, for the most part, el-
ementary results in convex optimization, and can be found in most of the standard
introductory literature, e.g., Boyd and Vandenberghe [2004].

2.1 Definitions of convexity

In this section, convex sets and functions are defined and exemplified. At the end of the
section some generalizations of convex functions — pseudo- and quasiconvex functions
— are presented.

2.1.1 Convex sets

An important concept used throughout this thesis is that of the convex set. A set C in Rn

is said to be convex if it contains all the line segments joining any two points belonging
to the set. Since the line between the points x1 and x2 can be written as λx1 + (1−λ)x2
for the parameter λ ∈ [0,1], this can be expressed mathematically as

∀x1,x2 ∈ C, λ ∈ [0,1] : λx1 + (1−λ)x2 ∈ C. (2.1.1)

5



6 CHAPTER 2. GLOBAL OPTIMIZATION PRELIMINARIES

x1

x2

(a) A convex set

x1

x2

(b) A nonconvex set

Figure 2.1: Convex and nonconvex sets

All sets which are not convex are called nonconvex. Some simple convex and noncon-
vex sets in R2 are illustrated in fig. 2.1. It can be noted that the multidimensional case,
i.e., Rn where n > 2, is analogous to the two-dimensional one.

Another important definition in both convex and nonconvex optimization is that
of the convex hull. The convex hull, convC, of a set C is the minimal convex set which
contains all points in C. If C is a convex set, then convC ≡ C, and if C is a nonconvex set,
then C ⊂ convC.

If another convex set B contains the set C then it is always true that convC ⊆ B. Note
that a discrete set is never convex (except when it consists of one point only) since it
does not fulfill eq. (2.1.1). Instead, when speaking of a convex discrete set, the meaning
is often that the integer-relaxed convex hull of the set is convex. For example, the set
C = {1,2,3,4} is not convex but the integer-relaxed set C̃ = [1,4] is.

2.1.2 Convex functions

Equally important as the definition of a convex set is the definition of a convex function.
In global optimization, convex functions are especially useful, since it is possible to
guarantee that a local minimum of a convex function is always global.

A convex function is defined as follows: A function f : C 7→ R, where C is a convex
set, is convex if

∀x1,x2 ∈ C, λ ∈ [0,1] : f (λx1 + (1−λ)x2) ≤ λf (x1) + (1−λ)f (x2). (2.1.2)

If the inequality in eq. (2.1.2) is strict, i.e.,

∀x1,x2 ∈ C, λ ∈ [0,1] : f (λx1 + (1−λ)x2) < λf (x1) + (1−λ)f (x2), (2.1.3)

the function f is said to be strictly convex.
Conversely, if the inequality signs in eqs. (2.1.2) and (2.1.3) are reversed, the function

is concave and strictly concave respectively. Also, if the function f is convex, then −f is
concave and if f is concave, then −f is convex.

A function which is not convex is called nonconvex. Thus, a concave function is
nonconvex, but not all nonconvex functions are concave. Illustrations of some convex,
concave and nonconvex functions are given in fig. 2.2.

Using the definition of convex functions for determining whether a function is convex
or not, is impractical. Therefore, more elaborate methods are needed, e.g., the first- and
second-order convexity conditions.
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Theorem 2.1 (First-order convexity condition). Let f be a differentiable function
on the convex set C ⊂Rn. Then f is convex if and only if

∀x1,x2 ∈ C : f (x2) ≥ f (x1) +∇f (x1)T (x2 − x1). (2.1.4)

The previous theorem simply states, that the tangent hyperplane of a convex function
always underestimates the function. In fact, by using only local information, i.e., the
function value and the gradient in the point x1, a global underestimating function is
obtained. This is one of the most important properties of a convex function, and is
often utilized in convex optimization methods, e.g., when approximating a nonlinear
constraint in an optimization problem with linear constraints.

Theorem 2.2 (Second-order convexity condition). Assume the function f is twice
differentiable on the open convex set C ⊂Rn. Then f (x) is convex if and only if its
Hessian matrix

H(x) = ∇2f (x) =



∂2f
∂x1

2
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f
∂x2

2 . . . ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂xn2


(2.1.5)

is positive semidefinite for all x ∈ C, i.e., the matrix H(x) has only nonnegative
eigenvalues. Conversely, the function f is concave if H(x) is negative semidefinite,
i.e., H(x) has only nonpositive eigenvalues. If the matrix H(x) is positive definite, i.e.,
it has only positive eigenvalues, it is strictly convex.

A condition for the Hessian matrix to be positive semidefinite is that all principal
minors of H(x) are nonnegative. The k-th principle minor of a matrix is the determinant
of the k × k submatrix consisting of the first k rows and columns of the original matrix.

For a function f (x) defined on an interval [x,x] ⊂R, thm. 2.2 reduces to the conditions
f ′′(x) ≥ 0 for convexity and f ′′(x) ≤ 0 for concavity for all x ∈ [x,x]. The condition that
f ′′(x) ≥ 0 or more generally that ∇2f (x) is positive semidefinite, can be geometrically
interpreted as that the graph of the function f has positive curvature in the point x. This
can be seen in fig. 2.2, where some convex and nonconvex functions are illustrated.

The following theorem forms the basis of the convexification techniques in Chapter 3.

Theorem 2.3. If f1, f2, . . . , fn are convex functions andwi , i = 1, . . . ,n are nonnegative
real coefficients, then the weighted sum

f = w1f1 +w2f2 + . . .+wnfn, (2.1.6)

is a convex function.
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x

f (x)

(a) A convex (thick), concave (dotted) and
nonconvex (dashed) function

x

f (x)

(b) A quasiconvex (thick) and pseudoconvex
(dotted) function

Figure 2.2: Illustrations of convex and nonconvex functions

However, it should be noted that the converse of thm. 2.3 is not generally true, i.e., a
sum of nonconvex or convex and nonconvex functions can still be convex. For example,
the function f (x,y) = x2 + 2xy + y2 is convex on R2, although the term 2xy is nonconvex.
This can be interpreted as that the terms x2 and y2 are “convex enough” to overpower
the nonconvexity of the term 2xy.

The previous theorem states that the set of convex functions is closed under addition
and positive scaling, i.e., the sum of convex functions is convex. This is generally not
true for quasi- and pseudoconvex functions, two generalizations of convex functions
presented in the next section.

2.1.3 Quasi- and pseudoconvex functions

Here two of the most important extensions of convex functions — quasi- and pseudocon-
vex functions — are defined.

A differentiable function f : C 7→ R, where C ⊆ Rn is a nonempty convex set, is
quasiconvex if and only if the following condition holds

∀x1,x2 ∈ C : ∇f (x1)T (x2 − x1) > 0⇒ f (x2) > f (x1). (2.1.7)

An equivalent definition, is that f is quasiconvex if and only if the following is true

∀x1,x2 ∈ C : f (λx1 + (1−λ)x2) ≤max {f (x1), f (x2)} , (2.1.8)

for all values on the parameter λ ∈ [0,1].
Equation (2.1.8) states that the value of a quasiconvex function in an interval of

its domain does not exceed the maximum values at the interval endpoints. From the
definition, it can be deduced that quasiconvex functions can have local minima which
are not global; for pseudoconvex functions, however, all the minima are global.

A differentiable function f : C 7→ R, where C ⊆ Rn is a nonempty convex set, is
pseudoconvex if

∀x1,x2 ∈ C : ∇f (x1)T (x2 − x1) ≥ 0⇒ f (x2) ≥ f (x1). (2.1.9)

A pseudo- and a quasiconvex function is illustrated in fig. 2.2.
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2.2 Convex underestimators

An important tool in nonconvex global optimization is the convex underestimator.
Because an underestimating convex approximation or relaxation of the original problem
can be obtained, e.g., by replacing the nonconvex functions in the problem with convex
underestimators of the functions, it is possible to use all methods available in convex
optimization to solve the approximated version of the nonconvex problem.

The function g(x) is a convex underestimator of a nonconvex function f (x) for x ∈ C,
where C is a convex set, if

(i) g(x) is convex, and

(ii) g(x) ≤ f (x) for all x ∈ C.

For a given function, there are infinitely many convex underestimators, providing
different levels of approximation errors. The tightest of these, i.e., the underestimator
with the smallest error, is called the convex envelope of the function.

The function g(x) is the convex envelope of a nonconvex function f (x) for x ∈ C, where
C is a convex set, if

(i) g(x) is a convex underestimator of f (x), and

(ii) g(x) ≥ h(x) for all x and for all convex underestimators h(x) of f (x).

A problem in nonconvex optimization is that convex envelopes are known only for
certain classes of functions, i.e., there is no method available at the moment for obtaining
the convex envelope of a general nonconvex function. In the following example, the
convex envelopes for positive and negative bilinear terms, often called the McCormick
underestimators (McCormick [1976]) are given. Other multilinear extensions can be
found in, e.g., Maranas and Floudas [1995].

Example 2.4. The convex envelopes of the positive bilinear function f (x1,x2) =
x1x2 and the negative bilinear function g(x1,x2) = −x1x2 on the rectangular region
[x1,x1]× [x2,x2] are given by

f̂ (x1,x2) = max{x1x2 + x2x1 − x1x2, x1z2 + x2z1 − x1x2} (2.2.1)

and
ĝ(x1,x2) = max{−x1x2 − x2x1 + x1x2, −x1x2 − x2x1 + x1x2} (2.2.2)

respectively.

The concepts of convex underestimators and the convex envelope are illustrated in
fig. 2.3.
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x1 x2

x

f (x)

Figure 2.3: A nonconvex function (thick) and two convex underestimators (dashed and dotted) as
well as the convex envelope (thin) on the interval [x1,x2].

2.3 Signomial functions

In this section, a common type of functions in optimization problems — the signomial
functions — is described. The optimization of problems containing this class of functions
is the main topic of this thesis. The reason the signomials are so common, is that
they constitute a rather large group of functions; for example, sums of polynomials
and bi- and trilinear terms are all signomial functions. Signomials can be regarded
as multidimensional extensions of polynomials where the powers are allowed to also
assume noninteger values.

A signomial function is defined as the sum of signomial terms, which in turn consists of
products of power functions. Thus, a signomial function of N variables and J signomial
terms can be expressed mathematically as

σ (x) =
J∑
j=1

cj

N∏
i=1

x
pji
i , (2.3.1)

where the coefficients cj and the powers pji are reals. The variables xi are here assumed
to be positive reals or integers. Note that, if a certain variable xi does not exist in the j-th
term, then pji = 0.

A special type of signomial function, where all coefficients cj > 0, i = 1, . . . , J , i.e., all
terms are positive, is called a posynomial function. Hence, a signomial function can also
be defined as the difference of two posynomial functions by grouping the positive and
negative terms according to

σ (x) =
∑
j: cj>0

cj

N∏
i=1

x
pji
i −

∑
j: cj<0

|cj |
N∏
i=1

x
pji
i , (2.3.2)

Signomial functions are closed under addition, subtraction, multiplication and scal-
ing with real constants; posynomials are closed under addition, multiplication and
scaling with positive real constants.
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2.3.1 Convexity of signomial functions

A signomial function is, in general, not convex. However, the necessary conditions for
when a signomial function is convex can be derived. These conditions rely on the fact
that a sum of convex terms is convex as stated in thm. 2.3; by determining whether the
individual terms in the signomials are convex, the convexity of the whole function can
be attained.

As will be shown in the following two theorems, the conditions for when a signomial
term is convex depend on the sign of the term. The convexity requirements presented
here have previously been given in Maranas and Floudas [1995]. However, the proof here
is different. The first theorem gives the convexity requirements for positive signomial
terms.

Theorem 2.5 (Convexity of a positive signomial term).
The signomial term s(x) = c · xpi1 · · ·x

pN
N , where c > 0, is convex if one of the following

two conditions is fulfilled:

(i) all powers pi are negative, or

(ii) one power pk is positive, the rest of the powers pi , i , k are negative and

N∑
i=1

pi ≥ 1, (2.3.3)

i.e., the sum of the powers is greater than or equal to one.

Proof Thm. 2.2 states that the function s(x) is convex if the Hessian matrix H(x) of the
function is positive semidefinite. The second order partial derivatives of s(x) are

∂s(x)
∂xi∂xj

=

c ·
pipj
xixj
· s(x) if i , j,

c · pi (pi−1)
x2
i
· s(x) if i = j,

(2.3.4)

so H(x) will consist of the element ∂s(x)
∂xi∂xj

at position (i, j) in the matrix. Furthermore, it

can be shown that

detH(x) = (−c)N
 N∏
i=1

pix
Npi−2
i


1−

N∑
i=1

pi

 . (2.3.5)

For the matrix H to be positive semidefinite, all principal minors, detHl , l = 1, . . . ,N , of
H must be positive, i.e., ∀l = 1, . . . ,N : detHl > 0. The determinant of the l-th principal
minor is

detHl(x) = (−c)l
 l∏
i=1

pix
lpi−2
i


1−

l∑
i=1

pi

 . (2.3.6)
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(i) If c > 0, xi > 0 and pi ≤ 0 are fulfilled, then detHl(x) > 0, ∀l = 1, . . . ,N . Since all
principal minors of H are positive, the function s(x) is convex.

(ii) If c < 0, xi > 0, pi ≤ 0, i , k, pk ≥ 0 and
∑N
i=1pi ≥ 1 are fulfilled, then ∀l = 1, . . . ,N :

detHl(x) > 0. Since all principal minors of H are positive, the function s(x) is
convex.

The corresponding convexity requirements for negative signomial terms are given by
the following theorem.

Theorem 2.6 (Convexity of a negative signomial term).
The signomial term s(x) = c · xpi1 · · ·x

pN
N , where c < 0, is convex if all powers pi are

positive and

0 ≤
N∑
i=1

pi ≤ 1, (2.3.7)

i.e., the sum of the powers is between zero and one.

Proof From the proof of the previous theorem, when c < 0, xi ≥ 0 and
∑N
i=1pi ≤ 1, all

principal minors Hl of H are positive, and thus the function s(x) is convex.

2.4 Different classes of optimization problems

Many different classes of optimization problems exist. The most basic is the linear
programming (LP) problem. In a LP problem, all variables assume real values and all
constraints, as well as the objective function, are linear. If all variables in a LP problem
are discrete, the problem is called an integer programming (IP) problem. Both the LP
and IP problem classes are subclasses of the mixed integer linear programming (MILP)
problem class. Here variables can be both real- and integer-valued.

If any of the constraints are nonlinear the problem is a nonlinear programming (NLP),
integer nonlinear programming (INLP) or mixed integer nonlinear programming (MINLP)
problem, respectively, depending on the types of variables in the problem. Note that all
of the other classes are subclasses of the MINLP problem class. Thus, it is, in principle,
possible to solve all of the other types of problems with a MINLP solver.

A problem is called convex if it contains a convex objective function and convex
constraints. Of the above mentioned problem types, only LP problems are always convex.
Note that, whenever a IP, MILP or MINLP problem is called convex, this is in the sense
that the integer-relaxed problems are convex (compare to the discussion on convex
discrete sets in Section 2.1.1).
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Definition 2.7 (Mixed integer nonlinear programming (MINLP) problem).
A MINLP problem can be formulated as

minimize f (x),

subject to Ax = a, Bx ≤ b,

g(x) ≤ 0,

(2.4.1)

where the objective function f (x) is convex, and Ax = a and Bx ≤ b are linear equality
and inequality constraints respectively. The constraints g(x) ≤ 0 are nonlinear
inequality constraints, which can be convex or nonconvex. The vector of variables
x = [x1,x2, . . . ,xN ] can include either integer- or real-valued variables, or both.

The formulation in eq. (2.4.1) is very general, since it also allows nonlinear objective
functions as well as nonlinear equality constraints. This is the case, since it is possible to
write a nonlinear equality constraint g(x) = 0 as two different constraints g(x) ≤ 0 and
−g(x) ≤ 0; however, at least one of these constraints will always be nonconvex.

It is also possible to have a nonlinear objective function f , by introducing a variable
µ as the new objective function and including the inequality f (x)−µ ≤ 0 as an additional
constraint. The minimization of µ will drive the objective function value to that of the
original objective function f (x). Note however, that the reformulated objective function
constraint g(x) = f (x)− µ has different properties than those of the objective function
f (x) itself. If f (x) is convex then g(x) is also convex. However, if f (x) is pseudoconvex,
then g(x) is generally not pseudoconvex, as the sum of two pseudoconvex functions need
not be pseudoconvex.

Another subclass of the MINLP problem class is the mixed integer signomial program-
ming (MISP) problem class — this class of problems is the main focus of this thesis.
By using the algorithm described in Chapter 5, it can be solved iteratively to global
optimality.

Definition 2.8 (Mixed integer signomial programming (MISP) problem). A
MISP problem can be formulated as

minimize f (x),

subject to Ax = a, Bx ≤ b,

g(x) ≤ 0,

q(x) +σ (x) ≤ 0.

(2.4.2)

Here all variables and constraints are the same as in eq. (2.4.1), only the functions
q(x) and σ (x), consisting of convex and signomial functions respectively, are added.
Also all variables xi in the signomial functions σ (x) are assumed to be positive∗. An
individual constraint qm(x)+σm(x) is called a generalized signomial constraint. Anal-
ogous to the MINLP problem type, the problem is called a signomial programming
(SP) problem if all variables are continuous.
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The restriction that all variables in the signomial functions must be positive can, at
first glance, seem like a severe restriction. However, since imaginary solutions to the
problems are not allowed, negative values on the variables when the power is not an
integer must be excluded. Also, zero has to be excluded in case a power is negative. There
are, however, methods to overcome some of these shortcomings, for example, a lower
bound of ε > 0 can be set for variables with a lower bound of zero. Also, a translation
x′i = xi + τi , where xi is a variable with (partly) negative domain or a lower bound of zero
and τi is a positive parameter which fulfills τi > |minxi |, can be used. This technique
will, however, introduce additional variables in the problem if not all occurrences of the
variable xi in the problem are replaced by x′i . Also, depending on the powers of xi in the
signomial terms, more signomial terms can appear, which is illustrated in the following
example.

Example 2.9. The signomial constraint

x2
1x2 − x1 − x2 ≤ 0, −3 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 5, (2.4.3)

can be written in a form suitable for a MISP of the type in eq. (2.4.2) using the
translation

x̃1 = x1 + 4, 1 ≤ x̃1 ≤ 5, (2.4.4)

in which case the transformed constraint will be

(x̃1 − 4)2x2 − (x̃1 − 4)− x2 = . . . = x̃2
1x2 − 8x̃1x2 − x̃1 + 15x2 + 4 ≤ 0. (2.4.5)

In this case, one nonconvex signomial term has been replaced with two nonconvex
signomial terms.

Signomial programming is often called generalized geometric programming (GGP),
because it can be regarded as an extension to geometric programming (GP), which has
been studied since the early 1960’s. A GP problem is not convex in its original form,
but can through a simple transformation be written as a convex optimization problem.
Geometric programming is presented, e.g., in Boyd and Vandenberghe [2004] and Boyd
et al. [2007].

2.5 Piecewise linear functions

Piecewise linear functions (PLFs) are, in the methods presented in this thesis, an inte-
grated part of the transformation techniques for nonconvex MISP problems. PLFs can
be used to approximate one-dimensional nonlinear functions in a given interval with
linear functions. The simplest type of piecewise linear approximation is a straight line

∗In general, strict inequalities are not allowed in numerical solvers, so this requirement is in reality that all
variables must have a fixed positive lower bound of ε > 0.
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through the endpoints of the nonlinear function. Thus, a linear approximation f̂ (x) of
the function f (x) defined on the interval x ∈ [x,x] can be written as

f̂ (x) = f (x) +
f (x)− f (x)
x − x

(x − x). (2.5.1)

By including more breakpoints in the linearization, the approximation can be made
finer. However, if additional breakpoints are added in addition to the interval endpoints,
more elaborate formulations for the PLFs must be used; here two techniques, one using
binary variables and one using special ordered sets, are described.

Note that a PLF approximating a nonlinear convex function will always overestimate
the original function, and conversely, a PLF of a nonlinear concave function will always
give an underestimation.

2.5.1 Piecewise linear functions using binary variables

For the function f (x) assuming the values Xk = f (xk) at K consecutive points xk ∈ [x,x],
x1 < x2 < . . . < xK , a PLF-approximation f̂ (x) in the interval [x,x] can be expressed as

f̂ (x) =
K−1∑
k=1

Xkbk + (Xk+1 −Xk)sk , (2.5.2)

where the relation between the original variable x and the binary variables bk and real
variables sk are given by

x =
K−1∑
k=1

xkbk + (xk+1 − xk)sk and 0 ≤ sk ≤ bk . (2.5.3)

Furthermore, only one of the binary variables bk is allowed to be nonzero at the same
time, i.e.,

K−1∑
k=1

bk = 1. (2.5.4)

In this formulation two variables, one binary and one real, are added for each additional
breakpoint included in the PLF.

There are also other formulations available for PLFs using binary variables, see e.g.,
Floudas and Pardalos [2001].

2.5.2 Piecewise linear functions using special ordered sets

It is also possible to formulate PLFs using so-called special ordered sets (SOS). Such
formulations can be computationally more efficient in optimization problems than
formulations using binary variables, as long as the solver supports SOS-type variables.

A special ordered set (SOS) is defined as a set of integers, continuous or mixed integer
and continuous variables. There are mainly two different types of special ordered sets:
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x1 x2 x3

X1

X2

X3

b1 = 1

b2 = 1

x

f (x)

(a) Binary variable formulation

x1 x2 x3

X1

X2

X3

w1 = 0.5, w2 = 0.5

w2 = 0.25, w3 = 0.75

x

f (x)

(b) SOS type 2 formulation

Figure 2.4: Approximation of a function using PLFs

SOS type 1 At most one variable in the set is nonzero.

SOS type 2 At most two variables in the set are nonzero, and if there are two nonzero
variables, they must be adjacent in the set.

For example, the set {0,0, . . . ,0, a,0, . . .}, a ∈ R is a SOS type 1 set and the sets {1,0, . . . ,0}
and {0, a,b,0 . . . ,0}, a,b ∈ R are SOS type 2 sets.

In the PLF-formulation by Beale and Forrest [1976] given here, one SOS of type 2
{wk}Kk=1 is used, with the additional conditions that all variables wk are positive real
values between zero and one, and that the sum of the variables in the set is equal to one,
i.e.,

∀k = 1, . . . ,K : 0 ≤ wk ≤ 1 and
K∑
k=1

wk = 1. (2.5.5)

The variable x ∈ [x,x] can then be expressed as

x =
K∑
k=1

xkwk , (2.5.6)

and the PLF f̂ (x) approximating the function f in the interval [x,x] becomes

f̂ (x) =
K∑
k=1

Xkwk , (2.5.7)

where the function f assumes the values Xk = f (xk) at the K consecutive points xk ∈ [x,x],
x1 < x2 < . . . < xK . In this formulation, only one additional variable w is required for each
breakpoint added to the PLF.

The binary variable and SOS type 2 formulations for PLFs are illustrated in fig. 2.4.



2.6. A BRIEF REVIEW OF THE ADVANCES IN SIGNOMIAL PROGRAMMING 17

2.6 A brief review of the advances in signomial programming

The precursor to generalized geometric programming (GGP) or signomial programming
(SP) was geometric programming (GP), which was first studied in the 1960’s. The
name geometric programming originates from the geometric-arithmetic mean inequality
and was first introduced in Duffin et al. [1967]. The difference between geometric
and signomial programming is that in the former, only positive signomial terms, i.e.,
posynomials, are allowed in the objective function and constraints. A good overview of
the early years of GP can be found in, e.g., Peterson [2001] and an up-to-date tutorial on
geometric programming and the different methods available for solving GP problems, is
given in Boyd et al. [2007].

Today, even large GP problems can be solved quite efficiently through the means
of different reformulation techniques. This is not the case, however, for SP problems;
most methods available today solves the problem as converging linear on nonlinear
subproblems. For SP problems containing discrete variables, i.e., MISP problems, the
outlook is even more dire, as even small problems can cause difficulties.

For continuous SP problems, early summaries of solution methods can be found
in Dembo [1978] and Rijckaert and Martens [1978]. A newer global optimization
(GO) algorithm is provided in Maranas and Floudas [1997]: By using exponential
transformations, the algorithm transforms the signomial functions in the nonconvex
constraints to differences of two convex functions, which are then underestimated. After
this, a branch-and-bound type algorithm is used to find the global optimal solution by
refining the convex underestimators. Another branch-and-bound type GO algorithm
employing linear relaxations for continuous SP problems is discussed in Sherali [1998].
One of the main features of this algorithm is that it allows the variables in the signomial
terms to take on the value zero. Signomial GO algorithms for SP problems containing
only continuous variables are also discussed in Qu et al. [2007, 2008], Shen and Jiao
[2006], Shen and Zhang [2004], Shen et al. [2008a,b] and Wang and Liang [2005].

Some conditions for when a signomial term is convex, as well as convex envelopes
and tight convex underestimators for certain types of signomial functions, were provided
in Maranas and Floudas [1995]. These convexity conditions for signomial terms can also
be obtained using the concept of power convex functions from Lindberg [1981], which
was applied to signomials in Björk et al. [2003]. Using these conditions, it is possible
to deduce a transformation scheme, involving single-variable power transformations
applied to the individual variables in the signomial terms in combination with piecewise
linear functions, for obtaining convex underestimators of the nonconvex terms. These
transformations along with the exponential transformation have been studied in, e.g.,
Björk et al. [2003] and Pörn et al. [1999, 2008]. The work in this thesis is based on these
transformations. Power transformations for use in a branch-and-bound type method
were also studied in Li et al. [2007] and Lu et al. [2009].

In the works by Maranas and Floudas [1997] and Pörn et al. [1999], translations
were used to handle nonpositive variables occurring in the signomial functions. This
approach has the drawback that it introduces additional signomial terms in the signomial
functions. Another method is the one in, e.g., Tsai and Lin [2006, 2008], Tsai et al. [2007]
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and Tsai [2009], where the problems containing so-called free variables are converted
into other forms containing only nonnegative variables. In Tsai and Lin [2006] a GO
algorithm for solving such problems involving discrete variables only is presented, and
it is extended in Tsai et al. [2007] to also allow for MISP problems with free variables.

In Westerlund and Westerlund [2003] and Westerlund [2005], the generalized geomet-
ric programming extended cutting plane (GGPECP) algorithm was introduced. It solves
nonconvex MISP to global optimality as a sequence of overestimated convex subproblems.
This algorithm is also the foundation for the SGO algorithm described in Chapter 5. The
αBB algorithm, described in, e.g., Adjiman et al. [1998] and Floudas [1999], is a general
solver for MINLP problems containing nonconvex twice-differentiable functions and
can, thus, also solve MISP problems. Finally, an approximative optimization algorithm
for MISP problems is presented in Chang [2005].



CHAPTER3
Convex underestimation of

signomial functions

In this chapter, some methods for obtaining convex underestimators for signomial func-
tions are presented. The power and exponential transformations for underestimating
signomial functions termwise are described in detail, and the relations in underesti-
mation errors between these are examined. Finally, they are compared numerically to
other types of convex underestimators, e.g., the αBB underestimator from Adjiman et al.
[1998]. The theoretical results in this chapter are mostly from Papers IV and V, but the
transformation techniques have also been described in Papers I, II and III.

3.1 The transformation procedure

The procedure for obtaining convex underestimators of signomial functions described in
this chapter is a two-step process. In the first step, the nonconvex signomial terms are
convexified using certain types of transformations applied to the individual variables.
In the second step, the transformations, or more exactly, the inverse transformations
are approximated by PLFs. Since the PLF-formulation requires additional variables,
the transformed problem will be convex in the extended space of relaxed variables,
consisting of the original as well as the transformation variables. The transformed
problem will, thus, be more complex, but since the relaxed transformed problem is
convex, it can be solved with a convex MINLP solver∗.

The problem is assumed to be of the form in def. 2.8, i.e., a MISP problem. From here
on, the index j will correspond to the j-th signomial term in the whole problem, since it

∗A convex MINLP solver is a solver which solves MINLP problems, which are convex when the discrete
variables are relaxed, to global optimality. Often this type of solver can also solve nonconvex problems, but
without guarantee of finding the optimal solution (or any solution at all).

19
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does not matter in the transformation procedure in which constraint the term is located.
The total number of signomial terms in the problem is assumed to be JT .

The transformation procedure for an individual generalized signomial constraint can
be illustrated as follows

qm(x) + σm(x) ≤ 0
(i)
−→ qm(x) + σCm (x,X) ≤ 0

(ii)
−→ qm(x) + σCm (x, X̂) ≤ 0. (3.1.1)

In step (i), the nonconvex signomial terms in σm(x) are convexified by single-variable
transformations xi = T ji(Xji), where Xji is the transformation variable. The problem is a
reformulated, but still nonconvex, version of the original one, since nonlinear equality
constraints describing the relations between the original and transformation variables,
i.e., the inverse transformation Xji = T ji−1(xi), are included in the new problem.

However, in step (ii) the nonlinear expressions for the inverse transformations are
approximated with PLFs and the feasible region of the original and transformed problems
will no longer be identical. In fact, the feasible region of the original problem will be
overestimated by a relaxed convex region, and therefore the solution to the transformed
problem will be a lower bound of the original problem. By improving the approximation
of the inverse transformation, i.e., iteratively including more breakpoints in the PLFs, the
lower bound will improve and, under certain conditions, converge to the global optimal
solution of the original problem. An illustration of how the general MISP problem is
transformed using the mentioned procedure is given in fig. 3.1.

This procedure forms the basis of the global optimization algorithm for signomial
functions presented in Chapter 5. Note that different sets of transformations applied
to the nonconvex signomial terms result in different overestimated feasible regions in
the transformed problem. These can have substantial differences in complexities, and
therefore, it is of great importance to find transformations providing as tight relaxations
as possible.

3.2 The single-variable transformations

The goal is to find such single-variable transformations x = T (X) so that when applied
to a nonconvex signomial term, the term will be convex. An additional condition
is that the convexified term must be underestimated when the relation between the
transformation and original variables X = T −1(x) are approximated with PLFs. Here two
different classes of transformations are explained, the exponential transformation and
power transformations. The transformations have been studied previously by several
authors. For example, convex underestimators for signomial terms based on power
transformations for use in a branch-and-bound (BB) type framework have been discussed
in Li et al. [2007] and Maranas and Floudas [1995, 1997]. The power and exponential
transformations for convexifying and underestimating signomial terms using the PLF-
technique, has been presented in, e.g., Pörn [2000], Björk [2002] and Westerlund [2005].
Some general results about single-variable transformations in geometric and signomial
programming are given in Gounaris and Floudas [2008].
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minimize f (x),

subject to Ax = a, Bx ≤ b,
g(x) ≤ 0,

q(x) +σ (x) ≤ 0.

Step (i): The nonconvex signomial
terms are convexified using single-

variable transformations xi = T ji(Xji)

q(x) +σC(x,X) ≤ 0,

Xji = T ji
−1(xi),

∀i = 1, . . . , I , j = 1, . . . , JT .

Step (ii): The inverse transformations Xji =
T ji
−1(xi) are approximated by the PLFs X̂ji

minimize f (x),

subject to Ax = a, Bx ≤ b,
g(x) ≤ 0,

q(x) +σC(x, X̂) ≤ 0,

X̂ji is the PLF of Xji = T ji
−1(xi),

∀i = 1, . . . , I , j = 1, . . . , JT .

Figure 3.1: The two-step transformation procedure
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Since the convexity requirements, according to thms. 2.5 and 2.6, are different
for positive and negative signomial terms, it is only natural that different types of
transformations are required in these two cases.

3.2.1 Transformations for positive terms

According to thm. 2.5, a positive signomial term is convex if either all the powers are
negative, or exactly one is positive and the sum of the powers is greater than or equal to
one. However, in addition to the convexity requirements, the signomial term must also
be underestimated when the PLFs are used to approximate the inverse transformations.
A detailed discussion on this topic can be found in Westerlund [2005].

The result is that two different compositions of power transformations (PTs) — the
negative power transformation (NPT) and positive power transformation (PPT) — can
be used to obtain a convex underestimator for a positive signomial term. The first one,
the NPT, corresponds to the case when all powers of the signomial term are negative.

Definition 3.1 (Negative power transformation, NPT). The NPT convex underes-
timator for a positive signomial term is obtained by applying the transformation

xi = XQii , Qi < 0, (3.2.1)

to all variables xi with positive powers (pi > 0) as long as the inverse transformation

Xi = x1/Qi
i (3.2.2)

is approximated by a PLF X̂i .

In the NPT, the requirement for convexification is that Qi < 0 for all i such that
pi is positive. For the PLF to underestimate the inverse transformation, the function
Xi = x1/Qi

i must be concave, which is also the case whenever Qi < 0. Therefore, no extra
underestimation condition on Qi is needed.

The other type of transformation, the PPT, corresponds to the case of convexity when
exactly one power in the signomial term is positive.

Definition 3.2 (Positive power transformation, PPT). The PPT convex underesti-
mator for a positive signomial term is obtained by applying the transformation

xi = XQii , (3.2.3)

to all variables with positive powers, where the transformation powers Qi < 0 for all
indices i except for one (i = k), where Qk ≥ 1, as long as the condition∑

i:pi>0

piQi +
∑
i:pi<0

pi ≥ 1 (3.2.4)
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is fulfilled, and the inverse transformation

Xi = x1/Qi
i (3.2.5)

is approximated by a piecewise linear function X̂i .

In the PPT for the transformations with negative powers, Qi , i , k, the same underes-
timation requirements on the powers Qi as discussed above for the NPT are valid, i.e.,
Qi < 0 is required for the PLFs to correctly underestimate the inverse transformation.
For the transformation with positive power, xk = XQk , the requirement for convexity is
that the power Qk is positive. For the PLF to underestimate the inverse transformation
Xk = x1/Qk

k , the function Xk(xk) must be concave, which is the case if Qk ≥ 1. Combining
the convexification and underestimation requirements then gives Qk ≥ 1. Note that if
Qk = 1, the k-th variable is not transformed since Xk = xk .

Thus, by using the NPT or PPT, a positive nonconvex signomial term s(x) is convexi-
fied and underestimated as follows:

s(x) = c
∏
i

x
pi
i = c

∏
i:pi<0

x
pi
i ·

∏
i:pi>0

X
piQi
i = sC(x,X) ≥ sC(x, X̂). (3.2.6)

An illustration of the transformation procedure for convexifying the positive signo-
mial term x1x2, i.e., a bilinear term, using the NPT and PPT is illustrated in fig. 3.2.

Another transformation which can be used to transform a nonconvex positive sig-
nomial term to a convex underestimated form is the exponential transformation. It is
based on the following theorem.

Theorem 3.3. The function

f (x) = c · ep1x1+p2x2+...+pixi · xpi+1
i+1 x

pi+2
i+2 · · ·x

pI
I , (3.2.7)

where c > 0, p1, . . . ,pi > 0 and pi+1, . . . ,pI < 0, is convex on Rn+.

Proof The function f (x) can be rewritten according to

f (x) = c · exp(p1x1 + . . .+ pixi) · x
pi+1
i+1 · · ·x

pI
I

= c · exp(p1x1 + . . .+ pixi + pi+1 lnxi+1 + . . .+ pI lnxI ) . (3.2.8)

Since lnxk , k = i+1, . . . , I is concave, pk lnxk is convex because all powers pk , k = i+1, . . . , I
are negative. Thus the function in eq. (3.2.8) is of the type f (x) = c · eg(x), where g is a
convex function, which is convex according to standard convex analysis, see for example
Boyd and Vandenberghe [2004].

By transforming a positive signomial term to the form in eq. (3.2.7) using single-
variable transformations, which can be approximated and underestimated using PLFs,
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the transformed term could be used as a convex underestimator for the original non-
convex term. This type of transformation is called the exponential transformation (ET).

Definition 3.4 (Exponential transformation, ET). A convex underestimator for a
positive signomial term is obtained by applying the transformation

xi = eXi (3.2.9)

to the individual variables with positive powers as long as the inverse transformation

Xi = lnxi (3.2.10)

is approximated by a PLF X̂i .

Since the inverse transformation Xi = lnxi is concave for xi > 0, it will always be
underestimated by a PLF, so the ET can be used to convexify and underestimate a positive
signomial term.

The ET applied to a positive nonconvex term convexifies it according to:

s(x) = c
∏
i:pi<0

x
pi
i ·

∏
i:pi>0

x
pi
i = c

∏
i:pi<0

x
pi
i ·

∏
i:pi>0

epiXi = sC(x,X) ≥ sC(x, X̂). (3.2.11)

3.2.2 Transformations for negative terms

According to thm. 2.6, a negative signomial term is convex if all powers are positive,
and the sum is greater than zero but less than or equal to one. This requirement can
be adapted to obtain the transformation composition given here. To differentiate it
from the NPT and PPT for positive signomial terms, it is here simply called the power
transformation (PT) for negative terms.

Definition 3.5 (Power transformation for negative terms). A convex underestima-
tor for a negative signomial term is obtained by applying the transformation

xi = XQii , (3.2.12)

where 0 < Qi ≤ 1 for all variables with positive powers and Qi < 0 for all variables
with negative power, to the individual variables in the term. Furthermore, the
condition

0 <
∑
i

piQi ≤ 1, (3.2.13)

must be fulfilled and the inverse transformation Xi = x1/Qi
i approximated by a PLF

X̂i .
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PPT

(a) PPT and NPT

Q1
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1

1

PT

(b) PT for negative terms

Figure 3.2: Schematic overviews of how the PPT and NPT transforms the bilinear term x1x2→
X
Q1
1 X

Q2
2 , and the PT for negative terms the bilinear term −x1x2→−X

Q1
1 X

Q2
2 . The colored regions

indicates for which combination of powers the terms are convex.

Similar to the case with the positive signomial term, conditions guaranteeing that the
convexified term really underestimates the original term must be introduced. Since the
term now is negative, the PLFs must overestimate the inverse transformations Xi = x1/Qi

i .
This is true if the inverse transformations are convex. Thus, for the variables with
positive powers, where Qi > 0 is the convexity condition, the transformation power must
fulfill Qi ≤ 1, so the combined requirements become 0 < Qi ≤ 1. For variables with
negative powers, the convexity as well as underestimation requirements are Qi < 0. So,
no additional underestimation requirement is needed in addition to these for variables
with negative powers.

Thus, by using the PT for negative signomial terms, the nonconvex term s(x) is
convexified and underestimated as follows

s(x) = c
∏
i

x
pi
i = c

∏
i:pi<0

X
piQi
i ·

∏
i:pi>0

X
piQi
i = sC(x,X) ≥ sC(x, X̂). (3.2.14)

The transformation procedure for convexifying the negative bilinear term −x1x2 is
illustrated in fig. 3.2.
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3.3 An illustrative example

In this section, a simple example of the transformations applied to a univariate signomial
function is provided to illustrate how the convexification and underestimation procedure
works.

Example 3.6. The nonconvex function

f (x) = 0.05x3 − 8x+ 25x0.5, 0 < x ≤ x ≤ x, (3.3.1)

consist of three signomial terms. According to thms. 2.5 and 2.6 the first two terms
are convex and only the last is nonconvex. Since the nonconvex term 25x0.5 is
positive, either of the PPT, NPT or ET can be used to transform it. Applying any of
the PTs with the power Q will give the convex underestimator

fP (x, X̂P ) = 0.05x3 − 8x+ 25X̂0.5Q
P , (3.3.2)

where the piecewise linear approximation in one step of the inverse transformation
XP = x1/Q is given as

X̂P (x) = x1/Q +
x1/Q − x1/Q

x − x
(x − x). (3.3.3)

In the PPT, the transformation power Q must be larger than or equal to two to fulfill
0.5Q ≥ 1, and in the NPT, Q must be negative. The corresponding underestimator
for the ET is

fE(x, X̂E) = 0.05x3 − 8x+ 25e0.5X̂E , (3.3.4)

where the linear approximation of the inverse transformation XE(x) = lnx in one
interval is given as

X̂E(x) = lnx+
lnx − lnx
x − x

(x − x). (3.3.5)

Graphs illustrating how the inverse transformations are approximated by PLFs are
given in fig. 3.3 for [x,x] = [1,7]. To illustrate how the approximations improve as
the number of gridpoints used in the PLFs are increased, an additional gridpoint
at x = 4 is also added. The convex underestimators of the entire function f (x) are
illustrated in fig. 3.4.
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Figure 3.3: The approximation of the inverse transformations in ex. 3.6 with the interval endpoints
as breakpoints (black, solid) as well as with an additional breakpoint at x = 4 (black, dashed).
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(b) With an additional gridpoint at x = 4

Figure 3.4: The function f (x) = 0.05x3 − 8x + 25x0.5 and the convex underestimators resulting
from the ET, PPT and NPT in ex. 3.6.



28 CHAPTER 3. CONVEX UNDERESTIMATION OF SIGNOMIAL FUNCTIONS

3.4 Relationships between the transformations

In this section, some theoretical results regarding the relationship between the ET, NPT
and PPT for positive signomial terms are given. It will be shown, that for a general
positive signomial term, the ET always gives a tighter convex underestimator than the
NPT, and that the PPT gives a tighter convex underestimator than the NPT under certain
conditions. Furthermore, it will be proved that neither the ET nor the PPT is better in
the whole domain for positive signomial terms of more than one variable. Most of the
results have been published earlier in Papers IV and VI.

The first theorem gives results regarding the underestimation properties of the PPT,
NPT and ET when applied to a single-variable power function xp.

Theorem 3.7. Assume that the ET, PPT and NPT, i.e., the transformations

x = eXE , x = XQPP , QP ≥ 1, and x = XQNN , QN < 0,

are applied to the power function xp, p > 0, where x ∈ R+ or x ∈ Z and x ∈ [x,x].
Then the following is true (

X̂QPP
)p
≥

(
eX̂E

)p
≥

(
X̂QNN

)p
, (3.4.1)

when the inverse transformations

XE = lnx, XP = x1/QP and XN = x1/QN ,

have been replaced by the PLFs X̂E , X̂P and X̂N respectively. That is, for xp the PPT
always gives a tighter convex underestimator than the ET and the ET a tighter convex
underestimator than the NPT.

Proof The PLF of the inverse transformation for the ET is in the interval [x,x]

X̂E = lnx+
lnx − lnx
x − x

(x − x), (3.4.2)

and for the PPT and NPT

X̂P = x1/QP +
x1/QP − x1/QP

x − x
(x − x) and (3.4.3)

X̂N = x1/QN +
x1/QN − x1/QN

x − x
(x − x). (3.4.4)

First the case of the PPT versus the ET is proved, i.e., the claim is(
X̂QPP

)p
≥

(
eX̂E

)p
. (3.4.5)

Since p > 0 the following is true(
X̂QPP

)p
≥

(
eX̂E

)p
⇐⇒ X̂QPP ≥ e

X̂E . (3.4.6)
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The expressions for the PLFs are now inserted into eq. (3.4.6) resulting in(
x1/QP +

x1/QP − x1/QP

x − x
(x − x)

)QP
≥ exp

(
lnx+

lnx − lnx
x − x

(x − x)
)
. (3.4.7)

Since both the left- and right-hand sides of the this inequality are positive, this can be
rewritten as

QP · ln
[
x1/QP +

x1/QP − x1/QP

x − x
(x − x)

]
≥ lnx+

lnx − lnx
x − x

(x − x). (3.4.8)

By manipulating this expression, the following equivalences are obtained

QP · ln
[(
x1/QP +

x1/QP − x1/QP

x − x
(x − x)

)/
x1/QP

]
≥ ln

(
x
x

)
x − x
x − x

⇐⇒ ln


1 +

(xx
)1/QP

− 1

 x − xx − x

QP
 ≥ ln

(xx
) x−x
x−x


⇐⇒

(xx
)1/QP x − x

x − x
+
x − x
x − x

QP ≥ (
x
x

) x−x
x−x
. (3.4.9)

Finally, by setting

k =
x
x
, λ =

x − x
x − x

and 1−λ =
x − x
x − x

,

in the last inequality of eq. (3.4.9) the following equivalent forms can be obtained(
λk1/QP + (1−λ)

)QP ≥ kλ QP >0
⇐⇒ λk1/QP + (1−λ) ≥

(
k1/QP

)λ
⇐⇒ λz ≥ zλ +λ− 1. (3.4.10)

Here z = k1/QP ≥ 0, since k ≥ 1 and Q > 0. The last inequality is equivalent to

f (z) = λz − zλ −λ+ 1 ≥ 0, (3.4.11)

which is true since f ′(z) = λ−λzλ−1 only has a root at z = 1 and f ′′(1) ≥ 0 for λ ∈ [0,1].
Thus the proof for the case when (

X̂QPP
)p
≥

(
eX̂E

)p
. (3.4.12)

is complete.
The proof for the other case, i.e., the claim that(

eX̂E
)p
≥

(
X̂QNN

)p
(3.4.13)

is analogous to the previous one except XP and QP are replaced with XN and QN , and
the inequality signs in eqs. (3.4.6)–(3.4.10) change direction.
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These results correspond to the convex underestimators obtained for the nonconvex
term in ex. 3.6 as shown in fig. 3.4.

Although the previous theorem states that the ET applied to a power function always
gives a better approximation than the NPT, the following theorem gives that the latter,
in fact, gets arbitrarily close to the ET when Q→−∞. The same is true for the PPT in
the case when Q→∞, however, in this case, the convex underestimators of the PPT will
always lie above that of the ET while the convex underestimators of the NPT always lie
under that of the ET.

Theorem 3.8. For the piecewise linear approximations X̂P , X̂N and X̂E of the PPT,
NPT and ET respectively, the following statement is true

lim
Q→∞

X̂QP = lim
Q→−∞

X̂QN = eX̂E , (3.4.14)

i.e., a with positive or negative power tends to the exponential transformation as the
transformation powers tend to plus and minus infinity respectively.

Proof Since the proof for the cases limQ→∞ X̂
Q
P = eX̂E and limQ→−∞ X̂

Q
N = eX̂E are the

same when replacing Q by −Q, these can be combined into

lim
Q→∞

X̂Q = lim
Q→∞

[
x1/Q +

x1/Q − x1/Q

x − x
(x − x)

]Q
= x lim

Q→∞

1 +
x − x
x − x

(xx
)1/Q

− 1

Q . (3.4.15)

By introducing the variable r, defined as

r =
(
x
x

)1/Q

− 1 =⇒ Q =
ln(x/x)
ln(r + 1)

,

where r→ 0 as Q→±∞, eq. (3.4.15) can be rewritten as

x · lim
r→0

[
1 +

x − x
x − x

r

] ln(x/x)
ln(r+1)

= x · lim
r→0


[1 +

x − x
x − x

r

] 1
r


r
ln(r+1)


ln(x/x)

. (3.4.16)

Since (1+kr)1/r → ek and r/ ln(r + 1)→ 1, whenever r→ 0 and |k| < 1, eq. (3.4.16) is equal
to

x · exp
[
x − x
x − x

ln
(
x
x

)]
= exp

[
lnx+

lnx − lnx
x − x

(x − x)
]

= eX̂E . (3.4.17)

So the errors between the single-variable PPT, NPT and ET tend to zero as Q goes to plus
or minus infinity.
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Figure 3.5: The impact of the transformation power Q for the convex underestimators of the
function f (x) = 0.05x3 − 8x+ 25x0.5 in ex. 3.6.

Note however, that it is not feasible to choose a too large or too small value on
the transformation power Q due to restrictions in computational accuracy when using
numerical methods. A method for calculating the smallest possible value for the power
Q in PTs with negative powers is given in Lu et al. [2009].

The results in thm. 3.8 can be illustrated by again returning to ex. 3.6. In fig. 3.5
the convex underestimators resulting from the ET, as well as from the PPT and NPT
with powers Q = 2,4,8 and Q = −1,−4,−9, respectively. It is clear that the PPT and
NPT underestimators tend to the ET underestimator, when the power Q increases and
decreases respectively.

Using the results in thm. 3.7, the following theorem, stating that the ET always gives
a tighter convex underestimator than the NPT for a general positive signomial term, can
be obtained.



32 CHAPTER 3. CONVEX UNDERESTIMATION OF SIGNOMIAL FUNCTIONS

Theorem 3.9. The ET applied to the general nonconvex positive signomial term

s(x) = c
∏
i:pi<0

x
pi
i ·

∏
i:pi>0

x
pi
i , c > 0, xi ∈ [xi ,xi], (3.4.18)

always results in a tighter convex underestimator than when applying the NPT.

Proof In both the ET and the NPT, the only variables requiring transformations are
those with positive powers pi . Thus, the convexified and underestimated terms become

ŝN (x) =
∏
i:pi<0

x
pi
i ·

∏
i:pi>0

X̂
piQi
i,N and ŝE(x) =

∏
i:pi<0

x
pi
i ·

∏
i:pi>0

epi X̂i,E , (3.4.19)

where ŝN (x) and ŝE(x) are the transformed terms resulting from the NPT and ET respec-
tively. The claim is then equivalent to the inequality ŝE(x) ≥ ŝN (x) holding. Since xi > 0
for all i, the untransformed power functions xpii are cancelled out on both sides of the
inequality. Therefore, the ET gives a tighter underestimator than the NPT if

∀i : pi > 0 :
(
X̂Qii,N

)pi ≤ (
eX̂i,E

)pi
. (3.4.20)

The last statement holds according to thm. 3.7, and so the proof is finished.

A corresponding result regarding the relation between the PPT and the NPT can also
be deduced under the additional condition that the negative powers used in the power
transformations in the PPT must be less or equal to the corresponding ones used in the
NPT.

Theorem 3.10. The PPT gives a tighter convex underestimator than the NPT in the
whole domain when applied to the general positive nonconvex signomial term

s(x) = c
∏
i:pi<0

x
pi
i ·

∏
i:pi>0

x
pi
i , c > 0, xi ∈ [xi ,xi], (3.4.21)

of more than one variable, as long as the transformation powers Qi,N and Qi,P in the
NPT and PPT respectively, fulfill the condition

∀i : pi > 0, i , k : Qi,P ≤Qi,N , (3.4.22)

where the index k corresponds to the power pkQk remaining positive in the PPT.

Proof The claim is equivalent to

ŝP (x) ≥ ŝN (x), (3.4.23)

where ŝP (x) and ŝN (x) are the convex underestimators of

s(x) = c
∏
i:pi<0

x
pi
i ·

∏
i:pi>0

x
pi
i , c > 0, xi ∈ [xi ,xi], (3.4.24)
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obtained when transforming the term using the PPT and NPT respectively. When
applying the PPT or the NPT to s(x) only the variables with positive powers need to be
transformed. Assuming that the powers Qi,P and Qi,N , for i such that pi > 0 are used in
the PPT and NPT transformations respectively, the following holds

ŝP (x) =
∏
i:pi>0

(
X̂i,P (xi)

)piQi,P · ∏
i:pi<0

x
pi
i

=
(
X̂k,P (xk)

)pkQk,P · ∏
i:pi>0
i,k

(
X̂i,P (xi)

)piQi,P · ∏
i:pi<0

x
pi
i

(i)
≥

(
X̂k,N (xk)

)pkQk,N · ∏
i:pi>0
i,k

(
X̂i,P (xi)

)piQi,P · ∏
i:pi<0

x
pi
i

(ii)
≥

(
X̂k,N (xk)

)pkQk,N · ∏
i:pi>0
i,k

(
X̂i,N (xi)

)piQi,N · ∏
i:pi<0

x
pi
i

=
∏
i:pi>0

(
X̂i,N (xi)

)piQi,N · ∏
i:pi<0

x
pi
i = ŝN (x)

(3.4.25)

The inequality in step (i) is true since the PPT always gives a tighter underestimator
than the NPT according to thm. 3.7. Furthermore, the inequality in step (ii) is true since
single-variable transformations using the NPT becomes tighter as the power Q increases
according to thm. 3.8 and the transformation powers fulfill condition (3.4.22).

When applying the PPT and NPT to the same signomial term, and one or more of the
powers Qi,N , i , k used in the NPT is less than the corresponding Qi,P , i.e.,

∃i , k : Qi,N < Qi,P , (3.4.26)

then thm. 3.10 is no longer automatically true. However, the region of the domain where
the PPT provides a tighter underestimator than the NPT can be specified as those points
x fulfilling the condition ∏

i:pi>0

X̂
piQi,P
i,P ≥

∏
i:pi>0

X̂
piQi,N
i,N . (3.4.27)

For such i that Qi,P =Qi,N the corresponding factors in eq. (3.4.27) cancel out each other.
Thus, the ET always gives a tighter underestimator than the NPT and the PPT always

gives a tighter underestimator than the NPT if the conditions in thm. 3.10 are fulfilled.
One question remains: What is the relation between the ET and the PPT? This is answered
in the next theorem, where it will be shown that neither the PPT nor the ET gives a
tighter underestimator in the whole domain, instead both transformations have a region
where it is tighter than the other.
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Theorem 3.11. Neither the PPT nor the ET gives a tighter convex underestimator in
the whole domain when applied to the general positive nonconvex signomial term

s(x) =
∏
i:pi<0

x
pi
i ·

∏
i:pi>0

x
pi
i , c > 0, xi ∈ [xi ,xi], (3.4.28)

of more than one variable.

Proof In the case of the ET, single-variable exponential transformations are used on all
variables with positive powers and in the case of the PPT, one of the variables (with index
k) with positive powers is transformed using a single-variable power transformation with
positive power and the rest with single-variable power transformations with negative
powers. From thm. 3.7 it is known that

X̂
Qkpk
k,P ≥

(
eX̂k,E

)pk
and ∀i , k : X̂Qipii,P ≤

(
eX̂i,E

)pi
(3.4.29)

when the transformation variables Xi,P and Xi,E have been replaced by the PLFs X̂i,P and
X̂i,E . Now take a point x∗ = (x∗1, . . . ,x

∗
N ) such that

xi < x
∗
i < xi if i = k,

x∗i = xi ∨ x∗i = xi if i : pi > 0∧ i , k,
xi ≤ x∗i ≤ xi if i : pi < 0,

(3.4.30)

and another point x# = (x#
1 , . . . ,x

#
N ) such that

x#
i = xi ∨ x#

i = xi if i = k,

xi < x
#
i < xi if i : pi > 0∧ i , k,

xi ≤ x#
i ≤ xi if i : pi < 0.

(3.4.31)

Then for the point x∗ the following is true

ŝP (x∗) =
∏
i:pi>0

(
X̂i,P (x∗)

)piQi · ∏
i:pi<0

(x∗)pi

(i)
=

(
X̂k,P

(
x∗k

))pkQk · ∏
i:pi>0
i,k

(
eX̂i,E(x∗i )

)pi
·
∏
i:pi<0

(
x∗i

)pi
(ii)
>

(
eX̂k,P (x∗k)

)pk
·
∏
i:pi>0
i,k

(
eX̂i,E(x∗i )

)pi
·
∏
i:pi<0

(
x∗i

)pi
=

∏
i:pi>0

(
eX̂i,E(x∗i )

)pi
·
∏
i:pi<0

(
x∗i

)pi = ŝE (x∗) .

(3.4.32)

Step (i) is true since the transformation with negative powers in the PPT and the ET
are equal at the breakpoints (in this case the interval endpoints xi or xi). Step (ii) is
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true according to thm. 3.7 and the fact that the transformations are equal only at the
breakpoints. Thus, in the point x∗ the PPT gives a tighter convex underestimator than
the ET. For the point x# the corresponding relation is

ŝP
(
x#

)
=

∏
i:pi>0

(
X̂i,P

(
x#
i

))piQi · ∏
i:pi<0

(
x#
i

)pi
(i)
=

(
eX̂k,E(x#

k )
)pk
·
∏
i:pi>0
i,k

(
X̂i,P

(
x#
i

))piQi · ∏
i:pi<0

(
x#
i

)pi
(ii)
<

(
eX̂k,P (x#

k )
)pk
·
∏
i:pi>0
i,k

(
eX̂i,E(x#

i )
)pi
·
∏
i:pi<0

(
x#
i

)pi
=

∏
i:pi>0

(
eX̂i,E(x#

i )
)pi
·
∏
i:pi<0

(
x#
i

)pi = ŝE
(
x#

)
.

(3.4.33)

Step (i) is true since the PPT and ET are equal at the breakpoints (here xk or xk). Step
(ii) is true according to thm. 3.7 and since the transformations are equal only at the
breakpoints.

Thus, since ŝP (x∗) > ŝE(x∗) and ŝP (x#) < ŝE(x#) for the different points x∗ and x#, neither
the PPT nor the ET gives a tighter convex underestimator of the nonconvex function in
the whole domain.

Since the convex underestimators resulting from applying the PPT and the ET are
continuous, and neither gives a tighter underestimator in the whole domain, there must
exist parts of the domain where they are equal. These regions are where the following
expression is true ∏

i:pi>0

X̂
piQi
i,P =

∏
i:pi>0

epi X̂i,E , (3.4.34)

i.e., the PPT gives a tighter underestimator than the ET in the region where the following
condition is fulfilled ∏

i:pi>0

X̂
piQi
i,P >

∏
i:pi>0

epi X̂i,E . (3.4.35)

Note that thms. 3.7–3.11 also hold when more gridpoints are included in the PLFs as
long as the same points are added to PLF-approximations X̂i,P and X̂i,E of the inverse
transformations of the corresponding variables xi .
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3.5 Underestimation errors

In this section, the errors caused by the underestimation step of the transformation
technique for signomial functions are examined.

The underestimation error ∆T (x) in the interval [x,x], when using one of the single-
variable exponential or power transformations given in Section 3.2, is simply the differ-
ence between the exact inverse transformationX = T −1(x) and the PLF X̂ underestimating
the approximation, i.e., a straight line connecting the endpoints. Thus, the error is

∆T (x) = T −1(x)−
(
T −1(x) +

T −1(x)− T −1(x)
x − x

(x − x)
)
. (3.5.1)

By inserting the transformations TE(X) = eX and TP (X) = XQ into the expression for the
error, explicit functions for the errors can be obtained.

Theorem 3.12. The underestimation error in the point x ∈ [x,x] when replacing the
inverse transformation with a PLF-approximation is for the single-variable ET

∆TE(x) = ln
(
x
x

)
+
x − x
x − x

· ln
(
x
x

)
(3.5.2)

and for any of the single-variable PTs

∆TP (x) = x1/Q −
(
x1/Q +

x1/Q − x1/Q

x − x
(x − x)

)
. (3.5.3)

Using the previous theorem, the point where the underestimation deviates the most
from the inverse transformation, i.e., the largest error occurs, can be found by differenti-
ating ∆T (x) with respect to x. The largest error is then found in the point x which fulfills
the following equation

d
dx
T −1(x) =

T −1(x)− T −1(x)
x − x

. (3.5.4)

By replacing the function T −1 with the inverse transformation for the different transfor-
mations, thm. 3.13 is obtained.

Theorem 3.13. The largest underestimation errors in the interval [x,x] when replac-
ing the inverse transformation with the PLF-approximation occurs in the point x̃
given by the expressions

x̃ =
x − x

ln(x/x)
and x̃ =

(
Q · x

1/Q − x1/Q

x − x

) Q
1−Q

(3.5.5)

for the single-variable ET and any of the single-variable PTs respectively.
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Figure 3.6: The maximal errors when approximating the inverse transformations of the ET, PPT
and NPT with PLFs.

Note that, when the variable being transformed is discrete, i.e., x ∈Z+, the maximal
error is the nearest integer to x̃ calculated in thm. 3.13. The largest errors for an ET, as
well as a PPT and a NPT transformation is indicated in fig. 3.6.

According to thm. 3.8, the absolute difference between the underestimation error
of the single-variable ET and either of the single-variable PPT or NPT tends to zero as
Q → ∞ or Q → −∞ respectively. Thus the following statement is true regarding the
underestimation error of these underestimators

lim
Q→±∞

(
Q · x

1/Q − x1/Q

x − x

) Q
1−Q

=
x − x

ln(x/x)
. (3.5.6)

This is the maximal error for the PPT and the minimal error for the NPT, when applied
to the power function xp, according to thm. 3.7.
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3.6 Other convex underestimators

In this section, some other types of convex underestimators which can be used for
obtaining convex underestimators for signomial functions are presented. An overview
of different types of underestimation methods in global optimization can be found in
Liberti and Maculan [2006], where also some automatic reformulation methods for
nonconvex problems are presented.

The first underestimator is the αBB underestimator from, e.g., Adjiman et al. [1998]
and Floudas [1999]. Although newer versions of the underestimator have been published,
see e.g., Akrotirianakis and Floudas [2004], the original version is presented here.

The αBB underestimator can be used as a convex underestimator for any twice-
differentiable function on a convex set, and is thus not limited to (or especially designed
for) signomial functions. The underestimator is based on the fact that it is possible to
find a convex function, which is “convex enough” so that the sum of this function and
the original nonconvex function is convex.

Theorem 3.14 (The αBB underestimator). The function

L(x) = f (x) +
∑
i

α(xi − xi)(xi − xi) (3.6.1)

is a convex underestimator of the function f (x) ∈ C2 on the interval [xi ,xi], xi ∈R, if
and only if, the parameters α fulfill

α ≥max
{
0, −1

2
min
i
λi

}
, (3.6.2)

where the λi ’s are the eigenvalues of H(x), the Hessian matrix of the function f (x) in
the region [x1,x1]× · · · × [xI ,xI ].

It is also possible to use individual values of the parameters αi for each variable
xi . The Hessian matrix of eq. (3.6.1) is then given by

H(x) + 2diag(αi), (3.6.3)

where H(x) is the Hessian matrix of the function f . If the values of αi are selected
such that the matrix in eq. (3.6.3) is positive semidefinite for all xi ∈ [xi ,xi], then L(x)
(with individual αi-values) is a valid convex underestimator of the function f in the
region [x1,x1]× · · · × [xI ,xI ].

The problem is then to find a large enough value of the α-parameters. Some different
techniques can be found in Adjiman et al. [1998]. In this paper the scaled Gerschgorin
method, which uses interval analysis, has been used. An implementation of this method
was programmed in Wolfram Mathematica 7.0, and this implementation was used to
calculate the α-values used in Section 3.7.
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By dividing the domain in subregions, different α values can be calculated in the
different regions, resulting in tighter convex underestimators.

Another convex underestimator for positive signomial terms is the method proposed
in Li et al. [2007]. Here power transformations are applied to the variables having
positive powers.

Theorem 3.15. The signomial function f (x) = c·xp1
1 x

p2
2 . . .x

pI
I , c > 0, xi ∈ [xi ,xi], xi > 0

can be underestimated by the function

f (x,X) = c
∏
i:pi<0

x
pi
i ·

∏
i:pi>0

X
−pi
i , (3.6.4)

where the following conditions are included for all indices i such that pi > 0

xi
xi

+ xiXi −
xi
xi
≤ 1. (3.6.5)

This technique actually corresponds to the NPT with the transformation power
Q = −1, since the conditions in eq. (3.6.5) correspond to a PLF in one step overestimating
the inverse transformation X = x−1, which can also be written as

X(x) ≤ X̂(x), X̂(x) = x1/Q +
x1/Q − x1/Q

x − x
(x − x), where Q = −1. (3.6.6)

3.7 Numerical comparisons of convex underestimators

In this section, some comparisons of the convex underestimators presented previously in
this chapter are performed through the means of numerical examples. The comparisons
are, to a large extent, the same as in Paper VI.

It is in often difficult to say that a certain type of convex underestimator is better
or worse than another, since one underestimator can be better in certain parts of the
feasible region and the other in other parts. In the one- and two-dimensional case, it
is, of course, possible to do a visual comparison, but this is difficult in more general
cases. One possibility is to use the lower bound of the convex underestimator as an error
metric.

Definition 3.16. For the function f the lower bound of a convex underestimator f̂
is given by the MINLP problem

minimize f̂ (x),

subject to x ≤ x ≤ x.
(3.7.1)
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Figure 3.7: The convex underestimators for the function f (x) = 0.05x3 − 8x+ 25x0.5 in ex. 3.17.

3.7.1 Univariate function

To compare the NPT, PPT and ET with the αBB underestimator for a function of one
variable, ex. 3.6 is revisited.

Example 3.17. The nonconvex function f (x) = 0.05x3 − 8x + 25x0.5, 0 < x ≤ x ≤ x,
consists of three signomial terms. The first two terms are convex and only the term
25x0.5 is nonconvex. The expressions for the convex underestimators resulting from
applying the NPT, PPT or ET was given in ex. 3.6. The αBB underestimator is, for
example, given on the interval [1,7] as

L[1,7](x) = 0.05x3 − 8x+ 25x0.5 + 2.975(1− x)(7− x), (3.7.2)

i.e., the value of the parameter α in thm. 3.14 is 2.975. If the domain is partitioned
into two intervals [1,4] and [4,7] the αBB underestimators can be given as

L[1,4](x) = 0.05x3 − 8x+ 25x0.5 + 2.975(1− x)(4− x), (3.7.3)

L[4,7](x) = 0.05x3 − 8x+ 25x0.5. (3.7.4)

Since f is convex on the interval [4,7], the convex underestimator is equal to the
function itself, i.e., the α-value is equal to zero. The convex underestimators given in
this example are illustrated in fig. 3.7

The results from ex. 3.6 show that in the first case, i.e., when no additional breakpoint
is added, the PPT gives the tightest convex underestimator. A direct consequence of
thm. 3.8 is that the PPT is a tighter underestimator than both the ET and the NPT. In
this special case, the PPT gives the convex envelope of the nonconvex term x0.5. Note
however, that this is not the same as the convex envelope of the whole function. In the
second case, when an additional breakpoint at x = 4 is added, the PPT is still the tightest
in the interval [1,4]; in the interval [4,7], however, the αBB underestimator actually
coincides with the function f itself, since it is already convex on this interval.
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3.7.2 Bivariate functions

In this section convex underestimations of functions of two variables are compared.
Positive signomial terms are considered in the first example and a negative signomial
term in the second.

Example 3.18. The PPT, ET, as well as the αBB underestimator are now applied
to the positive signomial functions (a) f1(x1,x2) = x1x2, (b) f2(x1,x2) = x0.95

1 x0.9
2 ,

and (c) f3(x1,x2) = x0.6
1 x0.5

2 , where x1,x2 ∈ [1,7]. The NPT is not included in the
comparison, since it is known from thms. 3.9 and 3.10 that the ET and PPT gives
tighter underestimations.

(a) Piecewise convex underestimators of f1 are given by the functions

f̂1,P (X̂1,P , X̂2,P ) = X̂Q1
1,P X̂

Q2
2,P and f̂1,E(X̂1,E , X̂2,E) = eX̂1,E+X̂2,E , (3.7.5)

when using the PPT and ET respectively. Here X̂1,P , X̂2,P and X̂1,E , X̂2,E are

the piecewise linear approximations of the inverse functions X1,P = x1/Q1
1 ,

X2,P = x1/Q2
2 and X1,E = lnx1, X2,E = lnx2. The transformation conditions in

the PPT are that Q1 +Q2 ≥ 1, as well as that one of the powers Q1 and Q2 must
be positive, and the other negative. So, for example Q1 = 2 and Q2 = −1 can be
chosen. A corresponding αBB underestimator for the function f1 is

L1(x1,x2) = x1x2 + 0.5(1− x1)(7− x1) + 0.5(1− x2)(7− x2). (3.7.6)

The convex envelope, i.e., the McCormick underestimator, for the bilinear term
is according to ex. 2.4 given by

f̂1,M (x1,x2) = max {x1 + x2 − 1,7x1 + 7x2 − 49} . (3.7.7)

(b) Piecewise convex underestimators of f2 are given by the functions

f̂2,P (X̂1,P , X̂2,P ) = X̂0.95Q1
1,P X̂0.9Q2

2,P and f̂2,E(X̂1,E , X̂2,E) = e0.95X̂1,E+0.9X̂2,E ,
(3.7.8)

when using the PPT and ET respectively. Here X̂1,P , X̂2,P and X̂1,E , X̂2,E are the

PLF-approximations of the inverse functions X1,P = x1/Q1
1 , X2,P = x1/Q2

2 , X1,E =
lnx1 and X2,E = lnx2. The powers in the PPT are chosen to be Q1 = 19/9 ≈ 2.11
and Q2 = −1. An αBB underestimator for the function f2 is, for example,

L2(x1,x2) = x0.95
1 x0.9

2 + 0.564(1− x1)(7− x1) + 0.713(1− x2)(7− x2). (3.7.9)

(c) Similarly, the piecewise convex underestimators

f̂3,P (X̂1,P , X̂2,P ) = X̂0.6Q1
1,P X̂0.5Q2

2,P and f̂3,E(X̂1,E , X̂2,E) = e0.6X̂1,E+0.5X̂2,E

(3.7.10)
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of f3 are obtained when using the PPT and ET respectively. The powers in the
PPT are here chosen to be Q1 = 2.5 and Q2 = −1. An αBB underestimator for
the function f3 is

L3(x1,x2) = x0.6
1 x0.5

2 + 0.467(1− x1)(7− x1) + 0.552(1− x2)(7− x2). (3.7.11)

An illustration in 3D of the convex underestimator is provided in fig. 3.11.

The convex envelope for the functions in (b) and (c) are not known, so they cannot
be included in the comparison. Plots of the errors of the different underestimators
in this example are given in fig. 3.8 when using only the interval endpoints as
gridpoints. In fig. 3.9 it is illustrated how the underestimators become tighter as
more breakpoints are added to the PLFs for the ET and PPT, and partitioning the
domain for the αBB and McCormick underestimator. Note that partitioning the
domain leads to different αBB and McCormick underestimators in each of the four
subregions.

It is difficult to draw any conclusions from the results of ex. 3.18 presented in figs. 3.8
and 3.9. Of course, the convex envelope gives the tightest convex underestimator, but the
others were not that much worse (at least not in the sense of the largest underestimation
error), and unfortunately, the convex envelopes are known only for certain signomial
terms. The PPT did not give very good results when underestimating f1 and f2, because
the negative PT used was not very good. A larger positive value of Q1 and a larger
negative value of Q2 would have given better results. However, according to thms. 3.11,
the ET will always be better in some region than the PPT regardless of the powers Q
chosen. This region is shown in fig. 3.10.

Example 3.19. The PT for negative signomial terms and the αBB underestimator
are now applied to the signomial function f (x1,x2) = −x0.7

1 x2, where x1,x2 ∈ [1,9]. In
the PTs, the transformation powers Q can be chosen in many different ways; here
two different pairs of Q-values are given, the first is Q1 = 0.5/0.7, Q2 = 0.5 and the
second is Q1 = 1, Q2 = 0.3. To illustrate how the approximations improve as the
domain is partitioned or additional gridpoints are added to the PLFs, three cases are
considered (a) with only the interval endpoints as grid points, (b) with extra grid
points at x1 = 5 and x2 = 5, and (c) with extra grid points at x2 = 3,5,7 when Q1 = 1
and Q2 = 0.3.

(a) A piecewise convex underestimator of the function f is given by the function

f̂1,P (X̂1,1, X̂2,1) = −X̂0.7·0.5/0.7
1,1 X̂1·0.5

2,1 = −X̂0.5
1,1 X̂

0.5
2,1 , (3.7.12)

when using the PT with the powers Q1 = 0.5/0.7, Q2 = 0.5, and the function

f̂2,P (x, X̂2,2) = −x0.7X̂1·0.3
2,2 = −x0.7X̂0.3

2,2 , (3.7.13)



3.7. NUMERICAL COMPARISONS OF CONVEX UNDERESTIMATORS 43

11.8

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
ET: |f1 − f1,E |

19.0

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
PPT: |f1 − f1,P |

9.0

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
αBB: |f1 −L1 |

9.0

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
McCormick: |f1 − f̂1 |

(a) f1(x1,x2) = x1x2

8.7

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
ET: |f2 − f2,E |

13.5

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
PPT: |f2 − f2,P |

11.5

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
αBB: |f2 −L2 |

(b) f2(x1,x2) = x0.95
1 x0.9

2

1.7

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
ET: |f3 − f3,E |

2.3

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
PPT: |f3 − f3,P |

9.2

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

7

x1

x2
αBB: |f3 −L3 |

(c) f3(x1,x2) = x0.6
1 x0.5

2

Figure 3.8: The underestimation errors of the convex underestimators in ex. 3.18. The contour
distance is 0.5. The maximal error is indicated in each figure.
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Figure 3.9: The underestimation errors of the underestimators in ex. 3.18 after adding the grid-
points x1 = x2 = 4. The contour distance is 0.5. The maximal errors are indicated in the figures.
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Figure 3.10: Comparison of the regions of the domain where the PPT is tighter than the ET,
indicated by the shaded area, when underestimating the function f (x1,x2) = x1x2 in ex. 3.18.
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Figure 3.11: The nonconvex function f3(x1,x2) = x0.6
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2 in ex. 3.18 underestimated by the PPT.
The black points are the gridpoints for the PLFs, i.e., where the underestimation is exact.
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when using the PT with the powers Q1 = 1 and Q2 = 0.3. Since the Q1-value is
equal to one, the variable x is not transformed in this case. A corresponding
αBB underestimator for the function f is

L1(x1,x2) = −x0.7
1 x2 + 0.344(1− x1)(9− x1) + 0.350(1− x2)(9− x2). (3.7.14)

(b) As in (a), piecewise convex underestimators for the function f are given by

f̂1,P (X̂1,1, X̂2,1) = −X̂0.7·0.5/0.7
1,1 X̂1·0.5

2,1 = −X̂0.5
1,1 X̂

0.5
2,1 and (3.7.15)

f̂2,P (x1, X̂2,2) = −x0.7
1 X̂1·0.3

2,2 = −x0.7
1 X̂0.3

2,2 , (3.7.16)

for the value-pairs Q1 = 0.5/0.7, Q2 = 0.5, and Q1 = 1, Q2 = 0.3, respectively.
However, additional breakpoints are added to the piecewise linear approxima-
tions X̂1,1, X̂2,1 and X̂2,2. The αBB underestimators in the four partitions of the
domain for the function f are

L
[1,5]×[1,5]
2 (x1,x2) = −x0.7

1 x2 + 0.34(1− x1)(5− x1) + 0.35(1− x2)(5− x2),

L
[1,5]×[5,9]
2 (x1,x2) = −x0.7

1 x2 + 0.29(1− x1)(5− x1) + 0.35(5− x2)(9− x2),

L
[5,9]×[1,5]
2 (x1,x2) = −x0.7

1 x2 + 0.21(5− x1)(9− x1) + 0.22(1− x2)(5− x2),

L
[5,9]×[5,9]
2 (x1,x2) = −x0.7

1 x2 + 0.19(5− x1)(9− x1) + 0.22(5− x2)(9− x2).
(3.7.17)

(c) In the case when Q1 = 1 and Q2 = 0.3, only the variable x2 is transformed and
a piecewise convex underestimator for the function f is given by

f2,P (x1, X̂2,2) = −x0.7
1 X̂1·0.3

2,2 = −x0.7
1 X̂0.3

2,2 . (3.7.18)

Since gridpoints can only be added to the PLF X̂2,2, the domain is split into only
two partitions when adding the point x2 = 5 as in case (b). For a comparable
combinatorial complexity as when transforming both variables, two additional
gridpoints can be added, in this case x2 = 3 and x2 = 5 are chosen. The result is a
tighter convex underestimator than in any of the previous cases.

This example shows the advantages of transforming as few variables as possible, as it
is possible to include more breakpoints in the transformed variables and still have the
same combinatorial complexity. This fact is utilized in the method for determining an
optimized set of transformations given in Chapter 4.
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Figure 3.12: The underestimation errors of the convex underestimators in ex. 3.19. The contour
distance is 0.5. The maximal error is indicated in each figure.
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3.7.3 Multivariate functions

In this section, convex underestimators for some more difficult signomial functions from
Li et al. [2007] are considered. The lower bound in def. 3.16 is used to compare the
underestimators. Since the domains of the variables are relatively large in these examples,
the αBB underestimator did not give a reasonable underestimator without partitioning
the domains of the variables, and it is therefore not included in the comparisons. Instead,
the solver Branch and reduce optimization navigator (BARON) is included. BARON is
a global MINLP solver which utilizes several different techniques for solving certain
classes of nonconvex problems to global optimality, see e.g., Tawarmalani and Sahinidis
[2004] and Sahinidis and Tawarmalani [2005].

Example 3.20. In the signomial function

f (x) = x1x2x3x4x5 − x0.5
2 x0.5

4 − 3x1 − x5, 1 ≤ x1,x2,x3,x4,x5 ≤ 100, (3.7.19)

only the first term is nonconvex and must be transformed. Transforming it using the
ET gives the following convex underestimator

f̂E(x, X̂E) = eX̂1,E+X̂2,E+X̂3,E+X̂4,E+X̂5,E − x0.5
2 x0.5

4 − 3x1 − x5, (3.7.20)

where X̂1,E , . . . , X̂5,E are the piecewise linear approximations of the inverse transfor-
mations Xi,E = lnxi , i.e.,

X̂i,E = lnxi +
lnxi − lnxi
xi − xi

(x − xi). (3.7.21)

Transforming f (x) using the PPT or NPT gives the convex underestimator

f̂P (x, X̂P) = X̂Q1
1,P X̂

Q2
2,P X̂

Q3
3,P X̂

Q4
4,P X̂

Q5
5,P − x

0.5
2 x0.5

4 − 3x1 − x5. (3.7.22)

For the PPT the transformation powers are chosen so that Q1 = 5 and Q2 = . . . =
Q5 = −1, and for the NPT so that Q1 = . . . = Q5 = −10. The function f̂P (x, X̂P)
is then a convex underestimator of f (x) if X̂1,P , . . . , X̂5,P are the piecewise linear
approximations of the inverse transformations Xi,P = x1/Q

i , i.e.,

X̂i,P = x1/Qi
i +

x1/Qi
i − x1/Qi

i

xi − xi
(x − xi). (3.7.23)

The lower bounds of the different convex underestimators are provided in ta-
ble 3.1, and the impact of the power Q in the NPT is shown in fig 3.13a.
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Table 3.1: Comparison of the LB of the convex underestimation techniques in ex. 3.20

Technique ET NPTa PPT BARONb Li et alc Opt. sol.d

Lower bound -209.22 -215.73 -202.03 -224.44 -317.08 -202.00
a With the transformation powers Qi = −10
b Obtained at the root node
c From Li et al. [2007]
d The lower bound of the nonconvex function

Example 3.21. In the function

f (x) = x−2
1 x−1.5

2 x1.2
3 x3

4 − 3x0.5
3 + x2 − 4x4, 1 ≤ x1,x2,x3,x4 ≤ 10, (3.7.24)

only the first term is nonconvex. Transforming this term using the ET gives the
following expression for the convex underestimator

f̂E(x, X̂E) = x−2
1 x−1.5

2 e1.2X̂3,E+3X̂4,E − 3x0.5
3 + x2 − 4x4, (3.7.25)

where X̂1,E , . . . , X̂2,E are the PLF-approximations of the inverse transformations Xi,E =
lnxi . Transforming f (x) using the PPT or NPT gives the convex function

f̂P (x, X̂P) = x−2
1 x−1.5

2 X̂1.2Q3
3,P X̂3Q4

4,P − 3x0.5
3 + x2 − 4x4, (3.7.26)

which underestimates f (x), if X̂3,P and X̂4,P are the PLF-approximations of the

inverse transformations X3,P = x1/Q3
3 and X4,P = x1/Q4

4 , and the powers Q are chosen
so that the transformed term is convex according to defs. 3.1 and 3.2. Here, the
values on the powers Q3 and Q4 in the PPT were chosen as Q3 = −1 and Q4 = 1.9 as
well as Q3 = 10.5 and Q = −2; for the NPT the powers were chosen as Q3 =Q4 = −10.

The lower bounds of the different convex underestimators are provided in ta-
ble 3.2, and the impact of the power Q in the NPT is presented in fig 3.13b.

The results from exs. 3.20 and 3.21 show that the ET, PPT and NPT (with Qi = −10)
all result in quite good underestimators. In ex. 3.20 the PPT is better than the ET (and
is almost equal to the global optimal solution). In ex. 3.21, however, the ET is better
than the PPT in the case when Q3 = −1, Q4 = 1.9, but the PPT better than the ET when
Q3 = 10.5 and Q4 = −2. According to thm. 3.11, neither of the ET nor the PPT is tighter
in the whole domain, so which one is better depends only on where in the domain the
optimal point lies. It also shows that the method from Li et al. [2007] (which corresponds
to the NPT with Qi = −1) is not very good in this case.
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Table 3.2: Comparison of the LB of the convex underestimation techniques in ex. 3.21

Technique ET NPTa PPT BARONb Li et alc Opt. sol.d

Lower bound -38.92 -39.12 -40.49e -42.31 -41.24 -38.08
-38.73f

a With the transformation powers Qi = −10
b Obtained at the root node
c From Li et al. [2007]
d The lower bound of the nonconvex function
e With the powers Q3 = −1 and Q4 = 1.9
f With the powers Q3 = 10.5 and Q4 = −2
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Figure 3.13: The impact of the transformation power Q used in the NPT convex underestimators
in exs. 3.20 and 3.21. The gray line is the lower bound of the ET underestimator and the black
squares the lower bound of the NPT underestimator.



CHAPTER 4
Optimizing the single-variable

transformations

As mentioned in Chapter 3, there are often many ways of convexifying nonconvex
signomial terms using the ET or any of the PTs. When transforming signomial functions
of more than one term, or problems containing several signomial functions, there are even
more combinations of transformations applicable, since different transformations can be
used in different terms. It can be difficult to determine just by looking at the signomials,
what set of transformations will result in, e.g., the minimum amount of transformations
or the minimum amount of variables transformed. Therefore, in this chapter, a method
for obtaining an optimized set of transformations for the signomial terms in a nonconvex
signomial problem, is presented. This method is based on formulating and solving a
MILP problem.

Several versions of the MILP problem formulation have been presented in the articles
which this thesis is based on. In Papers I and II the method for optimizing PTs was
introduced. It was extended to also include the ET in Paper III. Finally in Paper VII,
some additional enhancements were presented, and it is this form which the method
described here mostly resembles.

4.1 The MILP method

The goal is to formulate a MILP problem, the solution of which is an optimized set
of transformations for convexifying a given MISP consisting of one or more signomial
terms (numbered j = 1, . . ., JT ) in one or more variables xi , i = 1, . . ., I . Depending on the
strategy parameters in the MILP problem, different sets of transformations are obtained,
and it will be shown later on, that these can have a large impact on the combinatorial
complexity of the resulting transformed MISP. The complete MILP problem formulation
is also compiled in Appendix A.

51
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Since the convexity requirements for positive and negative signomial terms are
different according to thms. 2.5 and 2.6, the conditions enforcing correct transformations
must also be different in these two cases. Also, there are more degrees of freedom
when convexifying positive terms, as there are two types of applicable single-variable
transformations, namely the exponential and power transformations. Furthermore, the
latter allows for the choice between the PPT and NPT.

4.1.1 The variables in the MILP problem formulation

In this section the variables used in the MILP problem are briefly described. They are
also summarized in tables 4.1 and 4.2.

In the MILP problem formulation, three types of real variables are used. The first
one is the transformation power Qji in the single-variable PT, i.e., xi = Xji

Qji . If the
variable xi in the j-th term is transformed using a single-variable ET, the power Qji is
set to be equal to one. This is also the case if the variable is not transformed at all. The
other types of real variables are ∆ji and ∆′ ji , which are used to favor numerically stable
transformations. These are further explained in Section 4.1.5.

To be able to determine whether a certain variable is transformed in a term, the
binary variable bji is used. Its value is one if the variable xi is transformed in the j-th
signomial term and zero otherwise. Related to this one is the binary variable Bi which
takes the value one if the variable xi is transformed in any of the signomial terms in the
whole problem. This logical condition can be written as

∀i :
JT∑
j=1

bji ≤ JTBi , (4.1.1)

where JT is the total number of signomial terms in the problem.
For positive signomial terms, additional binary variables are needed to provide the

logic for enabling the choice between the ET and the PTs. In the first case, i.e., when the
variable xi in the j-th term is transformed using a single-variable ET, the variable bETji
is one and bP Tji is zero, and vice versa if any of the PTs are used. If the variable is not

transformed at all bETji = bP Tji = 0. Furthermore, the variable αji is needed to differentiate
between the PPT and NPT in such a way that αji is equal to one if Qji is positive (or the
ET is used) and zero otherwise. The variable βji is equal to one if the power pjiQji for
the transformed variable Xji is positive and zero if it is negative.

A member of the last group of binary variables needed is γj1j2i , which assumes the
value one if different transformations are used on the variable xi in the two signomial
terms with indices j1 and j2.

4.1.2 The objective function and strategy parameters

Different sets of optimized transformations are obtained by changing the values on the
strategy parameters δR, δZ , δNT , δNS , δET , δP T , δP and δI in the objective of the MILP
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Table 4.1: The binary decision variables in the MILP problem formulation

Variable Value Description

Bi
1 xi is transformed in some signomial term.
0 xi is not transformed in any signomial term.

bji
1 xi is transformed in the j-th term.
0 xi is not transformed in the j-th term.

bETji
∗ 1 xi is transformed using the ET in the j-th term.

0 xi is not transformed using the ET in the j-th term.

bP Tji
∗ 1 xi is transformed using any of the PTs in the j-th term.

0 xi is not transformed using any of the PTs in the j-th term.

αji
∗ 1 The PPT or ET is used on xi in the j-th term (1 ≤Qji ≤Qmax).

0 The PPT or ET is not used on xi in the j-th term (−Qmin ≤Qji ≤ −ε.

βji
∗ 1 The power pjiQji is positive (0 < pjiQji ≤ pjiQmax).

0 The power pjiQji is negative (−pjiQmin ≤ pjiQji < 0).

γj1j2i
1 Different transformations are used on xi in the j1-st and j2-nd terms.
0 Identical transformations are used on xi in the j1-st and j2-nd terms.

∗ These variables are only defined for j : cj > 0, i.e., for positive signomial terms

problem, which is to minimize the function

δR

I∑
i=1
xi∈R

riBi + δZ
I∑
i=1
xi∈Z

riBi

︸                         ︷︷                         ︸
(I)

+
JT∑
j=1

I∑
i=1
pji,0

(δNT bji + δNS∆ji)

︸                           ︷︷                           ︸
(II)

+

+
JT∑
j=1
cj>0

I∑
i=1
pji>0

(δET b
ET
ji + δP T b

P T
ji + δP βji)

︸                                        ︷︷                                        ︸
(III)

+ δI

JT∑
j1=1

JT∑
j2=1
j2,j1

I∑
i=1
pji,0

γj1j2i

︸                    ︷︷                    ︸
(IV )

.

(4.1.2)

The strategy parameters are summarized in table 4.3.
In part (I) of eq. (4.1.2) the goal is to minimize the number of original variables xi

transformed at all in any of the terms. The reason for this is that parts of the expressions
and variables used in the PLFs can be reused when transforming the same original
variable in different signomial terms, even if the transformations used are not the same.
For example, even though the variable xi is transformed using a single-variable PT

xi = X
Qj1i
j1i

in the j1-st term and a single-variable ET xi = expXj2i in the j2-nd term, the
same binary or SOS2 variables can be used in the PLFs for both transformations. Thus, by
minimizing the number of transformed original variables, the combinatorial complexity
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Table 4.2: The real variables in the MILP problem formulation

Variable Description Domain

Qji The transformation power used on xi in the j-th term. R

∆ji
Negative terms: The deviation from one for the sum of the powers in the
j-th term (plus a penalty from ∆′ ji ).
Positive terms: The deviation from Ppos for the sum of the powers in
the j-th term if a PT with positive power is used on xji , otherwise the
deviation from Pneg.

R

∆′ ji Negative terms: The deviation for the powers pjiQji from the mean of
the powers for the whole term.

R+

Table 4.3: The strategy parameters in the MILP problem formulation

Parameter Description Domain

δR Penalizes the number of transformed real variables. R+ ∪ {0}
δZ Penalizes the number of transformed discrete variables. R+ ∪ {0}
δNT Penalizes the number of transformations. R+ ∪ {0}
δNS Penalizes numerical unstable transformations. R+ ∪ {0}
δET Penalizes the ET in positive terms. R+ ∪ {0}
δP T Penalizes the PTs in positive terms. R+ ∪ {0}
δP Penalizes the PPT if positive, favors the PPT if negative. R

δI Penalizes different transformations for the same variables in different
terms.

R+ ∪ {0}

Qmin −Qmin is the smallest transformation power Q allowed. R+
Qmax Qmax is the largest transformation power Q allowed. R+
Pneg The desired power (pQ) in the PTs with negative powers. R−
Ppos The desired power (pQ) in the PTs with positive powers. R+

of the transformed problem can be reduced.
The reason the sum in (I) is split into parts corresponding to the discrete and real vari-

ables is that the PLFs for discrete variables only require a finite amount of breakpoints,
namely the points corresponding to the domain of the variables, to provide an exact
representation of the original variable, whereas the PLFs for real variables theoretically
require an infinite amount of breakpoints. Therefore, it may prove beneficial to favor
transformations in discrete variables to keep the number of variables used in the PLFs to
a minimum in the long run. The optimization strategy is altered by changing the value of
the parameters δR and δZ , corresponding to the real and discrete variables respectively.

Following the same path of reasoning, an additional penalty factor ri can be included
to additionally favor transformations in variables with small domains. This factor can,
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e.g., be defined according to

ri =

1 + εd(xi − xi)d if xi ∈R,
1 + εd(xi − xi − 1)d if xi ∈Z,

(4.1.3)

where εd is a small positive parameter, d is a positive integer and x ∈ [x,x]. Using this
definition of ri a binary variable receives no additional penalty, but real- or integer
variables with larger domains do. Note that, since ri is a parameter which is calculated
before solving the MILP problem, including this parameter does not affect the linearity
of the objective function.

Part (II) of eq. (4.1.2) consists itself of two parts. The parameters δNT and δNS
penalizes the total number of transformations in the whole problem and numerically
unstable transformations respectively.

In part (III) of the objective function, certain types of transformations in the positive
signomial terms can be favored by altering the values of the parameters δET , δP T and δP .
Depending on the value of the first two parameters, the ET or any the PTs is favored in
positive terms. Additionally, the parameter δP favors the PPT if negative and penalizes
the PPT if positive.

In part (IV) of eq. (4.1.2) the goal is to minimize the total number of different
transformations used for each original variable. The reason for this is, similarly to
the case above, that the same expressions and variables for the PLFs can be used for
different transformations of the same variable in different terms. However, when the
same transformation xi = T ji(Xji) is used on the same variable xi , the transformation
variable Xji can also be reused. Therefore, it does not matter, complexity-wise, whether
we transform a variable in one or a hundred terms, as long as, the same transformation is
used. The emphasis on minimizing the number of different transformations in the whole
problem is controlled by the strategy parameter δI .

In addition to the objective function, constraints must be included in the MILP
problem guaranteeing transformations which result in convexified signomial terms in
line with defs. 3.1, 3.2 and 3.4 for positive signomial terms and def. 3.5 for negative
terms. These constraints are described in the following two sections.

4.1.3 Conditions for positive terms

Defs. 3.1, 3.2 and 3.4 state that a positive signomial term can be convexified using either
the ET or one of the NPT or PPT. However, only variables xi with positive powers pji in a
term need to be transformed, and, at most, one of the transformations ET, NPT and PPT
should be used in any term.

If the PPT is used, the sum of the powers pjiQji in the transformed term should be
larger than or equal to one, which can be written as the constraint

∀j :
I∑
i=1
pji,0

pjiQji −M1

I∑
i=1
pji>0

αji +M1

I∑
i=1
pji>0

bETji ≥ 1−M1. (4.1.4)
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This constraint is relaxed whenever the term is not transformed or either one of the ET or
NPT is used, as long as the positive parameter M1 is chosen large enough. For example,
it can be chosen according to

M1 >max
j

1 +Qmin

I∑
i=1

pji

 , (4.1.5)

where Qmin is a parameter specifying the minimum allowed transformation power in a
PT with negative power.

Furthermore, in the PPT only one of the variables in the term can have a positive
power after the convexification step, which can be enforced with the constraint

∀j :
I∑
i=1
pji>0

αji −
I∑
i=1
pji>0

bETji ≤ 1. (4.1.6)

This constraint is relaxed if the ET is used on the term, because then all the αji ’s are equal
to one. To set the correct limits on the value of the transformation power, depending on
the value of αji , the following condition is used

∀i, j : pji > 0 : −Qmin + (Qmin + 1)αji ≤Qji ≤Qmaxαji − ε(1−αji). (4.1.7)

here −Qmin < 0 and Qmax > 1 are the smallest and largest powers allowed in the PTs
respectively. The parameter ε is a small positive value, e.g., ε = 1/max{Qmin,Qmax}. Also,
if the ET is used to transform xi in the j-th term, then Qji should be equal to one, which
can be guaranteed by the following condition

∀i, j : pji > 0 : −Qmin + (Qmin + 1)bETji ≤Qji ≤ (Qmax − 1)(1− bETji ) + 1. (4.1.8)

The binary variable bP Tji , indicating whether xi is transformed by a single-variable PT
in the j-th term, also depends on the value of αji and Qji , according to

∀i : pji > 0 : bP Tji ≥ 1−αji (4.1.9)

and

∀i : pji > 0 : ε(Qji − 1) ≤ bP Tji ≤ (1− ε)Qji +M1(1−αji). (4.1.10)

The following condition, which determines the value for the binary variable βji ,
indicating whether the corresponding power in the transformed term, i.e., pjiQji , is
positive or negative, must also be added

∀i : pji > 0 : −Qmin(1− βji) ≤Qji ≤Qmaxβji . (4.1.11)

For variables with positive powers in positive signomial terms, either the ET or one
of the two PTs can be applied to the term. However, when one variable is transformed
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using the single-variable ET, all the other variables with positive powers must undergo
the same transformation. This can be enforced using the following condition

∀i : pji > 0 : bETji ≥
1
Ij

I∑
i=1
pji>0

bETji , (4.1.12)

where Ij is the number of variables in the current term, i.e.,

∀j : Ij = card {xi | pji , 0}. (4.1.13)

Furthermore, at most, one type of transformation can be applied to an individual variable,
which can be formulated as

∀i : pji > 0 : bETji + bP Tji ≤ 1. (4.1.14)

The value of the variable bji , indicating whether xi is transformed in the j-th term, is
equal to one if the variable is transformed using a single-variable ET or PT, so

∀i : pji > 0 : bji = max{bETji ,b
P T
ji } ⇐⇒

bji ≥ bETji ,bji ≥ bP Tji .
(4.1.15)

Since variables with negative powers in a positive term do not need to be transformed,
the transformation power Qji and the binary variable bji , indicating a transformation,
are fixed to one and zero respectively, i.e.,

∀i : pji < 0 : Qji = 1, bji = 0. (4.1.16)

4.1.4 Conditions for negative terms

The conditions for obtaining correct transformations for negative signomial terms are
simpler than those for positive signomial terms, since the PT for negative signomial
terms from def. 3.5 is the only applicable transformation.

The only condition for convexity for a transformed term is that the sum of the powers
pjiQji should be larger than zero and less than or equal to one, i.e.,

0 <
I∑
i=1

pjiQji ≤ 1. (4.1.17)

The binary bji , indicating whether a transformation is performed on the variable
xi in the j-th term, should be zero if the transformation power Qji is equal to one, i.e.,
no transformation occurs, and one otherwise. For a variable with a positive power, the
relation between Qji and bji can be expressed

1− bji ≤Qji ≤ 1− εbji and Qji ≥ ε. (4.1.18)

The parameter ε is a small positive value, e.g., ε = 1/max{Qmin,Qmax}. A transformation
is always necessary for a variable with a negative power, so the corresponding constraints
are

−Qmin ≤Qji ≤ −ε and bji = 1. (4.1.19)

Also, here a lower bound on the transformation power Qji of −Qmin is set.
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4.1.5 Conditions for favoring numerical stable transformations

To get numerically stable power transformations, the conditions given in this section
can be used. For positive signomial terms, the deviation ∆ji from either of the two
parameters Ppos and Pneg, depending on whether the power pjiQji in the transformed
term is positive or negative, is used to penalize transformations with too large or too
small powers. The conditions on the real variables ∆ji are

∀i : pji > 0 : |pjiQji − Ppos| ≤ ∆ji +M2(1− βji + bETji ) and (4.1.20)

∀i : pji > 0 : |pjiQji − Pneg| ≤ ∆ji +M2(βji + bETji ). (4.1.21)

These constraints can be rewritten without absolute values using two inequalities each as

∀i : pji > 0 : −∆ji −M2(1− βji + bETji ) ≤ pjiQji − Ppos ≤ ∆ji +M2(1− βji + bETji ) (4.1.22)

and

∀i : pji > 0 : −∆ji −M2(βji + bETji ) ≤ pjiQji − Pneg ≤ ∆ji +M2(βji + bETji ). (4.1.23)

Here M2 can be chosen, e.g., according to M2 > max{|Pneg|, Ppos}. For variables with
negative powers in a positive term, the values of the deviation are set to zero, i.e.,

∀i : pji < 0 : ∆ji = 0. (4.1.24)

For negative signomial terms, transformation powers which result in as similar
powers pjiQji in the convexified terms as possible are favored here. This is done by
introducing an extra positive real variable ∆′ ji , which corresponds to the deviation of
the power pjiQji from the mean of the powers in the transformed term. This can be
mathematically written as the constraint

∀i : pji , 0 : ∆′ ji ≥

∣∣∣∣∣∣∣pjiQji − 1
Ij

I∑
i=1

pjiQji

∣∣∣∣∣∣∣ . (4.1.25)

The value of the variable ∆ji is then determined by

∀i : pji , 0 : ∆ji ≥ 1−
I∑
i=1

pjiQji + ε∆′ ji , (4.1.26)

i.e., ∆ji is the deviation between one and the sum of the powers pjiQji plus a small
contribution from ∆′ ji . Using these conditions, the powers pjiQji are kept as close as
possible to each other and the sum of the powers in the transformed term as close to one
as possible.
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4.1.6 Conditions for favoring identical transformations

To keep the number of additional binary or SOS2 variables needed in the PLFs as small
as possible when adding more breakpoints, identical transformations for the same vari-
able in different terms can be favored. Different transformations are defined as either
transformations of different types (single-variable exponential and power transforma-
tions) or two single-variable power transformations with different transformation powers
(Qj1i ,Qj2i). The values for the binaries γ are determined using the following conditions

∀i ∈ {1, . . . , I}, j1, j2 ∈ {1, . . . , J}, j1 , j2, pj1i , pj2i , 0, sgncj1 = sgncj2 :Qj1i −Qj2i + bETj1i − b
ET
j2i
−M1(2− bj1i − bj2i) ≤M1γj1j2i ,

γj1j2i = γj2j1i ,

(4.1.27)

and where the parameter M1 can be chosen, e.g., as M1 = max{Qmin,Qmax}.

4.2 Impact of the strategy parameters

As mentioned earlier, the set of transformations obtained through the solution of the
MILP problem described above, depends on the value of the parameters in table 4.3. By
providing different values of the strategy parameters in the objective function, different
types of transformations or certain properties can be emphasized.

There is some redundancy in the parameters, e.g., the values of the parameters δR,
δZ and δI all favor as few transformations as possible. However, all of these options are
included to allow the user of the method to specify which properties to favor. The mag-
nitude of a strategy parameter relative to another determines the emphasis. Also, since
it is possible to set the value of one or more of the strategy parameters in the objective
function to zero, it is possible to favor only certain aspects of the transformations.

The following GP problem originally from Rijckaert and Martens [1978] is used to
illustrate how the value of the strategy parameters impact on the set of transformations
obtained from the MILP method.

Example 4.1. The original problem is reformulated to the following SP problem:

minimize µ,

subject to 2.0 x0.9
1 x−1.5

2 x−3
3 + 5.0 x−0.3

4 x2.6
5 + 4.7 x−1.8

6 x−0.5
7 x8 −µ ≤ 0,

7.2 x−3.8
1 x2.2

2 x4.3
3 + 0.5 x−0.7

4 x−1.6
5 + 0.2 x4.3

6 x−1.9
7 x8.5

8 ≤ 1,

10.0 x2.3
1 x1.7

2 x4.5
3 ≤ 1, 0.6 x−2.1

4 x0.4
5 ≤ 1,

6.2 x4.5
6 x−2.7

7 x−0.6
8 ≤ 1, 3.1 x1.6

1 x0.4
2 x−3.8

3 ≤ 1,

3.7 x5.4
4 x1.3

5 ≤ 1, 0.3 x−1.1
6 x7.3

7 x−5.6
8 ≤ 1,

x1, . . . ,x8 ≥ 0.01.
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Table 4.4: The values of the parameters in the MILP formula-
tion in ex. 4.1.

Strategy δR δZ δNT δNS δET δP T δP δI

I - - 0.1 0.01 - 10 - -
II 10 - 0.1 0.01 - - - -
III - - 10 0.01 - - - -
IV 1 - 0.1 0.01 - - - 10

Table 4.5: The number of transformations required for convexification of
the problem in ex. 4.1.

Strategy # Transformations # Transf. orig. var. # Different transf.

I 15 8 8
II 12 6 12
III 12 8 12
IV 12 6 6

The problem has eight continuous real positive variables and 12 signomial terms,
of which three are convex (underlined). The transformations required for convexi-
fying the problem subject to four different sets of strategy parameters are obtained
by solving the MILP problem. The values of the strategy parameters are indicated
in table 4.4; the values of the other parameters are Qmin = Qmax = M1 = M2 = 20,
ε = 0.05, Pneg = −1, Ppos = 1, and ri = 1. The different cases can be verbally explained
according to:

Strategy I The ET is favored over the PTs.

Strategy II The number of original (real) variables transformed in the whole prob-
lem is minimized.

Strategy III The total number of transformations is minimized.

Strategy IV The number of different transformations is minimized.

The number of transformations obtained from solving the MILP problem using the
different strategies are given in table 4.5. The results indicate that there can be a
significant difference in the combinatorial complexity of the transformed problem.



CHAPTER5
SGO – A GO algorithm for MISP

problems

Solving MINLP problems containing signomial functions in the objective function,
constraints or both, is often a challenging task. Even simple signomial functions are
usually nonconvex, implying that most convex MINLP solvers will find only local
solutions.

In this chapter, an iterative global optimization (GO) algorithm for MINLP problems
containing signomial functions is described. The first version of the algorithm was pre-
sented in Westerlund and Westerlund [2003] as the Generalized geometric programming
extended cutting plane (GGPECP) algorithm. It is also described in detail in Westerlund
[2005]. The GGPECP algorithm used fixed transformation techniques based on the
power and exponential transformations in Chapter 3. In the algorithm presented in
Paper II, the optimization method for the transformations from Chapter 4 was included
as a preprocessing step to provide the transformations used for convexifying the noncon-
vex signomial terms. Previous versions of the algorithm used αECP (Westerlund and
Pörn [2002]) as the MINLP solver, however in Paper VI, a more general algorithm was
described, which could use any convex MINLP solver. This algorithm is the topic of this
chapter.

The Signomial global optimization (SGO) algorithm, solves MISP problems of the
form in def. 2.8 as a sequence of convexified and overestimated MINLP problems. In the
problem, only the signomial terms are allowed to be nonconvex, since they are the only
ones being transformed. A flowchart of the SGO algorithm is given in fig. 5.1.

5.1 The preprocessing step

To obtain transformations transforming the original MISP to an overestimated convex
relaxed form, the convexification and underestimation techniques in Chapter 3 are im-

61
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Preprocessing step: Solve the MILP problem
to obtain the required transformations

Select initial break-
points for the PLFs

The relaxed convexified and over-
estimated problem is solved

using a convex MINLP solver

Solution fulfills the
termination criteria?

Add new breakpoints
to one or more PLFs

Optimal solution found

no

yes

Figure 5.1: Flowchart of the SGO algorithm

plemented using the MILP method in Chapter 4 as a preprocessing step. The parameters
in the MILP problem will then determine which set of solutions is used to convexify the
signomial terms in the problem.

After the initial transformation step, the PLFs used for approximating the inverse
transformations are updated in subsequent iterations. As additional breakpoints are
added to the PLFs, the optimal solution of the transformed problem will, under certain
conditions, converge to that of the original nonconvex problem. Thus, the selection of
what breakpoints to add is of crucial importance for the convergence of the method.

5.2 Discretization strategies

When determining how to improve the PLFs in subsequent iterations, there are two
things to take into consideration. First, which PLFs should be modified, i.e., which
approximation of the transformation variables should be improved. The second thing to
consider is what breakpoint or breakpoints to add to the selected PLFs. The strategy for
selecting the variables and breakpoints can have a significant impact on the solution-
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time, and for some problems, whether the global solution is actually found or not. The
discretization strategies are more thoroughly described in Westerlund [2005]; here only
a quick summary is presented.

5.2.1 Selection of the variables

The simplest strategy is, of course, to add breakpoints to all the transformation variables
in the whole problem. Since adding a breakpoint corresponds to adding at least one
binary or SOS2 variable per transformation variable in this case, the combinatorial
complexity will, in this case, grow out of control for large problems with transformations
of many different variables. Therefore, the goal should be to only add breakpoints to
as few approximations of transformation variables as possible. For example, there is
no need to add more breakpoints to variables only appearing in generalized signomial
constraints already fulfilled.

Additional restrictions can also be introduced, for example, only the PLFs of the
transformation variables appearing in the original nonconvex generalized signomial
constraints which are the most violated can be selected. Furthermore, only the variables
where adding the breakpoint will have the largest impact on the error in this constraint,
can be improved. In this last case, the breakpoint to be added must, of course, be
determined before selecting the variables.

5.2.2 Selection of the breakpoints

There are also several different strategies available for determining what new break-
point(s) to include in the PLFs of the transformation variables. For example, the following
strategies can be used:

1. Add the solution point of the previous iteration.

2. Add the midpoint of the interval of existing breakpoints in which the previous
solution is.

3. Add the most deviating point, i.e., the point with the largest approximation error
according to thm. 3.13, of the transformation in the interval in which the previous
solution is.

How the PLF changes when these strategies are used to add a new breakpoint is illus-
trated in fig. 5.2.

When the original variable in question is discrete, it is possible to exactly describe the
inverse transformation with PLFs with an finite amount of breakpoints (corresponding
to the number of discrete values the variable can assume). In this case, it makes no
sense to add breakpoints which do not belong to the original set, i.e., only integer
breakpoints should be added. However, in the second strategy, noninteger breakpoints
can be selected, but these should be replaced, for example, with the closest integer value
currently not in the set of breakpoints.
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x x∗ x

x

X

(a) The original PLF

x x∗ x

x

X

(b) Solution point x∗ added to PLF

x (x − x)/2 x

x

X

(c) Midpoint of interval added to PLF

x x̃ x

x

X

(d) Most deviating point x̃ added to PLF

Figure 5.2: Illustration of the impact on the PLF-approximation when using the different strategies
for adding new breakpoints.

The problem with the first strategy is that this can lead to the global optimal solution
not being found, as the breakpoints can be added “too close” to each other. For the
second strategy, it was proved in Westerlund [2005] that the global optimal solution will
always be found.

The third strategy, i.e., adding the point where the approximation error is the largest
in the PLFs, has one major drawback. Since the breakpoint in this case depends on what
single-variable transformation is used, the same set of binary or SOS2 variables can no
longer be utilized in the PLF-formulations for different transformations of the same
original variable.

Although, convergence to the global optimal solution can not be guaranteed if in-
cluding only the solution points of the previous iteration as new breakpoints in the next
iteration, the solution time and/or number of iterations required can be less in this case.
Therefore depending on the problem, hybrid methods, where adding more than one
breakpoint in each iteration to the transformation variables selected, could also prove to
be efficient in some cases.
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5.3 Termination criteria

The SGO algorithm is based on iteratively solving overestimated subproblems, so there
must be some kind of criteria for when the algorithm terminates. Since the feasible
region of the subproblems overestimate the feasible region of the original nonconvex
problem, the global optimal solution is found whenever all the generalized signomial
constraints in the original problem are satisfied in the overestimated problem. However,
since this is a numerical method, the constraints can only be required to be satisfied
to an epsilon-accuracy. This can be stated, for the m = 1, . . . ,M generalized signomial
constraints, as the condition

max
m

(qm(x∗) + σm(x∗)) ≤ εT , (5.3.1)

where x∗ is the optimal value of the current subproblem and εT ≥ 0.
Since the piecewise linear approximations are exact at the breakpoints, another

criterion for termination is when the maximum distances from the solution values of the
variables involved in the transformations to the nearest breakpoint values is less than a
small positive value εD . That is, if the set of breakpoints for the variable xi is {x̌i,k}

Ki
k=1,

then
max
i

(
min
k
|x∗i − x̌i,k |

)
≤ εD , (5.3.2)

where x∗i is the optimal value for the variable xi in the current iteration.
Of course, in practical use of the algorithm, the solution process can also be termi-

nated when a maximum iteration count or a time-limit has been reached.

5.4 A numerical example

To illustrate how the SGO algorithm works, the following example from Paper II is
included. This nonconvex MISP problem contains a linear objective function and two
linear constraints as well as a generalized signomial constraint.

minimize y − 3x,

subject to y + 5x ≤ 36,

− y + 0.25x ≤ −1,

2y2 − 2y0.5 + 11y + 8x − 39︸                            ︷︷                            ︸
q(x,y)

−2x0.5y2 + 0.1x1.5y1.5︸                      ︷︷                      ︸
σ (x,y)

≤ 0,

1 ≤ x ≤ 7, 1 ≤ y ≤ 7,

x ∈R+, y ∈Z+.

(5.4.1)

The only nonconvex part is the generalized signomial constraint q(x,y) + σ (x,y). The
variable x is a positive real variable and y a positive discrete variable. The integer-relaxed
feasible region of this problem consists of two disjoint regions as shown in fig. 5.3.

The first step in the SGO algorithm is the preprocessing step, i.e., to obtain the
necessary transformations using the MILP method in Chapter 4. Depending on the
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q+ σ = 0

q+ σ = 0

l1

l2
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Figure 5.3: The integer-relaxed feasible region of the problem in Section 5.4. The contour at
zero of the generalized signomial constraint q(x,y) + σ (x,y), as well as the linear constraints
l1 : y + 5x − 36 = 0 and l2 : −y + 0.25x+ 1 = 0 are also shown in the figure.

values on the parameters in table 4.3, different transformations are obtained. The
solution of the MILP problem (with δR = δZ = 1, δNS = 0.1, Qmax =Qmin = 10, Pneg = −1
and Ppos = 1) gives the following transformations:

y = Y 0.25
1 and y = Y −1/3

2 =⇒ Y1 = y4 and Y2 = y−3. (5.4.2)

That is, the variable x need not be transformed at all. This will reduce the amount of extra
variables required in the PLFs, since the same SOS can be used in the approximations
of both Y1 and Y2. However, since the transformation powers are different, the same
transformation variable can not, unfortunately, be used in both terms.

The variable y in the two terms in σ (x,y) are now replaced by the transformation vari-
ables Y1 and Y2 in the first and second term respectively, i.e., the convexified generalized
signomial constraint will be of the form

2y2 − 2y0.5 + 11y + 8x − 39− 2x0.5Y 0.5
1 + 0.1x1.5Y −0.5

2 ≤ 0. (5.4.3)

Thus far, the MINLP problem has not been changed, at least not in the sense that the
problem is still nonconvex, because the relations between the transformation variables
Y1 and Y2 are included in the problem; the nonconvexities have simply been moved
from the generalized signomial constraint to the nonlinear equality constraints Y1 = y4

and Y2 = y−3. However, by approximating the inverse transformations with PLFs, the
integer-relaxed problem will be convexified and overestimated. Initially, the interval
endpoints y = 1 and y = 7 are used as breakpoints, i.e., the PLFs will be

Ŷ1 = 1 ·w1 + 2401 ·w2,

Ŷ2 = 1 ·w1 + 0.0029 ·w2,

y = 1 ·w1 + 7 ·w2,

w1 +w2 = 1,

(5.4.4)
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where w1 and w2 belong to a SOS of type 2.
Now a convex MINLP solver is used to solve the following convex MINLP problem

minimize y − 3x,

subject to y + 5x ≤ 36,

− y + 0.25x ≤ −1,

2y2 − 2y0.5 + 11y + 8x − 39− 2x0.5Ŷ 0.5
1 + 0.1x1.5Ŷ −0.5

2 ≤ 0,

Ŷ1 = 1 ·w1 + 2401 ·w2,

Ŷ2 = 1 ·w1 + 0.0029 ·w2,

y = 1 ·w1 + 7 ·w2,

w1 +w2 = 1,

1 ≤ x ≤ 7, 1 ≤ y ≤ 7,

x ∈R+, y ∈Z+, w1,w2 ∈ SOS2.

(5.4.5)

The feasible region at iteration 1 is shown in fig 5.5a. The optimal solution for this
problem is (x,y) = (6.6,3) and the objective function value is −16.8. The LHS-value of the
original generalized signomial constraint is 23.9. This value should be less than or equal
to zero for the solution to be contained in the feasible region of the original problem.
Therefore, more breakpoints are needed in the PLFs to improve the approximations.

In the next iteration, the solution point y = 3 is added as an additional gridpoint to
the PLFs, i.e., their expressions are updated according to:

Ŷ1 = 1 ·w1 + 81 ·w2 + 2401 ·w3,

Ŷ2 = 1 ·w1 + 0.0370 ·w2 + 0.0029 ·w3,

y = 1 ·w1 + 3 ·w2 + 7 ·w3,

w1 +w2 +w3 = 1.

(5.4.6)

The feasible region of the problem at iteration 2 is shown in fig 5.5b. Note that the
previous solution point is excluded from the new feasible region. An illustration of the
convex feasible region of the overestimated and convexified problem in three dimensions
is given in fig. 5.4. Although this region is, in fact, five-dimensional with the variables
w1, w2, w3, x and y, it is possible to illustrate it in the three dimensions w1, w3 and x
using the facts that

w2 = 1−w1 −w3 and y = w1 + 3w2 + 7w3 = 3− 2w1 + 4w3. (5.4.7)

However, after adding more breakpoints, it is no longer possible to illustrate it in three
dimensions, instead four or more would be required.

The updated problem is now solved and the obtained optimal solution is (x,y) =
(6.4,4) with the objective function value −15.2. The original generalized signomial
constraint still has the LHS-value 16.2, i.e., the constraint is not yet satisfied, so further
iterations are needed.
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Figure 5.4: An illustration of the convexified feasible region of the problem in Section 5.4 when a
breakpoint at y = 3 has been added. Also included in the figure are two planes representing the
linear constraints. Note that the feasible region is convex.

Again, the solution value y = 4 is added as a new gridpoint and the problem with the
PLFs

Ŷ1 = 1 ·w1 + 81 ·w2 + 256 ·w3 + 2401 ·w4,

Ŷ2 = 1 ·w1 + 0.0370 ·w2 + 0.0156 ·w3 + 0.0029 ·w4,

y = 1 ·w1 + 3 ·w2 + 4 ·w3 + 7 ·w4,

w1 +w2 +w3 +w4 = 1,

(5.4.8)

is solved. The feasible region is shown in fig 5.5c. The optimal solution in this iteration
is (x,y) = (6.2,5) with the objective function value −13.6. The original generalized
signomial constraint has the LHS-value 3.9.

Finally, the previous solution y = 5 is added as a gridpoint to the PLFs, according to

Ŷ1 = 1 ·w1 + 81 ·w2 + 256 ·w2 + 625 ·w4 + 2401 ·w5,

Ŷ2 = 1 ·w1 + 0.0370 ·w2 + 0.0156 ·w3 + 0.0080 ·w4 + 0.0029 ·w5,

y = 1 ·w1 + 3 ·w2 + 4 ·w3 + 5 ·w4 + 7 ·w5,

w1 +w2 +w3 +w4 +w5 = 1.

(5.4.9)

Solving the problem in this iteration gives the solution (x,y) = (6,6) with the objective
function value -12. Since the value of the generalized signomial constraint is −12.7 this
is the global optimal solution to the nonconvex MINLP problem. The feasible region in
the final iteration is given in fig 5.5d.

The results when solving the overestimated MISP problem are summarized in ta-
ble 5.1. Note that the objective function values worsen in each iteration. This is natural,
since the feasible region of the approximated problems in each iteration overestimates
that of the next iteration.
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Table 5.1: The solution in each of the SGO iterations when solving the
problem in Section 5.4.

Iteration x y Breakpoints Obj. funct. val. q(x,y) + σ (x,y)

1 6.6 3 {1,7} -16.8 23.9
2 6.4 4 {1,3,7} -15.2 16.2
3 6.2 5 {1,3,4,7} -13.6 3.9
4 6.0 6 {1,3,4,5,7} -12.0 -12.7
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1 2 3 4 5 6 7
1

2

3

4

5

6

7

1 7
1

3

4

5

7

x

y

(d) Iteration 4

Figure 5.5: The overestimated feasible region of the problem in Section 5.4. The relaxed feasible
region of the nonconvex problem is the dark red region and the feasible region in the relaxed
convexified and overestimated problem is dark yellow. The solution of the overestimated problem
in each iteration is indicated by the black points.





CHAPTER6
SIGOPT – An implementation of

the SGO algorithm

In this chapter, the MINLP solver SIGOPT, which can solve MISP problems of the
type in Section 2.4 to global optimality, is described. It is a direct implementation
of the SGO algorithm in Chapter 5, i.e., it uses the underestimation techniques for
signomial functions described in Chapter 3 as well as the MILP method for optimizing
the transformations in Chapter 4. The implementation was first presented in Paper VI,
although here the description is more detailed. However, it should be noted, that at the
time of writing, the solver is to be regarded as a prototype, and is, thus, not available for
general use.

6.1 A description of the implementation

The implementation uses the General algebraic modeling system (GAMS), see Rosenthal
[2008], to solve both the MILP problem for optimizing the transformations and the
transformed MINLP subproblems. The GAMS interface allows SIGOPT to use any of the
MILP and MINLP solvers available in GAMS (including αECP). This is a significant fea-
ture, since the performance of different solvers can vary significantly from one problem
to the other. An implementation of the MILP problem formulation in GAMS syntax is
provided in Appendix B. A flowchart showing the different steps in the solver is shown
in fig. 6.1.

The optimization problem to be solved with SIGOPT is provided in an XML- (extensi-
ble markup language) based file format. XML is an open standard for specifying markup
based languages. The file format was specially tailored for describing MISP problems,
but can easily be extended to allow for other types of problems. The syntax of the file
format is described in the next section.
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Problem in ECP format

Parse and translate Problem in XML format

Parse XML format

Transform the nonconvex problem:

1. Write problem parameters to a file.

2. Solve the MILP problem with GAMS.

3. Update problem file with transformations.

4. (Manually alter transformation file).

Transformed problem in XML format

Create the initial GAMS problem

1. Rewrite objective function, constraints to GAMS syntax.

2. Create initial breakpoints for transformation.

Solve the subproblem using GAMS
Add additional break-

points to the PLFs
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criteria?

Optimal solution found

no
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Figure 6.1: Flowchart of the SIGOPT solver
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After the problem file has been parsed, and translated to the internal representation
used in SIGOPT, GAMS is called on to solve the MILP problem specified by the signomial
functions in the constraints of the original nonconvex problem. The solution of this
problem is then used to transform the original problem to a convex and overestimated
form, using the interval endpoints as initial values for the breakpoints in the PLFs. After
this, GAMS is called on to solve the transformed MINLP problem, which is in each
iteration updated by including more breakpoints in the PLFs. After each iteration, the
termination criteria are checked, and if fulfilled, the solution process is terminated.

The SIGOPT solver was programmed in C# 3 which is a part of Microsoft’s .NET
Framework 3.5. Since, by far, the most time-consuming part of solving large nonconvex
MISP problems is the call on the MINLP solver in GAMS, so the speed of the SGO
algorithm itself has little impact on the overall performance. Therefore, while an imple-
mentation in, e.g., C++ would provide some speed enhancements, these are probably
marginal.

6.1.1 The problem file syntax

As described above, the MISP problem is provided to the solver in an XML file format.
The main elements of the format are

<problem>

<obj> ... </obj>

<constrs> ... </constrs>

<vars> ... </vars>

</problem>

The root element <problem> contains the entire MISP problem; including the objec-
tive function within the <obj>-element, the constraints within the <constrs>-element,
as well as the variable definitions within the <vars>-element. There must exist exactly
one of each of these elements in the problem file.

The objective function of the problem is defined in the <obj>-element. This element
contains one or more subelements of the type <linterm>, corresponding to the linear
terms in the objective function. Nonlinear terms are not allowed in the objective function,
however, in Section 2.4, a technique for rewriting a nonlinear objective function using an
extra constraint is given. As an example, the syntax for the objective function −x+ 2y is

<obj>

<linterm coeff="-1" var="x" />

<linterm coeff="2" var="y" />

</obj>

The attribute coeff is the numeric coefficient of the term and the attribute var corre-
sponds to a variable defined in the <vars>-element.

Both the linear and nonlinear constraints are defined in the <constrs>-element as
subelements of the type <constr>. For example, the XML syntax for the constraints
y − 5x ≤ 10 and 2y + x0.5y ≤ 10 is
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<constrs>

<constr id="C1" reltype="LE" rhs="10">

<linterm coeff="1" var="y" />

<linterm coeff="-5" var="x" />

</constr>

<constr id="C2" reltype="LE" rhs="10">

<linterm coeff="2" var="y" /

<sigterm coeff="1">

<sigelem var="x" power="0.5" />

<sigelem var="y" power="1" />

</sigterm>

</constr>

</constrs>

There is no need to specify whether the constraints are linear or nonlinear, since
the parser will determine this automatically. The attribute id, which corresponds to
the name or identifier of the constraint, is not mandatory, and if it is not provided,
the parser will generate one itself. The type of constraint, i.e., ≤ or ≥, is set by the
attribute reltype, which can assume the corresponding values LE or GE. The syntax for
the <linterm>-element is the same as in the objective function.

The signomial term is composed of the main element sigterm (with the attribute
coeff representing the coefficient of the term) and the subelements <sigelem>, which
corresponds to the individual power functions in the signomial term. The <sigelem>-
element has the attributes var and power corresponding to the variable and the power
of the variable respectively.

It is also possible to include other general nonlinear convex expressions in the con-
straints by using the <cvxexpr> element; for example, including the convex constraint
− lnx ≤ 0 is possible using the following syntax

<constr id="C3" reltype="LE" rhs="0">

<cvxexpr>-log(x)</cvxexpr>

</constr>

Note that the nonlinear expressions must be given in GAMS syntax. It is, of course,
also possible to include nonconvex expressions in the <cvxexpr> element, but this can
lead to the transformed MINLP problem being nonconvex. In this case, there is no
guarantee that a solution is found.

The variables in the problem are defined according to the following syntax

<vars>

<var name="x" type="R" lb="1" ub="7" />

<var name="y" type="I" lb="1" ub="6" />

</vars>

Here the real variable x ∈ [1,7] and the integer variable y ∈ {1,2, . . . ,6} are defined. Except
for the obvious name-attribute, the other attributes of the <var>-element are type, lb
and ub. The attribute type is either I or R depending on whether the variable is real
or integer. The bounds are specified using the lb- and ub-attributes. These are not
mandatory, a missing attribute will correspond to a negative and positive infinite value
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of the bound respectively. Note that variables in signomial terms must have well-defined
and positive bounds for the transformation procedure to work. In addition, depending
on the solver used to solve the transformed problems in GAMS, more strict requirements
on the bounds may be required, e.g., infinite values on the bounds may not be allowed.

6.1.2 Optimization of the transformations

The MILP problem for optimizing the set of transformations for the signomial terms in
the problem, described in Chapter 4, is also used in SIGOPT. The MILP formulation has
been translated into GAMS syntax, and only the parameters in table 4.1 along with the
signs of the signomial terms and powers pji , which define the signomial terms in the
problem, must be specified. Since the problem formulation is included as an external
problem file in the solver, it is easy to modify the logic of the MILP problem.

The MILP problem is solved using any of the solvers available in GAMS, e.g., CPLEX.
The solution of the problem will indicate what variables in the signomial terms are
transformed as well as what transformations are used, all according to the solution
values of the variables in tables 4.1 and 4.2. The solution is saved to an XML file, which
is then read by the SIGOPT solver. An updated problem file in the XML file format is
then created containing the original nonconvex problem as well as the transformations
obtained. The reason for creating this intermediate file, is that it is possible to pause the
solver at this step, allowing the user to modify the transformations if so wanted.

The only changes in the file format are the addition of an attribute tvar in the
<sigelem>-elements if the variable is transformed in the term. The value of this attribute
corresponds to the name of the transformation variable. In addition, the transformation
variable is specified in the <var>-element corresponding to the original variable.

In the term x0.5y in the nonconvex constraint 2y + x0.5y ≤ 10, both variables x and y
must be transformed. If the PPT is used, e.g., the transformations x = X−1 and y = Y 1.5

applied to the term will convexify it. The <sigterm>-element corresponding to this term
will then be updated according to

<sigterm coeff="1">

<sigelem var="x" power="0.5" tvar="TX" />

<sigelem var="y" power="1" tvar="TY" />

</sigterm>

and the variable specifications are updated to

<vars>

<var name="x" type="R" lb="1" ub="7" />

<transform tvar="TX" type="P" power="-1">

<breakpoint value="1" />

<breakpoint value="7" />

</transform>

<var name="y" type="I" lb="1" ub="6" />

<transform tvar="TY" type="P" power="1.5">

<breakpoint value="1" />

<breakpoint value="6" />

</transform>

</vars>
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The attribute type in the <transform>-element corresponds to the type of transforma-
tion used, allowed values are P (PT) and E (ET). If a PT is used, the transformation power,
i.e., the attribute power, must also be defined. Depending on the initial discretization
strategy a number of initial breakpoints are added to each transformation variable; here
the interval endpoints have been added. Note that more than one transformation can
be used on an original variable, i.e., more than one subelement of the type <transform>
may be included in each <var>-element. In this case, each transformation variable is
given a unique tvar-identifier.

After the transformations have been written to the problem file the user can, as
mentioned above, alter the transformations. If the problem has been modified, it is
reread by the solver and the internal representation is updated accordingly. A check for
convexity for the signomial terms is also performed, and if one or more of the terms are
nonconvex, a warning is issued.

6.1.3 Solving the transformed problem

The problem can now be solved subject to the initial discretization of the PLFs as defined
in the problem file containing the transformed problem. However, first the problem
must be translated to GAMS syntax. All the linear and nonlinear constraints, as well as
the objective function and the variable definitions are written to a GAMS problem file.

For the generalized signomial constraints containing nonconvex signomial terms, the
original terms are replaced with their convexified variants containing the transformation
variables. Furthermore, the transformation variables defined through PLFs of the inverse
transformations are also included. However, these are not explicitly written, only the
breakpoints (in an external file) and transformations are defined, and GAMS itself
calculates the explicit expressions for the PLFs. By not specifying the PLFs directly, the
main GAMS problem file will not need to be updated in each subsequent iteration, only
the parameter file containing the breakpoints. Any of the two different formulations for
PLFs given in Sections 2.5.1 and 2.5.2 can be used to express the linearizations. However,
since not all solvers in GAMS can handle SOS type 2 variables, the binary formulation
may be required by some solvers.

After the problem has been translated to GAMS syntax, one of the available MINLP
solvers (user-specified) is called on to solve the initial problem. When the solution
has been found, SIGOPT checks whether it fulfills any of the termination criteria in
Section 5.3, and if so, terminates with the solution of the current iteration as the final
solution. If none of the termination criteria is fulfilled, new breakpoints are added
to one or more of the transformation variables. This is done by updating the external
file containing the breakpoints according to one of the strategies in Section 5.2. After
this, the MINLP solver is again called on. This continues iteratively until any of the
termination criteria is fulfilled.

Settings for the solver are specified in an external file. These include the parameters
in the MILP problem, as well as options determining the characteristics of the SIGOPT
solver, e.g., the breakpoint strategy and termination criteria. If no option file is specified,
the default settings will be used.
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6.2 A test problem

Here, a MINLP problem from Björk [2002], containing both positive and negative
signomial terms, is solved using the SIGOPT solver.

Example 6.1. The problem consists of one linear and two nonlinear constraints. The
first nonlinear constraint is a convex objective function constraint and the other a
signomial constraint.

minimize µ,

subject to 3x1 − 4x2 + 5x3 − 5x5 ≤ −75,

− 2x1 − 3x2 − 2x3 + x2
6 −µ ≤ 0,

5x2
1x5 + 2x1x2x5 + x3x

−1
4 + 4x2

2x5 − x2
6x5 − 50x5 ≤ 0,

1 ≤ x1 ≤ 7, 1 ≤ x2 ≤ 9,

1 ≤ x3 ≤ 8, 1 ≤ x4 ≤ 4,

1 ≤ x5 ≤ 17, 1 ≤ x6 ≤ 5,

− 100 ≤ µ ≤ 10.

(6.2.1)

SIGOPT was called on to solve this nonconvex problem using the two sets of
strategy parameters listed in table 6.1, as well as the following values for the other
parameters: Qmin = Qmax = M = 10, ε = 0.1, Ppos = 2, Pneg = −1. The termination
criterion was εT = 0.001. In the first strategy, the transformations in the positive
terms are “forced” to be of the exponential type, whereas in the second strategy, they
can also be PTs with a negative or positive power. The problem was solved using
GAMS version 23.0, with CPLEX 11 (ILOG [2007]) as MILP solver and αECP/GAMS
(Westerlund and Lastusilta [2008]) as the MINLP solver.

Two strategies for adding the breakpoints were examined, the first when adding
the solution point and the second when adding the midpoint of the interval of
breakpoints the previous solution belongs to.

The transformation results are presented in table 6.2. An optimal solution of
−18.28 was reached using both strategies, however the number of iterations required
differed. Illustration of the solution processes are presented in fig. 6.2. The results
indicate, that in this example, adding the midpoint as the new breakpoint is superior
to adding the solution point, for the transformations obtained from both Strategy I
and II. Of the two transformation-strategies, the second one performs better than
the first for both breakpoint-strategies; one reason for this can be that the number
of transformations required is less than when forcing the use of the ET for positive
terms. The CPU-time required for solving the problems are presented in table 6.3.
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Table 6.1: The values of the parameters in the MILP formula-
tion in ex. 6.1.

Strategy δR δZ δNT δNS δET δP T δP δI

I 10 - 1 0.01 - 1 - 10
II 10 - 1 0.01 - - - 10

Table 6.2: The number of transformations when transforming the problem in
ex. 6.1.

Strategy # Transf. # TVa # ETb # neg. PTc # pos. PTd # PTe

I 10 6 8 - - 2
II 8 6 - 4 2 2

a Number of transformation variables X̂ required
b Number of single-variable ETs
c Number of single-variable PTs with negative power in positive terms
d Number of single-variable PTs with positive power in positive terms
e Number of single-variable PTs in negative terms

Table 6.3: The CPU-times in seconds when solv-
ing the problem in ex. 6.1.

Strategy Solution point (s)a Midpoint (s)a

I 26.2 (25.8) 6.2 (5.8)
II 10.1 (9.7) 3.7 (3.3)

a The number within parenthesis is the total
CPU-time for the calls to the MINLP solver
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Figure 6.2: The objective function value in each iteration for the problem in ex. 6.1.





CHAPTER7
Discussion and conclusions

The contents of this thesis were practically divided into two parts. In the first part, the
theoretical foundations for the convex underestimating framework consisting of the
single-variable transformations and the PLF-approximation of these were presented.
Furthermore, some results regarding the tightness of the different transformations for
positive signomial terms were given, and numerical comparisons between the convex
underestimations obtained from these and other types of convex underestimators were
performed through some specific examples. The second part mostly concerns how this
transformation framework can be utilized to solve problems of the specified type to
global optimality. The MILP method, for obtaining an optimized set of transformations,
as well as the SGO algorithm was presented. Finally, SIGOPT, an implementation of the
SGO algorithm was described.

The main theoretical results of this thesis are those in Chapter 3, regarding the
connections between the different transformation types for positive signomial terms, i.e.,
the ET, NPT and PPT. It was shown that the single-variable exponential transformation
provides a lower and upper bound respectively for single-variable power transformations
with positive or negative powers approximated with PLFs. This fact was used for proving
the relations between the underestimators obtained from the ET, NPT and PPT applied
to general positive signomial terms.

For example, it was shown that the ET always provide tighter convex underestimators
than the NPT. The same is true for the PPT versus the NPT, with some additional
constraint on the powers in the single-variable transformations with negative powers.
In addition to this, it was also concluded that neither the ET nor the PPT gives a
tighter underestimator in the whole domain. While the ET is a fixed transformation,
in the sense that there are no extra modifiable parameters as in the case of the PPT,
the underestimating properties of the PPT can be altered by changing the value of the
transformation power. This fact was shown in ex. 3.21, where a change of transformation
powers in the PPT led to an even tighter underestimator.
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The comparisons with other types of underestimators gave good results in the pro-
vided examples, however as previously stated, it is difficult to provide a fair comparison
for different types of underestimators. There is more to a good convex underestimator
than merely the lower bound, which was the characteristic compared in the examples.

Although it was shown that both the ET and PPT provide tighter underestimators
than the NPT, in combination with the MILP method in Chapter 4, the NPT can still be
useful; together with the PPT it may allow for less transformations or original variables
transformed in some problems involving more than one signomial term. This is also the
strength of the MILP method: It is of course possible to obtain a feasible set of trans-
formations for transforming the nonconvex problem by following some rigid scheme,
e.g., always transforming positive terms using the ET. However, by utilizing the MILP
method, the transformation step can be done in a much more elaborate way. Besides, it is
often the case that it is difficult to find an “optimal”, or even good, set of transformations
for the nonconvex signomial terms in a large and complicated problem, by hand.

As direct implementations of the underestimation techniques considered previously
in the thesis, the SGO algorithm and the SIGOPT solver were described in Chapters 5
and 6. It was explained how the algorithm could be used to find the global optimal
solution of a MISP problem. Also, some of the different strategies for selecting the
variables and breakpoints when updating the PLFs were briefly discussed.

The SIGOPT solver has some specific strengths and weaknesses in comparison to the
previously used GGPECP solver. On one hand, the inclusion of the MILP method as
well as the possibility to use any convex MINLP solver for the subproblems can be very
beneficial. However, on the other hand, the GGPECP algorithm benefits from the tighter
integration with its MINLP solver, since it can reuse information from the solution
process in each subproblem, which the current version of the SGO algorithm cannot.

7.1 Future directions

Except in a few numerical examples, the PT for convexifying negative signomial terms,
was not studied further in this thesis. In the MILP method when favoring numerically
stable transformations, the products of the original and transformation powers in the
convexified term, i.e., pjiQji , are forced to be as close to each other as possible for all
variables in the term. This has, at least in numerical examinations, proven to give quite
good convex underestimators. A more theoretical study should, though, be performed
on this matter to provide conclusive results.

The SGO algorithm could also be developed further. Although the applicable class
of problems for the SGO algorithm, i.e., the MISP problem type in def. 2.8, is quite
large, it would be interesting to also implement underestimation techniques for general
nonconvex terms. How this could be done is still an open question, but if they could be
included in the PLF-framework already used, it could perhaps work quite well.

The SIGOPT solver, i.e., the implementation of the SGO algorithm described in
Chapter 6, was meant more as a proof-of-concept of the SGO algorithm, and test bench
for the transformation techniques, than as a global optimization solver for production
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use. Therefore, some features are, at the time of writing, still missing. One particularly
useful feature, would be to automatically translate variables with nonpositive domains
occurring in the signomial functions. It is, of course, possible to set a lower bound of a
small positive value for variables with a lower bound of zero, but by using a translation,
an exact representation of the domain would be possible. Additionally, the solver could
be used to further study the impact of different translations, i.e., the parameter τ in the
discussion after def. 2.8.

The implementation of the MILP problem for obtaining the transformations, also
needs some further work: Some default sets of parameters should be included, making it
simpler for the user to transform the problem according to some specific strategy, e.g.,
favoring as few transformations as possible or favoring the ET over the PTs.

In conclusion, there is still a lot of work to be done before general MINLP problems
containing signomial functions can be solved efficiently. Methods that work in theory do
exist, which this thesis is hopefully a proof of; however, the difficult part is taking into
consideration the real-world obstacles the implementation of such methods are bound to
run into.
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APPENDIXA
The MILP method

In this appendix, the MILP method from Chapter 4 is compiled. The variables and
parameters in the problem are described in tables 4.3, 4.1 and 4.2.

minimize δR

I∑
i=1
xi∈R

riBi + δZ
I∑
i=1
xi∈Z

riBi +
JT∑
j=1

I∑
i=1
pji,0

(δNT bji + δNS∆ji)

+
JT∑
j=1
cj>0

I∑
i=1
pji>0

(δET b
ET
ji + δP T b

P T
ji + δP βji) + δI

JT∑
j1=1

JT∑
j2=1
j2,j1

I∑
i=1
pji,0

γj1j2i

subject to ∀i :
JT∑
j=1

bji ≤ JTBi ,

∀j : Ij = card {xi | pji , 0},

∀j : cj < 0 : 0 <
I∑
i=1

pjiQji ≤ 1,

bETji = bP Tji = αji = βji = 0,

∀i : pji , 0 :

∆′ ji ≥
∣∣∣∣pjiQji − 1

Ij

∑I
i=1pjiQji

∣∣∣∣ ,
∆ji ≥ 1−

∑I
i=1pjiQji + ε∆′ ji ,

∀i : pji > 0 :

1− bji ≤Qji ≤ 1− εbji ,
Qji ≥ ε,

∀i : pji < 0 :

−Qmin ≤Qji ≤ −ε,
bji = 1,
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∀j : cj > 0 :
I∑
i=1
pji,0

pjiQji −M1

I∑
i=1
pji>0

αji +M1

I∑
i=1
pji>0

bETji ≥ 1−M1,

I∑
i=1
pji>0

αji −
I∑
i=1
pji>0

bETji ≤ 1,

∀i : pji > 0 :



−Qmin + (Qmin + 1)αji ≤Qji ,
Qji ≤Qmaxαji − ε(1−αji),
−Qmin + (Qmin + 1)bETji ≤Qji ,
Qji ≤ (Qmax − 1)(1− bETji ) + 1,

bP Tji ≥ 1−αji ,
ε(Qji − 1) ≤ bP Tji ≤ (1− ε)Qji +M1(1−αji),
−Qmin(1− βji) ≤Qji ≤Qmaxβji ,

bETji ≥
1
Ij

∑I
i=1
pji>0

bETji ,

bETji + bP Tji ≤ 1,

bji = max{bETji ,b
P T
ji },

|pjiQji − Ppos| ≤ ∆ji +M2(1− βji + bETji ),

|pjiQji − Pneg| ≤ ∆ji +M2(βji + bETji ),

∀i : pji < 0 :


Qji = 1,

bji = 0,

∆ji = 0,

∀i, j1, j2 ∈ {1, . . . , JT }, j1 , j2, pj1i , pj2i , 0, sgncj1 = sgncj2 :Qj1i −Qj2i + bETj1i − b
ET
j2i
−M1(2− bj1i − bj2i) ≤M1γj1j2i ,

γj1j2i = γj2j1i ,

M1 >max
j

1 +Qmin

I∑
i=1

pji

 , M2 >max{|Pneg|, Ppos},

ε = 1/max{Qmin,Qmax}.



APPENDIXB
The MILP problem formulation

in GAMS syntax

In this appendix, the MILP method from Chapter 4 is presented in GAMS problem
format. For more information about the GAMS syntax see, e.g., the GAMS manual in
Rosenthal [2008].

First, the parameters are specified. In the SIGOPT solver, these are provided in
an external file, to avoid having to alter the main file containing the MILP problem
formulation. The parameters can, however, also be included in the main file as they are
here. These parameters are for the problem in Section 5.4.

1 sets

2 i variables / 0 * 1 /

3 ints(i) integer variables / 1 /

4 reals(i) real variables / 0 /

5 j terms / 0 * 1 /

6 nj(j) negative terms / 0 /

7 pj(j) positive terms / 1 / ;

8

9 parameters

10 p(j,i) powers

11 / 0.0 = 0.5, 0.1 = 2, 1.0 = 1.5, 1.1 = 1.5 /

12 r(i) interval penalty / 0 = 1, 1 = 1 /

13

14 scalars

15 dR / 1 /

16 dZ / 1 /

17 dNT / 0 /

18 dNS / 0.1 /

19 dET / 0 /

20 dPT / 0 /

21 dP / 0 /

22 dI / 0 /
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23 Qmin / 10 /

24 Qmax / 10 /

25 Ppos / 1 /

26 Pneg / -1 /

Now some additional sets and parameters needed are defined and calculated. Also the
variables and some variable bounds are specified.

27 Alias (pj,pj1,pj2)

28 Alias (nj,nj1,nj2)

29 Alias (i,i2)

30

31 parameters JT, IV(j), M1, M2, epsilon;

32

33 JT = card(j);

34 M1 = max(Qmin,Qmax);

35 M2 = 1 + smax(j,Qmin * sum(i, p(j,i)));

36 epsilon = 1/M1;

37

38 loop(j, IV(j) = 0;

39 loop(i, if (p(j,i) <> 0,

40 IV(j) = IV(j) +1 )));

41

42 variables delta(j,i), deltaP(j,i), Q(j,i);

43

44 free variable objval;

45

46 positive variable delta(j,i), deltaP(j,i);

47

48 binary variables bB(i), b(j,i), bE(j,i), bP(j,i),

49 beta(j,i), alpha(j,i), gamma(j,j,i);

In the following the equation names are defined. They are numbered in the same manner
as in Section 4.1.

50 Equations

51 obj,

52 eq4_1_1(i), eq4_1_4(j), eq4_1_6(j), eq4_1_7a(j,i), eq4_1_7b(j,i),

53 eq4_1_8a(j,i), eq4_1_8b(j,i), eq4_1_9(j,i),

54 eq4_1_10a(j,i), eq4_1_10b(j,i), eq4_1_11a(j,i), eq4_1_11b(j,i),

55 eq4_1_12(j,i), eq4_1_14(j,i), eq4_1_15a(j,i), eq4_1_15b(j,i),

56 eq4_1_16a(j,i), eq4_1_16b(j,i), eq4_1_17a(j), eq4_1_17b(j),

57 eq4_1_18a(j,i), eq4_1_18b(j,i), eq4_1_18c(j,i),

58 eq4_1_19a(j,i), eq4_1_19b(j,i), eq4_1_19c(j,i),

59 eq4_1_22a(j,i), eq4_1_22b(j,i), eq4_1_23a(j,i), eq4_1_23b(j,i),

60 eq4_1_24(j,i), eq4_1_25a(j,i), eq4_1_25b(j,i), eq4_1_26(j,i),

61 eq4_1_27a(j1,j2,i), eq4_1_27b(j1,j2,i),

62 eq4_1_27c(j1,j2,i), eq4_1_27d(j1,j2,i)

The objective function as well as conditions for both positive and negative terms:

63 obj.. objval =e= dR * sum(reals(i),r(i) * bB(i))

64 + dZ * sum(ints(i),r(i) * bB(i))

65 + sum((j,i)$(p(j,i) <> 0), dNT * b(j,i) + dNS * delta(j,i))

66 + sum((pj,i)$(p(pj,i) > 0),

67 dET * bE(pj,i) + dPT * bP(pj,i) + dP * beta(pj,i))
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68 + sum((i,pj1,pj2)$(not sameas(pj1,pj2) and (p(pj1,i) > 0)

69 and (p(pj2,i) > 0)), dI * gamma(pj1,pj2,i))

70 + sum((i,nj1,nj2)$(not sameas(nj1,nj2) and (p(nj1,i) <> 0)

71 and (p(nj2,i) <> 0)), dI * gamma(nj1,nj2,i));

72

73 eq4_1_1(i).. sum(j, b(j,i)) =l= JT * bB(i);

The constraints for positive signomial terms:

74 eq4_1_4(pj)..

75 sum(i$(p(pj,i) <> 0), p(pj,i) * Q(pj,i))

76 + M1 * sum(i$(p(pj,i) > 0), - alpha(pj,i) + bE(pj,i)) =g= 1 - M1;

77

78 eq4_1_6(pj)..

79 sum(i$(p(pj,i) > 0), alpha(pj,i) - bE(pj,i)) =l= 1;

80

81 eq4_1_7a(pj,i)$(p(pj,i) > 0)..

82 -Qmin + (Qmin + 1)* alpha(pj,i) =l= Q(pj,i);

83

84 eq4_1_7b(pj,i)$(p(pj,i) > 0)..

85 Q(pj,i) =l= Qmax * alpha(pj,i) - epsilon * (1-alpha(pj,i));

86

87 eq4_1_8a(pj(j),i)$(p(pj,i) > 0)..

88 -Qmin + (Qmin + 1)* bE(pj,i) =l= Q(pj,i);

89

90 eq4_1_8b(pj(j),i)$(p(pj,i) > 0)..

91 Q(pj,i) =l= (Qmax - 1)*(1 - bE(pj,i)) + 1;

92

93 eq4_1_9(pj,i)$(p(pj,i) > 0).. bP(pj,i) =g= 1 - alpha(pj,i);

94

95 eq4_1_10a(pj,i)$(p(pj,i) > 0)..

96 epsilon * (Q(pj,i) - 1) =l= bP(pj,i);

97

98 eq4_1_10b(pj,i)$(p(pj,i) > 0)..

99 bP(pj,i) =l= (1 - epsilon) * Q(pj,i) + M1*(1 - alpha(pj,i));

100

101 eq4_1_11a(pj(j),i)$(p(pj,i) > 0)..

102 -Qmin * (1-beta(pj,i)) =l= Q(pj,i);

103

104 eq4_1_11b(pj(j),i)$(p(pj,i) > 0)..

105 Q(pj,i) =l= Qmax * beta(pj,i);

106

107 eq4_1_12(pj,i)$(p(pj,i) > 0)..

108 bE(pj,i) =g= (1 / IV(pj)) * sum(i2$(p(pj,i2) > 0), bE(pj,i2)) ;

109

110 eq4_1_14(pj,i)$(p(pj,i) > 0).. bE(pj,i) + bP(pj,i) =l= 1;

111

112 eq4_1_15a(pj,i)$(p(pj,i) > 0).. b(pj,i) =g= bE(pj,i);

113 eq4_1_15b(pj,i)$(p(pj,i) > 0).. b(pj,i) =g= bP(pj,i);

114

115 eq4_1_16a(pj,i)$(p(pj,i) < 0).. Q(pj,i) =e= 1;

116 eq4_1_16b(pj,i)$(p(pj,i) < 0).. b(pj,i) =e= 0;

The constraints for negative signomial terms:

117 eq4_1_17a(nj).. 0 =l= sum(i, p(nj,i) * Q(nj,i));
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118 eq4_1_17b(nj).. sum(i, p(nj,i) * Q(nj,i)) =l= 1;

119

120 eq4_1_18a(nj,i)$(p(nj,i) > 0).. 1 - b(nj,i) =l= Q(nj,i);

121 eq4_1_18b(nj,i)$(p(nj,i) > 0).. Q(nj,i) =l= 1 - epsilon * b(nj,i);

122 eq4_1_18c(nj,i)$(p(nj,i) > 0).. Q(nj,i) =g= epsilon;

123

124 eq4_1_19a(nj,i)$(p(nj,i) < 0).. -Qmin =l= Q(nj,i);

125 eq4_1_19b(nj,i)$(p(nj,i) < 0).. Q(nj,i) =l= -epsilon;

126 eq4_1_19c(nj,i)$(p(nj,i) < 0).. b(nj,i) =e= 1;

The constraints for favoring numerically stable transformations:

127 eq4_1_22a(pj,i)$(p(pj,i) > 0)..

128 -delta(pj,i) - M2 * (1 - beta(pj,i) + bE(pj,i))

129 =l= p(pj,i) * Q(pj,i) - Ppos;

130

131 eq4_1_22b(pj,i)$(p(pj,i) > 0)..

132 p(pj,i) * Q(pj,i) - Ppos

133 =l= delta(pj,i) + M2 * (1 - beta(pj,i) + bE(pj,i));

134

135 eq4_1_23a(pj,i)$(p(pj,i) > 0)..

136 -delta(pj,i) - M2 * (beta(pj,i) + bE(pj,i))

137 =l= p(pj,i) * Q(pj,i) - Pneg;

138

139 eq4_1_23b(pj,i)$(p(pj,i) > 0)..

140 p(pj,i) * Q(pj,i) - Pneg

141 =l= delta(pj,i) + M2 * (beta(pj,i) + bE(pj,i));

142

143 eq4_1_24(pj,i)$(p(pj,i) < 0).. delta(pj,i) =e= 0;

144

145 eq4_1_25a(nj,i)$(p(nj,i) <> 0)..

146 deltaP(nj,i) =g=

147 p(nj,i) * Q(nj,i) - (1/IV(nj))*sum(i2, p(nj,i2) * Q(nj,i2));

148

149 eq4_1_25b(nj,i)$(p(nj,i) <> 0)..

150 deltaP(nj,i) =g=

151 -p(nj,i) * Q(nj,i) + (1/IV(nj))*sum(i2, p(nj,i2) * Q(nj,i2));

152

153 eq4_1_26(nj,i)$(p(nj,i) <> 0)..

154 delta(nj,i) =g=

155 1 - sum(i2, p(nj,i2) * Q(nj,i2)) + epsilon * deltaP(nj,i);

The constraints for favoring identical transformations:

156 eq4_1_27a(pj1,pj2,i)$((not sameas(pj1,pj2)

157 and (p(pj1,i) > 0) and (p(pj2,i) > 0)))..

158 Q(pj1,i) - Q(pj2,i) + bE(pj1,i) - bE(pj2,i)

159 - M1 * (2 - b(pj1,i) - b(pj2,i)) =l= M1 * gamma(pj1,pj2,i);

160

161 eq4_1_27b(pj1,pj2,i)$((not sameas(pj1,pj2)

162 and (p(pj1,i) > 0) and (p(pj2,i) > 0)))..

163 gamma(pj1,pj2,i) =e= gamma(pj2,pj1,i);

164

165 eq4_1_27c(nj1,nj2,i)$((not sameas(nj1,nj2)

166 and (p(nj1,i) <> 0) and (p(nj2,i) <> 0)))..

167 Q(nj1,i) - Q(nj2,i)



97

168 - M1 * (2 - b(nj1,i) - b(nj2,i)) =l= M1 * gamma(nj1,nj2,i);

169

170 eq4_1_27d(nj1,nj2,i)$((not sameas(nj1,nj2)

171 and (p(nj1,i) <> 0) and (p(nj2,i) <> 0)))..

172 gamma(nj1,nj2,i) =e= gamma(nj2,nj1,i);

Finally some statements naming the model and instructing GAMS how to solve the
problem.

173 MODEL mintrans /ALL/;

174

175 SOLVE mintrans USING MIP MINIMIZING objval;





Abbreviations

BARON Branch and reduce optimization navigator, [46]
BB Branch and bound, [20]
ECP Extended cutting plane, [61]
ET Exponential transformation, [24]
GAMS General algebraic modeling system, [71]
GGP Generalized geometric programming, [14]
GGPECP Generalized geometric programming extended cutting plane, [61]
GO Global optimization, [61]
GP Geometric programming, [14]
INLP Integer nonlinear programming, [12]
IP Integer programming, [12]
LP Linear programming, [12]
MILP Mixed integer linear programming, [12]
MINLP Mixed integer nonlinear programming, [12]
MISP Mixed integer signomial programming, [13]
NLP Nonlinear programming, [12]
NPT Negative power transformation, [22]
PLF Piecewise linear function, [14]
PPT Positive power transformation, [23]
PT Power transformation, [22]
SGO Signomial global optimization, [61]
SOS Special ordered set, [15]
SP Signomial programming, [13]
XML Extensible markup language, [71]

The page numbers where the abbreviations are explained are given in the brackets.
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